CAUSAL INFERENCE THROUGH A WITNESS PROTECTION PROGRAM

Department of Statistical Science
Centre for Computational Statistics and Machine Learning ricardo@stats.ucl.ac.uk Joint work with Robin Evans (Statistics, Oxford)

Background: Causal Inference

\square The task: estimate the effect of an intervention
\square Medical treatments, public policy, gene knock-outs and so on
\square Gold standard: randomized controlled trial

Background: Causal Inference

\square The task: estimate the effect of an intervention
\square Medical treatments, public policy, gene knock-outs and so on
\square Gold standard: randomized controlled trial

Goals of this talk

\square Given binary X precedes binary Y causally, estimate average causal effect (ACE) using observational data

$$
\begin{aligned}
& A C E \equiv E[Y \mid \operatorname{do}(X=1)]-E[Y \mid \operatorname{do}(X=0)]= \\
& P(Y=1 \mid \operatorname{do}(X=1))-P(Y=1 \mid \operatorname{do}(X=0))
\end{aligned}
$$

Goal

\square To get an estimate of bounds of the ACE
\square Rely on the identification of an auxiliary variable W (witness), an auxiliary set Z (background set), and assumptions about strength of dependencies on latent variables

Observational Studies:

 Tricks of the Trade\square Backdoor adjustment (Pearl and others):

$\square P(Y=1 \mid d o(X=x))=\sum_{u} P(Y=1 \mid x, u) P(u)$

Observational Studies: Tricks of the Trade

\square Backdoor adjustment (justification):

Natural state

Controlled state
\square Problem: where causal knowledge about U comes from?
\square Problem: what if we do not have $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}, \mathrm{U}), \mathrm{P}(\mathrm{U})$?

Observational Studies: Tricks of the Trade

\square Instrumental variables

Exploiting Independence Constraints

\square Faithfulness provides a way of sometimes finding a point estimator
\square Faithfulness means independence in probability iif "structural" independence (Spirtes et al., 1993)

Faithfulness

\square W independent of Y , but not when given X : conclude the following (absentia hidden common causes)

(Lack of) Faithfulness

$\square W$ independent of Y, but not when given X : different structure

Exploiting Independence Constraints

\square In what follows, we will assume that we have access to a set of variables which we know are not effects of neither X nor Y

The Problem with

Naïve Back-Door Adjustment

\square It is not uncommon in applied sciences to posit that, given a large number of covariates Z that are plausible common causes of X and Y, we should adjust for all

$$
P_{\text {est }}(Y=1 \mid \operatorname{do}(X=x))=\sum_{z} P(Y=1 \mid x, z) P(z)
$$

\square Even if there are remaining unmeasured confounders, a common assumption is that adding elements of Z will in general decrease bias $A C E_{\text {true }}-A C E_{\text {hat }}$

The Problem with
 Naïve Back-Door Adjustment

\square Example of failure:

Pearl (2009). Technical Report R-348

Exploiting Faithfulness: A Very Simple Example

$\square W$ not caused by X nor $Y, X \rightarrow Y$
$\square W X X, W \Perp Y \mid X+$ Faithfulness. Conclusion?

No unmeasured confounding
\square Naïve estimator vindicated:

$$
A C E=P(Y=1 \mid X=1)-P(Y=1 \mid X=0)
$$

\square This super-simple nugget of causal information has found some practical uses on large-scale problems

A Very Simple Example

\square Consider "the genotype at a fixed locus L is a random variable, whose random outcome occurs before and independently from the subsequently measured expression values"
\square Find genes Ti, Tj such that $\mathrm{L} \rightarrow \mathrm{Ti} \rightarrow \mathrm{Ti}$

Chen, Emmert-Streib 12 and Storey (2007) Genome Biology, 8:R219

Figure 2
A transcriptional regulatory network drawn from a Trigger probability threshold of 90%. The network consists of 4,394 genes, 2,145 causal relationships, and 127 causal genes. Genes are represented by orange circles and causal relationships are represented by directed edges with black arrows.

Entner et al.'s Background Finder

\square Entner, Hoyer and Spirtes (2013) AISTATS: two simple rules based on finding a witness W for a correct admissible background set Z
\square Generalizes "chain models" $W \rightarrow X \rightarrow Z$

R1: If there exists a variable $w \in \mathcal{W}$ and a set $\mathcal{Z} \subseteq$ $\mathcal{W} \backslash\{w\}$ such that
(i) $w \not \Perp y \mid z$, and
(ii) $w \Perp y \mid z \cup\{x\}$
then infer ' \pm ' and give Z as an admissible set.

