
Compression via Sparse Linear Regression

Ramji Venkataramanan

University of Cambridge

(Acknowledgements: S. Tatikonda, T. Sarkar, A. Joseph, A. Barron)

May 9, 2014

1 / 42

Information Theory deals with

Communication

Compression (Lossless and Lossy)

Multi-terminal communication and compression:

Multiple-access channels, Broadcast channels, Distributed
compression, . . .

Sharp characterization of achievable rates for many of these
problems

Textbook code constructions are based on:

- Random coding for point-to-point communication and
compression

- Superposition and binning for multi-terminal problems

- High complexity of storage and coding: exponential in “n”

2 / 42

Information Theory deals with

Communication

Compression (Lossless and Lossy)

Multi-terminal communication and compression:

Multiple-access channels, Broadcast channels, Distributed
compression, . . .

Sharp characterization of achievable rates for many of these
problems

Textbook code constructions are based on:

- Random coding for point-to-point communication and
compression

- Superposition and binning for multi-terminal problems

- High complexity of storage and coding: exponential in “n”

2 / 42

GOAL:

Codes with compact representation + fast encoding/decoding

‘Fast’ ⇒ polynomial in n

In the last 20 years, many advances:

LDPC/LDGM codes, Polar codes for finite-alphabet sources &
channels

We will focus on Gaussian sources and channels here

3 / 42

In this talk . . .

Ensemble of codes based on sparse linear regression

Provably achieve rates close to info-theoretic limits with fast
encoding + decoding

Based on construction of Barron & Joseph for AWGN channel

- Achieve capacity with fast decoding [IT Trans. ’12, ’14]

Outline

We’ll focus on the compression problem:

- Fundamental limits of the code (with optimal encoding)

- Computationally efficient compression algorithm & analysis

Extension to multi-terminal communication and compression

4 / 42

In this talk . . .

Ensemble of codes based on sparse linear regression

Provably achieve rates close to info-theoretic limits with fast
encoding + decoding

Based on construction of Barron & Joseph for AWGN channel

- Achieve capacity with fast decoding [IT Trans. ’12, ’14]

Outline

We’ll focus on the compression problem:

- Fundamental limits of the code (with optimal encoding)

- Computationally efficient compression algorithm & analysis

Extension to multi-terminal communication and compression

4 / 42

Lossy Compression

Codebook
R nats/sample

S = S1, . . . , Sn

enR

Ŝ = Ŝ1, . . . , Ŝn

Distortion criterion: 1
n‖S− Ŝ‖2 = 1

n

∑
k(Sk − Ŝk)2

To achieve 1
n‖S− Ŝ‖2 ≤ D, need

R > R∗(D) = minPŜ|S
I (S ; Ŝ)

For i.i.d N (0, σ2) source, R∗(D) = 1
2 log σ2

D , D < σ2

⇒ Minimum possible distortion D∗(R) = σ2e−2R

Can we achieve this with low-complexity algorithms?

5 / 42

Lossy Compression

Codebook
R nats/sample

S = S1, . . . , Sn

enR

Ŝ = Ŝ1, . . . , Ŝn

Distortion criterion: 1
n‖S− Ŝ‖2 = 1

n

∑
k(Sk − Ŝk)2

To achieve 1
n‖S− Ŝ‖2 ≤ D, need

R > R∗(D) = minPŜ|S
I (S ; Ŝ)

For i.i.d N (0, σ2) source, R∗(D) = 1
2 log σ2

D , D < σ2

⇒ Minimum possible distortion D∗(R) = σ2e−2R

Can we achieve this with low-complexity algorithms? 5 / 42

Sparse Regression Codes (SPARC)

A:

β: 0, c, 0, c, 0, c, 0, , 00,
T

n rows

A: design matrix or ‘dictionary’ with ind. N (0, 1) entries

Codewords Aβ - sparse linear combinations of columns of A

6 / 42

SPARC Construction

A:

β: 0, c, 0, c, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0, c,

n rows, ML columns

Choosing M and L:

For rate R codebook, need ML = enR

Choose M = Lb for b > 1 ⇒ bL log L = nR

L ∼ n/log n and M ∼ polynomial in n

Storage Complexity ↔ Size of A: polynomial in n

7 / 42

SPARC Construction

A:

β: 0, c, 0, c, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0, c,

n rows, ML columns

Choosing M and L:

For rate R codebook, need ML = enR

Choose M = Lb for b > 1 ⇒ bL log L = nR

L ∼ n/log n and M ∼ polynomial in n

Storage Complexity ↔ Size of A: polynomial in n

7 / 42

SPARC Construction

A:

β: 0, c, 0, c, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0, c,

n rows, ML columns

Choosing M and L:

For rate R codebook, need ML = enR

Choose M = Lb for b > 1 ⇒ bL log L = nR

L ∼ n/log n and M ∼ polynomial in n

Storage Complexity ↔ Size of A: polynomial in n
7 / 42

Minimum Distance Encoding

A:

