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Couplings

Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two probability spaces. A
coupling of µ1 and µ2 is a measure µ on (Ω1 × Ω2,F1 ×F2)
with marginals µ1 and µ2.

We will be dealing with coupling of (the laws of) Markov
processes X and Y .

Coupling Time: τ = inf{s > 0 : Xt = Yt for all t > s}.
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Coupling and Total Variation Distance

The total variation distance between probability measures µ
and ν on a Polish Borel space (E , E) is defined as

||µ− ν||TV = sup
A⊂E
|µ(A)− ν(A)|.

Aldous’ Inequality: For any coupling (X ,Y ) of (µ, ν),

||µ− ν||TV ≤ P(X 6= Y ).
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Maximal Couplings

By Aldous’ inequality, for any t > 0,

P(τ > t) ≥ ||µ1,t − µ2,t ||TV ,

where

µ1,t and µ2,t are distributions of Xt and Yt respectively.
|| · ||TV is the total variation distance between measures.

A coupling of Markov processes X and Y with laws µ1 and
µ2, with coupling time τ , is called a Maximal Coupling if
P(τ > t) = ||µ1,t − µ2,t ||TV for all t > 0.
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Existence

Griffeath (’75) proved such a coupling always exists for
discrete Markov chains.

Pitman (’76) gave a new and simplified construction using
Randomized Stopping Times, which can also be extended to
continuous Markov processes.

Pitman’s construction simulates the meeting point first and
then constructs the forward and backward chains.

The coupling cheats by looking into the future.
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Markovian couplings

A coupling of Markov processes X and Y starting from x0 and
y0 is called Markovian if

(Xt+s ,Yt+s)t≥0 | Fs

is again a coupling of the laws of X and Y starting from
(Xs ,Ys). Here Fs = σ{(Xs′ ,Ys′) : s ′ ≤ s}.

The coupling is not allowed to look into the future.

Usually easy to describe explicitly in forward time.

Enable efficient application of stochastic calculus to derive
near-optimal estimates for gradients, spectral gaps, etc., for
diffusions.
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Question

There is much work on how quickly coupling can happen (Rogers,
1999; Burdzy-Kendall, 2000; ...). Here we focus on a very specific
question.

What is the class of Markov processes which admit a
Markovian maximal coupling (MMC) for two copies started
from distinct points?

Popular belief: Rather limited class! MMC exhibits rigidity.
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Known Examples of MMC

Reflection Coupling of Euclidean Brownian motions starting
from two points.

Hsu and Sturm (2013) showed that this is the unique
Markovian maximal coupling of these Brownian motions.
NOT unique maximal coupling.

Similar conclusions hold for Ornstein-Uhlenbeck process by
Doob’s representation. (Connor, 2007)
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Kuwada’s Rigidity result

Theorem (Kuwada, 2009)

Brownian motion on a homogeneous Riemannian manifold M can
be coupled by MMC, starting from x0 and y0, if and only if the
manifold admits a reflection structure, i.e. a continuous map
R : M 7→ M with R2 = Id such that

(i) Rx0 = y0

(ii) ∃ open M0 such that M = M0 t H t R(M0) where H is the
set of fixed points of R.

and the coupling is a reflection coupling determined by R.
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Consequences of Kuwada’s result

Assume M is an irreducible global symmetric space.

(i) If M is of non-constant curvature, no reflection structure,
hence no MMC.

(ii) If M is a sphere, Euclidean space or Hyperbolic space, then a
MMC of Brownian motions exists from every pair of starting
points.

(iii) If M is a Real Projective space, no MMC from any pair of
starting points.

(iv) If M is a torus, then MMC exists from starting points
(x1, . . . , xd) and (y1, . . . , yd) if and only if there exists
j ∈ {1, . . . , d} such that xi = yi for all i 6= j .
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Stable MMC

Bearing in mind the torus example, we ask what happens when
existence of MMC remains stable under a slight perturbation of
starting points.

Local Perturbation Condition (LPC): There exist arbitrary open
sets U,V ⊆ M such that a MMC of the diffusion processes X and
Y starting from x and y exists for every x ∈ U and y ∈ V .