Rule 1: Illustration

R1: If there exists a variable $w \in \mathcal{W}$ and a set $\mathcal{Z} \subseteq$ $\mathcal{W} \backslash\{w\}$ such that
(i) $w \nVdash y \mid z$, and
(ii) $w \Perp y \mid z \cup\{x\}$
then infer ' \pm ' and give Z as an admissible set.

\square Note again the necessity of the dependence of W and Y

Reverting the Question

\square What if instead of using W to find Z to make an adjustment by the back-door criterion, we find a Z to allow W to be an instrumental variable to find bounds on the ACE?

Why do We Care?

\square A way to weaken the faithfulness assumption
\square Suppose also by "independence", we might mean "weak dependence" (and by "dependence", we might mean "strong dependence")
\square How would interpret the properties of W in this case, given Rule 1?

R1: If there exists a variable $w \in \mathcal{W}$ and a set $\mathcal{Z} \subseteq$ $\mathcal{W} \backslash\{w\}$ such that
(i) $w \not \Perp y \mid z$, and
(ii) $w \Perp y \mid z \cup\{x\}$
then infer ' \pm ' and give Z as an admissible set.

Modified Setup:
 Main Assumption Statement

\square Given Rule 1, assume W is a "conditional IV for $X \rightarrow Y$ " in the sense that given Z
\square All active paths between W and X are into X
\square There is no "strong direct effect" of W on Y
\square There are no "strong active paths" between W and X, nor W and Y, through common ancestors of X and Y
\square The definition of "strong effect/path" creates free parameters we will have to deal with. More on that later

Motivation

\square Bounds on the ACE in the "standard IV model" can be quite wide even when $W \Perp Y \mid X$

\square This means faithfulness can be quite a strong assumption, and/or "worst-case" analysis can be quite conservative

Motivation

\square Our analysis can be seen as a way of bridging the two extremes of point estimators of faithfulness analysis and IV bounds without effect constraints
\square Notice: this does not mean making stronger assumptions than the standard IV model

Stating Assumptions

\square Some notation first, ignoring Z for now:

Stating Assumptions

$$
\begin{aligned}
\zeta_{y x . w}^{\star} & \equiv P(Y=y, X=x \mid W=w, U) \\
\eta_{x w}^{\star} & \equiv P(Y=1 \mid X=x, W=w, U) \\
\delta_{w}^{\star} & \equiv P(X=1 \mid W=w, U)
\end{aligned}
$$

$$
\left|\delta_{w}^{\star}-P(X=1 \mid W=w)\right| \leq \epsilon_{x}
$$

$$
u-r
$$

$$
\left|\eta_{x w}^{\star}-P(Y=1 \mid X=x, W=w)\right| \leq \epsilon_{y}
$$

$$
w^{w}\left|\eta_{x 1}^{\star}-\eta_{x 0}^{\star}\right| \leq \epsilon_{w}
$$

Stating Assumptions

Relation to Observations

$$
\begin{aligned}
\zeta_{y x . w}^{\star} & \equiv P(Y=y, X=x \mid W=w, U) \\
\eta_{x w}^{\star} & \equiv P(Y=1 \mid X=x, W=w, U) \\
\delta_{w}^{\star} & \equiv P(X=1 \mid W=w, U)
\end{aligned}
$$

\square Let $\zeta_{y x . w}$ be the expectation of the first entry by $P(U \mid W)$: this is $P(Y=y, X=x \mid W=w)$
\square Similarly, let $\eta_{x w}$ be the expectation of the second entry: this is $P(Y=1 \mid \operatorname{do}(X=x), W=w)$

Context

\square The parameterization given was originally exploited by Dawid (2000) and Ramsahai (2012)
\square It provides an alternative to the structural equation model parameterization of Balke and Pearl (1997)
\square Both approaches work by mapping the problem of testing the model and bounding the ACE by a linear program
\square We build on this strategy, with some generalizations

