## CAUSAL INFERENCE THROUGH A WITNESS PROTECTION PROGRAM

**Ricardo Silva** Department of Statistical Science Centre for Computational Statistics and Machine Learning ricardo@stats.ucl.ac.uk

Joint work with Robin Evans (Statistics, Oxford)

#### **Background: Causal Inference**

- □ The task: estimate the effect of an intervention
  - Medical treatments, public policy, gene knock-outs and so on
- Gold standard: randomized controlled trial



#### **Background: Causal Inference**

- The task: estimate the effect of an intervention
  - Medical treatments, public policy, gene knock-outs and so on
- Gold standard: randomized controlled trial



#### Goals of this talk

Given binary X precedes binary Y causally, estimate average causal effect (ACE) using observational data

 $ACE \equiv E[Y \mid do(X = 1)] - E[Y \mid do(X = 0)] =$ 

P(Y = 1 | do(X = 1)) - P(Y = 1 | do(X = 0))

#### Goal

- To get an estimate of **bounds** of the ACE
- Rely on the identification of an auxiliary variable W (witness), an auxiliary set Z (background set), and assumptions about strength of dependencies on latent variables



#### Observational Studies: Tricks of the Trade

Backdoor adjustment (Pearl and others):



#### $\Box P(Y = 1 | do(X = x)) = \sum_{U} P(Y = 1 | x, U)P(U)$

#### Observational Studies: Tricks of the Trade

Backdoor adjustment (justification):



Problem: where causal knowledge about U comes from?
 Problem: what if we do not have P(Y | X, U), P(U)?

#### Observational Studies: Tricks of the Trade

Instrumental variables



#### $L_{P(Y, X | W)} \leq ACE \leq U_{P(Y, X | W)}$

#### **Exploiting Independence Constraints**

Faithfulness provides a way of sometimes finding a point estimator

Faithfulness means independence in probability iif "structural" independence (Spirtes et al., 1993)

#### Faithfulness

W independent of Y, but not when given X: conclude the following (absentia hidden common causes)



#### (Lack of) Faithfulness

#### W independent of Y, but not when given X: different structure



#### **Exploiting Independence Constraints**

In what follows, we will assume that we have access to a set of variables which we know are not effects of neither X nor Y

#### The Problem with Naïve Back-Door Adjustment

It is not uncommon in applied sciences to posit that, given a large number of covariates Z that are plausible common causes of X and Y, we should adjust for all

$$P_{est}(Y = 1 | do(X = x)) = \sum_{z} P(Y = 1 | x, z)P(z)$$

Even if there are remaining unmeasured confounders, a common assumption is that adding elements of Z will in general decrease bias ACE<sub>true</sub> – ACE<sub>hat</sub>

#### The Problem with Naïve Back-Door Adjustment

#### Example of failure:



 $P(Y = 1 | do(X = x)) = P(Y = 1 | X = x) \neq \sum P(Y = 1 | x, z)P(z)$ 

Pearl (2009). Technical Report R-348

#### Exploiting Faithfulness: A Very Simple Example

- $\square$  W not caused by X nor Y, X  $\rightarrow$  Y
- $\square W \downarrow X, W \bot Y | X + Faithfulness. Conclusion?$

No unmeasured confounding

- □ Naïve estimator vindicated: ACE = P(Y = 1 | X = 1) - P(Y = 1 | X = 0)
- This super-simple nugget of causal information has found some practical uses on large-scale problems

## A Very Simple Example

Consider "the genotype at a fixed locus *L* is a random variable, whose random outcome occurs before and independently from the subsequently measured expression values"

□ Find genes Ti, Tj such that L → Ti → Tj

Chen, Emmert-Streib12 and Storey (2007) Genome Biology, 8:R219



#### Figure 2

A transcriptional regulatory network drawn from a Trigger probability threshold of 90%. The network consists of 4,394 genes, 2,145 causal relationships, and 127 causal genes. Genes are represented by orange circles and causal relationships are represented by directed edges with black arrows.

#### Entner et al.'s Background Finder

Entner, Hoyer and Spirtes (2013) AISTATS: two simple rules based on finding a witness W for a correct admissible background set Z

 $\square \text{ Generalizes "chain models" } W \rightarrow X \rightarrow Z$ 

R1: If there exists a variable  $w \in \mathcal{W}$  and a set  $\mathcal{Z} \subseteq \mathcal{W} \setminus \{w\}$  such that

(i)  $w \not\perp y \mid \mathcal{Z}$ , and (ii)  $w \perp y \mid \mathcal{Z} \cup \{x\}$ 

then infer '+' and give  $\mathcal{Z}$  as an admissible set.

