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‘Gossip’ algorithm

xi(n+ 1) =
d∑

j=1
p(j|i)xj(n), n ≥ 0.

P = [[p(j|i)]]1≤i,j≤d irreducible stochastic matrix with

unique stationary distribution π =⇒ x(n)→ πTx(0)1.

Research focus on rate of convergence: Design a ‘good’

P ((doubly) stochastic, low |second eigenvalue|, · · ·) (Boyd,

Shah, Ghosh, · · ·)

Ref: ‘Gossip Algorithms’, D. Shah, NOW Publishers,

2009.



Often a component of a ‘larger’ scheme:

xi(n+ 1) = (1− a)xi(n) + a
d∑

j=1
p(j|i)xj(n) + · · · , n ≥ 0.

Examples: Distributed computation, Synchronization,

‘Flocking’, Coordination of mobile agents

The objective often is ‘consensus’.



The DeGroot model

Models opinion formation in society.

xi(n+ 1) = (1− a)xi(n) + a
d∑

j=1
p(j|i)xj(n), n ≥ 0.

New opinion a convex combination of own previous opin-

ion and opinions of neighbors/peers/friends.

Convergence =⇒ asymptotic agreement.



What about random gossip?

xi(n+ 1) = (1− a)xi(n) + axξn+1(i)(n),

where ξn(i) IID ≈ p(·|i).

Convergence?

Yes!!

And consensus: x(n)→ c1, but c may not be πTx(0)!



Analysis based on re-writing the iteration as

xi(n+ 1) = (1− a)xi(n) + a
d∑

j=1
p(j|i)xj(n) + aMj(n+ 1),

where {M(n)} is a martingale difference sequence. This

is a ‘constant step-size stochastic approxima-
tion’.

Fact: Standard ‘intuition’ would suggest asymptotically

a random walk along the degenerate direction c1, c ∈ R,

but we still get convergence because ‘noise’ {M(n)} is

also killed asymptotically at a fast enough rate.

But what if we want the actual average πTx(0)?



Alternative scheme based on the ‘Poisson equation’:

for f(i) = x(0),

V (i) = f(i)− β +
∑
j
p(j|i)V (j), 1 ≤ j ≤ d. (1)

Solution (V (·), β) satisfies: β unique, = πTf , V unique

up to additive scalar.

Can solve (1) by the ‘relative value iteration’

V n+1(i) = f(i)− V n(i0) +
∑
j
p(j|i)V n(j), n ≥ 0.

The ‘offset’ V n(i0) stabilizes the iteration, other choices

are possible (e.g., 1
d
∑
k V

n(k)).



‘Reinforcement learning’: stochastic approximation

version of RVI – for a simulated chain {Xn} ≈ p(·|·).

V n+1(i) = (1− a(n)I{Xn = i})V n(i) +

a(n)I{Xn = i}(f(i)− V n(i0) + V n(Xn+1)).

Then V n(i0)→ β a.s.

(Not fully decentralized: needs V n(i0) to be broadcast.

Can replace it by 1
d
∑
k V

n(k) which can be calculated in

a distributed manner by another gossip on a faster time

scale.)



‘Multiplicative’ analog of the previous case: for f(i) > 0,

choose V 0(i) > 0 ∀ i and do:

V n+1(i) =
f(i)

∑
j p(j|i)V n(j)

V n(i0)
, n ≥ 0.

More generally, for irreducible nonnegative Q = [[q(i, j)]],

set

f(i) =
∑
k
q(i, k), p(j|i) =

q(i, j)

f(i)
.

Then V n(i0) → the Perron-Frobenius eigenvalue of Q,

V n→ the corresponding eigenvector.

(‘power’ method)

Applications : ranking, risk-sensitive control



‘Learning’ version: for V 0(·) > 0,

V n+1(i) = (1− a(n)I{Xn = i})V n(i) +

a(n)I{Xn = i}
f(i)V n(Xn+1)

V n(i0)

 .

Numerically better even when the eigenvalue is known!

(The first term on RHS scales slower than the second.)