Estimation

\square Simpler mapping on $\left(\delta^{*}, \eta^{*}\right) \rightarrow P(W, X, Y \mid U)$, marginalized, gives constraints on $\zeta \equiv \mathrm{P}(\mathrm{W}, \mathrm{X}, \mathrm{Y})$
\square Test whether constraints hold, if not provide no bounds
\square Plug-in estimates for ζ to get (ζ, η) polytope. Find upper bounds and lower bounds on the ACE by solving linear program and maximizing/minimizing objective function

$$
f(\eta)=\left(\eta_{11}-\eta_{01}\right) P(W=1)+\left(\eta_{10}-\eta_{00}\right) P(W=0)
$$

Coping with Non-linearity

\square Notice that because of constraints such as

$$
\left|\delta_{w}^{\star}-P(X=1 \mid W=w)\right| \leq \epsilon_{x}
$$

there will be non-linear constraints in $\zeta \equiv \mathrm{P}(\mathrm{W}, \mathrm{X}, \mathrm{Y})$
\square The implied constraints are still linear in $\eta \equiv P(Y \mid$ do (X), W). So linear programming formulation still holds, treating ζ as a constant.
\square Non-linearity on ζ can be a problem for estimation of ζ and derivation of confidence intervals. We will describe later a Bayesian approach that does that simply by rejection sampling

Algorithm

In what follows, we assume dimensionality of Z is small, $|Z|<10$
input : Binary data matrix \mathcal{D}; set of relaxation parameters θ; covariate index set \mathcal{W}; cause-effect indices X and Y
output: A list of pairs (witness, admissible set) contained in \mathcal{W}

```
L}\leftarrow\emptyset
for each}W\in\mathcal{W}\mathrm{ do
            L}\leftarrow\mathcal{L}\cup{\mathcal{B}}
        end
    end
end
return }\mathcal{L
```

 for every admissible set \(\mathbf{Z} \subseteq \mathcal{W} \backslash\{W\}\) identified by \(W\) and \(\theta\) given \(\mathcal{D}\) do
 \(\mathcal{B} \leftarrow\) posterior over upper/lowed bounds on the ACE as given by \((W, \mathbf{Z}, X, Y, \mathcal{D}, \theta)\);
 if there is no evidence in \(\mathcal{B}\) to falsify the \((W, \mathbf{Z}, \theta)\) model then

Recap: So far, everything in the population

\square "Rely on the identification of an auxiliary variable W (witness), an auxiliary set Z (background set), and assumptions about strength of dependencies on latent variables"

Bayesian Learning

\square To decide on independence, we do Bayesian model selection with a contingency table model with Dirichlet priors
\square For each pair (W, Z), find posterior bounds for each configuration of Z
\square Use Dirichlet prior for ζ (for each $Z=z$), conditioned on the constraints of the model, using rejection sampling

- Propose from unconstrained Dirichlet
\square Reject model if 95% or more of proposed parameters are rejected in the initial round of rejection sampling
\square Feed sample from the posterior of ζ into linear program to get a sample for the upper bound and lower bound

Difference wrt ACE Bayesian Learning

\square How not put a prior directly on the latent variable model?
\square However, model is unidentifiable \rightarrow results extremely sensitive to priors
\square Putting priors directly into ζ produces no point estimates, but avoids prior sensibility

ACE distribution, mean $=\mathbf{t y p e} \mathbf{0 . 0 5}$

ACE distribution, mean $=\mathbf{t y p e}-0.07$

Wrapping Up

\square Finally, one is left with different posterior distributions over different bounds on the ACE
\square Final step is how to summarize possibly conflicting information. Possibilities are:
\square Report tightest bound
\square Report widest bound
\square Report combined smallest lower bound with largest upper bound
\square Use "posterior of Rule 1" to pick a handful of bounds and discard others
\square Invert usage of Entner's Rules towards the instrumental variable point of view
\square Obtain bounds, not point estimates
\square Use Bayesian inference, set up a rule to combine possibly conflicting information
\square Because the framework relies on using a linear program to protect a witness variable against violations of faithfulness, we call this the
Witness Protection Program (WPP) framework

Scaling Up

\square There are four main bottlenecks:
\square The witness search procedure
\square Posterior sampling of parameters

- Rejection criterion
- Averaging over $P(Z)$
\square Running linear programs to obtain bounds (potentially expensive if done separately for each posterior sample)
\square We address here problems of sampling and bound optimization, which can be solved by the same idea

