Compression via Sparse Linear Regression

Ramji Venkataramanan
University of Cambridge

(Acknowledgements: S. Tatikonda, T. Sarkar, A. Joseph, A. Barron)

May 9, 2014

Information Theory deals with

- Communication
- Compression (Lossless and Lossy)
- Multi-terminal communication and compression: Multiple-access channels, Broadcast channels, Distributed compression, ...
- Sharp characterization of achievable rates for many of these problems

Information Theory deals with

- Communication
- Compression (Lossless and Lossy)
- Multi-terminal communication and compression: Multiple-access channels, Broadcast channels, Distributed compression, ...
- Sharp characterization of achievable rates for many of these problems

Textbook code constructions are based on:

- Random coding for point-to-point communication and compression
- Superposition and binning for multi-terminal problems
- High complexity of storage and coding: exponential in " n "

GOAL:

- Codes with compact representation + fast encoding/decoding 'Fast' \Rightarrow polynomial in n
- In the last 20 years, many advances: LDPC/LDGM codes, Polar codes for finite-alphabet sources \& channels
- We will focus on Gaussian sources and channels here

In this talk...

- Ensemble of codes based on sparse linear regression
- Provably achieve rates close to info-theoretic limits with fast encoding + decoding
- Based on construction of Barron \& Joseph for AWGN channel
- Achieve capacity with fast decoding [IT Trans. '12, '14]

In this talk...

- Ensemble of codes based on sparse linear regression
- Provably achieve rates close to info-theoretic limits with fast encoding + decoding
- Based on construction of Barron \& Joseph for AWGN channel - Achieve capacity with fast decoding [IT Trans. '12, '14]

Outline

- We'll focus on the compression problem:
- Fundamental limits of the code (with optimal encoding)
- Computationally efficient compression algorithm \& analysis
- Extension to multi-terminal communication and compression

Lossy Compression

- Distortion criterion: $\frac{1}{n}\|\mathbf{S}-\hat{\mathbf{S}}\|^{2}=\frac{1}{n} \sum_{k}\left(S_{k}-\hat{S}_{k}\right)^{2}$
- To achieve $\frac{1}{n}\|\mathbf{S}-\hat{\mathbf{S}}\|^{2} \leq D$, need

$$
R>R^{*}(D)=\min _{P_{\hat{S} \mid S}} I(S ; \hat{S})
$$

- For i.i.d $\mathcal{N}\left(0, \sigma^{2}\right)$ source, $R^{*}(D)=\frac{1}{2} \log \frac{\sigma^{2}}{D}, \quad D<\sigma^{2}$
\Rightarrow Minimum possible distortion $D^{*}(R)=\sigma^{2} e^{-2 R}$

Lossy Compression

- Distortion criterion: $\frac{1}{n}\|\mathbf{S}-\hat{\mathbf{S}}\|^{2}=\frac{1}{n} \sum_{k}\left(S_{k}-\hat{S}_{k}\right)^{2}$
- To achieve $\frac{1}{n}\|\mathbf{S}-\hat{\mathbf{S}}\|^{2} \leq D$, need

$$
R>R^{*}(\bar{D})=\min _{P_{\hat{S} \mid S}} I(S ; \hat{S})
$$

- For i.i.d $\mathcal{N}\left(0, \sigma^{2}\right)$ source, $R^{*}(D)=\frac{1}{2} \log \frac{\sigma^{2}}{D}, \quad D<\sigma^{2}$
\Rightarrow Minimum possible distortion $D^{*}(R)=\sigma^{2} e^{-2 R}$
Can we achieve this with low-complexity algorithms?

Sparse Regression Codes (SPARC)

- A: design matrix or 'dictionary' with ind. $\mathcal{N}(0,1)$ entries
- Codewords $\mathbf{A} \beta$ - sparse linear combinations of columns of \mathbf{A}

SPARC Construction

n rows, $M L$ columns

SPARC Construction

n rows, ML columns

Choosing M and L :

- For rate R codebook, need $M^{L}=e^{n R}$
- Choose $M=L^{b}$ for $b>1 \Rightarrow b L \log L=n R$

SPARC Construction

n rows, $M L$ columns

Choosing M and L :

- For rate R codebook, need $M^{L}=e^{n R}$
- Choose $M=L^{b}$ for $b>1 \Rightarrow b L \log L=n R$
- $L \sim n / \log n$ and $M \sim$ polynomial in n
- Storage Complexity \leftrightarrow Size of A: polynomial in n

Minimum Distance Encoding

Given source sequence \mathbf{S} with variance σ^{2} :

- Encoder: Find $\hat{\beta}=\operatorname{argmin}\|\mathbf{S}-\mathbf{A} \beta\|^{2}$

$$
\beta
$$

- Decoder: Reconstruct $\hat{\mathbf{S}}=\mathbf{A} \hat{\beta}$

Minimum Distance Encoding

Given source sequence \mathbf{S} with variance σ^{2} :

- Encoder: Find $\hat{\beta}=\operatorname{argmin}\|\mathbf{S}-\mathbf{A} \beta\|^{2}$
- Decoder: Reconstruct $\hat{\mathbf{S}}=\mathbf{A} \hat{\beta}$

$$
P_{n}=P\left(\frac{1}{n}\|\mathbf{S}-\mathbf{A} \hat{\beta}\|^{2}>D\right)
$$

(1) Want to show that $P_{n} \rightarrow 0$ if $R>\frac{1}{2} \log \frac{\sigma^{2}}{D}$
(2) Also want asymptotic rate of decay (error exponent)