β: 0, c, 0, c, 0, , 00,

Lb columns Lb columnsLb columns

Section 1 Section 2 Section L

T

n rows

0, c,

Given source sequence S with variance σ2:

Encoder: Find β̂ = argmin
β
‖S− Aβ‖2

Decoder: Reconstruct Ŝ = Aβ̂

Pn = P
(

1
n‖S− Aβ̂‖2 > D

)

1 Want to show that Pn → 0 if R > 1
2 log σ2

D

2 Also want asymptotic rate of decay (error exponent)

8 / 42

Minimum Distance Encoding

A:

β: 0, c, 0, c, 0, , 00,

Lb columns Lb columnsLb columns

Section 1 Section 2 Section L

T

n rows

0, c,

Given source sequence S with variance σ2:

Encoder: Find β̂ = argmin
β
‖S− Aβ‖2

Decoder: Reconstruct Ŝ = Aβ̂

Pn = P
(

1
n‖S− Aβ̂‖2 > D

)
1 Want to show that Pn → 0 if R > 1

2 log σ2

D

2 Also want asymptotic rate of decay (error exponent)
8 / 42

SPARC Rate-Distortion Function

Theorem (RV-Joseph-Tatikonda ’12, RV-Tatikonda ’14)

For a source with variance σ2, SPARCs with minimum-distance
encoding achieve distortion D for all rates

R >
1

2
log

σ2

D

when b > bmin where

bmin =

2.5R

R−1+D/σ2 if R > (1− D
σ2)

40R(
2R

(1−D/σ2)
−1

)2(
(1− D

σ2)(2+ D
σ2)− 2R

) if R ≤ (1− D
σ2)

Note:

D

σ2
∈ (0.203, 1) ⇔

(
1− D

σ2

)
>

1

2
log

σ2

D

9 / 42

SPARC Rate-Distortion Function

Theorem (RV-Joseph-Tatikonda ’12, RV-Tatikonda ’14)

For a source with variance σ2, SPARCs with minimum-distance
encoding achieve distortion D for all rates

R >
1

2
log

σ2

D

when b > bmin where

bmin =

2.5R

R−1+D/σ2 if R > (1− D
σ2)

40R(
2R

(1−D/σ2)
−1

)2(
(1− D

σ2)(2+ D
σ2)− 2R

) if R ≤ (1− D
σ2)

Note:

D

σ2
∈ (0.203, 1) ⇔

(
1− D

σ2

)
>

1

2
log

σ2

D

9 / 42

Setting up the analysis

Call β a solution if |S− Aβ|2 ≤ D

For i = 1, . . . , enR , define

Ui =

{
1 if β(i) is a solution ,
0 otherwise.

The number of solutions X is

X = U1 + . . .+ UenR

Want to show P(X > 0)→ 1 as n→∞

Notice that the Ui ’s are dependent!

10 / 42

Setting up the analysis

Call β a solution if |S− Aβ|2 ≤ D

For i = 1, . . . , enR , define

Ui =

{
1 if β(i) is a solution ,
0 otherwise.

The number of solutions X is

X = U1 + . . .+ UenR

Want to show P(X > 0)→ 1 as n→∞

Notice that the Ui ’s are dependent!

10 / 42

Dependent Codewords

Each codeword sum of L columns

Codewords β(i), β(j) dependent if they have common columns

A:

Section 1 Section L

n rows

Section 2

The number of codewords sharing r common terms with any β(i) is(
L

r

)
(M − 1)L−r , r = 0, 1, . . . , L

codewords dependent with β(i) = ML − 1− (M − 1)L

11 / 42

Dependent Codewords

Each codeword sum of L columns

Codewords β(i), β(j) dependent if they have common columns

A:

Section 1 Section L

n rows

Section 2

The number of codewords sharing r common terms with any β(i) is(
L

r

)
(M − 1)L−r , r = 0, 1, . . . , L

codewords dependent with β(i) = ML − 1− (M − 1)L

11 / 42

The Second Moment Method (2nd MoM)

X = U1 + . . .+ UenR

To show P(X > 0) w.h.p., we use the 2nd MoM:

P(X > 0) ≥ (EX)2

E[X 2]

Proof : (E[XY])2 ≤ E[X 2]E[Y 2] with Y = 1{X>0}.

The expected number of solutions is

EX = enRP(U1 = 1)
.

= en(R − 1
2

log σ2

D
)

EX →∞ if R > 1
2 log σ2

D , but is X > 0 w.h.p. ?

12 / 42

The Second Moment Method (2nd MoM)

X = U1 + . . .+ UenR

To show P(X > 0) w.h.p., we use the 2nd MoM:

P(X > 0) ≥ (EX)2

E[X 2]

Proof : (E[XY])2 ≤ E[X 2]E[Y 2] with Y = 1{X>0}.

