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Background: Causal Inference 

 The task: estimate the effect of an intervention 

 Medical treatments, public policy, gene knock-outs and 

so on 

 Gold standard: randomized controlled trial 

Vaccination Health 

Common 

causes 
P(Health | Vaccination) 



Background: Causal Inference 

 The task: estimate the effect of an intervention 

 Medical treatments, public policy, gene knock-outs and 

so on 

 Gold standard: randomized controlled trial 

Vaccination Health 

Common 

causes 
Randomize 

P(Health | do(Vaccination)) 



Goals of this talk 

X Y 

 Given binary X precedes binary Y causally, 

estimate average causal effect (ACE) using 

observational data 

ACE ≡ E[Y | do(X = 1)] – E[Y | do(X = 0)] =  

 

P(Y = 1 | do(X = 1)) – P(Y = 1 | do(X = 0)) 



Goal 

 To get an estimate of bounds of the ACE 

 Rely on the identification of an auxiliary variable 

W (witness), an auxiliary set Z (background set), 

and assumptions about strength of dependencies 

on latent variables 

X Y W 

U Z 



Observational Studies: 

Tricks of the Trade 

 Backdoor adjustment (Pearl and others): 

 

 

 

 

 

 

 P(Y = 1 | do(X = x)) =  P(Y = 1| x, u)P(u) 
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Observational Studies: 

Tricks of the Trade 

 Backdoor adjustment (justification): 

 

 

 

 

 

 

 

 Problem: where causal knowledge about U comes from? 

 Problem: what if we do not have P(Y | X, U), P(U)? 

 

 

 

 

 

 

X Y 

U 

Natural state 

X Y 

U 

Controlled state 

P(U | X)  P(U) 



Observational Studies:  

Tricks of the Trade 

 Instrumental variables 

X Y W 

U 

LP(Y, X | W) ≤ ACE ≤ UP(Y, X | W) 



Exploiting Independence Constraints 

 Faithfulness provides a way of sometimes finding a 

point estimator 

 

 Faithfulness means independence in probability iif 

“structural” independence (Spirtes et al., 1993) 

 

 



Faithfulness 

 W independent of Y, but not when given X: 

conclude the following (absentia hidden common 

causes) 

X 

Y W 

a b 



(Lack of) Faithfulness 

 W independent of Y, but not when given X: 

different structure 

X 

Y W 

a b 

-ab 



Exploiting Independence Constraints 

 In what follows, we will assume that we have access 

to a set of variables which we know are not effects 

of neither X nor Y 

 



The Problem with  

Naïve Back-Door Adjustment 

 It is not uncommon in applied sciences to posit that, 
given a large number of covariates Z that are 
plausible common causes of X and Y, we should 
adjust for all 

 

 

 Even if there are remaining unmeasured 
confounders, a common assumption is that adding 
elements of Z will in general decrease bias  
ACEtrue – ACEhat 

Pest(Y = 1 | do(X = x)) =  P(Y = 1| x, z)P(z) 
z 



The Problem with  

Naïve Back-Door Adjustment 

 Example of failure: 

X Y 

Z 

U1 U2 

Pearl (2009). Technical Report R-348 

P(Y = 1 | do(X = x)) = P(Y = 1 | X = x)   P(Y = 1 | x, z)P(z)  



Exploiting Faithfulness: 

A Very Simple Example 

 W not caused by X nor Y, X  Y 

 W    X, W   Y | X + Faithfulness. Conclusion? 

 

 

 

 Naïve estimator vindicated: 

 ACE = P(Y = 1 | X = 1) – P(Y = 1 | X = 0) 

 This super-simple nugget of causal information has 

found some practical uses on large-scale problems 

X Y 

W 

No unmeasured confounding 



A Very Simple Example 

 Consider “the genotype at a 

fixed locus L is a random 

variable, whose random 

outcome occurs before and 

independently from the 

subsequently measured 

expression values” 

 Find genes Ti, Tj such that  

L  Ti  Tj 

Chen, Emmert-Streib12 and Storey (2007) 

Genome Biology, 8:R219 



Entner et al.’s Background Finder 

 Entner, Hoyer and Spirtes (2013) AISTATS: two 

simple rules based on finding a witness W for a 

correct admissible background set Z 

 Generalizes “chain models” W  X  Z 

 

 



Rule 1: Illustration 

 Note again the necessity of the dependence of W 
and Y 

X Y 

Z 
W 

X Y 

Z 
W 

X Y 

Z 
W 

U 



Reverting the Question 

 What if instead of using W to find Z to make an 

adjustment by the back-door criterion, we find a Z 

to allow W to be an instrumental variable to find 

bounds on the ACE? 



