Statistical and computational trade-offs in estimation of sparse principal components

Richard Samworth
University of Cambridge

Collaborators

Tengyao Wang

Quentin Berthet

Statistical and computational trade-offs

Is there a fundamental trade-off between statistical and computational efficiency?

Statistical and computational trade-offs

Is there a fundamental trade-off between statistical and computational efficiency?

Could it be that no (randomised) polynomial time algorithm can attain the minimax rate?

Statistical and computational trade-offs

A growing body of work strongly suggests there is such a fundamental trade-off.

- Sparse principal component detection (Berthet and Rigollet, 2013)
- Convex relaxation algorithms (Chandrasekaran and Jordan, 2013)
- Submatrix signal detection (Ma and Wu, 2013; Chen and Xu, 2014)
- Sparse linear regression (zhang et al., 2014)
- Community detection (Hajek et al., 2014).

The area introduces new connections between Statistics and theoretical computer science.

Principal Components Analysis (PCA)

Let $p \geq 2$ and \mathcal{P} denote all distributions P on \mathbb{R}^{p} with $\int_{\mathbb{R}^{p}} x d P(x)=0$ and $\Sigma(P):=\int_{\mathbb{R}^{p}} x x^{\top} d P(x)$ finite.

Let $\lambda_{1}(P)>\lambda_{2}(P) \geq \ldots \geq \lambda_{p}(P) \geq 0$ denote the eigenvalues of Σ and let $v_{1}(P)$ denote the first principal component - an eigenvector corresponding to $\lambda_{1}(P)$.

If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} P$, then we can estimate $v_{1}(P)$ using the top eigenvector, \hat{v}, of $\hat{\Sigma}:=n^{-1} \sum_{i=1}^{n} X_{i} X_{i}^{\top}$.

PCA fails in high dimensions

For unit vectors $u, v \in \mathbb{R}^{p}$, let $\Theta(u, v):=\cos ^{-1}\left(\left|u^{\top} v\right|\right)$, and

$$
L(u, v):=\sin \Theta(u, v)=\left\{1-\left(u^{\top} v\right)^{2}\right\}^{1 / 2}=\frac{1}{\sqrt{2}}\left\|u u^{\top}-v v^{\top}\right\|_{2} .
$$

Let $P=N_{p}\left(0, I_{p}+\theta v v^{\top}\right)$, where $\theta>0$. If $p=p_{n} \rightarrow \infty$ with $p / n \rightarrow c \in(0,1)$, then

$$
L(\hat{v}, v)^{2} \xrightarrow{\text { a.s. }} \begin{cases}1-\frac{1-c / \theta^{2}}{1+c / \theta} & \text { if } \theta>\sqrt{c} \\ 1 & \text { if } \theta \leq \sqrt{c}\end{cases}
$$

(Paul, 2007; Johnstone and Lu, 2009).

Sparse PCA

Sparse PCA (zou et al., 2006) is designed to remedy the situation and aid interpretability in high dimensions.

Assume $v_{1}(P) \in B_{0}(k)$ where $k \ll p$, and

$$
B_{0}(k):=\left\{u=\left(u_{1}, \ldots, u_{p}\right)^{\top}: \sum_{j=1}^{p} \mathbb{1}_{\left\{u_{j} \neq 0\right\}} \leq k,\|u\|_{2}=1\right\} .
$$

Much work on theoretical properties, e.g. minimax rates over subgaussian classes (Vu and Lei, 2013; Cai et al., 2013).

Restricted Covariance Concentration

The directional variance of P along a unit vector $u \in \mathbb{R}^{p}$ is $V(u):=u^{\top} \Sigma u$, with empirical counterpart $\hat{V}(u):=u^{\top} \hat{\Sigma} u$.