#### **Rule 1: Illustration**

- R1: If there exists a variable  $w \in W$  and a set  $\mathcal{Z} \subseteq W \setminus \{w\}$  such that
  - (i)  $w \not\perp y \mid \mathcal{Z}$ , and
  - (ii)  $w \perp \!\!\!\perp y \mid \mathcal{Z} \cup \{x\}$

then infer '+' and give  ${\mathfrak Z}$  as an admissible set.





Note again the necessity of the dependence of W and Y

#### **Reverting the Question**

What if instead of using W to find Z to make an adjustment by the back-door criterion, we find a Z to allow W to be an instrumental variable to find bounds on the ACE?

#### Why do We Care?

A way to weaken the faithfulness assumption

- Suppose also by "independence", we might mean "weak dependence" (and by "dependence", we might mean "strong dependence")
- How would interpret the properties of W in this case, given Rule 1?
  - R1: If there exists a variable  $w \in \mathcal{W}$  and a set  $\mathcal{Z} \subseteq \mathcal{W} \setminus \{w\}$  such that
    - (i)  $w \not\perp y \mid \mathcal{Z}$ , and (ii)  $w \perp y \mid \mathcal{Z} \cup \{x\}$

then infer ' $\pm$ ' and give  $\mathcal{Z}$  as an admissible set.

#### Modified Setup: Main Assumption Statement

- □ Given Rule 1, assume W is a "conditional IV for X → Y" in the sense that given Z
  - All active paths between W and X are into X
  - There is no "strong direct effect" of W on Y
  - There are no "strong active paths" between W and X, nor W and Y, through common ancestors of X and Y
- The definition of "strong effect/path" creates free parameters we will have to deal with. More on that later

#### Motivation

Bounds on the ACE in the "standard IV model" can be quite wide even when W ILY | X



This means faithfulness can be quite a strong assumption, and/or "worst-case" analysis can be quite conservative

#### Motivation

- Our analysis can be seen as a way of bridging the two extremes of point estimators of faithfulness analysis and IV bounds without effect constraints
- Notice: this does not mean making stronger assumptions than the standard IV model



#### **Stating Assumptions**

□ Some notation first, ignoring Z for now:



$$\begin{array}{rcl} \zeta_{yx.w}^{\star} & \equiv & P(Y=y,X=x \mid W=w,U) \\ \eta_{xw}^{\star} & \equiv & P(Y=1 \mid X=x,W=w,U) \\ \delta_{w}^{\star} & \equiv & P(X=1 \mid W=w,U) \end{array}$$

#### **Stating Assumptions**

$$\zeta_{yx.w}^{\star} \equiv P(Y = y, X = x \mid W = w, U)$$
  

$$\eta_{xw}^{\star} \equiv P(Y = 1 \mid X = x, W = w, U)$$
  

$$\delta_{w}^{\star} \equiv P(X = 1 \mid W = w, U)$$
  

$$|\delta_{w}^{\star} - P(X = 1 \mid W = w)| \le \epsilon_{x}$$
  

$$|\eta_{xw}^{\star} - P(Y = 1 \mid X = x, W = w)| \le \epsilon_{y}$$
  

$$|\eta_{x1}^{\star} - \eta_{x0}^{\star}| \le \epsilon_{w}$$

#### **Stating Assumptions**



#### **Relation to Observations**

$$\begin{array}{rcl} \zeta^{\star}_{yx.w} &\equiv & P(Y=y,X=x \mid W=w,U) \\ \eta^{\star}_{xw} &\equiv & P(Y=1 \mid X=x,W=w,U) \\ \delta^{\star}_{w} &\equiv & P(X=1 \mid W=w,U) \end{array}$$

- □ Let  $\zeta_{yx.w}$  be the expectation of the first entry by P(U | W): this is P(Y = y, X = x | W = w)
- □ Similarly, let  $\eta_{xw}$  be the expectation of the second entry: this is P(Y = 1 | do(X = x), W = w)



- The parameterization given was originally exploited by Dawid (2000) and Ramsahai (2012)
- It provides an alternative to the structural equation model parameterization of Balke and Pearl (1997)
- Both approaches work by mapping the problem of testing the model and bounding the ACE by a linear program
- □ We build on this strategy, with some generalizations