Why do We Care? 

 A way to weaken the faithfulness assumption 

 Suppose also by “independence”, we might mean 

“weak dependence” (and by “dependence”, we might 

mean “strong dependence”) 

 How would interpret the properties of W in this 

case, given Rule 1? 

 



Modified Setup:  

Main Assumption Statement 

 Given Rule 1, assume W is a “conditional IV for  

X  Y” in the sense that given Z 

 All active paths between W and X are into X 

 There is no “strong direct effect” of W on Y 

 There are no “strong active paths” between W and X, 

nor W and Y, through common ancestors of X and Y 

 The definition of “strong effect/path” creates free 

parameters we will have to deal with. More on that 

later 



Motivation 

 Bounds on the ACE in the “standard IV model” can be 
quite wide even when W    Y | X  

 

 

 

 

 

 This means faithfulness can be quite a strong 
assumption, and/or “worst-case” analysis can be quite 
conservative 

X Y W 

U 



Motivation 

 Our analysis can be seen as a way of bridging the 

two extremes of point estimators of faithfulness 

analysis and IV bounds without effect constraints 

 Notice: this does not mean making stronger 

assumptions than the standard IV model 

X Y W 

U Z 



Stating Assumptions 

 Some notation first, ignoring Z for now: 

X Y W 

U 



Stating Assumptions 

X U 

Y U 

Y W 



Stating Assumptions 

W 

U 



Relation to Observations 

 

 

 

 

 Let yx.w be the expectation of the first entry by  

P(U | W): this is P(Y = y, X = x | W = w) 

 Similarly, let xw be the expectation of the second 

entry: this is P(Y = 1| do(X = x), W = w) 



Context 

 The parameterization given was originally 

exploited by Dawid (2000) and Ramsahai (2012) 

 It provides an alternative to the structural equation 

model parameterization of Balke and Pearl (1997) 

 Both approaches work by mapping the problem of 

testing the model and bounding the ACE by a linear 

program 

 We build on this strategy, with some generalizations 



Estimation 

 Simpler mapping on (*, *)  P(W, X, Y | U), 

marginalized, gives constraints on  ≡ P(W, X, Y) 

 Test whether constraints hold, if not provide no 

bounds 

 Plug-in estimates for  to get (, ) polytope. Find 

upper bounds and lower bounds on the ACE by 

solving linear program and maximizing/minimizing 

objective function 

f() = (11 – 01)P(W = 1) + (10 – 00)P(W = 0) 



Coping with Non-linearity 

 Notice that because of constraints such as 
 
 
there will be non-linear constraints in  ≡ P(W, X, Y) 

 

 The implied constraints are still linear in  ≡ P(Y | do(X), 
W). So linear programming formulation still holds, 
treating  as a constant. 

 Non-linearity on  can be a problem for estimation of  and 
derivation of confidence intervals. We will describe later a 
Bayesian approach that does that simply by rejection 
sampling 
 



Algorithm 

In what follows, we assume dimensionality of Z is small, |Z| < 10 



Recap: So far, everything in the 

population 

 “Rely on the identification of an auxiliary variable 

W (witness), an auxiliary set Z (background set), 

and assumptions about strength of dependencies 

on latent variables” 

X Y W 

U Z 



Bayesian Learning 

 To decide on independence, we do Bayesian model 
selection with a contingency table model with Dirichlet 
priors 

 For each pair (W, Z), find posterior bounds for each 
configuration of Z 

 Use Dirichlet prior for  (for each Z = z), conditioned on the 
constraints of the model, using rejection sampling 

 Propose from unconstrained Dirichlet 

 Reject model if 95% or more of proposed parameters are 
rejected in the initial round of rejection sampling 

 Feed sample from the posterior of  into linear program to 
get a sample for the upper bound and lower bound 



Difference wrt ACE Bayesian Learning 

 How not put a prior directly on the latent variable model? 