The expected number of solutions is

EX = enRP(U1 = 1)
.

= en(R − 1
2

log σ2

D
)

EX →∞ if R > 1
2 log σ2

D , but is X > 0 w.h.p. ?

12 / 42

The Second Moment

E[X 2] = E[(U1 + . . .+ UenR)2]

= enR
L∑

r=0

(
L

r

)
(M − 1)L−r E[U1U2 | β1, β2 share r terms]

The key ratio is

(EX)2

E[X 2]
.

=
(D

σ2

)n[L∑
r=0

(
L

r

)
(M−1)−r

E[U1U2 | β1, β2 share r terms]︸ ︷︷ ︸
can compute Chernoff bound

]−1

...

P(X = 0) < L−
1
R

(b−bmin)(R−(1− D
σ2))

We’ve shown that rates R > max
{

(1− D
σ2), 1

2 log σ2

D

}
are achievable

13 / 42

The Second Moment

E[X 2] = E[(U1 + . . .+ UenR)2]

= enR
L∑

r=0

(
L

r

)
(M − 1)L−r E[U1U2 | β1, β2 share r terms]

The key ratio is

(EX)2

E[X 2]
.

=
(D

σ2

)n[L∑
r=0

(
L

r

)
(M−1)−r E[U1U2 | β1, β2 share r terms]︸ ︷︷ ︸

can compute Chernoff bound

]−1

...

P(X = 0) < L−
1
R

(b−bmin)(R−(1− D
σ2))

We’ve shown that rates R > max
{

(1− D
σ2), 1

2 log σ2

D

}
are achievable

13 / 42

The Second Moment

E[X 2] = E[(U1 + . . .+ UenR)2]

= enR
L∑

r=0

(
L

r

)
(M − 1)L−r E[U1U2 | β1, β2 share r terms]

The key ratio is

(EX)2

E[X 2]
.

=
(D

σ2

)n[L∑
r=0

(
L

r

)
(M−1)−r E[U1U2 | β1, β2 share r terms]︸ ︷︷ ︸

can compute Chernoff bound

]−1

...

P(X = 0) < L−
1
R

(b−bmin)(R−(1− D
σ2))

We’ve shown that rates R > max
{

(1− D
σ2), 1

2 log σ2

D

}
are achievable

13 / 42

What we have shown . . .

Plot of max
{

(1− D
σ2), 1

2 log σ2

D

}

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

D/σ
2

R
a

te
 (

b
it
s
)

0.5 log σ
2
/D

1−D/σ
2

14 / 42

Key Question: For

(0.203) <
D

σ2
< 1

- Is the SPARC inherently a suboptimal code?

- Or, is it a shortcoming of the proof technique?

15 / 42

Why does the 2nd MoM fail ?

E[X 2] = E[(U1 + . . .+ U2nR)2] = E[X]E[X |U1 = 1]

Hence

P(X > 0) ≥ (EX)2

E[X 2]
=

E[X]

E[X |U1 = 1]

We want E[X |β(1) is a solution] ∼ E[X]

But when 1
2 log σ2

D < R <
(
1− D

σ2

)
E[X |β(1) is a solution]

E[X]
→ ∞

The expected number of solutions given that we have one
solution blows up!

Similar phenomenon in random hypergraph 2-colouring
[Coja-Oghlan, Zdeborova ’12]

16 / 42

Why does the 2nd MoM fail ?

E[X 2] = E[(U1 + . . .+ U2nR)2] = E[X]E[X |U1 = 1]

Hence

P(X > 0) ≥ (EX)2

E[X 2]
=

E[X]

E[X |U1 = 1]

We want E[X |β(1) is a solution] ∼ E[X]

But when 1
2 log σ2

D < R <
(
1− D

σ2

)
E[X |β(1) is a solution]

E[X]
→ ∞

The expected number of solutions given that we have one
solution blows up!

Similar phenomenon in random hypergraph 2-colouring
[Coja-Oghlan, Zdeborova ’12]

16 / 42

Why does the 2nd MoM fail ?

E[X 2] = E[(U1 + . . .+ U2nR)2] = E[X]E[X |U1 = 1]

Hence

P(X > 0) ≥ (EX)2

E[X 2]
=

E[X]

E[X |U1 = 1]

We want E[X |β(1) is a solution] ∼ E[X]

But when 1
2 log σ2

D < R <
(
1− D

σ2

)
E[X |β(1) is a solution]

E[X]
→ ∞

The expected number of solutions given that we have one
solution blows up!

Similar phenomenon in random hypergraph 2-colouring
[Coja-Oghlan, Zdeborova ’12]

16 / 42

Q: Why is E[X |β(1) is a solution]� E[X]?