#### Estimation

- □ Simpler mapping on  $(\delta^*, \eta^*) \rightarrow P(W, X, Y \mid U)$ , marginalized, gives constraints on  $\zeta \equiv P(W, X, Y)$
- Test whether constraints hold, if not provide no bounds
- Plug-in estimates for ζ to get (ζ, η) polytope. Find upper bounds and lower bounds on the ACE by solving linear program and maximizing/minimizing objective function

$$f(\eta) = (\eta_{11} - \eta_{01})P(W = 1) + (\eta_{10} - \eta_{00})P(W = 0)$$

## **Coping with Non-linearity**

Notice that because of constraints such as

$$|\delta_w^\star - P(X=1 \mid W=w)| \le \epsilon_x$$

there will be non-linear constraints in  $\zeta \equiv P(W, X, Y)$ 

- The implied constraints are still linear in η = P(Y | do(X), W). So linear programming formulation still holds, treating ζ as a constant.
  - Non-linearity on ζ can be a problem for estimation of ζ and derivation of confidence intervals. We will describe later a Bayesian approach that does that simply by rejection sampling

#### Algorithm

In what follows, we assume dimensionality of Z is small, |Z| < 10

**input** : Binary data matrix  $\mathcal{D}$ ; set of relaxation parameters  $\theta$ ; covariate index set  $\mathcal{W}$ ; cause-effect indices X and Y

**output**: A list of pairs (witness, admissible set) contained in  $\mathcal{W}$ 

```
 \mathcal{L} \leftarrow \emptyset; 
for each W \in \mathcal{W} do
 \begin{vmatrix} \text{for every admissible set } \mathbf{Z} \subseteq \mathcal{W} \setminus \{W\} \text{ identified by } W \text{ and } \theta \text{ given } \mathcal{D} \text{ do} \\ & | \mathcal{B} \leftarrow \text{posterior over upper/lowed bounds on the ACE as given by } (W, \mathbf{Z}, X, Y, \mathcal{D}, \theta); \\ & \text{if there is no evidence in } \mathcal{B} \text{ to falsify the } (W, \mathbf{Z}, \theta) \text{ model then} \\ & | \mathcal{L} \leftarrow \mathcal{L} \cup \{\mathcal{B}\}; \\ & \text{end} \\ & \text{end} \\ & \text{return } \mathcal{L} \end{cases}
```

# Recap: So far, everything in the population

"Rely on the identification of an auxiliary variable W (witness), an auxiliary set Z (background set), and assumptions about strength of dependencies on latent variables"



#### **Bayesian Learning**

- To decide on independence, we do Bayesian model selection with a contingency table model with Dirichlet priors
- For each pair (W, Z), find posterior bounds for each configuration of Z
  - Use Dirichlet prior for  $\zeta$  (for each Z = z), conditioned on the constraints of the model, using rejection sampling
    - Propose from unconstrained Dirichlet
  - Reject model if 95% or more of proposed parameters are rejected in the initial round of rejection sampling
  - Feed sample from the posterior of  $\zeta$  into linear program to get a sample for the upper bound and lower bound

#### **Difference wrt ACE Bayesian Learning**

How not put a prior directly on the latent variable model?

- Putting priors directly into  $\zeta$  produces no point estimates, but avoids prior sensibility



## Wrapping Up

- Finally, one is left with different posterior distributions over different bounds on the ACE
- Final step is how to summarize possibly conflicting information. Possibilities are:
  - Report tightest bound
  - Report widest bound
  - Report combined smallest lower bound with largest upper bound
  - Use "posterior of Rule 1" to pick a handful of bounds and discard others



- Invert usage of Entner's Rules towards the instrumental variable point of view
- Obtain bounds, not point estimates
- Use Bayesian inference, set up a rule to combine possibly conflicting information
- Because the framework relies on using a linear program to protect a witness variable against violations of faithfulness, we call this the Witness Protection Program (WPP) framework

## Scaling Up

- There are four main bottlenecks:
  - The witness search procedure
  - Posterior sampling of parameters
    - Rejection criterion
    - Averaging over P(Z)
  - Running linear programs to obtain bounds (potentially expensive if done separately for each posterior sample)
- We address here problems of sampling and bound optimization, which can be solved by the same idea

#### **Direct Polytope Manipulation**

$$\begin{array}{rcl} \eta_{1}^{\star} &\leq & 1 \\ \eta_{1}^{\star}(1-\delta_{1}^{\star}) &\leq & 1-\delta_{1}^{\star} \\ \eta_{1}-\zeta_{11.1} &\leq & 1-(\zeta_{11.1}+\zeta_{01.1}) & (\text{marginalization}) \\ \zeta_{11.0}-\zeta_{11.1} &\leq & 1-(\zeta_{11.1}+\zeta_{01.1}) & (\text{since } \eta_{1}=\eta_{10} \geq \zeta_{11.0}) \\ \zeta_{11.0}+\zeta_{01.1} &\leq & 1 \end{array}$$