SPARC Rate-Distortion Function

Theorem (RV-Joseph-Tatikonda '12, RV-Tatikonda '14)
For a source with variance σ^{2}, SPARCs with minimum-distance encoding achieve distortion D for all rates

$$
R>\frac{1}{2} \log \frac{\sigma^{2}}{D}
$$

when $b>b_{\text {min }}$ where

$$
b_{\text {min }}=\left\{\begin{array}{cl}
\frac{2.5 R}{R-1+D / \sigma^{2}} & \text { if } R>\left(1-\frac{D}{\sigma^{2}}\right) \\
\frac{40 R}{\left(\frac{2 R}{\left(1-D / \sigma^{2}\right)}-1\right)^{2}\left(\left(1-\frac{D}{\sigma^{2}}\right)\left(2+\frac{D}{\sigma^{2}}\right)-2 R\right)} & \text { if } R \leq\left(1-\frac{D}{\sigma^{2}}\right)
\end{array}\right.
$$

SPARC Rate-Distortion Function

Theorem (RV-Joseph-Tatikonda '12, RV-Tatikonda '14)
For a source with variance σ^{2}, SPARCs with minimum-distance encoding achieve distortion D for all rates

$$
R>\frac{1}{2} \log \frac{\sigma^{2}}{D}
$$

when $b>b_{\text {min }}$ where

$$
b_{\text {min }}=\left\{\begin{array}{cl}
\frac{2.5 R}{R-1+D / \sigma^{2}} & \text { if } R>\left(1-\frac{D}{\sigma^{2}}\right) \\
\frac{40 R}{\left(\frac{2 R}{\left(1-D / \sigma^{2}\right)}-1\right)^{2}\left(\left(1-\frac{D}{\sigma^{2}}\right)\left(2+\frac{D}{\sigma^{2}}\right)-2 R\right)} & \text { if } R \leq\left(1-\frac{D}{\sigma^{2}}\right)
\end{array}\right.
$$

Note:

$$
\frac{D}{\sigma^{2}} \in(0.203,1) \quad \Leftrightarrow \quad\left(1-\frac{D}{\sigma^{2}}\right)>\frac{1}{2} \log \frac{\sigma^{2}}{D}
$$

Setting up the analysis

Call β a solution if $|\mathbf{S}-\mathbf{A} \beta|^{2} \leq D$

For $i=1, \ldots, e^{n R}$, define

$$
U_{i}= \begin{cases}1 & \text { if } \beta(i) \text { is a solution } \\ 0 & \text { otherwise }\end{cases}
$$

The number of solutions X is

$$
X=U_{1}+\ldots+U_{e^{n R}}
$$

Want to show $P(X>0) \rightarrow 1$ as $n \rightarrow \infty$

Setting up the analysis

Call β a solution if $|\mathbf{S}-\mathbf{A} \beta|^{2} \leq D$

For $i=1, \ldots, e^{n R}$, define

$$
U_{i}= \begin{cases}1 & \text { if } \beta(i) \text { is a solution } \\ 0 & \text { otherwise }\end{cases}
$$

The number of solutions X is

$$
X=U_{1}+\ldots+U_{e^{n R}}
$$

Want to show $P(X>0) \rightarrow 1$ as $n \rightarrow \infty$

Notice that the U_{i} 's are dependent!

Dependent Codewords

- Each codeword sum of L columns
- Codewords $\beta(i), \beta(j)$ dependent if they have common columns

Dependent Codewords

- Each codeword sum of L columns
- Codewords $\beta(i), \beta(j)$ dependent if they have common columns

The number of codewords sharing r common terms with any $\beta(i)$ is

$$
\binom{L}{r}(M-1)^{L-r}, \quad r=0,1, \ldots, L
$$

\# codewords dependent with $\beta(i)=M^{L}-1-(M-1)^{L}$

The Second Moment Method (2nd MoM)

$$
X=U_{1}+\ldots+U_{e^{n R}}
$$

To show $P(X>0)$ w.h.p., we use the 2 nd MoM :

$$
P(X>0) \geq \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left[X^{2}\right]}
$$

Proof: $(\mathbb{E}[X Y])^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]$ with $Y=\mathbf{1}_{\{X>0\}}$.

The Second Moment Method (2nd MoM)

$$
X=U_{1}+\ldots+U_{e^{n R}}
$$

To show $P(X>0)$ w.h.p., we use the 2 nd MoM :

$$
P(X>0) \geq \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left[X^{2}\right]}
$$

Proof: $(\mathbb{E}[X Y])^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]$ with $Y=\mathbf{1}_{\{X>0\}}$.

The expected number of solutions is

$$
\mathbb{E} X=e^{n R} P\left(U_{1}=1\right) \doteq e^{n\left(R-\frac{1}{2} \log \frac{\sigma^{2}}{D}\right)}
$$

$\mathbb{E} X \rightarrow \infty$ if $R>\frac{1}{2} \log \frac{\sigma^{2}}{D}$, but is $X>0$ w.h.p. ?