Direct Polytope Manipulation

$$
\begin{aligned}
\eta_{1}^{\star} & \leq 1 \\
\eta_{1}^{\star}\left(1-\delta_{1}^{\star}\right) & \leq 1-\delta_{1}^{\star} \\
\eta_{1}-\zeta_{11.1} & \leq 1-\left(\zeta_{11.1}+\zeta_{01.1}\right) \quad(\text { marginalization }) \\
\zeta_{11.0}-\zeta_{11.1} & \leq 1-\left(\zeta_{11.1}+\zeta_{01.1}\right) \quad\left(\text { since } \eta_{1}=\eta_{10} \geq \zeta_{11.0}\right) \\
\zeta_{11.0}+\zeta_{01.1} & \leq 1
\end{aligned}
$$

\square This is one of the "instrumental inequalities" of the standard IV model, derived directly
\square Bounding η^{*} by one of its extreme points

- Modify factor in a way to map it to ζ and η, perform further manipulations
\square Useful as a way of deriving symbolic bounds as a function of the extreme points of the original parameter space

Direct Polytope Manipulation

\square In the accompanying paper, we describe several analytical bounds on $P(Y \mid d o(X), W)$ as a function of $P(W, X, Y)$ and constraints

$$
\begin{aligned}
& \omega_{x w} \geq \kappa_{1 x . w}+L_{x w}^{Y U}\left(\kappa_{0 x^{\prime} . w}+\kappa_{1 x^{\prime} . w}\right) \\
& \omega_{x w} \leq 1-\left(\kappa_{0 x . w^{\prime}}-\epsilon_{w}\left(\kappa_{0 x . w^{\prime}}+\kappa_{1 x . w^{\prime}}\right)\right) / U_{x w^{\prime}}^{X U}
\end{aligned}
$$

$$
\omega_{x w}-\omega_{x w^{\prime}} U_{x^{\prime} w}^{X U} \leq \kappa_{1 x . w}+\epsilon_{w}\left(\kappa_{0 x^{\prime} \cdot w}+\kappa_{1 x^{\prime} \cdot w}\right)
$$

$$
\omega_{x w}+\omega_{x^{\prime} w}-\omega_{x^{\prime} w^{\prime}} \geq \kappa_{1 x^{\prime} . w}+\kappa_{1 x . w}-\kappa_{1 x^{\prime} . w^{\prime}}+\kappa_{1 x . w^{\prime}}-\chi_{x w^{\prime}}\left(\bar{U}+\underline{L}+2 \epsilon_{w}\right)+\underline{L}
$$

\square This are used to generate relaxed (i.e., underconstrained) linear programming problems which are much more efficient to solve

Illustration: Synthetic Studies

$\square 4$ observable nodes, "basic set", form a pool that can generate a possible (witness, background set) pair
$\square 4$ observable nodes form a "decoy set": none of them should be included in the background set
\square Graph structures over "basic set" $+\{X, Y\}$ are chosen randomly
\square Observable parents of "decoy set" are sampled from "basic set"
\square Each decoy has another four latent parents, $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$
\square Latents are mutually independent
\square Each latent variable L_{i} uniformly chooses either X or Y as a child
\square Conditional distributions are logistic regression models with pairwise interactions

Illustration: Synthetic Studies

\square Relaxations

\square Estimators:
0.2
\square Posterior expected bounds
\square Naïve 1: back-door adjustment conditioning on everybody
\square Naïve 2: plain $P(Y=1 \mid X=1)-P(Y=1 \mid X=0)$
\square Backdoor by faithfulness

Example

\square Note: no theoretical witness solution

Evaluation

\square Bias definition:
\square For point estimators, just absolute value of difference between true ACE and estimate
\square For bounds, Euclidean distance between true ACE and nearest point in the bound
\square Summaries (over 100 simulations):
\square Bias average
\square Bias tail mass at 0.1

- proportion of cases where bias exceeds 0.1
\square Notice difficulty of direct comparisons

Summary

Hard, Solvable: NE1 $=(0.12,1.00)$, NE2 $=(0.02,0.03)$									
k_{ϵ}	Found	Faith.1		WPP1		Width1	WPP2		Width2
0.05	0.74	0.03	0.05	0.02	0.05	0.05	0.00	0.00	0.34
0.10	0.94	0.04	0.05	0.01	0.01	0.11	0.00	0.00	0.41
0.15	0.99	0.04	0.05	0.01	0.02	0.16	0.00	0.00	0.46
0.20	1.00	0.05	0.05	0.01	0.01	0.24	0.00	0.00	0.53
0.25	1.00	0.05	0.07	0.00	0.00	0.32	0.00	0.00	0.60
0.30	1.00	0.05	0.10	0.00	0.00	0.41	0.00	0.00	0.69