- This is one of the "instrumental inequalities" of the standard IV model, derived directly
  - **D** Bounding  $\eta^*$  by one of its extreme points
  - $\hfill\square$  Modify factor in a way to map it to  $\zeta$  and  $\eta$ , perform further manipulations
- Useful as a way of deriving symbolic bounds as a function of the extreme points of the original parameter space

#### **Direct Polytope Manipulation**

In the accompanying paper, we describe several analytical bounds on P(Y | do(X), W) as a function of P(W, X, Y) and constraints

$$\begin{aligned} \omega_{xw} &\geq \kappa_{1x.w} + L_{xw}^{YU}(\kappa_{0x'.w} + \kappa_{1x'.w}) \\ \omega_{xw} &\leq 1 - (\kappa_{0x.w'} - \epsilon_w(\kappa_{0x.w'} + \kappa_{1x.w'})) / U_{xw'}^{XU} \\ \omega_{xw} - \omega_{xw'} U_{x'w}^{XU} &\leq \kappa_{1x.w} + \epsilon_w(\kappa_{0x'.w} + \kappa_{1x'.w}) \\ \omega_{xw} + \omega_{x'w} - \omega_{x'w'} &\geq \kappa_{1x'.w} + \kappa_{1x.w} - \kappa_{1x'.w'} + \kappa_{1x.w'} - \chi_{xw'}(\bar{U} + \underline{L} + 2\epsilon_w) + \underline{L} \end{aligned}$$

This are used to generate relaxed (i.e., underconstrained) linear programming problems which are much more efficient to solve

## Illustration: Synthetic Studies

- 4 observable nodes, "basic set", form a pool that can generate a possible (witness, background set) pair
- 4 observable nodes form a "decoy set": none of them should be included in the background set
- Graph structures over "basic set" + {X, Y} are chosen randomly
- Observable parents of "decoy set" are sampled from "basic set"
- $\square$  Each decoy has another four latent parents, {L<sub>1</sub>, L<sub>2</sub>, L<sub>3</sub>, L<sub>4</sub>}
- Latents are mutually independent
- Each latent variable L<sub>i</sub> uniformly chooses either X or Y as a child
- Conditional distributions are logistic regression models with pairwise interactions

#### **Illustration: Synthetic Studies**



Posterior expected bounds

- Naïve 1: back-door adjustment conditioning on everybody
- □ Naïve 2: plain P(Y = 1 | X = 1) P(Y = 1 | X = 0)
- Backdoor by faithfulness



#### □ Note: no theoretical witness solution



#### Evaluation

#### Bias definition:

- For point estimators, just absolute value of difference between true ACE and estimate
- For bounds, Euclidean distance between true ACE and nearest point in the bound
- Summaries (over 100 simulations):
  - Bias average
  - Bias tail mass at 0.1
    - proportion of cases where bias exceeds 0.1
- Notice difficulty of direct comparisons

## Summary

| Hard, Solvable: $NE1 = (0.12, 1.00), NE2 = (0.02, 0.03)$ |       |         |      |      |      |        |      |      |        |  |  |  |
|----------------------------------------------------------|-------|---------|------|------|------|--------|------|------|--------|--|--|--|
| $k_{\epsilon}$                                           | Found | Faith.1 |      | WPP1 |      | Width1 | WPP2 |      | Width2 |  |  |  |
| 0.05                                                     | 0.74  | 0.03    | 0.05 | 0.02 | 0.05 | 0.05   | 0.00 | 0.00 | 0.34   |  |  |  |
| 0.10                                                     | 0.94  | 0.04    | 0.05 | 0.01 | 0.01 | 0.11   | 0.00 | 0.00 | 0.41   |  |  |  |
| 0.15                                                     | 0.99  | 0.04    | 0.05 | 0.01 | 0.02 | 0.16   | 0.00 | 0.00 | 0.46   |  |  |  |
| 0.20                                                     | 1.00  | 0.05    | 0.05 | 0.01 | 0.01 | 0.24   | 0.00 | 0.00 | 0.53   |  |  |  |
| 0.25                                                     | 1.00  | 0.05    | 0.07 | 0.00 | 0.00 | 0.32   | 0.00 | 0.00 | 0.60   |  |  |  |
| 0.30                                                     | 1.00  | 0.05    | 0.10 | 0.00 | 0.00 | 0.41   | 0.00 | 0.00 | 0.69   |  |  |  |
| Easy, Solvable: $NE1 = (0.01, 0.01), NE2 = (0.07, 0.24)$ |       |         |      |      |      |        |      |      |        |  |  |  |
| $k_\epsilon$                                             | Found | Faith.1 |      | WPP1 |      | Width1 | WPP2 |      | Width2 |  |  |  |
| 0.05                                                     | 0.81  | 0.03    | 0.02 | 0.02 | 0.04 | 0.04   | 0.00 | 0.01 | 0.34   |  |  |  |
| 0.10                                                     | 0.99  | 0.02    | 0.02 | 0.01 | 0.02 | 0.09   | 0.00 | 0.00 | 0.40   |  |  |  |
| 0.15                                                     | 1.00  | 0.02    | 0.01 | 0.00 | 0.00 | 0.17   | 0.00 | 0.00 | 0.46   |  |  |  |
| 0.20                                                     | 1.00  | 0.02    | 0.01 | 0.00 | 0.00 | 0.24   | 0.00 | 0.00 | 0.54   |  |  |  |
| 0.25                                                     | 1.00  | 0.02    | 0.01 | 0.00 | 0.00 | 0.32   | 0.00 | 0.00 | 0.61   |  |  |  |
| 0.30                                                     | 1.00  | 0.02    | 0.01 | 0.00 | 0.00 | 0.41   | 0.00 | 0.00 | 0.67   |  |  |  |

