

BME Automatizálási és Alkalmazott Informatikai Tanszék BME Department of Automation and Applied Informatics 1117 Budapest, Magyar Tudósok krt. 2. QB207 • www.aut.bme.hu

Perturbed Datasets Methods for Hypothesis Testing - Distribution assumption free hypothesis testing -

Sándor Kolumbán

BME Department of Automation and Applied Informatics HAS MTA-BME Control Engineering Research Group VUB Brussels Department ELEC

Content

- Birds eye view on hypothesis testing
- Recent history of the distribution free results
- Elementary probability
- Data perturbation methods
 - Symmetric noise distributions
 - Exchangeable noise distributions
- Hypothesis testing with mild assumptions:
 - The noise can be expressed
 - The noise distribution is invariant under transformations from a finite symmetry group

• Measurement data generated as

$$y_k = \theta_0 + n_k$$

- Assume that n_k is $\mathcal{N}(0, \sigma^2)$
- Model under test θ
- The goal is to accept or reject the hypothesis

$$"H_0: \theta = \theta_0"$$

- Create statistic $O(Y, \theta)$, with known distribution
- Select a subset *C* of the possible outcomes of *O* where *H*₀ is accepted
- Let $C_{\theta} = \{\theta: O(Y, \theta) \in C\}$ be the set of accepted models
- Requirements
 - $-If\theta = \theta_0$ then H_0 is accepted with given probability α .
 - If $\theta \neq \theta_0$ then H_0 is rejected with a probability depending on how \neq they are.
 - $-C_{\theta}$ should have "nice" properties.

One way to do it (the usual way):

•
$$O(Y,\theta) = \frac{\sum_{k=1}^{n} (y_k - \theta)}{\sqrt{n\sigma^2}} \sim \mathcal{N}(0,\sigma^2)$$

• $C = \left(\Phi^{-1}\left(\frac{1-\alpha}{2}\right), \Phi^{-1}\left(\frac{1+\alpha}{2}\right)\right)$
• $C_{\theta} = \left(\frac{\sum y_k}{n} - \frac{\sigma}{\sqrt{n}} \Phi^{-1}\left(\frac{1+\alpha}{2}\right), \frac{\sum y_k}{n} - \frac{\sigma}{\sqrt{n}} \Phi^{-1}\left(\frac{1-\alpha}{2}\right)\right)$

BME Automatizálási és Alkalmazott Informatikai Tanszék BME Department of Automation and Applied Informatics

Another way to do it (the unusual way):

- $O(Y, \theta) \sim \Pr(O = 1) = \alpha = 1 \Pr(O = 0)$
- $C = \{1\}$
- $C_{\theta} = 1(0 = 1)\{-\infty, \infty\} + 1(0 = 0)\emptyset$

BME Automatizálási és Alkalmazott Informatikai Tanszék BME Department of Automation and Applied Informatics X

The usual way:

- Detailed assumptions (model structure, distributions)
 - Deterministic/repeatable decisions (based on observations)
- Central limit theorem + asymptotic theory for the distribution of estimates

BME Automatizálási és Alkalmazott Informatikai Tanszék BME Department of Automation and Applied Informatics

The unusual way:
 No assumptions
 Totally unrepeatable decisions

The usual way:

- Detailed assumptions (model structure, distributions)
 - Deterministic/repeatable decisions (based on observations)
- Central limit theorem + asymptotic theory for the distribution of estimates

It would be nice to meet in the middle!

- Our assumptions are almost never true
- A little bit of coherence in the decisions is desirable
- We aim for exact confidence levels for finite sample count

The unusual way: No assumptions

Totally unrepeatable decisions

Distribution free methods

- The idea was introduced around 2005
- Names: Marco Camp, Balázs Csanád Csáji, Eric Weyer
- Buzz words: LSCR (leave-out sign-dominant correlation regions), SPS (sign-perturbed sums)
- My work:
 - a general framework for distribution free methods (data perturbation methods)
 - SPS is a (meaningful) data perturbation method for linear regression problems with jointly symmetric noise distribution
 - a (meaningful) data perturbation method for linear regression problems with exchangeable noise distribution

- Randomly well defined ordering: Let π be a uniformly chosen random permutation of $\{1, \dots, m\}$. The well defined ordering by π of a sequence $Z_1, ..., Z_m$ is $O_{\pi}(Z) = [i_1, ..., i_m]$ if $Z_{i_1} >_{\pi} Z_{i_2} >_{\pi} \cdots >_{\pi} Z_{i_m}$ • $\forall \pi : Z_i < Z_i \Rightarrow Z_i <_{\pi} Z_i$
- $Z_i = Z_j \Rightarrow Z_i <_{\pi} Z_j$ if *i* precedes *j* in π

- Almost true: Independent and identically distributed random variables are uniformly ordered.
- If Z_1, \ldots, Z_m is an i.i.d. sequence of random variables and π is a uniformly chosen random permutation then $O_{\pi}(Z)$ is a uniform random permutation

$$\Pr(O_{\pi}(Z) = [i_1, ..., i_m]) = \frac{1}{m!}$$

Proof by symmetry arguments.