For $\ell \in\{1, \ldots, p\}$ and $C \in(0, \infty)$, say $P \in \operatorname{RCC}_{p}(n, \ell, C)$ if
$\mathbb{P}\left\{\sup _{u \in B_{0}(\ell)}|\hat{V}(u)-V(u)| \geq C \max \left(\sqrt{\frac{\ell \log (p / \delta)}{n}}, \frac{\ell \log (p / \delta)}{n}\right)\right\} \leq \delta$
for all $\delta>0$. Further, let

$$
\begin{aligned}
\operatorname{RCC}_{p}(\ell, C) & :=\cap_{n \in \mathbb{N}} \operatorname{RCC}_{p}(n, \ell, C) ; \\
\operatorname{RCC}_{p}(C) & :=\cap_{\ell=1}^{p} \operatorname{RCC}_{p}(\ell, C) .
\end{aligned}
$$

Subgaussian distributions satisfy RCC

If Q is a mean zero distribution on \mathbb{R}^{p} and $Y \sim Q$, write
$Q \in \operatorname{subgaussian}\left(\sigma^{2}\right)$ if $\mathbb{E}\left(e^{u^{\top} Y}\right) \leq e^{\sigma^{2}\|u\|^{2} / 2}$ for all $u \in \mathbb{R}^{p}$.
For every $\sigma \in(0, \infty)$, we have

$$
\operatorname{subgaussian}_{p}\left(\sigma^{2}\right) \subseteq \operatorname{RCC}_{p}\left(16 \sigma^{2}\left(1+\frac{9}{\log p}\right)\right)
$$

Minimax rates over RCC classes

Let

$$
\begin{aligned}
& \mathcal{P}_{p}(n, k, \theta):=\left\{P \in \mathrm{RCC}_{p}(2,1) \cap \mathrm{RCC}_{p}(2 k, 1):\right. \\
&\left.v_{1}(P) \in B_{0}(k), \lambda_{1}(P)-\lambda_{2}(P) \geq \theta\right\} .
\end{aligned}
$$

For $7 \leq k \leq p^{1 / 2}$ and $0<\theta \leq \frac{1}{16\left(1+\frac{9}{\log p}\right)}$, we have

$$
\inf _{\hat{v}} \sup _{P \in \mathcal{P}_{p}(n, k, \theta)} \mathbb{E}_{P} L\left(\hat{v}, v_{1}(P)\right) \geq \min \left\{\frac{1}{1660} \sqrt{\frac{k \log p}{n \theta^{2}}}, \frac{5}{18 \sqrt{3}}\right\} .
$$

(Vu and Lei, 2013).

Minimax rates over RCC classes II

Let $\hat{v}_{\text {max }}^{k}(\hat{\Sigma}):=\operatorname{sargmax}_{u \in B_{0}(k)} u^{\top} \hat{\Sigma} u$ be the k-sparse maximum eigenvector of $\hat{\Sigma}$.

If $2 k \log p \leq n$, then $\hat{v}_{\text {max }}^{k}(\hat{\Sigma})$ satisfies

$$
\sup _{P \in \mathcal{P}_{p}(n, k, \theta)} \mathbb{E}_{P} L\left(\hat{v}_{\max }^{k}(\hat{\Sigma}), v_{1}(P)\right) \leq 2 \sqrt{2}\left(1+\frac{1}{\log p}\right) \sqrt{\frac{k \log p}{n \theta^{2}}}
$$

Computationally efficient estimators

Computing $\hat{v}_{\text {max }}^{k}(\hat{\Sigma})$ involves a search of all $k \times k$ submatrices of $\hat{\Sigma}$.

Let $\mathcal{M}_{1}:=\left\{M \in \mathbb{R}^{p \times p}: M \succeq 0, \operatorname{tr}(M)=1\right\}$ and
$\mathcal{M}_{1,1}\left(k^{2}\right):=\left\{M \in \mathcal{M}_{1}: \operatorname{rank}(M)=1,\|M\|_{0} \leq k^{2}\right\}$. Then

$$
\max _{u \in B_{0}(k)} u^{\top} \hat{\Sigma} u=\max _{u \in B_{0}(k)} \operatorname{tr}\left(\hat{\Sigma} u u^{\top}\right)=\max _{M \in \mathcal{M}_{1,1}\left(k^{2}\right)} \operatorname{tr}(\hat{\Sigma} M) .
$$

Drop rank constraint and replace sparsity constraint with ℓ_{1} penalty (d'Aspremontetal., 2007) to obtain \hat{v}^{SDP}.