Bias average

Bias tail mass at 0.1

## Summary

| Hard, Not Solvable: $NE1 = (0.16, 1.00), NE2 = (0.20, 0.88)$        |       |         |      |      |      |        |      |      |        |  |  |  |
|---------------------------------------------------------------------|-------|---------|------|------|------|--------|------|------|--------|--|--|--|
| $k_{\epsilon}$                                                      | Found | Faith.1 |      | WPP1 |      | Width1 | WPP2 |      | Width2 |  |  |  |
| 0.05                                                                | 0.67  | 0.20    | 0.90 | 0.17 | 0.76 | 0.06   | 0.04 | 0.14 | 0.32   |  |  |  |
| 0.10                                                                | 0.91  | 0.19    | 0.91 | 0.13 | 0.63 | 0.10   | 0.02 | 0.07 | 0.39   |  |  |  |
| 0.15                                                                | 0.97  | 0.19    | 0.92 | 0.10 | 0.41 | 0.18   | 0.01 | 0.03 | 0.45   |  |  |  |
| 0.20                                                                | 0.99  | 0.19    | 0.95 | 0.07 | 0.25 | 0.24   | 0.01 | 0.01 | 0.51   |  |  |  |
| 0.25                                                                | 1.00  | 0.19    | 0.96 | 0.03 | 0.13 | 0.31   | 0.00 | 0.00 | 0.58   |  |  |  |
| 0.30                                                                | 1.00  | 0.19    | 0.96 | 0.02 | 0.06 | 0.39   | 0.00 | 0.00 | 0.66   |  |  |  |
| <b>Easy, Not Solvable:</b> $NE1 = (0.09, 0.32), NE2 = (0.14, 0.56)$ |       |         |      |      |      |        |      |      |        |  |  |  |
| $k_{\epsilon}$                                                      | Found | Faith.1 |      | WPP1 |      | Width1 | WPP2 |      | Width2 |  |  |  |
| 0.05                                                                | 0.68  | 0.13    | 0.51 | 0.10 | 0.37 | 0.05   | 0.02 | 0.07 | 0.33   |  |  |  |
| 0.10                                                                | 0.97  | 0.12    | 0.53 | 0.08 | 0.28 | 0.10   | 0.01 | 0.05 | 0.39   |  |  |  |
| 0.15                                                                | 1.00  | 0.12    | 0.52 | 0.05 | 0.17 | 0.16   | 0.01 | 0.03 | 0.46   |  |  |  |
| 0.20                                                                | 1.00  | 0.12    | 0.53 | 0.03 | 0.08 | 0.23   | 0.01 | 0.03 | 0.52   |  |  |  |
| 0.25                                                                | 1.00  | 0.12    | 0.48 | 0.02 | 0.05 | 0.31   | 0.00 | 0.02 | 0.59   |  |  |  |
| 0.30                                                                | 1.00  | 0.12    | 0.48 | 0.01 | 0.04 | 0.39   | 0.00 | 0.01 | 0.65   |  |  |  |

#### Influenza Data

- Effect of influenza vaccination (X) on hospitalization (Y = 1 means hospitalized)
- Covariate GRP: randomized, doctor of that patient received letter to encourage vaccination
  - □ (GRP, X, Y) ACE bound using standard IV: [-0.23, 0.64]
- WPP could not validate GRP. Instead it picked DM (diabetes history) as a witness, and AGE (dichotomized at 60 years) and SEX as admissible set