- Let $G(G, \cdot)$ be a finite group, $X_1 = 1, X_{i \ge 2} \sim Uni(G), X_0 \sim Uni(G),$ jointly independent.
- If $\tilde{X}_{i\geq 1} = X_i \cdot X_0$ then then $\tilde{X}_{i\geq 1}$ are jointly independent and uniformly distributed over G.
- Proof by straight forward calculation.

Groups that will be used

• Sign vectors of length n :

$$G = \{-1,1\}^n$$

(x₁ · x₂)[k] = x₁[k]x₂[k]

• The symmetric group S_n (group of permutations):

$$x_1 = (3 \ 1 \ 2), x_2 = (1 \ 3 \ 2)$$

 $x_1 \cdot x_2 = (2 \ 3 \ 1)$

BME Automatizálási és Alkalmazott Informatikai Tanszék BME Department of Automation and Applied Informatics

- Let the measurements come from a model $Y = f(\theta_0, X, N)$
- *f* is a known model structure
- X contains the known input values
- N contains disturbing unknown noise
- $\theta_0 \in \mathbb{R}^{n_{\theta}}$ is the parameter vector

• Invertibility with respect to noise is required

$$\exists f^*: \Theta \times \mathcal{X} \times \mathcal{Y} \to \mathcal{N}$$
$$Y = f(\theta, X, N) \Rightarrow N = f^*(\theta, X, Y)$$

- When it is obvious from context $N(\theta) = f^*(\theta, X, Y)$
- The notation *D* will be used to denote all available data (*X* and *Y* usually)

- The goal is create a hypothesis test for the parameter vector θ without exact knowledge about the distribution of the noise vector N.
- Some structural symmetry assumptions about the joint distribution of *N* is required.
- The confidence level can be (almost) arbitrarily selected as $\alpha = \frac{k}{m!}$.
- A random data perturbation setup Γ is required beside the measurements.

- Testing θ on confidence level $\alpha = {k / m!}$:
 - 1. Generate *m* perturbed datasets $D^{(i)}(D, \theta)$ based on Γ
 - 2. Define a performance measure $Z: \mathcal{D} \times \Theta \to R$ $Z_i = Z(D^{(i)}(D,\theta),\theta)$
 - 3. Create a well defined ordering $O_{\Gamma}(Z)$
 - 4. Select k out of the possible m! permutations where $H_0: \theta = \theta_0$ is considered accepted
- If $\theta = \theta_0$ then Z_i should be i.i.d.

Generating perturbed datasets

- Given X, Y and θ
- Calculate the corresponding noise sequence $\widehat{N}(\theta) = f^*(\theta, X, Y)$
- If $\theta = \theta_0$ then $\widehat{N}(\theta) = N$
- Create *m* perturbed noise realization $N^{(i)}(\theta, \Gamma) = P_i \widehat{N}(\theta)$
- If $\theta = \theta_0$ then $N^{(i)}(\theta, \Gamma)$ are equally likely nose vectors if the perturbations leaves the noise distribution invariant

Generating perturbed datasets

- Create *m* perturbed noise realization $N^{(i)}(\theta, \Gamma) = P_i \widehat{N}(\theta)$
- Create *m* perturbed measurements $Y^{(i)} = f(\theta, X, N^{(i)})$
- If $\theta = \theta_0$ then $Y^{(i)}$ are equally likely observations (proof later)
- Γ contains m-1 random perturbation objects

•
$$P_1 = I, Y^{(1)} = Y$$

Performance measures

- Given the *m* equally likely datasets $D^{(i)}(D, \theta)$
- Usual least squares measure

 $Z_{i} = J_{\theta}^{(i)}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \left(f^{*} \left(\theta, X, Y^{(i)} \right) [k] \right)^{2} = \frac{1}{n} ||N^{(i)}(\theta)||^{2}$

- Sensible measures don't make sense
 - Noise sequences are equivalent up to measure invariant perturbations
 - Sensible performance measures don't differentiate between measure invariant points
- Something more sophisticated is needed (see later in concrete case)
- If $\theta = \theta_0$ then the values Z_i are i.i.d.

Creation of the ordering

- Given Z_i and a uniformly chosen random permutation π
- $O = O_{\pi}(Z)$
- If $\theta = \theta_0$ then the values Z_i are i.i.d. and O is a uniformly distributed random permutation
- Only knowledge about invariant transformations of the noise distribution are needed
- Select k of the m! outcomes of O where $H_0: \theta = \theta_0$ is considered accepted

Μ Ű Ε G Y Ε Τ Ε Μ 1782

BME Automatizatasi es Alkalmazott Informatikal Tanszek BME Department of Automation and Applied Informatics

$$Y = X^T \theta_0 + N$$

- $Y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n_\theta \times n}$ measured, known
- $N \in \mathbb{R}^n$ -i.i.d. sequence
 - no symmetry required
 - no moment conditions required
- Goal: create confidence regions for parameter vector $\boldsymbol{\theta}$

