GOSSIP ALGORITHMS AND THEIR VARIANTS

Vivek Borkar
IIT Bombay

December 12, 2014

Outline

Classical ('vanilla') gossip

Random gossip

Optimal gossip

Nonlinear gossip

‘Gossip’ algorithm

$$
x_{i}(n+1)=\sum_{j=1}^{d} p(j \mid i) x_{j}(n), n \geq 0 .
$$

$P=[[p(j \mid i)]]_{1 \leq i, j \leq d}$ irreducible stochastic matrix with unique stationary distribution $\pi \Longrightarrow x(n) \rightarrow \pi^{T} x(0) 1$.

Research focus on rate of convergence: Design a 'good' P ((doubly) stochastic, low |second eigenvalue|, \cdots) (Boyd, Shah, Ghosh, ...)

Ref: 'Gossip Algorithms', D. Shah, NOW Publishers, 2009.

Often a component of a 'larger' scheme:
$x_{i}(n+1)=(1-a) x_{i}(n)+a \sum_{j=1}^{d} p(j \mid i) x_{j}(n)+\cdots, n \geq 0$.
Examples: Distributed computation, Synchronization,
'Flocking', Coordination of mobile agents

The objective often is 'consensus'.

The DeGroot model

Models opinion formation in society.

$$
x_{i}(n+1)=(1-a) x_{i}(n)+a \sum_{j=1}^{d} p(j \mid i) x_{j}(n), n \geq 0
$$

New opinion a convex combination of own previous opinion and opinions of neighbors/peers/friends.
Convergence \Longrightarrow asymptotic agreement.

What about random gossip?

$$
x_{i}(n+1)=(1-a) x_{i}(n)+a x_{\xi_{n+1}(i)}(n)
$$

where $\xi_{n}(i)$ IID $\approx p(\cdot \mid i)$.

Convergence?

Yes!!

And consensus: $x(n) \rightarrow c \mathbf{1}$, but c may not be $\pi^{T} x(0)$!

Analysis based on re-writing the iteration as
$x_{i}(n+1)=(1-a) x_{i}(n)+a \sum_{j=1}^{d} p(j \mid i) x_{j}(n)+a M_{j}(n+1)$,
where $\{M(n)\}$ is a martingale difference sequence. This is a 'constant step-size stochastic approximation'.

Fact: Standard 'intuition' would suggest asymptotically a random walk along the degenerate direction $c \mathbf{1}, c \in \mathcal{R}$, but we still get convergence because 'noise' $\{M(n)\}$ is also killed asymptotically at a fast enough rate.

But what if we want the actual average $\pi^{T} x(0) ?$

Alternative scheme based on the 'Poisson equation':
for $f(i)=x(0)$,

$$
\begin{equation*}
V(i)=f(i)-\beta+\sum_{j} p(j \mid i) V(j), \quad 1 \leq j \leq d \tag{1}
\end{equation*}
$$

Solution $(V(\cdot), \beta)$ satisfies: β unique, $=\pi^{T} f, V$ unique up to additive scalar.

Can solve (1) by the 'relative value iteration'

$$
V^{n+1}(i)=f(i)-V^{n}\left(i_{0}\right)+\sum_{j} p(j \mid i) V^{n}(j), n \geq 0
$$

The 'offset' $V^{n}\left(i_{0}\right)$ stabilizes the iteration, other choices are possible (e.g., $\frac{1}{d} \Sigma_{k} V^{n}(k)$).
'Reinforcement learning': stochastic approximation version of RVI - for a simulated chain $\left\{X_{n}\right\} \approx p(\cdot \mid \cdot)$.

$$
\begin{aligned}
V^{n+1}(i)= & \left(1-a(n) I\left\{X_{n}=i\right\}\right) V^{n}(i)+ \\
& a(n) I\left\{X_{n}=i\right\}\left(f(i)-V^{n}\left(i_{0}\right)+V^{n}\left(X_{n+1}\right)\right) .
\end{aligned}
$$

Then $V^{n}\left(i_{0}\right) \rightarrow \beta$ a.s.
(Not fully decentralized: needs $V^{n}\left(i_{0}\right)$ to be broadcast. Can replace it by $\frac{1}{d} \Sigma_{k} V^{n}(k)$ which can be calculated in a distributed manner by another gossip on a faster time scale.)
'Multiplicative' analog of the previous case: for $f(i)>0$, choose $V^{0}(i)>0 \forall i$ and do:

$$
V^{n+1}(i)=\frac{f(i) \sum_{j} p(j \mid i) V^{n}(j)}{V^{n}\left(i_{0}\right)}, n \geq 0
$$