#### Influenza Data

 Using same parameters as synthetic case study (0.9-1.1 for β), WPP estimated interval as [-0.10, 0.17]

#### Influenza Data: Full Posterior Plots



#### Influenza Data: Full Posterior Plots





#### **On-going Work**

- Finding a more primitive default set of assumptions where assumptions about the relaxations can be derived from
- Doing without a given causal ordering
- Large scale experiments
- Scaling up for a large number of covariates
- Continuous data
- More real data experiments
- R package to follow

http://arxiv.org/abs/1406.0531

#### Thank You



#### Mapping IV Model to Observations

□ For now, assume model where W⊥LU

Let

$$\zeta_{yx.w} \equiv \sum_{u} P(y, x \mid w, u) P(u)$$

#### and recall

$$\begin{array}{rcl} \zeta^{\star}_{yx.w} &\equiv & P(Y=y,X=x \mid W=w,U) \\ \eta^{\star}_{xw} &\equiv & P(Y=1 \mid X=x,W=w,U) \\ \delta^{\star}_{w} &\equiv & P(X=1 \mid W=w,U) \end{array}$$

□ Idea: define a mapping from ( $\eta^*$ ,  $\delta^*$ ) to  $\zeta^{*,}$  then take convex combinations

#### Mapping

$$\begin{split} \eta_{00}^{\star} \quad \eta_{01}^{\star} \quad \eta_{10}^{\star} \quad \eta_{11}^{\star} \quad \delta_{0}^{\star} \quad \delta_{1}^{\star} \\ \downarrow \\ \zeta_{00.0}^{\star} \quad \zeta_{01.0}^{\star} \quad \zeta_{11.0}^{\star} \quad \zeta_{00.1}^{\star} \quad \zeta_{01.1}^{\star} \quad \zeta_{10.1}^{\star} \quad \zeta_{11.1}^{\star} \quad \eta_{00}^{\star} \quad \eta_{01}^{\star} \quad \eta_{10}^{\star} \quad \eta_{11}^{\star} \\ \zeta_{00.0}^{\star} \quad &= \quad (1 - \eta_{00}^{\star})(1 - \delta_{0}^{\star}) \\ \zeta_{01.0}^{\star} \quad &= \quad (1 - \eta_{10}^{\star})\delta_{0}^{\star} \\ \zeta_{10.0}^{\star} \quad &= \quad \eta_{00}^{\star}(1 - \delta_{0}^{\star}) \\ \zeta_{11.0}^{\star} \quad &= \quad \eta_{10}^{\star}\delta_{0}^{\star} \\ \zeta_{00.1}^{\star} \quad &= \quad (1 - \eta_{01}^{\star})(1 - \delta_{1}^{\star}) \\ \zeta_{01.1}^{\star} \quad &= \quad (1 - \eta_{11}^{\star})\delta_{1}^{\star} \\ \zeta_{10.1}^{\star} \quad &= \quad \eta_{01}^{\star}(1 - \delta_{1}^{\star}) \\ \zeta_{11.1}^{\star} \quad &= \quad \eta_{11}^{\star}\delta_{1}^{\star} \end{split}$$

#### Recipe

- Map the extreme points of (η<sup>\*</sup>, δ<sup>\*</sup>) to the extreme points of (ζ\*, η<sup>\*</sup>)
- □ Find convex hull of  $(\zeta^*, \eta^*) \rightarrow$  Show to be equivalent to the set of  $(\zeta, \eta)$  allowable by the IV model. And

$$\eta_{xw} \equiv \sum_{U} P(Y = 1 \mid X = x, W = w, U) P(U)$$
$$= P(Y = 1 \mid do(X = x), W = w)$$

Re-express convex hull as linear inequalities (and equalities)
 ζ is observable/possible to estimate. Fixing ζ gives bounds on η

