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High-dimensional regression: “large p, small n”

The field of high-dimensional statistics has received a lot of attention
in recent years.

Microarray data has motivated much of the development. There the
number of variables, p, can be in the tens of thousands, and the
number of observations, n, may be less than a few hundred.

The low number of observations presents a formidable statistical
challenge.

To make progress, we often assume that the signal is sparse, and
methods are developed take advantage of this sparsity.
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Large-scale sparse regression

Text analysis. Given a collection of documents, construct variables
which count the number of occurrences of different words. Can add
variables giving the frequency of pairs of words (bigrams) or triples of
words (trigrams). An example from (Kogan, 2009) contains
4, 272, 227 predictor variables for n = 16, 087 documents.

URL reputation scoring (Ma et al., 2009). Information about a
URL comprises > 3 million variables which include word-stem
presence and geographical information, for example. Number of
observations, n > 2 million.

The size of the data presents both computational and statistical
challenges.

How can we make progress? Exploit sparsity in the design matrix.
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Sparsity

One observation in SVMlight format for the URL example.
+1 4:0.033195 5:0.0551724 6:0.0588235 11:0.142857 16:0.1 17:0.916974

19:0.209008 21:0.000494379 22:0.000496032 23:0.000496032 62:1 64:1 66:1

68:1 72:1 82:1 84:1 86:1 88:1 92:1 102:1 104:1 106:1 108:1 112:1 139:1

141:1 143:1 145:1 149:1 263:1 266:1 267:1 270:0.000496032 726:1 731:1

736:1 905:1 906:1 908:1 909:1 910:1 912:1 913:1 914:1 915:1 917:1 1629:1

2401:1 3521:1 3522:1 8197:1 8198:1 8199:1 8200:1 10728:1 155153:1

155154:1 155155:1 155156:1 155157:1 155158:1 155160:1 155161:1 155163:1

155164:1 155165:1 155174:1 155175:1 155176:1 155177:1 155178:1 155179:1

155180:1 155181:1 155182:1 155183:1 155184:1 155185:1 155186:1 155187:1

155188:1 155189:1 155190:1 155191:1 155192:1 155193:1 155194:1 155195:1

155196:1 155197:1 155198:1 155199:1 155200:1 155201:1 155202:1 155203:1

155204:1 155205:1 155206:1 155207:1 155208:1 155209:1 155210:1 155211:1

155212:1 155213:1 155214:1 455430:1 1554204:1 2528316:1
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Dimension reduction

Consider a regression problem in the large-scale setting, where X is a
sparse n × p design matrix.

The sparsity of X suggests it may be possible to construct a
lower-dimensional n × L matrix S with L� p, which contains “most
of the information in X”.

We can then perform the regression on S rather than the larger X.
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Linear model with sparse design

target Y ∈ Rn︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


≈

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


+

noise ε ∈ Rn︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


Non-zero entries are marked with ∗.
We could also consider a logistic regression model in a similar way.
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Can we safely reduce sparse p-dimesional problem to a dense
L-dimensional one with L� p?

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


≈

dense S ∈ Rn×L︷ ︸︸ ︷

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



b∗ ∈ RL︷ ︸︸ ︷
∗
∗
∗
∗



PCA is an obvious choice. However, it may be too computationally
expensive to compute.

The approach we take here is based on min-wise hashing, and more
specifically a variant called b-bit min-wise hashing.
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Min-wise hashing (Broder, 1997; Broder et al., 1998)

Suppose we have sets z1, . . . , zn ⊆ {1, . . . , p}.
Min-wise hashing gives estimates of the Jaccard index of every pair of
sets zi , zj , given by

J(zi , zj) =
|zi ∩ zj |
|zi ∪ zj |

.

Let π1, . . . , πL be random permutations of {1, . . . , p} (in practice all
random functions would be implemented by hash functions).

Let the n × L matrix M be given by

Mil = min
k∈zi

πl(k).

Then for each i , j , l , P(Mil = Mjl) = J(zi , zj).