We say that an MMC is stable if LPC holds.
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Goal

Our goal is to investigate when a stable MMC exists for elliptic
diffusions given by generator of the form

L =
d∑

i ,j=1

aij(x)∂ij +
d∑

i=1

bi (x)∂i

on Rd and later, more generally, on a complete smooth manifold
M.
To ease exposition, we deal only with the case of smooth
coefficients.

[A construction of successful Markovian couplings for elliptic
diffusions achieved in some cases by Lindvall and Rogers (’86).]
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Euclidean case

We first investigate this question for Euclidean diffusions with
constant diffusion matrix:

dXt = b(Xt)dt + dBt

started from distinct points x0 and y0.
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A brief outline: Structure of the Euclidean MMC

If a MMC exists, then we can show that it should satisfy the
following:

There is a deterministic system of hyperplanes {M(t)}t≥0
which can evolve in time such that, for each t, Yt is obtained
by reflecting Xt in M(t).

Under mild regularity assumptions, the moving mirror can be
parametrized in a smooth way .

These lead to (implicit) functional equations on the drift, via
stochastic calculus.

Sayan Banerjee Coupling and geometry



Characterisation of Euclidean MMC

Theorem (B.-Kendall, 2014)

A stable MMC exists for time-homogeneous Euclidean diffusions X
and Y if and only if there exist a real scalar λ, a skew-symmetric
matrix T and a vector c ∈ Rd such that

b(x) = λx + T x + c

for all x ∈ Rd .

(Ornstein-Uhlenbeck + rotation)
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Description of the MMC

Theorem (B.-Kendall, 2014)

When the drift is of the above form, the MMC is described by

Yt = Ft(Xt)

where Ft denotes reflection in the hyperplane parametrized by its
normal vector

n(t) = exp(T t)
x0 − y0
|x0 − y0|

and distance from the origin

l(t) = eλt
|x0|2 − |y0|2

2|x0 − y0|
+ eλt

∫ t

0

(x0 − y0)T

|x0 − y0|
exp{−(T + λI )s}c ds.
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Stronger version for one dimension

Theorem (B.-Kendall, 2014)

There exists a MMC of a one-dimensional diffusion X starting from
x0 and y0 if and only if, when X is transformed so that the
martingale part is Brownian, then the drift b is either linear or
b(x) = −b(x0 + y0 − x) for all x ∈ R.

Remark: This determines all one-dimensional diffusions (with
general diffusion coefficient) for which MMC holds. Essentially
they must be (transformations of) either Brownian motion with
constant drift or Ornstein-Uhlenbeck processes, or the drift obeys a
symmetry condition with respect to the starting points.
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Manifold case

If the generator of the diffusion on a connected smooth manifold
M of dimension d is given (in local coordinates) by

L =
d∑

i ,j=1

aij(x)∂ij +
d∑

i=1

bi (x)∂i ,

then we can give M a metric gij = aij under which, the generator
becomes

L =
1

2
∆M + b

where ∆M is the Laplace-Beltrami operator and b is a ‘drift’ vector
field.

The diffusion thus becomes Brownian motion plus drift under this
metric. It can now be represented as the solution to a Stratonovich
SDE. (Stochastic Parallel Transport.)
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The Isometry Group of M

1 The group of isometries of M, denoted by Iso(M), forms a Lie
Group of dimension ≤ d(d + 1)/2 (Myers and Steenrod,
1939).

2 A one parameter subgroup of isometries is a smooth curve
t 7→ Ft in Iso(M) such that F0 = Identity and Ft+s = Ft ◦ Fs .

3 Killing vector fields are vector fields corresponding to
generators of these one parameter subgroups, given by

κ(x) =
d

dt

∣∣∣
t=0

Ft(x).

These form the Lie Algebra corresponding to the Lie group of
isometries.
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Rigidity Theorem I: Classifying the space M

Theorem (B.-Kendall, 2014)

If a stable MMC exists on M, then M has to be maximally
symmetric (i.e. the dimension of Iso(M) is d(d + 1)/2).

The only complete, connected Riemannian manifolds which are
maximally symmetric are the sphere(Sd), Euclidean space (Rd),
hyperbolic space (Hd) and Real Projective space (RPd).