The Second Moment

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\mathbb{E}\left[\left(U_{1}+\ldots+U_{e^{n R}}\right)^{2}\right] \\
& =e^{n R} \sum_{r=0}^{L}\binom{L}{r}(M-1)^{L-r} \mathbb{E}\left[U_{1} U_{2} \mid \beta_{1}, \beta_{2} \text { share } r \text { terms }\right]
\end{aligned}
$$

The Second Moment

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\mathbb{E}\left[\left(U_{1}+\ldots+U_{e^{n R}}\right)^{2}\right] \\
& =e^{n R} \sum_{r=0}^{L}\binom{L}{r}(M-1)^{L-r} \mathbb{E}\left[U_{1} U_{2} \mid \beta_{1}, \beta_{2} \text { share } r \text { terms }\right]
\end{aligned}
$$

The key ratio is

$$
\frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left[X^{2}\right]} \doteq\left(\frac{D}{\sigma^{2}}\right)^{n}[\sum_{r=0}^{L}\binom{L}{r}(M-1)^{-r} \underbrace{\mathbb{E}\left[U_{1} U_{2} \mid \beta_{1}, \beta_{2} \text { share } r \text { terms }\right]}_{\text {can compute Chernoff bound }}]^{-1}
$$

The Second Moment

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\mathbb{E}\left[\left(U_{1}+\ldots+U_{e^{n R}}\right)^{2}\right] \\
& =e^{n R} \sum_{r=0}^{L}\binom{L}{r}(M-1)^{L-r} \mathbb{E}\left[U_{1} U_{2} \mid \beta_{1}, \beta_{2} \text { share } r \text { terms }\right]
\end{aligned}
$$

The key ratio is

$$
\frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left[X^{2}\right]} \doteq\left(\frac{D}{\sigma^{2}}\right)^{n}[\sum_{r=0}^{L}\binom{L}{r}(M-1)^{-r} \underbrace{\mathbb{E}\left[U_{1} U_{2} \mid \beta_{1}, \beta_{2} \text { share } r \text { terms }\right]}_{\text {can compute Chernoff bound }}]^{-1}
$$

$$
P(X=0)<L^{-\frac{1}{R}\left(b-b_{\min }\right)\left(R-\left(1-\frac{D}{\sigma^{2}}\right)\right)}
$$

We've shown that rates $R>\max \left\{\left(1-\frac{D}{\sigma^{2}}\right), \frac{1}{2} \log \frac{\sigma^{2}}{D}\right\}$ are achievable

What we have shown ...
Plot of $\max \left\{\left(1-\frac{D}{\sigma^{2}}, \frac{1}{2} \log \frac{\sigma^{2}}{D}\right\}\right.$

Key Question: For

$$
(0.203)<\frac{D}{\sigma^{2}}<1
$$

- Is the SPARC inherently a suboptimal code?
- Or, is it a shortcoming of the proof technique?

Why does the 2nd MoM fail?

$$
\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[\left(U_{1}+\ldots+U_{2^{n R}}\right)^{2}\right]=\mathbb{E}[X] \mathbb{E}\left[X \mid U_{1}=1\right]
$$

Hence

$$
P(X>0) \geq \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left[X^{2}\right]}=\frac{\mathbb{E}[X]}{\mathbb{E}\left[X \mid U_{1}=1\right]}
$$

Why does the 2nd MoM fail?

$$
\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[\left(U_{1}+\ldots+U_{2^{n R}}\right)^{2}\right]=\mathbb{E}[X] \mathbb{E}\left[X \mid U_{1}=1\right]
$$

Hence

$$
P(X>0) \geq \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left[X^{2}\right]}=\frac{\mathbb{E}[X]}{\mathbb{E}\left[X \mid U_{1}=1\right]}
$$

We want $\mathbb{E}[X \mid \beta(1)$ is a solution $] \sim \mathbb{E}[X]$

Why does the 2nd MoM fail ?

$$
\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[\left(U_{1}+\ldots+U_{2^{n R}}\right)^{2}\right]=\mathbb{E}[X] \mathbb{E}\left[X \mid U_{1}=1\right]
$$

Hence

$$
P(X>0) \geq \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left[X^{2}\right]}=\frac{\mathbb{E}[X]}{\mathbb{E}\left[X \mid U_{1}=1\right]}
$$

We want $\mathbb{E}[X \mid \beta(1)$ is a solution $] \sim \mathbb{E}[X]$
But when $\frac{1}{2} \log \frac{\sigma^{2}}{D}<R<\left(1-\frac{D}{\sigma^{2}}\right)$

$$
\frac{\mathbb{E}[X \mid \beta(1) \text { is a solution }]}{\mathbb{E}[X]} \rightarrow \infty
$$

- The expected number of solutions given that we have one solution blows up!
- Similar phenomenon in random hypergraph 2-colouring [Coja-Oghlan, Zdeborova '12]

Q: Why is $\mathbb{E}[X \mid \beta(1)$ is a solution $] \gg \mathbb{E}[X]$?

- There are many codewords $\beta(i)$ that are dependent with $\beta(1)$
- If $\beta(1), \beta(i)$ are dependent: given that $|\mathbf{S}-\mathbf{A} \beta(1)|^{2} \leq D$, the probability of $|\mathbf{S}-\mathbf{A} \beta(i)|^{2} \leq D$ increases

Q: Why is $\mathbb{E}[X \mid \beta(1)$ is a solution $] \gg \mathbb{E}[X]$?