#### Estimation

- □ Simpler mapping on  $(\delta^*, \eta^*) \rightarrow P(W, X, Y \mid U)$ , marginalized, gives constraints on  $\zeta \equiv P(W, X, Y)$
- Test whether constraints hold, if not provide no bounds
- Plug-in estimates for ζ to get (ζ, η) polytope. Find upper bounds and lower bounds on the ACE by solving linear program and maximizing/minimizing objective function

$$f(\eta) = (\eta_{11} - \eta_{01})P(W = 1) + (\eta_{10} - \eta_{00})P(W = 0)$$

#### All is Well?

- □ It follows then min  $f(\eta) \le ACE \le max f(\eta)$
- However, recall we mentioned this always has width
  - 1... and actually there are no constraints on  $\zeta$ !
- Further assumptions required. For instance:
  - Assume no direct effect of W on Y (change parameterization and mapping)
  - Assume monotonicity
    - $P(Y = 1 | do(X = 0)) \le P(Y = 1 | do(X = 1))$
  - Allow for bounded effect of W on Y,  $|\eta_{x1}^{\star} \eta_{x0}^{\star}| \leq \epsilon_w$
  - See Ramsahai (2012) for details

#### **Adding More Assumptions**

- In the linear programming formulation, an assumption such as |η<sup>\*</sup><sub>x1</sub> − η<sup>\*</sup><sub>x0</sub> | ≤ ε<sub>w</sub> is translated into a set of extreme points different from {(0, 0), (0, 1), (1, 0), (1, 1)}
  - Ramsahai (2012) provides analytical bounds for a given, numerical, value of ε<sub>w</sub>
- Constraints such as |δ<sup>\*</sup><sub>w</sub> P(X = 1 | W = w)| ≤ ε<sub>x</sub> are included by fixing P(X = 1 | W = w) first, the redefining the extreme points of parameter
   Notice this implies non-linear constraints on ζ

#### Linking U and W

## What about

 $\underline{\beta}P(U) \le P(U \mid W = w) \le \overline{\beta}P(U)$ 

This redefines our expectations

$$\eta_{xw} \equiv \sum_{U} P(Y = 1 \mid X = x, W = w, U) P(U \mid W)$$
$$= P(Y = 1 \mid do(X = x), W = w)$$

Without further assumptions on P(U | W), linear program can be done as before, obtaining bounds for each value of W (Ramsahai, 2012)

Bounds always span zero

#### Linking U and W

- □ An additive relaxation  $P(U) - \varepsilon \le P(U | W) \le P(U) + \varepsilon$  would however be problematic. Hence, the multiplicative relaxation
- Introduce intermediate parameterization

$$\begin{aligned} \zeta_{yx.w} &\equiv \sum_{U} P(Y = y, X = x \mid W = w, U) P(U \mid W = w) \\ \kappa_{yx.w} &\equiv \sum_{U} P(Y = y, X = x \mid W = w, U) P(U) \\ \eta_{xw} &\equiv \sum_{U} P(Y = 1 \mid X = x, W = w, U) P(U \mid W) \\ \omega_{xw} &\equiv \sum_{U} P(Y = 1 \mid X = x, W = w, U) P(U) \end{aligned}$$

$$\delta_w \equiv P(X = 1 \mid W = w)$$
  
$$\chi_{xw} \equiv \sum_U P(X = x \mid W = w, U) P(U)$$

#### Linking U and W

Follow recipe as before, but applying to the new – unobservable – variables

 $\square$  Link them to observable  $\zeta$  and target  $\eta$  using

$$\underline{\beta}P(U) \le P(U \mid W = w) \le \overline{\beta}P(U)$$

#### For instance

$$\begin{array}{rcl} \kappa_{yx.w} &\geq & P(Y=y,X=x\mid W=w)/\bar{\beta} \\ \kappa_{yx.w} &\leq & P(Y=y,X=x\mid W=w)/\underline{\beta} \\ \chi_{xw} &\geq & P(X=x\mid W=w)/\bar{\beta} \\ \chi_{xw} &\leq & P(X=x\mid W=w)/\underline{\beta} \end{array}$$

#### **Rejection Sampling**

- If we have the polytope, then this is a very cheap check of whether linear inequalities are satisfied
- However, we need to obtain the polytope as a function of ζ. Better do that in an analytic way, or otherwise a numerical polytope calculation procedure for each sample will not be feasible
- Difficulty: extreme points of ( $\delta^*$ ,  $\zeta^*$ ) are not the extremes of the unit hypercube anymore

#### Main Idea

Let's go back to the original mapping:

$$\begin{split} \zeta_{00.0}^{\star} &= (1 - \eta_{00}^{\star})(1 - \delta_{0}^{\star}) \\ \zeta_{01.0}^{\star} &= (1 - \eta_{10}^{\star})\delta_{0}^{\star} \\ \zeta_{10.0}^{\star} &= \eta_{00}^{\star}(1 - \delta_{0}^{\star}) \\ \zeta_{11.0}^{\star} &= \eta_{10}^{\star}\delta_{0}^{\star} \\ \zeta_{00.1}^{\star} &= (1 - \eta_{01}^{\star})(1 - \delta_{1}^{\star}) \\ \zeta_{01.1}^{\star} &= (1 - \eta_{11}^{\star})\delta_{1}^{\star} \\ \zeta_{10.1}^{\star} &= \eta_{01}^{\star}(1 - \delta_{1}^{\star}) \\ \zeta_{11.1}^{\star} &= \eta_{11}^{\star}\delta_{1}^{\star} \end{split}$$

Without further assumptions, what can we say?