More generally, for irreducible nonnegative $Q=[[q(i, j)]$, set

$$
f(i)=\sum_{k} q(i, k), p(j \mid i)=\frac{q(i, j)}{f(i)} .
$$

Then $V^{n}\left(i_{0}\right) \rightarrow$ the Perron-Frobenius eigenvalue of Q, $V^{n} \rightarrow$ the corresponding eigenvector.
('power' method)

Applications : ranking, risk-sensitive control
'Learning' version: for $V^{0}(\cdot)>0$,

$$
\begin{aligned}
V^{n+1}(i)= & \left(1-a(n) I\left\{X_{n}=i\right\}\right) V^{n}(i)+ \\
& a(n) I\left\{X_{n}=i\right\}\left(\frac{f(i) V^{n}\left(X_{n+1}\right)}{V^{n}\left(i_{0}\right)}\right)
\end{aligned}
$$

Numerically better even when the eigenvalue is known!
(The first term on RHS scales slower than the second.)

Similar evolution occurs in models of emergent networks (Jain - Krishna)

OPTIMAL GOSSIP

Gossip for opinion manipulation (e.g., advertising):
$P_{1}:=$ submatrix of P corresponding to $n-m$ rows and corresponding columns,
P_{2} := submatrix of P corresponding to the same $n-m$ rows and remaining m columns.
These m columns correspond to nodes whose 'opinion' is frozen at x^{*}. Then we have (in \mathcal{R}^{n-m}):

$$
x(n+1)=x(n)+a(n)\left[P_{1} x(n)+P_{2} x^{*} \mathbf{1}\right] .
$$

Assume P_{1} strictly sub-stochastic, irreducible. Then:
$x(n) \rightarrow x^{*} \mathbf{1}$ exponentially at rate $\lambda:=$ the Perron-Frobenius eigenvalue of P_{1}.
\Longrightarrow consensus on a pre-specified value.

Objective: Minimize λ over all subsets of cardinality m
(i.e., find the m most important nodes for information dissemination)

Hard combinatorial problem, even the nonlinear programming relaxation is highly non-convex and the projected gradient scheme with multi-start does not do too well.

\Longrightarrow Use 'engineer's licence'.

For $\tau:=$ the first passage time to frozen nodes,
$\lambda=-\lim _{t \uparrow \infty} \frac{1}{t} \log P(\tau>t)$ and $E[\tau]=\sum_{t=0}^{\infty} P(\tau \geq t)$.
\Longrightarrow Use $E[\tau]$ as a surrogate cost.

This is monotone and supermodular \Longrightarrow greedy scheme is $\left(1-\frac{1}{e}\right)$-optimal (Nemhauser-Wolsey-Fisher)

Important observation: best m nodes \neq top m nodes according to individual merit!

What about controlling the transition probabilities?

Consider controlling the nonlinear o.d.e.

$$
\dot{x}(t)=\alpha\left(P_{1}^{u(t)}-I\right) x(t)+\alpha P_{2}^{u(t)}\left(x^{*} \mathbf{1}\right)+(1-\alpha) F(x(t))
$$

with 'cost'

$$
E\left[\int_{0}^{\infty} e^{-\beta t} \sum_{i}\left|x_{i}(t)-x^{*}\right|^{2} d t\right] .
$$

Here $P^{u}=[[p(j \mid i, u)]]$.

Can write down the corresponding Hamilton-Jacobi-Bellman equation and verification theorem.

\Longrightarrow Optimal

$$
u_{i}^{*}(t) \in \operatorname{Argmax}\left(\sum_{j=1}^{n-m} p(j \mid i, \cdot) x_{j}^{*}(t)+x^{*} \sum_{j=n-m+1}^{n} p(j \mid i, \cdot)\right)
$$

for $x<x^{*}$, and,

$$
u_{i}^{*}(t) \in \operatorname{Argmin}\left(\sum_{j=1}^{n-m} p(j \mid i, \cdot) x_{j}^{*}(t)+x^{*} \sum_{j=n-m+1}^{n} p(j \mid i, \cdot)\right)
$$

for $x>x^{*}$.
(\Longrightarrow greatest 'push' towards x^{*}.)