Computing $\hat{v}^{\text {SDP }}$

Algorithm 1: Pseudo-code for computing $\hat{v}^{\text {SDP }}$

Input: $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\top} \in \mathbb{R}^{n \times p}, \lambda>0, \epsilon>0$
begin
Step 1: Set $\hat{\Sigma} \leftarrow n^{-1} \mathbf{X}^{\top} \mathbf{X}$.
Step 2: For $f(M):=\operatorname{tr}(\hat{\Sigma} M)-\lambda\|M\|_{1}$, find $\hat{M} \in \mathcal{M}_{1}$ with $f(\hat{M}) \geq \max _{M \in \mathcal{M}_{1}} f(M)-\epsilon$. Step 3: Let $\hat{v}^{\mathrm{SDP}}:=\hat{v}_{\lambda, \epsilon}^{\mathrm{SDP}} \leftarrow \operatorname{sargmax}_{u:\|u\|_{2}=1} u^{\top} \hat{M} u$.
end
Output: \hat{v}^{SDP}

Further detail on Step 2

Rewrite

$$
\max _{M \in \mathcal{M}_{1}} \operatorname{tr}(\hat{\Sigma} M)-\lambda\|M\|_{1}=\max _{M \in \mathcal{M}_{1}} \min _{U \in \mathcal{U}} \operatorname{tr}((\hat{\Sigma}+U) M)
$$

where $\mathcal{U}:=\left\{U \in \mathbb{R}^{p \times p}: U^{\top}=U,\|U\|_{\infty} \leq \lambda\right\}$. Since RHS is linear in both M and U, we can use proximal gradient methods (Nemirovki, 2004) to obtain after N iterations that

$$
\max _{M \in \mathcal{M}_{1}} \min _{U \in \mathcal{U}} \operatorname{tr}((\hat{\Sigma}+U) M)-\min _{U \in \mathcal{U}} \operatorname{tr}((\hat{\Sigma}+U) \hat{M}) \leq \frac{\lambda^{2} p^{2}+1}{\sqrt{2} N}
$$

Thus Step 2 takes $O\left(\frac{\lambda^{2} p^{2}+1}{\epsilon}\right)$ iterations in the worst case. With $\lambda:=4 \sqrt{\frac{\log p}{n}}$ and $\epsilon:=\frac{\log p}{4 n}$, the overall algorithm has worst-case complexity $O\left(\max \left(p^{5}, \frac{n p^{3}}{\log p}\right)\right)$.

Risk bound for $\hat{v}^{\text {SDP }}$

For an arbitrary $P \in \mathcal{P}_{p}(n, k, \theta)$ and $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} P$, let $\hat{v}^{\mathrm{SDP}}(\mathbf{X})$ denote the output of Algorithm 1 with input $\mathbf{X}:=\left(X_{1}, \ldots, X_{n}\right)^{\top}, \lambda:=4 \sqrt{\frac{\log p}{n}}$ and $\epsilon:=\frac{\log p}{4 n}$.
If $4 \log p \leq n \leq k^{2} p^{2} \log p$, and $\theta \in(0,1]$, then

$$
\sup _{P \in \mathcal{P}_{p}(n, k, \theta)} \mathbb{E}_{P} L\left(\hat{v}^{\mathrm{SDP}}(\mathbf{X}), v_{1}(P)\right) \leq(16 \sqrt{2}+2) \sqrt{\frac{k^{2} \log p}{n \theta^{2}}}
$$

The planted clique problem

Let \mathbb{G}_{m} be the set of all undirected graphs with m vertices.

For $\kappa \in\{1, \ldots, m\}$, the planted clique distribution picks κ vertices uniformly and connects all edges between these vertices (the 'planted clique'). All other pairs of vertices are joined independently with probability $1 / 2$.

Can we locate the planted clique quickly?