- There are many codewords $\beta(i)$ that are dependent with $\beta(1)$
- If $\beta(1), \beta(i)$ are dependent: given that $|\mathbf{S}-\mathbf{A} \beta(1)|^{2} \leq D$, the probability of $|\mathbf{S}-\mathbf{A} \beta(i)|^{2} \leq D$ increases

- Even a small increase in the probability may be enough to blow up $\mathbb{E}[X \mid \beta(1)$ is a solution $]$

A Stylized Example

Assume that the number of solutions X can only take one of two values

$$
X= \begin{cases}2^{n} & \text { with probability } 1-2^{-n p} \\ 2^{1.1 n} & \text { with probability } 2^{-n p}\end{cases}
$$

Note:

- There are always at least 2^{n} solutions $\Rightarrow P(X>0)=1$

A Stylized Example

Assume that the number of solutions X can only take one of two values

$$
X= \begin{cases}2^{n} & \text { with probability } 1-2^{-n p} \\ 2^{1.1 n} & \text { with probability } 2^{-n p}\end{cases}
$$

Note:

- There are always at least 2^{n} solutions $\Rightarrow P(X>0)=1$
- The expected number of solutions is

$$
\begin{aligned}
\mathbb{E} X & =2^{1.1 n} 2^{-n p}+2^{n}\left(1-2^{-n p}\right) \\
& \approx 2^{n} \quad \text { if } p>0.1
\end{aligned}
$$

A Stylized Example

Assume that the number of solutions X can only take one of two values

$$
X= \begin{cases}2^{n} & \text { with probability } 1-2^{-n p} \\ 2^{1.1 n} & \text { with probability } 2^{-n p}\end{cases}
$$

Note:

- There are always at least 2^{n} solutions $\Rightarrow P(X>0)=1$
- The expected number of solutions is

$$
\begin{aligned}
\mathbb{E} X & =2^{1.1 n} 2^{-n p}+2^{n}\left(1-2^{-n p}\right) \\
& \approx 2^{n} \quad \text { if } p>0.1
\end{aligned}
$$

- For 2nd MoM to predict existence of solutions, we need

$$
\frac{\mathbb{E}[X]}{\mathbb{E}[X \mid \beta \text { is a solution }]} \approx 1
$$

Example ctd.

$\mathbb{E}[X \mid \beta$ is a solution $]$
$=P\left(X=2^{1.1 n} \mid \beta\right.$ is a soln. $) 2^{1.1 n}+P\left(X=2^{n} \mid \beta\right.$ is a soln. $) 2^{n}$

Example ctd.

$\mathbb{E}[X \mid \beta$ is a solution $]$
$=P\left(X=2^{1.1 n} \mid \beta\right.$ is a soln. $) 2^{1.1 n}+P\left(X=2^{n} \mid \beta\right.$ is a soln. $) 2^{n}$
$\approx \underbrace{\frac{2^{1.1 n} 2^{-n p}}{2^{n}+2^{1.1 n} 2^{-n p}}}_{\approx 2^{-n(p--1)}} 2^{1.1 n}+\underbrace{\frac{2^{n}}{2^{n}+2^{1.1 n} 2^{-n p}}}_{\approx 1-2^{-n(p-1)}} 2^{n}$

Example ctd.

$\mathbb{E}[X \mid \beta$ is a solution $]$
$=P\left(X=2^{1.1 n} \mid \beta\right.$ is a soln. $) 2^{1.1 n}+P\left(X=2^{n} \mid \beta\right.$ is a soln. $) 2^{n}$
$\approx \underbrace{\frac{2^{1.1 n} 2^{-n p}}{2^{n}+2^{1.1 n} 2^{-n p}}}_{\approx 2^{-n(p-.1)}} 2^{1.1 n}+\underbrace{\frac{2^{n}}{2^{n}+2^{1.1 n} 2^{-n p}}}_{\approx 1^{-2-n(p-.1)}} 2^{n}$
$\mathbb{E}[X \mid \beta$ is a solution $] \approx 2^{1.2 n} 2^{-n p}+2^{n}$

$$
\approx \begin{cases}2^{n} & \text { if } p>0.2 \\ 2^{1.2 n-p} & \text { if } 0.1<p<0.2\end{cases}
$$

Example ctd.

$\mathbb{E}[X \mid \beta$ is a solution $]$

$$
\begin{aligned}
& =P\left(X=2^{1.1 n} \mid \beta \text { is a soln. }\right) 2^{1.1 n}+P\left(X=2^{n} \mid \beta \text { is a soln. }\right) 2^{n} \\
& \approx \underbrace{\frac{2^{1.1 n} 2^{-n p}}{2^{n}+2^{1.1 n} 2^{-n p}}}_{\approx 2^{-n(p-.1)}} 2^{1.1 n}+\underbrace{\frac{2^{n}}{2^{n}+2^{1.1 n} 2^{-n p}}}_{\approx 1-2^{-n(p-.1)}} 2^{n}
\end{aligned}
$$

$\mathbb{E}[X \mid \beta$ is a solution $] \approx 2^{1.2 n} 2^{-n p}+2^{n}$

$$
\approx \begin{cases}2^{n} & \text { if } p>0.2 \\ 2^{1.2 n-p} & \text { if } 0.1<p<0.2\end{cases}
$$

When $0.1<p<0.2$, the 2nd MoM fails because:

- Conditioned on β being a soln., probability of $X=2^{1.1 n} \uparrow$
- $\mathbb{E}[X \mid \beta$ is a solution $] \gg \mathbb{E} X$ although $X \mid \beta$ is a solution $\approx \mathbb{E} X$ w.h.p

Back to SPARCs

For a low-probability set of design matrices:

- Columns of β are unusually well-aligned with \mathbf{S}
- \Rightarrow lots of neighbours of a solution are also solutions.
- Due to these atypical matrices,

$$
\mathbb{E}[X \mid \beta \text { is a solution }] \gg \mathbb{E}[X]
$$

Back to SPARCs

For a low-probability set of design matrices:

- Columns of β are unusually well-aligned with \mathbf{S}
- \Rightarrow lots of neighbours of a solution are also solutions.
- Due to these atypical matrices,

$$
\mathbb{E}[X \mid \beta \text { is a solution }] \gg \mathbb{E}[X]
$$

Lemma

Given that β is a solution, the number of neighbours of β that are also solutions is less than $L^{-1 / 2} \mathbb{E}[X]$ with prob. at least $1-L^{-2}$, when $b>b^{*}$

The lemma implies
$X \mid \beta$ is a solution $\sim \mathbb{E}[X]$ with prob. at least $1-L^{-2}$

Fixing the 2nd MoM

Call a solution β good if fewer than $L^{-1 / 2} \mathbb{E}[X]$ of its neighbours are also solutions

- Lemma says w.h.p any solution β is good.

$$
X_{\text {good }}=V_{1}+V_{2}+\ldots+V_{e^{n R}}
$$

where

$$
V_{i}= \begin{cases}1 & \text { if } \beta(i) \text { is a good solution } \\ 0 & \text { otherwise }\end{cases}
$$

Fixing the 2nd MoM

Call a solution β good if fewer than $L^{-1 / 2} \mathbb{E}[X]$ of its neighbours are also solutions

- Lemma says w.h.p any solution β is good.

$$
X_{\text {good }}=V_{1}+V_{2}+\ldots+V_{e^{n R}}
$$

where

$$
V_{i}= \begin{cases}1 & \text { if } \beta(i) \text { is a good solution } \\ 0 & \text { otherwise }\end{cases}
$$

- Apply 2nd MoM to show that $X_{g}>0$ w.h.p.

This works because $\mathbb{E}\left[X_{\text {good }} \mid \beta\right.$ is a solution $] \approx \mathbb{E} X_{\text {good }} \approx \mathbb{E} X$

Summary

- To show $X>0$, 2nd MoM method requires $\mathbb{E}[X \mid \beta] \approx \mathbb{E} X$
- This may not hold although $X \mid \beta \approx \mathbb{E}[X]$ w.h.p

Summary

- To show $X>0$, 2nd MoM method requires $\mathbb{E}[X \mid \beta] \approx \mathbb{E} X$
- This may not hold although $X \mid \beta \approx \mathbb{E}[X]$ w.h.p

Two-step fix

(1) Show that most solutions are good, i.e., not many neighbours are solutions
(2) Apply 2nd MoM to count the good solutions

Summary

- To show $X>0$, 2nd MoM method requires $\mathbb{E}[X \mid \beta] \approx \mathbb{E} X$
- This may not hold although $X \mid \beta \approx \mathbb{E}[X]$ w.h.p

Two-step fix

(1) Show that most solutions are good, i.e., not many neighbours are solutions
(2) Apply 2nd MoM to count the good solutions

- Similar situation in random hypergraph 2-colouring [Coja-Oghlan, Zdeberova SODA '12]
- Step 1 is key, and is problem-specific; Step 2 generic
- This two-step recipe potentially useful in many problems

So far ...

For any ergodic source with variance σ^{2} and distortion $D<\sigma^{2}$, $P_{n} \rightarrow 0$ for all rates $R>\frac{1}{2} \log \frac{\sigma^{2}}{D}$, when $b>b_{\text {min }}$

So far ...

For any ergodic source with variance σ^{2} and distortion $D<\sigma^{2}$, $P_{n} \rightarrow 0$ for all rates $R>\frac{1}{2} \log \frac{\sigma^{2}}{D}$, when $b>b_{\text {min }}$

- We would also like to know the error exponent:
$T=-\lim \sup _{n} \frac{1}{n} \log P_{n} \Rightarrow P_{n} \lesssim e^{-n T}$
- The 2 nd MoM only gives a polynomial decay of P_{n} in n

Refined Error Analysis for SPARC

Refined Error Analysis for SPARC

Refined Error Analysis for SPARC

- The first term $\leq \exp \left(-n \mathcal{D}\left(a^{2} \| \sigma^{2}\right)\right)$
- $\mathcal{D}\left(a^{2} \| \sigma^{2}\right)$: KL divergence between $\mathcal{N}\left(0, a^{2}\right)$ and $\mathcal{N}\left(0, \sigma^{2}\right)$

Error Analysis

$$
\begin{aligned}
& P_{n}<\underbrace{P\left(|\mathbf{S}|^{2} \geq a^{2}\right)}_{\text {KL divergence }}+\underbrace{P\left(\text { error }\left.| | \mathbf{S}\right|^{2}<a^{2}\right)}_{?} \\
& P\left(\text { error }\left||\mathbf{S}|^{2}<a^{2}\right)=P\left(X=\left.0| | \mathbf{S}\right|^{2}<a^{2}\right)\right.
\end{aligned}
$$

where $X=\sum_{i=1}^{e^{n R}} U_{i}$ and

$$
U_{i}= \begin{cases}1 & \text { if } \beta(i) \text { is a solution } \\ 0 & \text { otherwise }\end{cases}
$$