NONLINEAR GOSSIP

STOCHASTIC APPROXIMATION

Consider the Robbins-Monro scheme in \mathcal{R}^{d} :

$$
x(n+1)=x(n)+a(n)[h(x(n))+M(n+1)] .
$$

Here:

- $h: \mathcal{R}^{d} \mapsto \mathcal{R}^{d}$ Lipschitz,
- $\{M(n)\}$ a martingale difference sequence w.r.t.

$$
\mathcal{F}_{n}:=\sigma(x(m), M(m), m \leq n), n \geq 0, \text { i.e., }
$$

$$
E\left[M(n+1) \mid \mathcal{F}_{n}\right]=0
$$

Also, there exists $K \in(0, \infty)$ such that

$$
E\left[\|M(n+1)\|^{2} \mid \mathcal{F}_{n}\right] \leq K\left(1+\|x(n)\|^{2}\right)
$$

- Step-sizes $a(n)>0$ satisfy:

$$
\sum_{n} a(n)=\infty, \sum_{n} a(n)^{2}<\infty
$$

‘ODE Approach’ (Derevitskiī-Fradkov-Ljung)

View the iteration as a noisy discretization of the ODE

$$
\dot{x}(t)=h(x(t)), t \geq 0 .
$$

This is well posed under our hypotheses.

Definition: A set A is invariant if

$$
x(0) \in A \Longrightarrow x(t) \in A \forall t \in \mathcal{R} .
$$

Definition (continued):

A is Internally Chain Transitive if given any $x, y \in A$, and $\epsilon>0, T>0$, we can find $n \geq 1$, and

$$
x=x_{0}, x_{1}, \cdots, x_{n-1}, x_{n}=y \in A
$$

such that for $0 \leq i<n$, the trajectory $x^{i}(t), t \geq 0$, of

$$
\dot{x}^{i}(t)=h\left(x^{i}(t)\right), x^{i}(0)=x_{i}
$$

satisfies $\left\|x^{i}(t)-x^{i+1}\right\|<\epsilon$ for some $t \geq T$.

Benaim's theorem:

If $\sup _{n}\|x(n)\|<\infty$ a.s., then $x(n) \rightarrow$ a compact
connected nonempty internally chain transitive
invariant set of the ODE, a.s.

THE TSITSIKLIS MODEL

- 'Agents'/processors placed at the nodes of an irreducible directed graph \mathcal{G} with node set \mathcal{V} with $|\mathcal{V}|:=N$ and edge set $\mathcal{E} . \mathcal{N}(i):=\{i$'s neighbors $\}$.
- For $i \in \mathcal{V}$ and $P=[[p(j \mid i)]]$ stochastic, \mathcal{G}-compatible,

$$
x_{i}(n+1)=\sum_{j} p(j \mid i) x_{j}(n)+a(n)\left[h\left(x_{i}(n)\right)+M_{i}(n+1)\right]
$$

- At each instant, every node takes,
- a weighted average of its neigbhbors' values
('gossip' component), and,
- adds a correction based on its own computation ('learning’ component).
- Delays, asynchrony, etc. (shall worry about it later).

Similar models in synchronization, flocking/coordination,
. \cdot.

Objective: CONSENSUS

Nonlinear gossip I: quasi-linear case

For each $i \in \mathcal{V}$, consider the d-dimensional iteration

$$
\begin{aligned}
x_{i}(n+1)= & \sum_{j \in \mathcal{N}(i)} p_{x(n)}(j \mid i) x_{j}(n)+ \\
& a(n)\left[h_{i}\left(x_{i}(n)\right)+M_{i}(n+1)\right] .
\end{aligned}
$$

Here, P_{x} is an irreducible stochastic matrix where $x \mapsto P_{x}$ is Lipschitz, with $(\min)_{j}^{+} p_{x}(j \mid i) \geq \Delta>0$.

For a fully distributed algorithm, the i th row of $P_{x(n)}$ should depend only on $x_{j}(n), j \in \mathcal{N}(i) \cup\{i\}$, but we use $x(n)$ without loss of generality.

Let $\pi_{x}:=$ the unique stationary distribution under P_{x}.