Planted clique

Graph

Adjacency matrix

Planted clique

Graph

Adjacency matrix

Finding the planted clique is hard

For a standard Erdős-Rényi graph, the maximal clique K_{m} satisfies $\frac{\left|K_{m}\right|}{2 \log _{2} m} \xrightarrow{\text { a.s. }} 1$. If $\lim \inf _{m \rightarrow \infty} \frac{\kappa}{2 \log _{2} m}>1$, the planted clique is a.a.s. the unique maximum clique.

If $\kappa>C \sqrt{m \log m}$, then a.a.s., the planted clique vertices have largest degree (Kučera, 1995).

If $\kappa>c \sqrt{m}$ for some $c>0$, then spectral-based methods can find planted clique a.a.s. (Alon et al., 1998).

No known randomised polynomial time algorithms when $\kappa=o(\sqrt{m})$, and substantial evidence against their existence (Jerrum, 1992; Feige and Krauthgamer, 2003; Feldman et al., 2013).

Planted clique hypothesis

(A1) For any sequence $\kappa=\kappa_{m}$ such that $\kappa \leq m^{\beta}$ for some $0<\beta<1 / 2$, there is no randomised polynomial time algorithm that can correctly identify the planted clique with probability tending to 1 as $m \rightarrow \infty$.

Similar (often stronger) hypotheses have been used in theoretical computer science in

- testing k-wise independence (Alon et al., 2007)
- approximating Nash equilibria (Hazan and Krauthgamer, 2011)
- sparse submatrix detection (Ma and Wu, 2013)
- in cryptographic applications (e.g. Juels and Peinado, 2000).

Computational lower bound

Assume (A1) and let $\alpha \in(0,1)$. Let $k:=\left\lfloor n^{2 /(5-\alpha)}\right\rfloor, p:=n$ and $\theta:=n^{(1-\alpha) /(5-\alpha)} / 1000$. For $P \in \mathcal{P}_{p}(n, k, \theta)$, let \boldsymbol{X} be an $n \times p$ matrix with independent rows having distribution P. Then every sequence $\left(\hat{v}^{(n)}\right)$ of randomised polynomial time estimators of $v_{1}(P)$ satisfies

$$
\sqrt{\frac{n \theta^{2}}{k^{1+\alpha} \log p}} \sup _{P \in \mathcal{P}_{p}(n, k, \theta)} \mathbb{E}_{P} L\left(\hat{v}^{(n)}(\boldsymbol{X}), v_{1}(P)\right) \rightarrow \infty
$$

Algorithm 2: Pseudo-code for a planted clique algorithm based on a hypothetical randomised polynomial time sparse principal component estimation algorithm.

```
Input: }m\in\mathbb{N},\kappa\in{1,\ldots,m},G\in\mp@subsup{\mathbb{G}}{m}{},L\in\mathbb{N
begin
            Step 1: Let }n\leftarrow\lfloor9m/(10L)\rfloor,p\leftarrown,k\leftarrow\lfloor\kappa/L\rfloor. Draw
            u},\ldots,\mp@subsup{u}{n}{},\mp@subsup{w}{1}{},\ldots,\mp@subsup{w}{p}{}\mathrm{ uniformly at random without replacement
            from V }V(G)\mathrm{ . Form A = ( (Aij) }
            X \leftarrow\operatorname{diag}(\mp@subsup{\xi}{1}{},\ldots,\mp@subsup{\xi}{n}{})(2\mathbf{A}-\mp@subsup{\mathbf{1}}{n\timesp}{})\mathrm{ , where }\mp@subsup{\xi}{1}{},\ldots,\mp@subsup{\xi}{n}{}\mathrm{ are}
            independent Rademacher random variables
            Step 2: Use the estimator }\mp@subsup{\hat{v}}{}{(n)}\mathrm{ to compute }\hat{v}=\mp@subsup{\hat{v}}{}{(n)}(\mathbf{X}/\sqrt{}{750})\mathrm{ .
            Step 3: Let }\hat{S}=\hat{S}(\hat{v})\mathrm{ be the lexicographically smallest }k\mathrm{ -subset of
            {1,\ldots,p} such that ( }\mp@subsup{\hat{v}}{j}{}:j\in\hat{S})\mathrm{ contains the }k\mathrm{ largest coordinates
            of \hat{v}\mathrm{ in absolute value.}
    Step 4: Let nb}(u,W):=\mp@subsup{\mathbb{1}}{{u\inW}}{}+\mp@subsup{\sum}{w\inW}{}\mp@subsup{\mathbb{1}}{{u~w}}{}\mathrm{ for }u\in
    and}W\subseteqV. Set \hat{K}:={u\inV:\operatorname{nb}(u,{\mp@subsup{w}{j}{}:j\in\hat{S}})\geq3k/4}
end
```