#### Main Idea

- Implied bounds follow from the probability simplex constraints
  - Notice the need for X to be discrete
- As pointed out by Balke and Pearl, ζ is feasible if no upper bound on η is smaller than any lower bound
- What happens when we introduce the assumption "no direct effect of W on Y"?

 $\begin{array}{rcrcr} \eta_{11} & \geq & \zeta_{11.1} \\ \eta_{10} & \geq & \zeta_{11.0} \\ \eta_{11} & \leq & 1 - \zeta_{01.1} \\ \eta_{10} & \leq & 1 - \zeta_{01.0} \\ \eta_{01} & \geq & \zeta_{10.1} \\ \eta_{01} & \leq & 1 - \zeta_{00.1} \\ \eta_{00} & \geq & \zeta_{10.0} \\ \eta_{00} & \leq & 1 - \zeta_{00.0} \end{array}$ 

#### **Direct Polytope Manipulation**

$$\begin{array}{rcl} \eta_{1}^{\star} &\leq & 1 \\ \eta_{1}^{\star}(1-\delta_{1}^{\star}) &\leq & 1-\delta_{1}^{\star} \\ \eta_{1}-\zeta_{11.1} &\leq & 1-(\zeta_{11.1}+\zeta_{01.1}) & (\text{marginalization}) \\ \zeta_{11.0}-\zeta_{11.1} &\leq & 1-(\zeta_{11.1}+\zeta_{01.1}) & (\text{since } \eta_{1}=\eta_{10} \geq \zeta_{11.0}) \\ \zeta_{11.0}+\zeta_{01.1} &\leq & 1 \end{array}$$

- This is one of the "instrumental inequalities" of the standard IV model, derived directly
  - **D** Bounding  $\eta^*$  by one of its extreme points
  - $\hfill\square$  Modify factor in a way to map it to  $\zeta$  and  $\eta$ , perform further manipulations
- Useful as a way of deriving symbolic bounds as a function of the extreme points of the original parameter space

#### **Our More General Case**

# □ Start from $\max(P(Y = 1 | X = x, W = w) - \epsilon_y, 0) \equiv L_{xw}^{YU}$ $\min(P(Y = 1 | X = x, W = w) + \epsilon_y, 1) \equiv U_{xw}^{YU}$ $\max(P(X = 1 | W = w) - \epsilon_x, 0) \equiv L_w^{XU}$ $\min(P(X = 1 | W = w) + \epsilon_x, 1) \equiv U_w^{XU}$

$$\begin{array}{rccccccc} L_{xw}^{YU} & \leq & \eta_{xw}^{\star} & \leq & U_{xw}^{YU} \\ L_{w}^{XU} & \leq & \delta_{w}^{\star} & \leq & U_{w}^{XU} \end{array}$$

Like in the previous slide, we create new bounds by multiplying and marginalizing pieces of the latent variable model

#### Examples

□ Case 1 (Fails to obtain new bound)

$$\begin{aligned} \eta_{1w}^{\star} &\leq U_{1w}^{YU} \\ \eta_{1w}^{\star} \delta_{w}^{\star} &\leq U_{1w}^{YU} \delta_{w}^{\star} \quad (\text{Marginalize over } P(U)) \\ \kappa_{11.w} &\leq U_{1w}^{YU} \chi_{w} \quad (\text{Always true}) \end{aligned}$$

 $\square$  Case 2 (Generalizes  $\omega_{0w} \leq 1 - \kappa_{00.w}$  )

$$\eta_{0w}^{\star} \leq U_{0w}^{YU}$$
  

$$\eta_{0w}^{\star} (1 - (1 - \delta_w^{\star})) \leq U_{0w}^{YU} \delta_w^{\star}$$
  

$$\omega_{0w} - \kappa_{10.w} \leq U_{0w}^{YU} \chi_w$$
  

$$\omega_{0w} \leq \kappa_{10.w} + U_{0w}^{YU} (\kappa_{01.w} + \kappa_{11.w})$$

#### Solving the Linear Program

The very same (symbolic) bounds used for verifying the feasibility of ζ can be used in a straightforward way to bound the ACE