 However, model is unidentifiable  results extremely sensitive to 

priors 

 Putting priors directly into  produces no point estimates, but avoids 

prior sensibility 



Wrapping Up 

 Finally, one is left with different posterior 
distributions over different bounds on the ACE 

 Final step is how to summarize possibly conflicting 
information. Possibilities are: 

 Report tightest bound 

 Report widest bound 

 Report combined smallest lower bound with largest 
upper bound 

 Use “posterior of Rule 1” to pick a handful of bounds 
and discard others 



Recap 

 Invert usage of Entner’s Rules towards the 

instrumental variable point of view 

 Obtain bounds, not point estimates 

 Use Bayesian inference, set up a rule to combine 

possibly conflicting information 

 Because the framework relies on using a linear 

program to protect a witness variable against 

violations of faithfulness, we call this the  

Witness Protection Program (WPP) framework 



Scaling Up 

 There are four main bottlenecks: 

 The witness search procedure 

 Posterior sampling of parameters 

 Rejection criterion 

 Averaging over P(Z) 

 Running linear programs to obtain bounds (potentially 

expensive if done separately for each posterior 

sample) 

 We address here problems of sampling and bound 

optimization, which can be solved by the same idea 



Direct Polytope Manipulation 

 This is one of the “instrumental inequalities” of the standard 
IV model, derived directly  

 Bounding * by one of its extreme points 

 Modify factor in a way to map it to  and , perform further 
manipulations 

 Useful as a way of deriving symbolic bounds as a function 
of the extreme points of the original parameter space 



Direct Polytope Manipulation 

 In the accompanying paper, we describe several 
analytical bounds on P(Y | do(X), W) as a function of 
P(W, X, Y) and constraints 
 

 

 

 

 

 This are used to generate relaxed (i.e., 
underconstrained) linear programming problems which 
are much more efficient to solve 



Illustration: Synthetic Studies 

 4 observable nodes, “basic set”, form a pool that can 
generate a possible (witness, background set) pair 

 4 observable nodes form a “decoy set”: none of them 
should be included in the background set 

 Graph structures over “basic set” + {X, Y} are chosen 
randomly 

 Observable parents of “decoy set” are sampled from 
“basic set” 

 Each decoy has another four latent parents, {L1, L2, L3, L4} 

 Latents are mutually independent 

 Each latent variable Li uniformly chooses either X or Y as a 
child  

 Conditional distributions are logistic regression models with 
pairwise interactions 



Illustration: Synthetic Studies 

 Relaxations 

 

 

 

 

 

 

 Estimators: 

 Posterior expected bounds 

 Naïve 1: back-door adjustment conditioning on everybody 

 Naïve 2: plain P(Y = 1 | X = 1) – P(Y = 1 | X = 0) 

 Backdoor by faithfulness 

X Y W 

U 

(0.9, 1.1), (1, 1) 

0.2 

0.2 

0.2 



Example 

 Note: no theoretical witness solution 

Y X 

L1 

W4 

W1 

W2 

W3 

D1 D2 D3 D4 

L4 L3 L2 



Evaluation 

 Bias definition: 

 For point estimators, just absolute value of difference 
between true ACE and estimate 

 For bounds, Euclidean distance between true ACE and 
nearest point in the bound 

 Summaries (over 100 simulations): 

 Bias average 

 Bias tail mass at 0.1 

 proportion of cases where bias exceeds 0.1 

 Notice difficulty of direct comparisons 



Summary 

Bias average Bias tail mass at 0.1 



Summary 



Influenza Data 

 Effect of influenza vaccination (X) on hospitalization 

(Y = 1 means hospitalized) 

 Covariate GRP: randomized, doctor of that patient 

received letter to encourage vaccination 

 (GRP, X, Y) ACE bound using standard IV: [-0.23, 0.64] 

 WPP could not validate GRP. Instead it picked DM 

(diabetes history) as a witness, and AGE 

(dichotomized at 60 years) and SEX as admissible 

set 



Influenza Data 

 Using same parameters as synthetic case study (0.9- 

1.1 for ), WPP estimated interval as [-0.10, 0.17] 



Influenza Data: Full Posterior Plots 



Influenza Data: Full Posterior Plots 



On-going Work 

 Finding a more primitive default set of assumptions 
where assumptions about the relaxations can be 
derived from 