But (Kuwada, 2009) RPd does not support any MMC.
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Classifying the space M : continued

Thus, we have the following classification of M:

Corollary

A stable MMC exists on M if and only if M is Sd , Rd or Hd .
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Rigidity Theorem II: Characterising the drift

Let K denote the (sectional) curvature of M.

Theorem (B.-Kendall, 2014)

A stable MMC exists on M if and only if the following hold:

(i) For K 6= 0, the drift b is a Killing vector field K on M.

(ii) For K = 0, b is described in Euclidean co-ordinates by
b(x) = λx + T x + c for any scalar λ, skew-symmetric matrix
T and vector c, where x 7→ λx is a dilation vector field about
the origin and x 7→ T x + c is a Killing vector field.

This is the general rigidity result for MMC.
It confirms the intuition that MMC are very rare.
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Description of the MMC for K 6= 0

We have already described the Euclidean case K = 0. Now, we
describe the stable MMC for K 6= 0.

Theorem (B.-Kendall, 2014)

For K 6= 0, the stable MMC of X and Y starting from x0 and y0 is
given by

(Gt(Wt),Gt(W̃t))t≥0

where (W , W̃ ) is the MMC of Brownian motions on M starting
from (x0, y0) and (Gt)t≥0 is the one parameter subgroup of
isometries generated by K.
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Sketch of Proof

Define

α(t, z) = p(x0; t, z)− p(y0; t, z),

It = {z ∈ M : α(t, z) = 0}. We will call this the interface.

I+t = {z ∈ M : α(t, z) > 0} and I−t similarly.

The time evolution of the interface plays a pivotal role in our
arguments.
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A Support Lemma for maximal couplings

Let µ be a maximal coupling of X and Y .

Lemma

µ(Xs = dz , τ > s) = α+(s, z)m(dz),

µ(Ys = dz , τ > s) = α−(s, z)m(dz).

Thus, Xs and Ys are supported on disjoint regions of the state
space I+s and I−s before they couple.
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Flow property of MMC

Let µ denote the law of a MMC of X and Y and µs denote law of
(Xs ,Ys). Let θ denote the time-shift operator.

Lemma

For µs -almost every (x , y) with x 6= y, (θsX , θsY | Xs = x ,Ys = y)
gives a Markovian maximal coupling of (X ,Y ) starting from (x , y).

This can be interpreted as a flow property of MMC.
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Varadhan small-time asymptotics

Lemma (Varadhan 1967, Molchanov 1975)

Let M1 and M2 be compact subsets of M. Then the density p of
Xt satisfies the following:

lim
t↓0

2t log p(x ; t, y) = −d2(x , y) (1)

uniformly for all x , y ∈ M1 ×M2, where d is the Riemannian
distance function.
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The Mirror

Let H(x , y) denote the set of points in M equidistant from x and
y .

The previous lemmas, along with the Strong Maximum principle
for parabolic PDEs, yield the following important observation.

Theorem

For any t > 0,
It = H(Xt ,Yt).

almost surely with respect to the coupling law µ.

Thus, the set of equidistant points from Xt and Yt is a
deterministic set It almost surely.
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Defining the reflection structure

Following Kuwada (2009), we can define a ‘reflection’ on It given
by

Ft(x) = the unique y ∈ M such that y 6= x

and d(x , z) = d(y , z) for all z ∈ It ; if x ∈ M/It

Ft(x) = x ; if x ∈ It

This turns out to be a well defined global involutive isometry on M
such that

Yt = Ft(Xt)

on {0 ≤ t < τ} almost surely. Further, we can prove by using this
relation that t 7→ Ft is a C 1 curve in Iso(M).
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Space classification: sketch

The LPC can be used now to get sufficiently many isometries by
the above recipe to show that M is homogeneous (the Isometry
group acts transitively on M) and isotropic (the isometries fixing a
point generate all the rotations about it), which yields maximal
symmetry.

The space classification follows from this.
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Drift characterisation: sketch

Applying stochastic calculus on the equation Yt = Ft(Xt) on
{0 ≤ t < τ} and using the fact that X and Y have the same
generator, we arrive at the following functional equation for the
drift.

b(x) = Ft∗b(x) + κt(x)

where Ft∗b denotes the pushforward of the vector field b by Ft

given by Ft∗b(x) = dFt

∣∣∣
Ft(x)

b(Ft(x)) and κt represents the Killing

vector field

κt(x) =
d

ds

∣∣∣
s=t

Fs(Ft(x)).
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We then carefully analyse the equation for the drift under LPC.
This reduces the drift to a ‘dilation + Killing field’ form.