Similar evolution occurs in models of emergent networks

(Jain - Krishna)



OPTIMAL GOSSIP

Gossip for opinion manipulation (e.g., advertising):

P1 := submatrix of P corresponding to n −m rows and

corresponding columns,

P2 := submatrix of P corresponding to the same n −m

rows and remaining m columns.

These m columns correspond to nodes whose ‘opinion’

is frozen at x∗. Then we have (in Rn−m):

x(n+ 1) = x(n) + a(n)
[
P1x(n) + P2x

∗1
]
.



Assume P1 strictly sub-stochastic, irreducible. Then:

x(n)→ x∗1 exponentially at rate λ := the Perron-Frobenius

eigenvalue of P1.

=⇒ consensus on a pre-specified value.



Objective: Minimize λ over all subsets of cardinality m

(i.e., find the m most important nodes for information

dissemination)

Hard combinatorial problem, even the nonlinear program-

ming relaxation is highly non-convex and the projected

gradient scheme with multi-start does not do too well.

=⇒ Use ‘engineer’s licence’.



For τ := the first passage time to frozen nodes,

λ = − limt↑∞
1
t logP (τ > t) and E[τ ] =

∑∞
t=0P (τ ≥ t).

=⇒ Use E[τ ] as a surrogate cost.

This is monotone and supermodular =⇒ greedy scheme

is
(
1− 1

e

)
-optimal (Nemhauser-Wolsey-Fisher)

Important observation: best m nodes 6= top m nodes

according to individual merit!



What about controlling the transition probabilities?

Consider controlling the nonlinear o.d.e.

ẋ(t) = α(Pu(t)
1 − I)x(t) + αP

u(t)
2 (x∗1) + (1− α)F (x(t))

with ‘cost’

E

∫ ∞
0

e−βt
∑
i
|xi(t)− x∗|2dt

 .
Here Pu· = [[p(j|i, u)]].



Can write down the corresponding Hamilton-Jacobi-Bellman

equation and verification theorem.

=⇒ Optimal

u∗i (t) ∈ Argmax

n−m∑
j=1

p(j|i, ·)x∗j(t) + x∗
n∑

j=n−m+1
p(j|i, ·)


for x < x∗, and,

u∗i (t) ∈ Argmin

n−m∑
j=1

p(j|i, ·)x∗j(t) + x∗
n∑

j=n−m+1
p(j|i, ·)


for x > x∗.

(=⇒ greatest ‘push’ towards x∗.)



NONLINEAR GOSSIP



STOCHASTIC APPROXIMATION

Consider the Robbins-Monro scheme in Rd:

x(n+ 1) = x(n) + a(n)[h(x(n)) +M(n+ 1)].

Here:

• h : Rd 7→ Rd Lipschitz,

• {M(n)} a martingale difference sequence w.r.t.

Fn := σ (x(m),M(m),m ≤ n) , n ≥ 0, i.e.,

E [M(n+ 1)|Fn] = 0.



Also, there exists K ∈ (0,∞) such that

E
[
‖M(n+ 1)‖2|Fn

]
≤ K

(
1 + ‖x(n)‖2

)
.

• Step-sizes a(n) > 0 satisfy:

∑
n
a(n) =∞,

∑
n
a(n)2 <∞.



‘ODE Approach’ (Derevitskii-Fradkov-Ljung)

View the iteration as a noisy discretization of the ODE

ẋ(t) = h(x(t)), t ≥ 0.

This is well posed under our hypotheses.

Definition: A set A is invariant if

x(0) ∈ A =⇒ x(t) ∈ A ∀ t ∈ R.



Definition (continued):

A is Internally Chain Transitive if given any x, y ∈ A,

and ε > 0, T > 0, we can find n ≥ 1, and

x = x0, x1, · · · , xn−1, xn = y ∈ A

such that for 0 ≤ i < n, the trajectory xi(t), t ≥ 0, of

ẋi(t) = h(xi(t)), xi(0) = xi,

satisfies ‖xi(t)− xi+1‖ < ε for some t ≥ T .