 Doing without a given causal ordering 

 Large scale experiments 

 Scaling up for a large number of covariates 

 Continuous data 

 More real data experiments 

 R package to follow 

http://arxiv.org/abs/1406.0531 



Thank You 



Extra 



Mapping IV Model to Observations 

 For now, assume model where W   U 

 Let 
 
 
and recall 

 

 

 

 

 Idea: define a mapping from (*, *) to *, then take 
convex combinations 



Mapping 



Recipe 

 Map the extreme points of (*, *) to the extreme points of 
(*, *) 

 Find convex hull of (*, *)  Show to be equivalent to the 
set of (, ) allowable by the IV model. And 

 

 

 

 

 Re-express convex hull as linear inequalities (and equalities) 

  is observable/possible to estimate. Fixing  gives bounds 
on  



Estimation 

 Simpler mapping on (*, *)  P(W, X, Y | U), 

marginalized, gives constraints on  ≡ P(W, X, Y) 

 Test whether constraints hold, if not provide no 

bounds 

 Plug-in estimates for  to get (, ) polytope. Find 

upper bounds and lower bounds on the ACE by 

solving linear program and maximizing/minimizing 

objective function 

f() = (11 – 01)P(W = 1) + (10 – 00)P(W = 0) 



All is Well? 

 It follows then min f() ≤ ACE ≤ max f() 

 However, recall we mentioned this always has width 

1… and actually there are no constraints on ! 

 Further assumptions required. For instance: 

 Assume no direct effect of W on Y (change 

parameterization and mapping) 

 Assume monotonicity  

P(Y = 1| do(X = 0))  ≤ P(Y = 1| do(X =1)) 

 Allow for bounded effect of W on Y,  

 See Ramsahai (2012) for details 



Adding More Assumptions 

 In the linear programming formulation, an 

assumption such as                         is translated 

into a set of extreme points different from {(0, 0), 

(0, 1), (1, 0), (1, 1)} 

 Ramsahai (2012) provides analytical bounds for a 

given, numerical, value of w 

 Constraints such as 

are included by fixing P(X = 1 | W = w) first, the 

redefining the extreme points of parameter 

 Notice this implies non-linear constraints on  



Linking U and W 

 What about 

 

 

 This redefines our expectations 

 

 

 Without further assumptions on P(U | W), linear 
program can be done as before, obtaining bounds 
for each value of W (Ramsahai, 2012) 

 Bounds always span zero 

W U 



Linking U and W 

 An additive relaxation  

P(U) –  ≤ P(U | W) ≤ P(U) +  would however be 

problematic. Hence, the multiplicative relaxation 

 Introduce intermediate parameterization 

 



Linking U and W 

 Follow recipe as before, but applying to the new – 

unobservable – variables 

 Link them to observable  and target  using 

 

 

 For instance 



Rejection Sampling 

 If we have the polytope, then this is a very cheap 

check of whether linear inequalities are satisfied 

 However, we need to obtain the polytope as a 

function of . Better do that in an analytic way, or 

otherwise a numerical polytope calculation 

procedure for each sample will not be feasible 

 Difficulty: extreme points of (*, *) are not the 

extremes of the unit hypercube anymore 



Main Idea 

 Let’s go back to the original mapping: 

 

 

 

 

 

 

 

 Without further assumptions, what can we say? 



Main Idea 

 Implied bounds follow from the 
probability simplex constraints 

 Notice the need for X to be 
discrete 

 As pointed out by Balke and 
Pearl,  is feasible if no upper 
bound on  is smaller than any 
lower bound 

 What happens when we 
introduce the assumption “no 
direct effect of W on Y”? 



Direct Polytope Manipulation 

 This is one of the “instrumental inequalities” of the standard 
IV model, derived directly  

 Bounding * by one of its extreme points 

 Modify factor in a way to map it to  and , perform further 
manipulations 

 Useful as a way of deriving symbolic bounds as a function 
of the extreme points of the original parameter space 



Our More General Case 

 Start from 

 

 

 

 

 

 

 

 Like in the previous slide, we create new bounds by 
multiplying and marginalizing pieces of the latent 
variable model 



Examples 

 Case 1 (Fails to obtain new bound) 

 

 

 

 Case 2 (Generalizes                           ) 



Solving the Linear Program 

 The very same (symbolic) bounds used for verifying 

the feasibility of  can be used in a straightforward 

way to bound the ACE 