Error Analysis

$$
\begin{aligned}
& P_{n}<\underbrace{P\left(|\mathbf{S}|^{2} \geq a^{2}\right)}_{\text {KL divergence }}+\underbrace{P\left(\text { error }\left.| | \mathbf{S}\right|^{2}<a^{2}\right)}_{?} \\
& P\left(\text { error }\left||\mathbf{S}|^{2}<a^{2}\right)=P\left(X=\left.0| | \mathbf{S}\right|^{2}<a^{2}\right)\right.
\end{aligned}
$$

where $X=\sum_{i=1}^{e^{n R}} U_{i}$ and

$$
U_{i}= \begin{cases}1 & \text { if } \beta(i) \text { is a solution } \\ 0 & \text { otherwise }\end{cases}
$$

Error Analysis

$$
\begin{aligned}
& P_{n}<\underbrace{P\left(|\mathbf{S}|^{2} \geq a^{2}\right)}_{\text {KL divergence }}+\underbrace{P\left(\text { error }\left.| | \mathbf{S}\right|^{2}<a^{2}\right)}_{?} . \\
& P\left(\text { error }\left||\mathbf{S}|^{2}<a^{2}\right)=P\left(X=\left.0| | \mathbf{S}\right|^{2}<a^{2}\right)\right.
\end{aligned}
$$

where $X=\sum_{i=1}^{e^{n R}} U_{i}$ and

$$
U_{i}= \begin{cases}1 & \text { if } \beta(i) \text { is a solution } \\ 0 & \text { otherwise }\end{cases}
$$

We get a sharp bound on $P\left(X=\left.0| | \mathbf{S}\right|^{2}<a^{2}\right)$ using
Suen's inequality

Dependency Graph

For random variables $\left\{U_{i}\right\}_{i \in \mathcal{I}}$, any graph with vertex set \mathcal{I} s.t: If A and B are two disjoint subsets of \mathcal{I} such that there are no edges with one vertex in A and the other in B, then the families $\left\{U_{i}\right\}_{i \in A}$ and $\left\{U_{i}\right\}_{i \in B}$ are independent.

For our problem ...

$$
U_{i}=\left\{\begin{array}{ll}
1 & \text { if } \beta(i) \text { is a solution }, \\
0 & \text { otherwise }
\end{array}, \quad i=1, \ldots, e^{n R}\right.
$$

For the family $\left\{U_{i}\right\}$,
$\{i \sim j: i \neq j$ and $\beta(i), \beta(j)$ share at least one common term $\}$ is a dependency graph.

Suen's correlation inequality

Let $\left\{U_{i}\right\}_{i \in \mathcal{I}}$, be Bernoulli rvs with dependency graph Γ. Then

$$
P\left(\sum_{i \in \mathcal{I}} U_{i}=0\right) \leq \exp \left(-\min \left\{\frac{\lambda}{2}, \frac{\lambda^{2}}{8 \Delta}, \frac{\lambda}{6 \delta}\right\}\right)
$$

where

$$
\lambda=\sum_{i \in \mathcal{I}} \mathbb{E} U_{i}
$$

$$
\Delta=\frac{1}{2} \sum_{i \in \mathcal{I}} \sum_{j \sim i} \mathbb{E}\left(U_{i} U_{j}\right)
$$

$$
\delta=\max _{i \in \mathcal{I}} \sum_{k \sim i} \mathbb{E} U_{k}
$$

Bounding the error

$$
\begin{aligned}
P_{n} & \leq P\left(|\mathbf{S}|^{2} \geq a^{2}\right)+P\left(\sum_{i=1}^{e^{n R}} U_{i}=\left.0| | \mathbf{S}\right|^{2}<a^{2}\right) \\
& \leq \exp \left(-n \mathcal{D}\left(a^{2} \| \sigma^{2}\right)\right)+\exp \left(-\min \left\{\frac{\lambda}{2}, \frac{\lambda}{6 \delta}, \frac{\lambda^{2}}{8 \Delta}\right\}\right)
\end{aligned}
$$

Bounding the error

$$
\begin{aligned}
P_{n} & \leq P\left(|\mathbf{S}|^{2} \geq a^{2}\right)+P\left(\sum_{i=1}^{e^{n R}} U_{i}=\left.0| | \mathbf{S}\right|^{2}<a^{2}\right) \\
& \leq \exp \left(-n \mathcal{D}\left(a^{2} \| \sigma^{2}\right)\right)+\exp \left(-\min \left\{\frac{\lambda}{2}, \frac{\lambda}{6 \delta}, \frac{\lambda^{2}}{8 \Delta}\right\}\right)
\end{aligned}
$$

where for sufficiently large n

$$
\lambda>e^{n\left(R-\frac{1}{2} \log \frac{a^{2}}{D}-\epsilon_{n}\right)}, \quad \frac{\lambda}{\delta}>L^{b-1}, \quad \frac{\lambda^{2}}{\Delta}>L^{\left(b-b_{m i n}\right)\left(1-\left(1-D / a^{2}\right) / R\right)}
$$

- For large n, the first KL divergence term dominates P_{n}
- $\lambda, \frac{\lambda}{\delta}, \frac{\lambda^{2}}{\Delta}$ all grow polynomially in n for $b>b^{*}$
\Rightarrow second term decays super-exponentially
- Need to use refinement technique when $R<\left(1-D / a^{2}\right)$

Error Exponent of SPARC with Min-Distance Encoding

$$
P_{n}=P\left(\frac{1}{n}\|\mathbf{S}-\mathbf{A} \hat{\beta}\|^{2}>D\right)
$$

Theorem (RV, Joseph, Tatikonda '12, '14)

(1) For $R>\frac{1}{2} \log \frac{\sigma^{2}}{D}$, the probability of error P_{n} decays exponentially in n for $b>b^{*}$
(2) The error-exponent $\mathcal{D}\left(a^{2} \| \sigma^{2}\right)$, with $a^{2}=D e^{2 R}$, is optimal for Gaussian sources with squared-error distortion.