Easy, Solvable: NE1 $=(0.01,0.01)$, NE2 $=(0.07,0.24)$

k_{ϵ}	Found	Faith.1		WPP1		Width1	WPP2		Width2
0.05	0.81	0.03	0.02	0.02	0.04	0.04	0.00	0.01	0.34
0.10	0.99	0.02	0.02	0.01	0.02	0.09	0.00	0.00	0.40
0.15	1.00	0.02	0.01	0.00	0.00	0.17	0.00	0.00	0.46
0.20	1.00	0.02	0.01	0.00	0.00	0.24	0.00	0.00	0.54
0.25	1.00	0.02	0.01	0.00	0.00	0.32	0.00	0.00	0.61
0.30	1.00	0.02	0.01	0.00	0.00	0.41	0.00	0.00	0.67

Bias average
Bias tail mass at 0.1

Summary

Hard, Not Solvable: NE1 $=(0.16,1.00)$, NE2 $=(0.20,0.88)$

k_{ϵ}	Found	Faith.1		WPP1		Width1	WPP2		Width2
0.05	0.67	0.20	0.90	0.17	0.76	0.06	0.04	0.14	0.32
0.10	0.91	0.19	0.91	0.13	0.63	0.10	0.02	0.07	0.39
0.15	0.97	0.19	0.92	0.10	0.41	0.18	0.01	0.03	0.45
0.20	0.99	0.19	0.95	0.07	0.25	0.24	0.01	0.01	0.51
0.25	1.00	0.19	0.96	0.03	0.13	0.31	0.00	0.00	0.58
0.30	1.00	0.19	0.96	0.02	0.06	0.39	0.00	0.00	0.66

Easy, Not Solvable: NE1 $=(0.09,0.32)$, NE2 $=(0.14,0.56)$

k_{ϵ}	Found	Faith.1		WPP1		Width1	WPP2		Width2
0.05	0.68	0.13	0.51	0.10	0.37	0.05	0.02	0.07	0.33
0.10	0.97	0.12	0.53	0.08	0.28	0.10	0.01	0.05	0.39
0.15	1.00	0.12	0.52	0.05	0.17	0.16	0.01	0.03	0.46
0.20	1.00	0.12	0.53	0.03	0.08	0.23	0.01	0.03	0.52
0.25	1.00	0.12	0.48	0.02	0.05	0.31	0.00	0.02	0.59
0.30	1.00	0.12	0.48	0.01	0.04	0.39	0.00	0.01	0.65

Influenza Data

\square Effect of influenza vaccination (X) on hospitalization ($\mathrm{Y}=1$ means hospitalized)
\square Covariate GRP: randomized, doctor of that patient received letter to encourage vaccination
\square (GRP, X, Y) ACE bound using standard IV: [-0.23, 0.64]
\square WPP could not validate GRP. Instead it picked DM (diabetes history) as a witness, and AGE (dichotomized at 60 years) and SEX as admissible set

Influenza Data

\square Using same parameters as synthetic case study (0.91.1 for β), WPP estimated interval as $[-0.10,0.17]$

Influenza Data: Full Posterior Plots

Influenza Data: Full Posterior Plots

Marginal Posterior Distribution (means: [-0.10, 0.17])

Marginal Posterior Distribution (means: [-0.07, 0.16])

On-going Work

\square Finding a more primitive default set of assumptions where assumptions about the relaxations can be derived from
\square Doing without a given causal ordering
\square Large scale experiments
\square Scaling up for a large number of covariates
\square Continuous data
\square More real data experiments
\square R package to follow

$$
\text { http://arxiv.org/abs/1 } 406.0531
$$

Thank You

Extra

Mapping IV Model to Observations

\square For now, assume model where W川U
\square Let

$$
\zeta_{y x . w} \equiv \sum_{u} P(y, x \mid w, u) P(u)
$$

and recall

$$
\begin{aligned}
\zeta_{y x . w}^{\star} & \equiv P(Y=y, X=x \mid W=w, U) \\
\eta_{x w}^{\star} & \equiv P(Y=1 \mid X=x, W=w, U) \\
\delta_{w}^{\star} & \equiv P(X=1 \mid W=w, U)
\end{aligned}
$$