There are many codewords β(i) that are dependent with β(1)

If β(1), β(i) are dependent: given that |S− Aβ(1)|2 ≤ D,
the probability of |S− Aβ(i)|2 ≤ D increases

A:

Section 1 Section L

n rows

Section 2

Even a small increase in the probability may be enough to
blow up E[X |β(1) is a solution]

17 / 42

Q: Why is E[X |β(1) is a solution]� E[X]?

There are many codewords β(i) that are dependent with β(1)

If β(1), β(i) are dependent: given that |S− Aβ(1)|2 ≤ D,
the probability of |S− Aβ(i)|2 ≤ D increases

A:

Section 1 Section L

n rows

Section 2

Even a small increase in the probability may be enough to
blow up E[X |β(1) is a solution]

17 / 42

A Stylized Example

Assume that the number of solutions X can only take one of two
values

X =

{
2n with probability 1− 2−np

21.1n with probability 2−np

Note:

There are always at least 2n solutions ⇒ P(X > 0) = 1

The expected number of solutions is

EX = 21.1n2−np + 2n(1− 2−np)

≈ 2n if p > 0.1

For 2nd MoM to predict existence of solutions, we need

E[X]

E[X |β is a solution]
≈ 1

18 / 42

A Stylized Example

Assume that the number of solutions X can only take one of two
values

X =

{
2n with probability 1− 2−np

21.1n with probability 2−np

Note:

There are always at least 2n solutions ⇒ P(X > 0) = 1

The expected number of solutions is

EX = 21.1n2−np + 2n(1− 2−np)

≈ 2n if p > 0.1

For 2nd MoM to predict existence of solutions, we need

E[X]

E[X |β is a solution]
≈ 1

18 / 42

A Stylized Example

Assume that the number of solutions X can only take one of two
values

X =

{
2n with probability 1− 2−np

21.1n with probability 2−np

Note:

There are always at least 2n solutions ⇒ P(X > 0) = 1

The expected number of solutions is

EX = 21.1n2−np + 2n(1− 2−np)

≈ 2n if p > 0.1

For 2nd MoM to predict existence of solutions, we need

E[X]

E[X |β is a solution]
≈ 1

18 / 42

Example ctd.

E[X | β is a solution]

= P(X = 21.1n|β is a soln.) 21.1n + P(X = 2n|β is a soln.) 2n

≈ 21.1n 2−np

2n + 21.1n 2−np︸ ︷︷ ︸
≈ 2−n(p−.1)

21.1n +
2n

2n + 21.1n 2−np︸ ︷︷ ︸
≈ 1−2−n(p−.1)

2n

When 0.1 < p < 0.2, the 2nd MoM fails because:

Conditioned on β being a soln., probability of X = 21.1n ↑
E[X | β is a solution]� EX although
X | β is a solution ≈ EX w.h.p

19 / 42

Example ctd.

E[X | β is a solution]

= P(X = 21.1n|β is a soln.) 21.1n + P(X = 2n|β is a soln.) 2n

≈ 21.1n 2−np

2n + 21.1n 2−np︸ ︷︷ ︸
≈ 2−n(p−.1)

21.1n +
2n

2n + 21.1n 2−np︸ ︷︷ ︸
≈ 1−2−n(p−.1)

2n

When 0.1 < p < 0.2, the 2nd MoM fails because:

Conditioned on β being a soln., probability of X = 21.1n ↑
E[X | β is a solution]� EX although
X | β is a solution ≈ EX w.h.p

19 / 42

Example ctd.

E[X | β is a solution]

= P(X = 21.1n|β is a soln.) 21.1n + P(X = 2n|β is a soln.) 2n

≈ 21.1n 2−np

2n + 21.1n 2−np︸ ︷︷ ︸
≈ 2−n(p−.1)

21.1n +
2n

2n + 21.1n 2−np︸ ︷︷ ︸
≈ 1−2−n(p−.1)

2n

E[X | β is a solution] ≈ 21.2n 2−np + 2n

≈
{

2n if p > 0.2
21.2n−p if 0.1 < p < 0.2

When 0.1 < p < 0.2, the 2nd MoM fails because:

Conditioned on β being a soln., probability of X = 21.1n ↑
E[X | β is a solution]� EX although
X | β is a solution ≈ EX w.h.p

19 / 42

Example ctd.

E[X | β is a solution]

= P(X = 21.1n|β is a soln.) 21.1n + P(X = 2n|β is a soln.) 2n

≈ 21.1n 2−np

2n + 21.1n 2−np︸ ︷︷ ︸
≈ 2−n(p−.1)

21.1n +
2n

2n + 21.1n 2−np︸ ︷︷ ︸
≈ 1−2−n(p−.1)

2n

E[X | β is a solution] ≈ 21.2n 2−np + 2n

≈
{

2n if p > 0.2
21.2n−p if 0.1 < p < 0.2

When 0.1 < p < 0.2, the 2nd MoM fails because:

Conditioned on β being a soln., probability of X = 21.1n ↑
E[X | β is a solution]� EX although
X | β is a solution ≈ EX w.h.p

19 / 42

Back to SPARCs
For a low-probability set of design matrices:

Columns of β are unusually well-aligned with S

⇒ lots of neighbours of a solution are also solutions.