Error Exponent of SPARC with Min-Distance Encoding

$$
P_{n}=P\left(\frac{1}{n}\|\mathbf{S}-\mathbf{A} \hat{\beta}\|^{2}>D\right)
$$

Theorem (RV,Joseph, Tatikonda '12, '14)

(1) For $R>\frac{1}{2} \log \frac{\sigma^{2}}{D}$, the probability of error P_{n} decays exponentially in n for $b>b^{*}$
(2) The error-exponent $\mathcal{D}\left(a^{2} \| \sigma^{2}\right)$, with $a^{2}=D e^{2 R}$, is optimal for Gaussian sources with squared-error distortion.

- This result shows that SPARCs are structurally good codes
- But minimum-distance encoding is infeasible - what about practical algorithms?

SPARC Construction

Main Idea: Vary the coefficients across sections

SPARC Construction

Main Idea: Vary the coefficients across sections
As before:

- For rate R codebook, need $M^{L}=e^{n R}$

SPARC Construction

Main Idea: Vary the coefficients across sections
As before:

- For rate R codebook, need $M^{L}=e^{n R}$
- Choose M polynomial of $n \Rightarrow L \sim n / \log n$

An Encoding Algorithm

Step 1: Choose column in Sec. 1 that minimizes $\left\|\mathbf{S}-c_{1} \mathbf{A}_{j}\right\|^{2}$

- $c_{1}=\sqrt{2 R \sigma^{2} / L}$

An Encoding Algorithm

$\beta:\left[0, \cdots \quad 0, c_{1}\right.$,

Step 1: Choose column in Sec. 1 that minimizes $\left\|\mathbf{S}-c_{1} \mathbf{A}_{j}\right\|^{2}$

- $c_{1}=\sqrt{2 R \sigma^{2} / L}$
- Max among inner products $\left\langle\mathbf{S}, \mathbf{A}_{j}\right\rangle$
- Residue $\mathbf{R}_{1}=\mathbf{S}-c_{1} \hat{\mathbf{A}}_{1}$

An Encoding Algorithm

Step 2: Choose column in Sec. 2 that minimizes $\left\|\mathbf{R}_{1}-c_{2} \mathbf{A}_{j}\right\|^{2}$

- $c_{2}=\sqrt{\frac{2 R \sigma^{2}}{L}\left(1-\frac{2 R}{L}\right)}$
- Max among inner products $\left\langle\mathbf{R}_{1}, \mathbf{A}_{j}\right\rangle$
- Residue $\mathbf{R}_{2}=\mathbf{R}_{1}-c_{2} \hat{\mathbf{A}}_{2}$

An Encoding Algorithm

$$
\left[c_{L}, 0, \quad, 0\right]^{T}
$$

Step L : Choose column in Sec. L that minimizes $\left\|\mathbf{R}_{L-1}-c_{L} \mathbf{A}_{j}\right\|^{2}$

- $c_{L}=\sqrt{\frac{2 R \sigma^{2}}{L}\left(1-\frac{2 R}{L}\right)^{L}}$
- Max among inner products $\left\langle\mathbf{R}_{L-1}, \mathbf{A}_{j}\right\rangle$
- Residue $\mathbf{R}_{L}=\mathbf{R}_{L-1}-c_{L} \hat{\mathbf{A}}_{L}$

Performance

Theorem (RV, Sarkar, Tatikonda '13)

For an ergodic source \mathbf{S} with mean 0 and variance σ^{2}, the encoding algorithm produces a codeword $\mathbf{A} \hat{\beta}$ that satisfies the following for sufficiently large M, L.

$$
P\left(|\mathbf{S}-\mathbf{A} \hat{\beta}|^{2}>\sigma^{2} e^{-2 R}+\Delta\right)<\exp \left(-\kappa n\left(\Delta-\frac{c \log \log M}{\log M}\right)\right)
$$

$$
\text { Deviation } \Delta \text { is } O\left(\frac{\log \log n}{\log n}\right)
$$

Performance

Theorem (RV, Sarkar,Tatikonda '13)

For an ergodic source \mathbf{S} with mean 0 and variance σ^{2}, the encoding algorithm produces a codeword $\mathbf{A} \hat{\beta}$ that satisfies the following for sufficiently large M, L.

$$
P\left(|\mathbf{S}-\mathbf{A} \hat{\beta}|^{2}>\sigma^{2} e^{-2 R}+\Delta\right)<\exp \left(-\kappa n\left(\Delta-\frac{c \log \log M}{\log M}\right)\right)
$$

$$
\text { Deviation } \Delta \text { is } O\left(\frac{\log \log n}{\log n}\right)
$$

Encoding Complexity

$M L$ inner products and comparisons \Rightarrow polynomial in n

Simulation

Gaussian source: Mean 0, Variance 1

Why does the algorithm work?

Each section is a code of rate $R / L \quad\left(L \sim \frac{n}{\log n}\right)$

- Step 1: S $\longrightarrow \mathbf{R}_{1}=\mathbf{S}-c_{1} \hat{\mathbf{A}}_{1}$

$$
\left|\mathbf{R}_{1}\right|^{2} \approx \sigma^{2} e^{-2 R / L} \approx \sigma^{2}\left(1-\frac{2 R}{L}\right) \quad \text { for } c_{1}=\sqrt{2 R \sigma^{2} / L}
$$

Why does the algorithm work?