CONSENSUS:
if $\sup _{i, n}\left\|x_{i}(n)\right\|<\infty$ a.s., then

$$
\left\|x_{i}(n)-x_{j}(n)\right\| \rightarrow 0 \text { a.s. }
$$

(Not surprising, standard arguments work.)

MAIN RESULT ($d=1$):

Let $\mathcal{A}:=\{c \mathbf{1}: c \in \mathcal{R}\}$. Let $x(n)=\left[x_{1}(n), \cdots, x_{N}(n)\right]^{T}$.

If $\sup _{i, n}\left\|x_{i}(n)\right\|<\infty$ a.s., then almost surely,
$x(n) \rightarrow \mathcal{A}_{0}:=$ an internally chain transitive invariant set of N-fold copy of the ODE

$$
\dot{y}(t)=\sum_{k} \pi_{y} \mathbf{1}(k) h_{k}(y(t)), \quad t \geq 0
$$

contained in \mathcal{A}.

General case: Define

$$
\begin{aligned}
\mathcal{A}:= & \left\{x=\left[\left(x^{1}\right)^{T}: \cdots:\left(x^{N}\right)^{T}\right]^{T} \in \mathcal{R}^{d \times N}:\right. \\
& \left.x^{i}=\left[x_{1}^{i}, \cdots, x_{d}^{i}\right]^{T}, 1 \leq i \leq N ; x_{k}^{i}=x_{k}^{j} \forall i, j\right\} .
\end{aligned}
$$

Consider

$$
\dot{y}(t)=\sum_{i=0}^{N} \pi_{\psi(y(t))}(i) h_{i}(y(t))
$$

where $\psi(y):=\left[y^{T}: y^{T}: \cdots: y^{T}\right]^{T}$ for $y \in \mathcal{R}^{d}$.

Then \mathcal{A} is invariant under this dynamics.

Theorem $\sup _{n}\left\|x_{n}\right\|<\infty$ a.s. $\Longrightarrow x(n) \xrightarrow{n \uparrow \infty}$ a compact connected non-empty internally chain transitive invariant set $\mathcal{A}_{0} \subset \mathcal{A}$ of the N-fold product of the above dynamics, a.s.
(That is, dynamics in \mathcal{R}^{N} wherein each component satisfies the above o.d.e.)

Stronger results possible for special cases
(e.g., convergence for $d=1$!)

Example: Consider $h_{i}=-\nabla f \forall i$. Let $|\mathcal{N}(i)|=M \forall i$ and for a prescribed $T>0$ ('temperature')

$$
\begin{aligned}
p_{x}(j \mid i) & =\frac{1}{M} e^{-\frac{\left(f\left(x_{j}\right)-f\left(x_{i}\right)\right)^{+}}{T}}, j \in \mathcal{N}(i), \\
& =0, \quad j \notin \mathcal{N}(i), j \neq i, \\
& =1-\sum_{k \in \mathcal{N}(i)} p_{x}(k \mid i), \quad j=i .
\end{aligned}
$$

Then

$$
\pi_{x}=\frac{e^{-\frac{f\left(x_{i}\right)}{T}}}{\sum_{j} e^{-\frac{f\left(x_{j}\right)}{T}}} .
$$

This puts more weight on low values of f (spatial annealing).

Can think of this scheme as a 'leaderless swarm' by analogy with Particle Swarm Optimization, wherein each particle uses information from self, neighbors, and the 'best so far', i.e., a leader. Here the last piece is 'emergent' from a distributed gossip.

Another example: Dependence of P_{x} on x due to mobility.

A 'stability test': Define

$$
\begin{aligned}
g(x) & :=\sum_{i} \pi_{x}(i) h_{i}(x) \\
g_{c}(x) & :=\frac{g(c x)}{c} \text { for } c>0, \\
g_{\infty}(x) & :=\lim _{c \uparrow \infty} g_{c}(x)
\end{aligned}
$$

assumed to exist. Then g_{c}, g_{∞} are Lipschitz.

Consider the ODE ('scaling limit')

$$
\dot{x}_{\infty}(t)=g_{\infty}\left(x_{\infty}(t)\right), t \geq 0
$$

If this has the origin as the unique asymptotically stable equilibrium, then $\sup _{n}\|x(n)\|<\infty$ a.s.