Due to these atypical matrices,

E[X |β is a solution]� E[X]

Lemma

Given that β is a solution, the number of neighbours of β that are
also solutions is less than L−1/2 E[X] with prob. at least 1− L−2,
when b > b∗

The lemma implies

X |β is a solution ∼ E[X] with prob. at least 1− L−2

20 / 42

Back to SPARCs
For a low-probability set of design matrices:

Columns of β are unusually well-aligned with S

⇒ lots of neighbours of a solution are also solutions.

Due to these atypical matrices,

E[X |β is a solution]� E[X]

Lemma

Given that β is a solution, the number of neighbours of β that are
also solutions is less than L−1/2 E[X] with prob. at least 1− L−2,
when b > b∗

The lemma implies

X |β is a solution ∼ E[X] with prob. at least 1− L−2

20 / 42

Fixing the 2nd MoM

Call a solution β good if fewer than L−1/2 E[X] of its neighbours
are also solutions

Lemma says w.h.p any solution β is good.

Xgood = V1 + V2 + . . .+ VenR

where

Vi =

{
1 if β(i) is a good solution ,
0 otherwise.

Apply 2nd MoM to show that Xg > 0 w.h.p.

This works because E[Xgood |β is a solution] ≈ EXgood ≈ EX

21 / 42

Fixing the 2nd MoM

Call a solution β good if fewer than L−1/2 E[X] of its neighbours
are also solutions

Lemma says w.h.p any solution β is good.

Xgood = V1 + V2 + . . .+ VenR

where

Vi =

{
1 if β(i) is a good solution ,
0 otherwise.

Apply 2nd MoM to show that Xg > 0 w.h.p.

This works because E[Xgood |β is a solution] ≈ EXgood ≈ EX

21 / 42

Summary

To show X > 0, 2nd MoM method requires E[X |β] ≈ EX
This may not hold although X |β ≈ E[X] w.h.p

Two-step fix

1 Show that most solutions are good, i.e., not many neighbours
are solutions

2 Apply 2nd MoM to count the good solutions

Similar situation in random hypergraph 2-colouring
[Coja-Oghlan, Zdeberova SODA ’12]

Step 1 is key, and is problem-specific; Step 2 generic

This two-step recipe potentially useful in many problems

22 / 42

Summary

To show X > 0, 2nd MoM method requires E[X |β] ≈ EX
This may not hold although X |β ≈ E[X] w.h.p

Two-step fix

1 Show that most solutions are good, i.e., not many neighbours
are solutions

2 Apply 2nd MoM to count the good solutions

Similar situation in random hypergraph 2-colouring
[Coja-Oghlan, Zdeberova SODA ’12]

Step 1 is key, and is problem-specific; Step 2 generic

This two-step recipe potentially useful in many problems

22 / 42

Summary

To show X > 0, 2nd MoM method requires E[X |β] ≈ EX
This may not hold although X |β ≈ E[X] w.h.p

Two-step fix

1 Show that most solutions are good, i.e., not many neighbours
are solutions

2 Apply 2nd MoM to count the good solutions

Similar situation in random hypergraph 2-colouring
[Coja-Oghlan, Zdeberova SODA ’12]

Step 1 is key, and is problem-specific; Step 2 generic

This two-step recipe potentially useful in many problems

22 / 42

So far . . .

A:

β: 0, c, 0, c, 0, , 00,

Lb columns Lb columnsLb columns

Section 1 Section 2 Section L

T

n rows

0, c,

Pn = P
(

1
n‖S− Aβ̂‖2 > D

)
For any ergodic source with variance σ2 and distortion D < σ2,
Pn → 0 for all rates R > 1

2 log σ2

D , when b > bmin

We would also like to know the error exponent:
T = − lim supn

1
n logPn ⇒ Pn

<∼ e−nT

The 2nd MoM only gives a polynomial decay of Pn in n

23 / 42

So far . . .

A:

β: 0, c, 0, c, 0, , 00,

Lb columns Lb columnsLb columns

Section 1 Section 2 Section L

T

n rows

0, c,

Pn = P
(

1
n‖S− Aβ̂‖2 > D

)
For any ergodic source with variance σ2 and distortion D < σ2,
Pn → 0 for all rates R > 1

2 log σ2

D , when b > bmin

We would also like to know the error exponent:
T = − lim supn

1
n logPn ⇒ Pn

<∼ e−nT

The 2nd MoM only gives a polynomial decay of Pn in n
23 / 42

Refined Error Analysis for SPARC

S ∼ i.i.d. N (0, σ2)

|S|
2 =

σ
2

The first term ≤ exp(−nD(a2 ‖ σ2))

D(a2 ‖ σ2): KL divergence between N (0, a2) and N (0, σ2)