Benaim’s theorem:

If supn ‖x(n)‖ <∞ a.s., then x(n)→ a compact

connected nonempty internally chain transitive

invariant set of the ODE, a.s.



THE TSITSIKLIS MODEL

• ‘Agents’/processors placed at the nodes of an

irreducible directed graph G with node set V with

|V| := N and edge set E. N (i) := {i’s neighbors}.

• For i ∈ V and P = [[p(j|i)]] stochastic, G-compatible,

xi(n+ 1) =
∑
j
p(j|i)xj(n) +a(n)[h(xi(n)) +Mi(n+ 1)].



• At each instant, every node takes,

– a weighted average of its neigbhbors’ values

(‘gossip’ component), and,

– adds a correction based on its own computation

(‘learning’ component).

• Delays, asynchrony, etc. (shall worry about it later).

Similar models in synchronization, flocking/coordination,

· · ·.

Objective: CONSENSUS



Nonlinear gossip I: quasi-linear case

For each i ∈ V, consider the d-dimensional iteration

xi(n+ 1) =
∑

j∈N (i)
px(n)(j|i)xj(n) +

a(n) [hi(xi(n)) +Mi(n+ 1)] .

Here, Px is an irreducible stochastic matrix where

x 7→ Px is Lipschitz, with (min)+
j px(j|i) ≥∆ > 0.

For a fully distributed algorithm, the ith row of Px(n)

should depend only on xj(n), j ∈ N (i) ∪ {i}, but we use

x(n) without loss of generality.



Let πx := the unique stationary distribution under Px.

CONSENSUS:

if supi,n ‖xi(n)‖ <∞ a.s., then

‖xi(n)− xj(n)‖ → 0 a.s.

(Not surprising, standard arguments work.)



MAIN RESULT (d = 1):

Let A := {c1 : c ∈ R}. Let x(n) = [x1(n), · · · , xN(n)]T .

If supi,n ‖xi(n)‖ <∞ a.s., then almost surely,

x(n)→ A0 := an internally chain transitive invariant set

of N-fold copy of the ODE

ẏ(t) =
∑
k
πy1(k)hk(y(t)), t ≥ 0,

contained in A.



General case: Define

A := {x = [(x1)T : · · · : (xN)T ]T ∈ Rd×N :

xi = [xi1, · · · , xid]
T ,1 ≤ i ≤ N ; xik = x

j
k ∀ i, j}.

Consider

ẏ(t) =
N∑
i=0

πψ(y(t))(i)hi(y(t)).

where ψ(y) := [yT : yT : · · · : yT ]T for y ∈ Rd.

Then A is invariant under this dynamics.



Theorem supn ‖xn‖ < ∞ a.s. =⇒ x(n)
n↑∞→ a compact

connected non-empty internally chain transitive invariant

set A0 ⊂ A of the N-fold product of the above dynamics,

a.s.

(That is, dynamics in RN wherein each component

satisfies the above o.d.e.)

Stronger results possible for special cases

(e.g., convergence for d = 1!)



Example: Consider hi = −∇f ∀i. Let |N (i)| = M ∀i
and for a prescribed T > 0 (‘temperature’)

px(j|i) =
1

M
e−

(f(xj)−f(xi))+

T , j ∈ N (i),

= 0, j /∈ N (i), j 6= i,

= 1−
∑

k∈N (i)
px(k|i), j = i.

Then

πx =
e−

f(xi)
T

∑
j e
−
f(xj)

T

.



This puts more weight on low values of f

(spatial annealing).

Can think of this scheme as a ‘leaderless swarm’ by

analogy with Particle Swarm Optimization, wherein

each particle uses information from self, neighbors,

and the ‘best so far’, i.e., a leader. Here the last

piece is ‘emergent’ from a distributed gossip.

Another example: Dependence of Px on x due

to mobility.