In our context, let X be a sparse binary design matrix and let zi
record the indices of the non-zero entries of the i th row of X, xi .
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Min-wise hashing matrix M

X =



π1 3 1 2 4

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗

 7→ M =


1
2
2
1
1


One column of M generated by the random permutation π of the variables.
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Min-wise hashing matrix M

X =



π2 2 4 1 3

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗

 7→ M =


1 3
2 1
2 1
1 1
1 2


Idea: work with M instead of sparse X.

Encode all levels in a column as dummy variables.
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b-bit min-wise hashing (Li and König, 2011)

b-bit min-wise hashing stores only the lowest b bits of each entry of M
when expressed in binary (i.e. the residue mod 2), so for b = 1,

M
(1)
il ≡ Mil (mod 2).

X =


1 1

1 1
1 1

1 1
1 1

 7→ M =


1 3
2 1
2 1
1 1
1 2

 7→ M(1) =


1 1
0 1
0 1
1 1
1 0


Perform regression using binary n × L matrix M(1) rather than X.

When L� p this gives large computational savings, and empirical
studies report good performance (mostly for classification with
SVM’s).
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MRS mapping

Will study a variant of 1-bit min-wise hashing we call MRS-mapping
(min-wise hash random sign)

Easier to analyse.

Deals with sparse design matrices with real-valued entries.

Allows for the construction of a variable importance measure.

Downside: slightly less efficient to implement.
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MRS-mapping

1-bit min-wise hashing: keep last bit

X =


1 1

1 1
1 1

1 1
1 1

 7→ M =


1 3
2 1
2 1
1 1
1 2

 7→ M(1) =


1 1
0 1
0 1
1 1
1 0



MRS-map: random sign assigments {1, . . . , p} → {−1, 1} are chosen
independently for all columns l = 1, . . . , L when going from Ml to Sl .

X =


1 1

1 1
1 1

1 1
1 1

 7→ M =


1 3
2 1
2 1
1 1
1 2

 7→ S =


1 −1
−1 −1
−1 −1
1 −1
1 1



Rajen Shah (Cambridge) Large-scale regression 13 Dec 2013 13 / 36



MRS-mapping

1-bit min-wise hashing: keep last bit

X =


1 1

1 1
1 1

1 1
1 1

 7→ M =


1 3
2 1
2 1
1 1
1 2

 7→ M(1) =


1 1
0 1
0 1
1 1
1 0


MRS-map: random sign assigments {1, . . . , p} → {−1, 1} are chosen
independently for all columns l = 1, . . . , L when going from Ml to Sl .

X =


1 1

1 1
1 1

1 1
1 1

 7→ M =


1 3
2 1
2 1
1 1
1 2

 7→ S =


1 −1
−1 −1
−1 −1
1 −1
1 1


Rajen Shah (Cambridge) Large-scale regression 13 Dec 2013 13 / 36



The H and M matrices

Rather than storing M, we can store the “responsible” variables in H

Mil = min
k∈zi

πl(zi )

Hil =argmink∈ziπl(k)

X =


1 1

1 1
1 1

1 1
1 1

 7→ M =


1 3
2 1
2 1
1 1
1 2

 7→ S =


1 −1
−1 −1
−1 −1
1 −1
1 1



X =


1 1

1 1
1 1

1 1
1 1

 7→ H =


2 4
3 3
3 3
2 3
2 1

 7→ S =


1 −1
−1 −1
−1 −1
1 −1
1 1
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Continuous variables

By using H rather than M, we can handle continuous variables.

X =


1 1

4.2 1
1 1

1 1
7.1 1

 7→ H =


2 4
3 3
3 3
2 3
2 1

 7→ S =


1 −1
−4.2 −4.2
−1 −1
1 −1
1 7.1


We get n × L matrices H, and S given by

Hil =argmink∈ziπl(k)

Sil =ΨHil lXiHil
,

where Ψhl is the random sign of the h-th variable in the l-th permutation.
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Approximation error

Can we find a b∗ ∈ RL such that Xβ∗ is close to Sb∗ on average?

Assume that there are q ≤ p non-zero entries in each row of X.

If not, can be dealt with.