24 / 42

Refined Error Analysis for SPARC

S ∼ i.i.d. N (0, σ2)

|S|
2 =

σ
2

|S|2 = a2
R = 1

2 log a2

D

Pn < P(|S|2 ≥ a2) + P(error | |S|2 < a2)

The first term ≤ exp(−nD(a2 ‖ σ2))

D(a2 ‖ σ2): KL divergence between N (0, a2) and N (0, σ2)

24 / 42

Refined Error Analysis for SPARC

S ∼ i.i.d. N (0, σ2)

|S|
2 =

σ
2

|S|2 = a2
R = 1

2 log a2

D

Pn < P(|S|2 ≥ a2) + P(error | |S|2 < a2)

The first term ≤ exp(−nD(a2 ‖ σ2))

D(a2 ‖ σ2): KL divergence between N (0, a2) and N (0, σ2)
24 / 42

Error Analysis

Pn < P(|S|2 ≥ a2)︸ ︷︷ ︸
KL divergence

+ P(error | |S|2 < a2)︸ ︷︷ ︸
?

.

P(error | |S|2 < a2) = P
(
X = 0 | |S|2 < a2

)

where X =
∑enR

i=1 Ui and

Ui =

{
1 if β(i) is a solution ,
0 otherwise.

We get a sharp bound on P
(
X = 0 | |S|2 < a2

)
using

Suen’s inequality

25 / 42

Error Analysis

Pn < P(|S|2 ≥ a2)︸ ︷︷ ︸
KL divergence

+ P(error | |S|2 < a2)︸ ︷︷ ︸
?

.

P(error | |S|2 < a2) = P
(
X = 0 | |S|2 < a2

)

where X =
∑enR

i=1 Ui and

Ui =

{
1 if β(i) is a solution ,
0 otherwise.

We get a sharp bound on P
(
X = 0 | |S|2 < a2

)
using

Suen’s inequality

25 / 42

Error Analysis

Pn < P(|S|2 ≥ a2)︸ ︷︷ ︸
KL divergence

+ P(error | |S|2 < a2)︸ ︷︷ ︸
?

.

P(error | |S|2 < a2) = P
(
X = 0 | |S|2 < a2

)

where X =
∑enR

i=1 Ui and

Ui =

{
1 if β(i) is a solution ,
0 otherwise.

We get a sharp bound on P
(
X = 0 | |S|2 < a2

)
using

Suen’s inequality

25 / 42

Dependency Graph

A

B

For random variables {Ui}i∈I , any graph with vertex set I s.t:

If A and B are two disjoint subsets of I such that there
are no edges with one vertex in A and the other in B,
then the families {Ui}i∈A and {Ui}i∈B are independent.

26 / 42

For our problem . . .

Ui =

{
1 if β(i) is a solution ,
0 otherwise.

, i = 1, . . . , enR

For the family {Ui},

{i ∼ j : i 6= j and β(i), β(j) share at least one common term}

is a dependency graph.

27 / 42

Suen’s correlation inequality
Let {Ui}i∈I , be Bernoulli rvs with dependency graph Γ. Then

P

(∑
i∈I

Ui = 0

)
≤ exp

(
−min

{
λ

2
,
λ2

8∆
,
λ

6δ

})
where

λ =
∑
i∈I

EUi ,

∆ =
1

2

∑
i∈I

∑
j∼i

E(UiUj),

δ = max
i∈I

∑
k∼i

EUk .

28 / 42

Bounding the error

Pn ≤ P(|S|2 ≥ a2) + P

(
enR∑
i=1

Ui = 0 | |S|2 < a2

)

≤ exp
(
−nD(a2 ‖ σ2)

)
+ exp

(
−min

{
λ

2
,
λ

6δ
,
λ2

8∆

})

29 / 42

Bounding the error

Pn ≤ P(|S|2 ≥ a2) + P

(
enR∑
i=1

Ui = 0 | |S|2 < a2

)

≤ exp
(
−nD(a2 ‖ σ2)

)
+ exp

(
−min

{
λ

2
,
λ

6δ
,
λ2

8∆

})
where for sufficiently large n

λ > e
n
(
R− 1

2
log a2

D
−εn

)
,

λ

δ
> Lb−1,

λ2

∆
> L(b−bmin)(1−(1−D/a2)/R)

For large n, the first KL divergence term dominates Pn

λ, λδ ,
λ2

∆ all grow polynomially in n for b > b∗

⇒ second term decays super-exponentially

Need to use refinement technique when R < (1− D/a2)

29 / 42

Error Exponent of SPARC with Min-Distance Encoding

Pn = P
(

1
n‖S− Aβ̂‖2 > D

)
Theorem (RV,Joseph,Tatikonda ’12, ’14)

1 For R > 1
2 log σ2

D , the probability of error Pn decays
exponentially in n for b > b∗

2 The error-exponent D(a2 ‖ σ2), with a2 = De2R , is optimal
for Gaussian sources with squared-error distortion.

This result shows that SPARCs are structurally good codes

But minimum-distance encoding is infeasible — what about
practical algorithms?