A ‘stability test’: Define

g(x) :=
∑
i
πx(i)hi(x),

gc(x) :=
g(cx)

c
for c > 0,

g∞(x) := lim
c↑∞

gc(x),

assumed to exist. Then gc, g∞ are Lipschitz.



Consider the ODE (‘scaling limit’)

ẋ∞(t) = g∞(x∞(t)), t ≥ 0.

If this has the origin as the unique asymptotically stable

equilibrium, then supn ‖x(n)‖ <∞ a.s.

Intuition: Iterates large in absolute value track this o.d.e.

after scaling, hence exhibit stabilizing drift.



Nonlinear gossip II: fully nonlinear case

xi(n+1) = fi(x(n))+a(n) [hi(xi(n)) +Mi(n+ 1)] , i ∈ V.

• f := [f1, · · · , fN ]T : (Rd)N 7→ (Rd)N is continuous,

and,

• P (x) = limn↑∞ f
(n)(x) (:= f ◦f ◦· · ·◦f , n times) exists,

with the limit being uniform on compacts. (Then

P (P (x)) = P (f(x)) = f(P (x)) = P (x) ∈
C := {x : P (x) = x}.)



Assumptions:

1. P is Frechet differentiable with its Frechet derivative

P̄x(·) continuous in x.

2. P̄f(·)h(·) is Lipschitz. (Ideally, should be ‘local’, but

we ignore this issue.)

3. E
[
‖M(n+ 1)‖4|Fn

]
≤ F (x(n)) for some continuous F .



Assume supn ‖x(n)‖ <∞ a.s.

Consider the ODE

ẋ(t) = P̄x(t)(h(x(t))).

MAIN RESULT: x(n)→ a compact connected

nonempty internally chain transitive invariant set of

the above ODE contained in C, a.s.



Example: P := a projection to a convex set,

x(n + 1) = f(x(n)) an iterative scheme for calculating

the projection.

In this case, we get a projected version of the distributed

stochastic approximation scheme.

=⇒ Need distributed scheme for computing projections

on, e.g., intersection of convex sets.

COMING SOON: A distributed version of the Boyle-

Dykstra-Han scheme∗

∗joint work with Soham Phade



Some standard issues in distributed computation:

1. Interprocessor delays

2. Asynchrony: not all updates at the same time

3. Updates may be on ‘local clock’



Replace

xi(n+ 1) = fi(x(n)) + a(n)[ · · · · · · ]

by

xi(n+ 1) =

(1− b(ν(i, n))I{i ∈ B(n)})xi(n) + b(ν(i, n))I{i ∈ B(n)}

× fi(x1(n− τ1i(n)), · · · , xN(n− τNi(n))) +

a(ν(i, n))I{i ∈ B(n)}[hi(x1(n− τ1i(n)), · · ·) +Mi(n+ 1)],

with
∑
n b(n) <∞, ∑n b(n)2 <∞, a(n) = o(b(n)).



Here,

• B(n) := { nodes ‘active’ at time n},

• ν(i, n) := # updates by i till time n. Need:

lim inf
n↑∞

ν(i, n)

n
> 0 a.s.

This ensures that all processors update comparably

often.



• τji(n) := the delay with which j’s output was received

by i at time n,

i.e., at time n, i has access to xj(n− τji(n)), but not

xj(m),m > n− τji(n).



• Additional conditions on stepsizes.

Among them: if τ(t), t ≥ 0, denotes the time scaling

(‘algorithmic’ or ‘ODE’ time scale) given by

τ(n) :=
n−1∑
m=0

b(m), n ≥ 0,

with linear interpolation on each [n, n+ 1], then

lim
n↑∞

τ(αn)

τ(n)
→ 1 ∀ α ∈ (0,1).

For example, b(n) = 1
n =⇒ τ(t) ≈ log t will do.



Under above modifications, earlier results hold:

1. Bounded delays ‘squeezed out’ (i.e., they lead to asymp-

totically negligible error) due to time scaling (more

generally, conditional moment conditions suffice)

2. Asynchrony / local clocks compensated for by the

choice of stepsize (get back the original limiting ODE

modulo time-scaling)
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