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


≈

dense S ∈ Rn×L︷ ︸︸ ︷

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



b∗ ∈ RL︷ ︸︸ ︷
∗
∗
∗
∗
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Approximation error

Is there a b∗ such that the expected value is unbiased (if averaged over the
random permutations and sign assignments)?

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


?
= Eπ,ψ



S ∈ Rn×1︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗


b∗ ∈ R1︷ ︸︸ ︷(
∗
)
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Approximation error

Consider one permutation with min-hash value Hi for i = 1, . . . , n and
random signs ψk , k = 1, . . . , p.

Eπ,ψ



S∈Rn×1︷ ︸︸ ︷
ψH1X1H1

ψH2X2H2

. . .

. . .

. . .


=:b∗∈R1︷ ︸︸ ︷(

q

p∑
k=1

β∗kψk

)


=
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Approximation error

Can we find a b∗ ∈ RL such that Xβ∗ is close to Sb∗ on average?

Eπ,ψ




ψH1X1H1

ψH2X2H2

. . .

. . .

. . .


︸ ︷︷ ︸

S

(
q

p∑
k=1

β∗kψk

)
︸ ︷︷ ︸

=:b∗


=


∑p

k=1 X1kβ
∗
kqP(H1 = k)∑p

k=1 X2kβ
∗
kqP(H2 = k)
. . .
. . .
. . .
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Approximation error

Can we find a b∗ ∈ RL such that Xβ∗ is close to Sb∗ on average?

Eπ,ψ




ψH1X1H1

ψH2X2H2

. . .

. . .

. . .


︸ ︷︷ ︸

S

(
q

p∑
k=1

β∗kψk

)
︸ ︷︷ ︸

=:b∗


=


∑p

k=1 X1kβ
∗
kqP(H1 = k)∑p

k=1 X2kβ
∗
kqP(H2 = k)
. . .
. . .
. . .


= Xβ∗ (unbiased)
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Approximation error

Theorem

Let b∗ ∈ RL be defined by

b∗l =
q

L

p∑
k=1

β∗kΨklwπl (k),

where w is a vector of weights. Then there is a choice of w, such that:

(i) The approximation is unbiased: Eπ,Ψ(Sb∗) = Xβ∗.

(ii) Eπ,Ψ(‖b∗‖22) ≤ 2q‖β∗‖22/L.

(iii) If |||X|||∞ ≤ 1, then 1
nEπ,Ψ(‖Sb∗ − Xβ∗‖22) ≤ 2q‖β∗‖22/L.
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Linear model

Assume model
Y = α∗1 + Xβ∗ + ε.

Random noise ε ∈ Rn satisfies E(εi ) = 0, E(ε2i ) = σ2 and
Cov(εi , εj) = 0 for i 6= j .

Without loss of generality, assume XT1 = 0.

We will give bounds on a mean-squared prediction error (MSPE) of
the form

MSPE(b̂) := Eε,π,Ψ
(
‖Xβ∗ − Sb̂‖22

)
/n.
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Ordinary least squares

Theorem

Let b̂ be the least squares estimator and let L∗ =
√

2qn‖β∗‖2/σ. We have

MSPE(b̂) ≤ 2 max

{
L

L∗
,

L∗

L

}
σ

√
2q

n
‖β∗‖2 +

σ2

n
.

If the size of the signal is fixed and columns of X are independent
with roughly equal sparsity, then

√
q‖β∗‖2 ≤ const

√
p and we have

MSPE(b̂)→ 0 if p/n→ 0.

If the signal Xβ∗ is (partially) replicated in B groups of variables,
then we only need (p/B)/n→ 0.
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Ridge regression

Define

b̂η := arg min
b
‖Y − Ȳ1− Sb‖22 such that ‖b‖22 ≤ (1 + η)

2q‖β∗‖22
L

.

Theorem

Let

ρ := exp

(
− Lη2

36q(36 + η)

)
.

Then

MSPE(b̂η) ≤
√

2q‖β∗‖2
(

2σ
√

1 + η + (L∗/L)√
n

)
+
σ2

n
+ ρ
‖Xβ∗‖22

n
.