30 / 42

Error Exponent of SPARC with Min-Distance Encoding

Pn = P
(

1
n‖S− Aβ̂‖2 > D

)
Theorem (RV,Joseph,Tatikonda ’12, ’14)

1 For R > 1
2 log σ2

D , the probability of error Pn decays
exponentially in n for b > b∗

2 The error-exponent D(a2 ‖ σ2), with a2 = De2R , is optimal
for Gaussian sources with squared-error distortion.

This result shows that SPARCs are structurally good codes

But minimum-distance encoding is infeasible — what about
practical algorithms?

30 / 42

SPARC Construction

A:

β: 0, c2, 0, cL, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0, c1,

Main Idea: Vary the coefficients across sections

As before:

For rate R codebook, need ML = enR

Choose M polynomial of n ⇒ L ∼ n/log n

31 / 42

SPARC Construction

A:

β: 0, c2, 0, cL, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0, c1,

Main Idea: Vary the coefficients across sections

As before:

For rate R codebook, need ML = enR

Choose M polynomial of n ⇒ L ∼ n/log n

31 / 42

SPARC Construction

A:

β: 0, c2, 0, cL, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0, c1,

Main Idea: Vary the coefficients across sections

As before:

For rate R codebook, need ML = enR

Choose M polynomial of n ⇒ L ∼ n/log n

31 / 42

An Encoding Algorithm

A:

β: 0,

M columns

Section 1

T

n rows

0, c1,

Step 1: Choose column in Sec.1 that minimizes ‖S− c1Aj‖2

- c1 =
√

2Rσ2/L

- Max among inner products 〈S,Aj〉
- Residue R1 = S− c1Â1

32 / 42

An Encoding Algorithm

A:

β: 0,

M columns

Section 1

T

n rows

0, c1,

Step 1: Choose column in Sec.1 that minimizes ‖S− c1Aj‖2

- c1 =
√

2Rσ2/L

- Max among inner products 〈S,Aj〉
- Residue R1 = S− c1Â1

32 / 42

An Encoding Algorithm

A:

β: 0, c2, 0,

M columns

Section 2

T

n rows

Step 2: Choose column in Sec.2 that minimizes ‖R1 − c2Aj‖2

- c2 =
√

2Rσ2

L

(
1− 2R

L

)
- Max among inner products 〈R1,Aj〉
- Residue R2 = R1 − c2Â2

32 / 42

An Encoding Algorithm

A:

β: cL, 0, , 0

M columns

Section L

T

n rows

Step L: Choose column in Sec.L that minimizes ‖RL−1 − cLAj‖2

- cL =

√
2Rσ2

L

(
1− 2R

L

)L
- Max among inner products 〈RL−1,Aj〉
- Residue RL = RL−1 − cLÂL

Final Distortion = 1
n‖RL‖2

32 / 42

Performance

Theorem (RV, Sarkar,Tatikonda ’13)

For an ergodic source S with mean 0 and variance σ2, the
encoding algorithm produces a codeword Aβ̂ that satisfies the
following for sufficiently large M, L.

P
(
|S− Aβ̂|2 > σ2e−2R + ∆

)
< exp

(
− κn (∆− c log log M

log M)
)

Deviation ∆ is O(log log n
log n)

33 / 42

Performance

Theorem (RV, Sarkar,Tatikonda ’13)

For an ergodic source S with mean 0 and variance σ2, the
encoding algorithm produces a codeword Aβ̂ that satisfies the
following for sufficiently large M, L.

P
(
|S− Aβ̂|2 > σ2e−2R + ∆

)
< exp

(
− κn (∆− c log log M

log M)
)

Deviation ∆ is O(log log n
log n)

Encoding Complexity

ML inner products and comparisons ⇒ polynomial in n

33 / 42

Simulation

Gaussian source: Mean 0, Variance 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (bits/sample)

D
is

to
rt

io
n

Shannon limit

Parameters: M=L
3
, L∈[30,100]

SPARC

34 / 42

Why does the algorithm work?

A:

β: 0,

M columns

Section 1

T

n rows

0, c1,

Each section is a code of rate R/L (L ∼ n
log n)

Step 1: S −→ R1 = S− c1Â1

|R1|2 ≈ σ2e−2R/L ≈ σ2

(
1− 2R

L

)
for c1 =

√
2Rσ2/L

35 / 42

Why does the algorithm work?

A:

β: 0, c2, 0,

M columns

Section 2

T

n rows

Each section is a code of rate R/L (L ∼ n
log n)

Step 1: S −→ R1 = S− c1Â1

|R1|2 ≈ σ2e−2R/L ≈ σ2

(
1− 2R

L

)
for c1 =

√
2Rσ2/L

Step 2: ‘Source’ R1 −→ R2 = R1 − c2Â2 35 / 42

Why does the algorithm work?