- If N is an exchangeable sequence and P is a permutation matrix then $N \approx PN$
- Composition of Γ
 - $-P_1 = I, P_{i \ge 2} \sim Uni(S_n) uniform random permutations$
 - $-\pi$ uniform random permutation

Sorry for the abusive notation around permutations and matrices

$$Z_i(\theta, \Gamma) = (Y - X^T \theta)^T P_i^T X^T [XX^T]^{-1} X P_i (Y - X^T \theta)$$

- Select orderings such that Z_1 is as small as possible (1 is at the back of the permutation)
- Corresponding confidence regions
 - Contain the least squares estimate
 - Connected
 - Bounded if the input is "exciting enough"
- Proof later, first see a showcase

Μ Ű Ε G Υ Ε Τ Ε Μ 178

BME Automatizatasi es Alkalmazott Informatikal Tanszek BME Department of Automation and Applied Informatics

- The performance measure is the key
- Perturbed data sets as separate estimation problems

•
$$J_{\theta}^{(i)}(\theta') = \frac{1}{n} \left(Y^{(i)} - X^T \theta' \right)^T \left(Y^{(i)} - X^T \theta' \right)$$

- $\theta^{(i)} = [XX^T]^{-1}XY^{(i)}$ LS estimate
- $Z_i = \left(\theta^{(i)} \theta\right)^T [XX^T] \left(\theta^{(i)} \theta\right)$
- Natural weighting
- $Z_1^{LS} = 0$

• $Z_{i} = (Y - X^{T}\theta_{0})^{T}P_{i}^{T}X^{T}[XX^{T}]^{-1}XP_{i}(Y - X^{T}\theta_{0}) + 2(Y - X^{T}\theta_{0})^{T}P_{i}^{T}X^{T}[XX^{T}]^{-1}XP_{i}X^{T}(\theta_{0} - \theta) + (\theta_{0} - \theta)^{T}XP_{i}^{T}X^{T}[XX^{T}]^{-1}XP_{i}X^{T}(\theta_{0} - \theta)$

• $Z_1 - Z_i \approx XX^T - XP_i^T X^T [XX^T]^{-1} XP_i X^T$

- $Z_1 Z_i \approx XX^T XP_i^T X^T [XX^T]^{-1} XP_i X^T$ = $X \left(I - P_i^T X^T [XP_i P_i^T X^T]^{-1} XP_i \right) X^T$
- *I*-projection + symmetric sandwich ⇒ pos.sem.def.
- Input X is sufficiently exciting with respect to permutation P if $XX^T - XP^TX^T[XX^T]^{-1}XPX^T > 0$

• Input X is sufficiently exciting with respect to permutation P if

 $Q = XX^T - XP^T X^T [XX^T]^{-1} XPX^T > 0$

- Suff. exc.: $[|\theta_0 \theta| \to \infty] \Rightarrow Z_1 Z_0 \to \infty$ (power function tends to 1)
- One dimensional constant input not good enough Q = 0
- Complex problem is required for nontrivial results

Sign-perturbed sums

- The method of sign-perturbed sums is also a data perturbation method.
- SPS works with jointly symmetric noise distributions.
- The matrices P_i are not random permutation matrices but diagonal matrices with uniformly distributed random signs $\{-1,1\}$.
- Similar properties for linear regression problems as presented for the i.i.d. case.
- There are two different performance measures Z resulting in nice confidence regions.

M G M 8 BME Department of Automation and Applied Informatics

Price of information

 Minimum at zero because of symmetry

• Loss of power is

- significant, but the distribution of e_k^{I} is not used
- Accurate definition of power function is an issue

Coherence of decisions $y_k = x_k \theta_0 + e_k, e_k \sim Exp(5), n = 25, \alpha = 0.75$ • θ_0 • θ^{LS}

Μ G E M 78 BME Department of Automation and Applied Informatics

Non linear problems

 Confidence regions for parameters of linear dynamical systems

Non linear problems

 $\frac{D(q)}{C(q)} \left(A(q)y[k] - \frac{B(q)}{F(q)}u[k] \right) = e[k]$

BME Automatizálási és Alkalmazott Informatikai Tanszék BME Department of Automation and Applied Informatics

Non linear problems

- Uncertainty evaluation is not trivial
- Structural properties depend on problem and performance measure

 Discovering the entire confidence region is hard

Open questions

- The notion of power function is not defined
- Limiting results are not yet proven

BME Automatizálási és Alkalmazott Informatikai Tanszék BME Department of Automation and Applied Informatics

Summary

- Hypothesis testing with mild assumptions:
 - The noise can be expressed
 - The noise distribution is invariant under transformations from a finite symmetry group
- The result is random even for fixed observations but not "too random"
- Nice structural results for linear regression problems

Summary

- Hypothesis testing with mild assumptions:
 - The noise can be expressed
 - The noise distribution is invariant under transformations from a finite symmetry group
- The result is random even for fixed observations but not "too random"
- Nice structural results for linear regression problems
- Thank you for your attention!