Similar result for logistic regression available.
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Interaction models

Let f∗ ∈ Rn be given by

f ∗i =

p∑
k=1

Xikθ
∗,(1)
k +

p∑
k,k1=1

Xik1{Xik1
=0}Θ

∗,(2)
k,k1

, i = 1, . . . , n.

Assume |||X|||∞ ≤ 1. Previous results hold if ‖β∗‖2 is replaced by

`(Θ∗) := ‖θ∗,(1)‖2 + 2

(
q
∑

k,k1,k2

∣∣∣Θ∗,(2)kk1
Θ
∗,(2)
kk2

∣∣∣ )1/2

.

Theorem

There exists b∗ ∈ RL such that

(i) Eπ,Ψ(Sb∗) = f∗;

(ii) Eπ,Ψ(‖Sb∗ − f∗‖22)/n ≤ 2q`2(Θ∗)/L.

If there are a finite number of non-zero interaction terms with finite value,
the approximation error becomes very small if L� q2.
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Prediction error

Assume the linear model from before, but with Xβ∗ replaced by f∗.

Theorem

Let b̂ be the least squares estimator and let L∗ =
√

2qn `(Θ∗)/σ. We have

MSPE(b̂) ≤ 2 max

{
L

L∗
,

L∗

L

}
σ

√
2q

n
`(Θ∗) +

σ2

n
.

Consider a situation where there are a fixed number of interaction and
main effects of fixed size, so `(Θ∗) = O(

√
q).

If n, q and p increase by collecting new data and adding
uninformative variables, then in order for the MSPE to vanish
asymptotically, we require q2/n→ 0.
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Variable importance

Predicted values are
f̂ = Sb̂

Let f̂−(k) be the predictions obtained when setting Xk = 0. If the
underlying model in linear and contains only main effects,
f̂ − f̂−(k) ≈ Xkβ

∗
k .

Construct S̃ in exactly the same way as S but using a matrix H̃ rather
than H, with H̃ defined by

H̃il := arg min
k∈zi\Hil

πl(k).

Store n × L matrices S, S̃ and H. Then

f̂i − f̂
(−k)
i =

L∑
l=1

(Sil − S̃il)1{Hil=k}b̂l .
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MRS aggregation

The compressed design matrix S is generated in a random fashion.

We can repeat the construction B > 1 times to obtain B different S
matrices.

In the spirit of bagging (Breiman, 1996) we can then aggregate the
predictions obtained from the different random mappings by
averaging them.

Using B > 1 often gives large improvements and our experience has
been that L can be chosen much lower than for B = 1 to achieve the
same predictive accuracy.
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Volatility prediction

Forecast financial volatility of stocks based on 10-K report filings (Kogan,
2009).

Have p = 4, 272, 227 predictor variables for n = 16, 087 observations.

Use various targets (volatility after release; a linear model; a non-linear
model) and compare prediction accuracy with regression on random
projections.
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Volatility prediction

Correlation between prediction and response (volatility in year after release
of text).
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Red: MRS-mapping. Blue: random projections.
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Volatility prediction

Response: linear model in original variables
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Volatility prediction

Response: interaction model in original variables
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URL identification

Large-scale classification of malicious URLs with
n ≈ 2 million and p ≈ 3 million.
Data are ordered into consecutive days.

Response Y ∈ {0, 1}n is a binary vector where 1 corresponds to a
malicious URL.

In order to compare MRS-mapping with the Lasso- and ridge-penalised
logistic regression, we split the data into the separate days, training on the
first half of each day and testing on the second. This gives on average
n ≈ 20, 000, p ≈ 100, 000.
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URL identification: Lasso regression
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Lasso with and without MRS-mapping has similar performance here.
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URL identification: Ridge regression
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Ridge regression following MRS-mapping performs better than ridge
regression applied to the original data.
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Discussion

B-bit minwise hashing and closely related MRS-mapping are interesting
dimensionality reduction techniques for large-scale sparse design matrices.

Prediction error following compression can be bounded can be
bounded with a slow rate (in the absence of assumptions on the
design).

Behaves similar to random projections (or ridge regression) if only
main effects are present.

Linear resgression using the compressed, dense, low-dimensional
matrix can capture interactions among the large number of original
sparse variables.
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