\square Idea: define a mapping from $\left(\eta^{*}, \delta^{*}\right)$ to ζ^{*}, then take convex combinations

Mapping

$\begin{array}{llllll}\eta_{00}^{\star} & \eta_{01}^{\star} & \eta_{10}^{\star} & \eta_{11}^{\star} & \delta_{0}^{\star} & \delta_{1}^{\star}\end{array}$
\downarrow
$\zeta_{00.0}^{\star} \zeta_{01.0}^{\star} \zeta_{10.0}^{\star} \quad \zeta_{11.0}^{\star} \quad \zeta_{00.1}^{\star} \quad \zeta_{01.1}^{\star} \zeta_{10.1}^{\star} \zeta_{11.1}^{\star}$

$$
\begin{aligned}
\zeta_{00.0}^{\star} & =\left(1-\eta_{00}^{\star}\right)\left(1-\delta_{0}^{\star}\right) \\
\zeta_{01.0}^{\star} & =\left(1-\eta_{10}^{\star}\right) \delta_{0}^{\star} \\
\zeta_{10.0}^{\star} & =\eta_{00}^{\star}\left(1-\delta_{0}^{\star}\right) \\
\zeta_{11.0}^{\star} & =\eta_{10}^{\star} \delta_{0}^{\star} \\
\zeta_{00.1}^{\star} & =\left(1-\eta_{01}^{\star}\right)\left(1-\delta_{1}^{\star}\right) \\
\zeta_{01.1}^{\star} & =\left(1-\eta_{11}^{\star}\right) \delta_{1}^{\star} \\
\zeta_{10.1}^{\star} & =\eta_{01}^{\star}\left(1-\delta_{1}^{\star}\right) \\
\zeta_{11.1}^{\star} & =\eta_{11}^{\star} \delta_{1}^{\star}
\end{aligned}
$$

Recipe

\square Map the extreme points of $\left(\eta^{*}, \delta^{*}\right)$ to the extreme points of ($\left.\zeta^{*}, \eta^{*}\right)$
\square Find convex hull of $\left(\zeta^{*}, \eta^{*}\right) \rightarrow$ Show to be equivalent to the set of (ζ, η) allowable by the IV model. And

$$
\begin{aligned}
\eta_{x w} & \equiv \sum_{U} P(Y=1 \mid X=x, W=w, U) P(U) \\
& =P(Y=1 \mid d o(X=x), W=w)
\end{aligned}
$$

\square Re-express convex hull as linear inequalities (and equalities)
$\square \zeta$ is observable/possible to estimate. Fixing ζ gives bounds on η

Estimation

\square Simpler mapping on $\left(\delta^{*}, \eta^{*}\right) \rightarrow P(W, X, Y \mid U)$, marginalized, gives constraints on $\zeta \equiv \mathrm{P}(\mathrm{W}, \mathrm{X}, \mathrm{Y})$
\square Test whether constraints hold, if not provide no bounds
\square Plug-in estimates for ζ to get (ζ, η) polytope. Find upper bounds and lower bounds on the ACE by solving linear program and maximizing/minimizing objective function

$$
f(\eta)=\left(\eta_{11}-\eta_{01}\right) P(W=1)+\left(\eta_{10}-\eta_{00}\right) P(W=0)
$$

All is Well?

\square It follows then $\min f(\eta) \leq$ ACE $\leq \max f(\eta)$
\square However, recall we mentioned this always has width $1 . .$. and actually there are no constraints on ζ !
\square Further assumptions required. For instance:
\square Assume no direct effect of W on Y (change parameterization and mapping)
\square Assume monotonicity

$$
P(Y=1 \mid \operatorname{do}(X=0)) \leq P(Y=1 \mid d o(X=1))
$$

\square Allow for bounded effect of \mathbf{W} on $\mathrm{Y},\left|\eta_{x 1}^{\star}-\eta_{x 0}^{\star}\right| \leq \epsilon_{w}$
\square See Ramsahai (2012) for details