A:

β: 0, ci, 0

M columns

Section i

T

n rows

Each section is a code of rate R/L (L ∼ n
log n)

Step i : ‘Source’ Ri−1 −→ Ri = Ri−1 − ci Â2

With c2
i = 2Rσ2

L

(
1− 2R

L

)i−1
,

|Ri |2 ≈ |Ri−1|2
(

1− 2R

L

)
≈ σ2

(
1− 2R

L

)i

35 / 42

Why does the algorithm work?

A:

β: cL, 0, , 0

M columns

Section L

T

n rows

Each section is a code of rate R/L (L ∼ n
log n)

Final Distortion: |RL|2 ≈ σ2

(
1− 2R

L

)L

≤ σ2e−2R

L-stage successive refinement L ∼ n/ log n
35 / 42

Successive Refinement Interpretation

A:

β: 0, ci, 0

M columns

Section i

T

n rows

The encoder successively refines the source over ∼ n
log n stages

The deviations in each stage can be significant!

|Ri |2 = σ2

(
1− 2R

L

)i

︸ ︷︷ ︸
‘Typical Value’

(1 + ∆i)
2, i = 0, . . . , L

KEY to result: Controlling the final deviation ∆L

36 / 42

Proof involves controlling deviations due to:

Source: |S|2 = σ2(1 + ∆0)2

Dictionary columns: |Aj |2 = 1 + γj , 1 ≤ j ≤ ML

Computed value:

max
j

〈
Ri−1

‖Ri−1‖
,Aj

〉
=
√

2 logM (1 + εi), 1 ≤ i ≤ L

37 / 42

Proof involves controlling deviations due to:

Source: |S|2 = σ2(1 + ∆0)2

Dictionary columns: |Aj |2 = 1 + γj , 1 ≤ j ≤ ML

Computed value:

max
j

〈
Ri−1

‖Ri−1‖
,Aj

〉
=
√

2 logM (1 + εi), 1 ≤ i ≤ L

37 / 42

Proof involves controlling deviations due to:

Source: |S|2 = σ2(1 + ∆0)2

Dictionary columns: |Aj |2 = 1 + γj , 1 ≤ j ≤ ML

Computed value:

max
j

〈
Ri−1

‖Ri−1‖
,Aj

〉
=
√

2 logM (1 + εi), 1 ≤ i ≤ L

37 / 42

Proof involves controlling deviations due to:

Source: |S|2 = σ2(1 + ∆0)2

Dictionary columns: |Aj |2 = 1 + γj , 1 ≤ j ≤ ML

Computed value:

max
j

〈
Ri−1

‖Ri−1‖
,Aj

〉
=
√

2 logM (1 + εi), 1 ≤ i ≤ L

37 / 42

SPARCs for Communicating over Gaussian Channels

Noise

+
X Z

M̂M

Z = X + Noise
‖X‖2

n
≤ P, Noise ∼ N (0,N)

GOAL: Achieve rates close to capacity C = 1
2 log

(
1 + P

N

)

38 / 42

Efficient Decoder

A:

β: 0, c2, 0, cL, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

T

n rows

0, c1,

Z = Aβ + Noise

Each β corresponds to a message ⇒ ML messages

Efficient decoders proposed by [Barron-Joseph ’12],
[Barron-Cho ’13]:

Achieve rates R < C − O
(

log log M
log M

)
with Pe < e−cL(C−R)2

39 / 42

Multi-terminal networks
Examples:

Multiple-access

Noise

+

X1

X3

Z
M̂1

M1

M3

X2M2 M̂2

M̂3

Broadcast

Noise

+

X

Z1

Z3

M̂1

M̂3+

Noise

Noise

+
Z2 M̂2

Key ingredients

Superposition (Multiple-access, Broadcast)

Random binning (e.g., distributed compression,
source/channel coding with side-information)

40 / 42

Binning with SPARCs

A:

β:
T

0, c1, cL, 0, , 00,

M columns

Section L

M columns

Section 1

M columns

, c2, 0,

M ′

[RV-Tatikonda, Allerton ’12]

Any random coding scheme that consists of point-to-point source
and channel codes combined via binning/superposition can be
implemented with SPARCs.

41 / 42

Summary

Sparse Regression Codes

Rate-optimal for Gaussian compression and communication

Low-complexity coding algorithms that provably attain
Shannon limits

Future Directions

Better channel decoders and source encoders:

Approximate message passing, `1 minimization etc.?

Simplified design matrices

Can we prove that the results hold for ±1 design matrices

Network information theory: Multiple descriptions,
Interference channels . . .

Finite-field analogues: binary SPARCs?

Papers at http://www2.eng.cam.ac.uk/∼rv285/pub.html
42 / 42