Output: \hat{K}

Proof heuristics

Let $L:=\lceil\log n\rceil$, let $m:=\lceil 10 L p / 9\rceil$ and $\kappa:=L k$. Let $(\boldsymbol{\epsilon}, \gamma)=\left(\epsilon_{1}, \ldots, \epsilon_{n}, \gamma_{1}, \ldots, \gamma_{p}\right)$ be independent Bern (κ / m).
Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ have independent components conditional on γ, each distributed as

$$
Y:=\xi\{(1-\epsilon) R+\epsilon(\gamma+\tilde{R})\},
$$

where ξ, ϵ and R are independent, ξ is a Rademacher random variable, $\epsilon \sim \operatorname{Bern}(\kappa / m), R=\left(R_{1}, \ldots, R_{p}\right)^{\top}$ has independent Rademacher components, and
$\tilde{R}=\left(\tilde{R}_{1}, \ldots, \tilde{R}_{p}\right)^{\top}$ with $\tilde{R}_{j}:=\left(1-\gamma_{j}\right) R_{j}$.
Then $d_{\mathrm{TV}}(\mathcal{L}(\boldsymbol{X}), \mathcal{L}(\boldsymbol{Y})) \leq 18 /(5 L)$ (Diaconis and Freedman, 1980), and
$Q_{\boldsymbol{\gamma}}:=\mathcal{L}(Y \mid \boldsymbol{\gamma}) \in \cap_{\ell=1}^{\lfloor 20 p /(9 k)\rfloor} \mathrm{RCC}_{p}(\ell, 750)$.

Proof heuristics II

Suppose the r.p.t. estimator $\hat{v}^{(n)}$ of $v_{1}(P)$ satisfied

$$
\sup _{P \in \mathcal{P}_{p}(n, k, \theta)} \mathbb{E}_{P} L\left(\hat{v}^{(n)}(\mathbf{X}), v_{1}(P)\right) \leq K_{0} \sqrt{\frac{k^{1+\alpha} \log p}{n \theta^{2}}}
$$

Let $N_{\gamma}:=\sum_{j=1}^{p} \gamma_{j}$ and $\Gamma_{0}:=\left\{g:\left|N_{g}-p \kappa / m\right| \leq k / 20\right\}$. If $g \in \Gamma_{0}$, then $\mathcal{L}\left(\left.\frac{Y_{1}}{\sqrt{750}} \right\rvert\, \gamma=g\right) \in P_{p}(n, k, \theta)$ for $\theta \leq \frac{\kappa}{750 m}\left(N_{g}-1\right)$ and large $n \in \mathcal{N}$. So
$\mathbb{E}\left\{\left.L\left(\hat{v}^{(n)}\left(\frac{Y}{\sqrt{750}}\right), v_{1}\left(Q_{\gamma}\right)\right) \right\rvert\, \gamma=g\right\} \leq 1000 K_{0} n^{-\frac{5(1-\alpha)}{2(5-\alpha)}} \sqrt{\log n}$.
Deduce that $\left|\left\{j \in \hat{S}\left(\hat{v}^{(n)}(\boldsymbol{X} / \sqrt{750})\right): w_{j} \in K\right\}\right|>3 k / 4$
w.h.p. and $\mathbb{P}(\hat{K} \neq K) \rightarrow 0$.