Adding More Assumptions

\square In the linear programming formulation, an assumption such as $\left|\eta_{x 1}^{\star}-\eta_{x 0}^{\star}\right| \leq \epsilon_{w}$ is translated into a set of extreme points different from $\{(0,0)$, $(0,1),(1,0),(1,1)\}$
\square Ramsahai (2012) provides analytical bounds for a given, numerical, value of ε_{w}
\square Constraints such as $\left|\delta_{w}^{\star}-P(X=1 \mid W=w)\right| \leq \epsilon_{x}$ are included by fixing $P(X=1 \mid W=w)$ first, the redefining the extreme points of parameter
\square Notice this implies non-linear constraints on ζ

Linking U and W

\square What about

$$
\underline{\beta} P(U) \leq P(U \mid W=w) \leq \bar{\beta} P(U)
$$

\square This redefines our expectations

$$
\begin{aligned}
\eta_{x w} & \equiv \sum_{U} P(Y=1 \mid X=x, W=w, U) P(U \mid W) \\
& =P(Y=1 \mid d o(X=x), W=w)
\end{aligned}
$$

\square Without further assumptions on $\mathrm{P}(\mathrm{U} \mid \mathrm{W})$, linear program can be done as before, obtaining bounds for each value of W (Ramsahai, 2012)
\square Bounds always span zero

Linking U and W

\square An additive relaxation
$\mathrm{P}(\mathrm{U})-\varepsilon \leq \mathrm{P}(\mathrm{U} \mid \mathrm{W}) \leq \mathrm{P}(\mathrm{U})+\varepsilon$ would however be problematic. Hence, the multiplicative relaxation
\square Introduce intermediate parameterization

$$
\begin{aligned}
\zeta_{y x . w} & \equiv \sum_{U} P(Y=y, X=x \mid W=w, U) P(U \mid W=w) \\
\kappa_{y x . w} & \equiv \sum_{U} P(Y=y, X=x \mid W=w, U) P(U) \\
\eta_{x w} & \equiv \sum_{U} P(Y=1 \mid X=x, W=w, U) P(U \mid W) \\
\omega_{x w} & \equiv \sum_{U} P(Y=1 \mid X=x, W=w, U) P(U) \\
\delta_{w} & \equiv P(X=1 \mid W=w) \\
\chi_{x w} & \equiv \sum_{U} P(X=x \mid W=w, U) P(U)
\end{aligned}
$$

Linking U and W

\square Follow recipe as before, but applying to the new unobservable - variables
\square Link them to observable ζ and target η using

$$
\underline{\beta} P(U) \leq P(U \mid W=w) \leq \bar{\beta} P(U)
$$

\square For instance

$$
\begin{aligned}
\kappa_{y x . w} & \geq P(Y=y, X=x \mid W=w) / \bar{\beta} \\
\kappa_{y x . w} & \leq P(Y=y, X=x \mid W=w) / \underline{\beta} \\
\chi_{x w} & \geq P(X=x \mid W=w) / \bar{\beta} \\
\chi_{x w} & \leq P(X=x \mid W=w) / \underline{\beta}
\end{aligned}
$$

Rejection Sampling

\square If we have the polytope, then this is a very cheap check of whether linear inequalities are satisfied
\square However, we need to obtain the polytope as a function of ζ. Better do that in an analytic way, or otherwise a numerical polytope calculation procedure for each sample will not be feasible
\square Difficulty: extreme points of $\left(\delta^{*}, \zeta^{*}\right)$ are not the extremes of the unit hypercube anymore

Main Idea

\square Let's go back to the original mapping:

$$
\begin{aligned}
& \zeta_{00.0}^{\star}=\left(1-\eta_{00}^{\star}\right)\left(1-\delta_{0}^{\star}\right) \\
& \zeta_{01.0}^{\star}=\left(1-\eta_{10}^{\star}\right) \delta_{0}^{\star} \\
& \zeta_{10.0}^{\star}=\eta_{00}^{\star}\left(1-\delta_{0}^{\star}\right) \\
& \zeta_{11.0}^{\star}=\eta_{10}^{\star} \delta_{0}^{\star} \\
& \zeta_{0.1}^{\star}=\left(1-\eta_{01}^{\star}\right)\left(1-\delta_{1}^{\star}\right) \\
& \zeta_{01.1}^{\star}=\left(1-\eta_{11}^{\star}\right) \delta_{1}^{\star} \\
& \zeta_{10.1}^{\star}=\eta_{01}^{\star}\left(1-\delta_{1}^{\star}\right) \\
& \zeta_{11.1}^{\star}=\eta_{11}^{\star} \delta_{1}^{\star}
\end{aligned}
$$

\square Without further assumptions, what can we say?