Each section is a code of rate $R / L \quad\left(L \sim \frac{n}{\log n}\right)$

- Step 1: S $\longrightarrow \mathbf{R}_{1}=\mathbf{S}-c_{1} \hat{\mathbf{A}}_{1}$

$$
\left|\mathbf{R}_{1}\right|^{2} \approx \sigma^{2} e^{-2 R / L} \approx \sigma^{2}\left(1-\frac{2 R}{L}\right) \quad \text { for } c_{1}=\sqrt{2 R \sigma^{2} / L}
$$

- Step 2: 'Source' $\mathbf{R}_{1} \quad \longrightarrow \quad \mathbf{R}_{2}=\mathbf{R}_{1}-c_{2} \mathbf{A}_{2}$

Why does the algorithm work?

$0, c_{i}, 0$

Each section is a code of rate $R / L \quad\left(L \sim \frac{n}{\log n}\right)$

- Step i: 'Source' $\mathbf{R}_{i-1} \quad \longrightarrow \quad \mathbf{R}_{i}=\mathbf{R}_{i-1}-c_{i} \hat{\mathbf{A}}_{2}$ With $c_{i}^{2}=\frac{2 R \sigma^{2}}{L}\left(1-\frac{2 R}{L}\right)^{i-1}$,

$$
\left|\mathbf{R}_{i}\right|^{2} \approx\left|\mathbf{R}_{i-1}\right|^{2}\left(1-\frac{2 R}{L}\right) \approx \sigma^{2}\left(1-\frac{2 R}{L}\right)^{i}
$$

Why does the algorithm work?

$$
\left.c_{L}, 0, \ldots, 0\right]^{T}
$$

Each section is a code of rate $R / L \quad\left(L \sim \frac{n}{\log n}\right)$

Final Distortion: $\quad\left|\mathbf{R}_{L}\right|^{2} \approx \sigma^{2}\left(1-\frac{2 R}{L}\right)^{L} \leq \sigma^{2} e^{-2 R}$
L-stage successive refinement $\quad L \sim n / \log n$

Successive Refinement Interpretation

- The encoder successively refines the source over $\sim \frac{n}{\log n}$ stages
- The deviations in each stage can be significant!

$$
\left|\mathbf{R}_{i}\right|^{2}=\underbrace{\sigma^{2}\left(1-\frac{2 R}{L}\right)^{i}}_{\text {'Typical Value' }}\left(1+\Delta_{i}\right)^{2}, \quad i=0, \ldots, L
$$

- KEY to result: Controlling the final deviation Δ_{L}

Proof involves controlling deviations due to:

Proof involves controlling deviations due to:

- Source: $\quad|\mathbf{S}|^{2}=\sigma^{2}\left(1+\Delta_{0}\right)^{2}$

Proof involves controlling deviations due to:

- Source: $|\mathbf{S}|^{2}=\sigma^{2}\left(1+\Delta_{0}\right)^{2}$
- Dictionary columns: $\quad\left|\mathbf{A}_{j}\right|^{2}=1+\gamma_{j}, \quad 1 \leq j \leq M L$

Proof involves controlling deviations due to:

- Source: $|\mathbf{S}|^{2}=\sigma^{2}\left(1+\Delta_{0}\right)^{2}$
- Dictionary columns: $\quad\left|\mathbf{A}_{j}\right|^{2}=1+\gamma_{j}, \quad 1 \leq j \leq M L$
- Computed value:

$$
\max _{j}\left\langle\frac{\mathbf{R}_{i-1}}{\left\|\mathbf{R}_{i-1}\right\|}, \mathbf{A}_{j}\right\rangle=\sqrt{2 \log M}\left(1+\epsilon_{i}\right), \quad 1 \leq i \leq L
$$

SPARCs for Communicating over Gaussian Channels

$$
Z=X+\text { Noise } \quad \frac{\|\mathbf{X}\|^{2}}{n} \leq P, \quad \text { Noise } \sim \mathcal{N}(0, N)
$$

GOAL: Achieve rates close to capacity $\mathcal{C}=\frac{1}{2} \log \left(1+\frac{P}{N}\right)$

Efficient Decoder

- Each β corresponds to a message $\Rightarrow M^{L}$ messages
- Efficient decoders proposed by [Barron-Joseph '12], [Barron-Cho '13]:

Achieve rates $R<\mathcal{C}-O\left(\frac{\log \log M}{\log M}\right)$ with $P_{e}<e^{-c L(\mathcal{C}-R)^{2}}$

Multi-terminal networks

Examples:

Binning with SPARCs

$\beta:\left[0, \cdots \quad 0, c_{1}, \quad, c_{2}, 0\right.$,
$\left.c_{L}, 0, \cdots \quad, 0\right]^{T}$
[RV-Tatikonda, Allerton '12]
Any random coding scheme that consists of point-to-point source and channel codes combined via binning/superposition can be implemented with SPARCs.

Summary

Sparse Regression Codes

- Rate-optimal for Gaussian compression and communication
- Low-complexity coding algorithms that provably attain Shannon limits

Future Directions

- Better channel decoders and source encoders:

Approximate message passing, ℓ_{1} minimization etc.?

- Simplified design matrices

Can we prove that the results hold for ± 1 design matrices

- Network information theory: Multiple descriptions, Interference channels ...
- Finite-field analogues: binary SPARCs?

Papers at http://www2.eng.cam.ac.uk/ \sim rv285/pūb.html