Summary

- We introduce new classes of distributions for studying the estimation problem in Sparse PCA.
- Minimax rates are obtained, but the upper bound is only attained by a super-polynomial time procedure.
- Under a Planted Clique Assumption, rates of convergence for randomised polynomial time algorithms are necessarily worse.

References

- Alon, N., Andoni, A., Kaufman, T., Matulef, K., Rubinfeld, R., and Xie, N. (2007) Testing k-wise and almost k-wise independence.Proceedings of the thirty-ninth ACM Symposium on Theory of Computing, 496-505.
- Alon, N., Krivelevich, M. and Sudakov, B. (1998) Finding a large hidden clique in a random graph. Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, 594-598.
- Berthet, Q. and Rigollet P. (2013) Complexity theoretic lower bounds for sparse principal component detection. J. Mach. Learn. Res. (COLT), 30, 1046-1066.
- Cai, T. T., Ma, Z. and Wu, Y. (2013) Sparse PCA: Optimal rates and adaptive estimation. Ann. Statist., 41, 3074-3110.
- Chandrasekaran, V. and Jordan, M. I. (2013) Computational and statistical tradeoffs via convex relaxation. Proc. Nat. Acad. Sci., 110, E1181-E1190.
- Chen, Y. and Xu, J. (2014) Statistical-computational tradeoffs in planted problems and submatrix localization with a growing number of clusters and submatrices. Available at http://arxiv.org/abs/1402.1267.
- dAspremont, A., El Ghaoui, L., Jordan, M. I. and Gert R. G. Lanckriet (2007). A direct formulation for sparse PCA using semidefinite programming. SIAM review, 49, 434-448.
- Feige, U. and Krauthgamer, R. (2003) The probable value of the Lovàsz-Schrijver relaxations for a maximum independent set. SIAM J. Comput., 32, 345-370.
- Feldman, V., Grigorescu, E., Reyzin, L., Vempala, S. S. and Xiao, Y. (2013) Statistical Algorithms and a Lower Bound for Detecting Planted Cliques. Proceedings 45th Annual ACM Symposium on Theory of Computing, 655-664.
- Hajek, B., Wu, Y. and Xu, J. (2014) Computational lower bounds for community detection on random graphs. Available at http://arxiv.org/abs/1406.6625.
- Hazan, E. and Krauthgamer, R. (2011) How hard is it to approximate the best nash equilibrium?

SIAM J. Comput., 40, 79-91.

- Jerrum, M. (1992) Large cliques elude the Metropolis process. Random Structures Algorithms, 3, 347-359.
- Johnstone, I. M. and Lu, A. Y. (2009) On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc., 104, 682-693.
- Juels, A. and Peinado, M. (2000) Hiding cliques for cryptographic security. Des. Codes Cryptogr., 20, 269-280.
- Kučera, L. (1995) Expected complexity of graph partitioning problems. Discrete Appl. Math., 57, 193-212.
- Ma, Z. and Wu, Y. (2013) Computational barriers in minimax submatrix detection. Available at http://arxiv.org/abs/1309.5914.
- Nemirovski, A. (2004) Prox-method with rate of convergence $O(1 / t)$ for variational inequalities with

Lipschitz continuous monotone operators and smooth convex-concave saddle point problems.

SIAM J. Optim. 15, 229-251.

- Paul, D. (2007) Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica, 17, 1617-1642.
- Vu, V. Q. and Lei, J. (2013) Minimax sparse principal subspace estimation in high dimensions. Ann. Statist., 41, 2905-2947.
- Wang, T., Berthet, Q. and Samworth, R. J. (2014) Statistical and computational trade-offs in estimation of sparse principal components. Available at http://arxiv.org/abs/1408.5369.
- Zhang, Y., Wainwright, M. J. and Jordan, M. I. (2014) Lower bounds on the performance of polynomial-time algorithms for sparse linear regression. Available at http://arxiv.org/abs/1402.1918.
- Zou, H., Hastie, T. and Tibshirani, R. (2006) Sparse Principal Component Analysis. J. Comp. Graph. Statist., 15, 265-286.