For nonzero curvature, the Toponogov triangle comparison
theorem can be used to show that the dilation part must be zero.

This gives the drift characterisation.
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Implications of Rigidity

Rigidity theorems hint that ‘fast’ couplings should involve
reflection coupling at some level.

This turned out to be a pivotal observation in devising
coupling strategies for Kolmogorov diffusions (simplest
example of a hypoelliptic diffusion).
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Coupling Kolmogorov diffusions

Kolmogorov diffusion of order n given by

Xt =

(
Bt ,

∫ t

0
Bsds, . . . ,

∫ t

0

∫ sn−1

0
· · ·
∫ s2

0
Bs1ds1 . . . dsn−1

)
.

There exist Markovian couplings of two copies of the
Kolmogorov diffusion (Ben Arous, Cranston and Kendall
1995, Kendall and Price 2004).

We show that there are no MMC from any pair of starting
points. (B.-Kendall 2015).

In fact there are pairs of starting points from which no MC is
efficient (coupling rates and total variation distance have
same order of decay in time). (B.-Kendall 2015).
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An efficient non-Markovian coupling (B.-Kendall 2015)

For i = 1, 2, we consider the Brownian paths
{B(i)(t) : 0 ≤ t ≤ T} as B(i)(t) = B(i)(T , t) where B(i) is
the infinite-dimensional Brownian motion on L2(0,T ) given by

B(i)(ζ, t) =
∞∑
k=1

√
λkw

(i)
k (ζ)fk(t/T )

for 0 ≤ ζ, t ≤ T (Karhunen-Loève expansion).

On each block [Tn,Tn+1] (Tn = 1 + · · ·+ 2n), apply a
‘reflection coupling’ of the Brownian vectors

W(i) = (w
(i)
1 ,w

(i)
2 , . . . ) in a hyperplane determined by

X (2)(Tn)− X (1)(Tn).

This projects down to an efficient non-Markovian coupling of
the Kolmogorov diffusions X (1) and X (2).
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Conclusion, Remarks and Future Work

For what class of diffusions is it possible to obtain efficient
Markovian couplings?

For hypoelliptic diffusions of the form

dXt = V0(Xt)dt +
n∑

i=1

Vi (Xt) ◦ dWi (t)

where the vector fields V0,V1, . . . ,Vn satisfy the Hörmander
condition (Lie brackets span the whole tangent space), the
existence of density implies existence of a maximal coupling.
But does this imply existence of a Markovian coupling?

If so, when is it maximal/efficient?

We are investigating this question for Levy stochastic areas.
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For what class of diffusions is it possible to obtain efficient
Markovian couplings?

For hypoelliptic diffusions of the form

dXt = V0(Xt)dt +
n∑

i=1

Vi (Xt) ◦ dWi (t)

where the vector fields V0,V1, . . . ,Vn satisfy the Hörmander
condition (Lie brackets span the whole tangent space), the
existence of density implies existence of a maximal coupling.
But does this imply existence of a Markovian coupling?

If so, when is it maximal/efficient?

We are investigating this question for Levy stochastic areas.
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Conclusion, Remarks and Future Work (contd.)

For general cost functions, couplings have deep connections
with Optimal Transport. We can ask similar questions for
general cost functions.

Couplings (especially Markovian ones) are an important
toolbox for studying mixing times of discrete Markov chains.
The present question becomes harder in this context when the
chains are not skip-free. It would be interesting to obtain
comparable results about discrete state-space Markov chains.
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Conclusion, Remarks and Future Work (contd.)

For general cost functions, couplings have deep connections
with Optimal Transport. We can ask similar questions for
general cost functions.

Couplings (especially Markovian ones) are an important
toolbox for studying mixing times of discrete Markov chains.
The present question becomes harder in this context when the
chains are not skip-free. It would be interesting to obtain
comparable results about discrete state-space Markov chains.
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Thank You!
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