Main Idea

\square Implied bounds follow from the probability simplex constraints
\square Notice the need for X to be discrete
\square As pointed out by Balke and Pearl, ζ is feasible if no upper bound on η is smaller than any lower bound
\square What happens when we introduce the assumption "no direct effect of W on Y "?
$\eta_{11} \geq \zeta_{11.1}$
$\eta_{10} \geq \zeta_{11.0}$
$\eta_{11} \leq 1-\zeta_{01.1}$
$\eta_{10} \leq 1-\zeta_{01.0}$
$\eta_{01} \geq \zeta_{10.1}$
$\eta_{01} \leq 1-\zeta_{00.1}$
$\eta_{00} \geq \zeta_{10.0}$
$\eta_{00} \leq 1-\zeta_{00.0}$

Direct Polytope Manipulation

$$
\begin{aligned}
\eta_{1}^{\star} & \leq 1 \\
\eta_{1}^{\star}\left(1-\delta_{1}^{\star}\right) & \leq 1-\delta_{1}^{\star} \\
\eta_{1}-\zeta_{11.1} & \leq 1-\left(\zeta_{11.1}+\zeta_{01.1}\right) \quad(\text { marginalization }) \\
\zeta_{11.0}-\zeta_{11.1} & \leq 1-\left(\zeta_{11.1}+\zeta_{01.1}\right) \quad\left(\text { since } \eta_{1}=\eta_{10} \geq \zeta_{11.0}\right) \\
\zeta_{11.0}+\zeta_{01.1} & \leq 1
\end{aligned}
$$

\square This is one of the "instrumental inequalities" of the standard IV model, derived directly
\square Bounding η^{*} by one of its extreme points

- Modify factor in a way to map it to ζ and η, perform further manipulations
\square Useful as a way of deriving symbolic bounds as a function of the extreme points of the original parameter space

Our More General Case

\square Start from

$$
\begin{aligned}
\max \left(P(Y=1 \mid X=x, W=w)-\epsilon_{y}, 0\right) & \equiv L_{x w}^{Y U} \\
\min \left(P(Y=1 \mid X=x, W=w)+\epsilon_{y}, 1\right) & \equiv U_{x w}^{Y U} \\
\max \left(P(X=1 \mid W=w)-\epsilon_{x}, 0\right) & \equiv L_{w}^{X U} \\
\min \left(P(X=1 \mid W=w)+\epsilon_{x}, 1\right) & \equiv U_{w}^{X U}
\end{aligned}
$$

$$
\begin{aligned}
& L_{x w}^{Y U} \leq \eta_{x w}^{\star} \leq U_{x w}^{Y U} \\
& L_{w}^{X U} \leq \delta_{w}^{\star} \leq U_{w}^{X U}
\end{aligned}
$$

\square Like in the previous slide, we create new bounds by multiplying and marginalizing pieces of the latent variable model

Examples

\square Case 1 (Fails to obtain new bound)

$$
\begin{aligned}
\eta_{1 w}^{\star} & \leq U_{1 w}^{Y U} \\
\eta_{1 w}^{\star} \delta_{w}^{\star} & \left.\leq U_{1 w}^{Y U} \delta_{w}^{\star} \quad \text { (Marginalize over } P(U)\right) \\
\kappa_{11 . w} & \leq U_{1 w}^{Y U} \chi_{w} \quad \text { (Always true) }
\end{aligned}
$$

\square Case 2 (Generalizes $\omega_{0 w} \leq 1-\kappa_{00 . w}$)

$$
\begin{aligned}
\eta_{0 w}^{\star} & \leq U_{0 w}^{Y U} \\
\eta_{0 w}^{\star}\left(1-\left(1-\delta_{w}^{\star}\right)\right) & \leq U_{0 w}^{Y U} \delta_{w}^{\star} \\
\omega_{0 w}-\kappa_{10 . w} & \leq U_{0 w}^{Y U} \chi_{w} \\
\omega_{0 w} & \leq \kappa_{10 . w}+U_{0 w}^{Y U}\left(\kappa_{01 . w}+\kappa_{11 . w}\right)
\end{aligned}
$$

Solving the Linear Program

\square The very same (symbolic) bounds used for verifying the feasibility of ζ can be used in a straightforward way to bound the ACE