Intuition: Iterates large in absolute value track this o.d.e. after scaling, hence exhibit stabilizing drift.

Nonlinear gossip II: fully nonlinear case

$x_{i}(n+1)=f_{i}(x(n))+a(n)\left[h_{i}\left(x_{i}(n)\right)+M_{i}(n+1)\right], i \in \mathcal{V}$.

- $f:=\left[f_{1}, \cdots, f_{N}\right]^{T}:\left(\mathcal{R}^{d}\right)^{N} \mapsto\left(\mathcal{R}^{d}\right)^{N}$ is continuous, and,
- $P(x)=\lim _{n \uparrow \infty} f^{(n)}(x)(:=f \circ f \circ \cdots \circ f, n$ times $)$ exists, with the limit being uniform on compacts. (Then

$$
\begin{aligned}
& P(P(x))=P(f(x))=f(P(x))=P(x) \in \\
& C:=\{x: P(x)=x\} .)
\end{aligned}
$$

Assumptions:

1. P is Frechet differentiable with its Frechet derivative $\bar{P}_{x}(\cdot)$ continuous in x.
2. $\bar{P}_{f(\cdot)} h(\cdot)$ is Lipschitz. (Ideally, should be 'local', but we ignore this issue.)
3. $E\left[\|M(n+1)\|^{4} \mid \mathcal{F}_{n}\right] \leq F(x(n))$ for some continuous F.

Assume $\sup _{n}\|x(n)\|<\infty$ a.s.

Consider the ODE

$$
\dot{x}(t)=\bar{P}_{x(t)}(h(x(t)))
$$

MAIN RESULT: $x(n) \rightarrow$ a compact connected nonempty internally chain transitive invariant set of the above ODE contained in C, a.s.

Example: $P:=$ a projection to a convex set, $x(n+1)=f(x(n))$ an iterative scheme for calculating the projection.

In this case, we get a projected version of the distributed stochastic approximation scheme.
\Longrightarrow Need distributed scheme for computing projections on, e.g., intersection of convex sets.

COMING SOON: A distributed version of the Boyle-
Dykstra-Han scheme*
*joint work with Soham Phade

Some standard issues in distributed computation:

1. Interprocessor delays
2. Asynchrony: not all updates at the same time
3. Updates may be on 'local clock'

Replace

$$
x_{i}(n+1)=f_{i}(x(n))+a(n)[\cdots \cdots]
$$

by

$$
\begin{aligned}
& x_{i}(n+1)= \\
& \quad(1-b(\nu(i, n)) I\{i \in B(n)\}) x_{i}(n)+b(\nu(i, n)) I\{i \in B(n)\} \\
& \quad \times f_{i}\left(x_{1}\left(n-\tau_{1 i}(n)\right), \cdots, x_{N}\left(n-\tau_{N i}(n)\right)\right)+ \\
& \quad a(\nu(i, n)) I\{i \in B(n)\}\left[h_{i}\left(x_{1}\left(n-\tau_{1 i}(n)\right), \cdots\right)+M_{i}(n+1)\right]
\end{aligned}
$$

with $\sum_{n} b(n)<\infty, \sum_{n} b(n)^{2}<\infty, a(n)=o(b(n))$.

Here,

- $B(n):=\{$ nodes 'active' at time $n\}$,
- $\nu(i, n):=\#$ updates by i till time n. Need:

$$
\liminf _{n \uparrow \infty} \frac{\nu(i, n)}{n}>0 \text { a.s. }
$$

This ensures that all processors update comparably often.

- $\tau_{j i}(n):=$ the delay with which j 's output was received by i at time n,
i.e., at time n, i has access to $x_{j}\left(n-\tau_{j i}(n)\right)$, but not $x_{j}(m), m>n-\tau_{j i}(n)$.
- Additional conditions on stepsizes.

Among them: if $\tau(t), t \geq 0$, denotes the time scaling ('algorithmic' or 'ODE' time scale) given by

$$
\tau(n):=\sum_{m=0}^{n-1} b(m), n \geq 0
$$

with linear interpolation on each $[n, n+1]$, then

$$
\lim _{n \uparrow \infty} \frac{\tau(\alpha n)}{\tau(n)} \rightarrow 1 \forall \alpha \in(0,1)
$$

For example, $b(n)=\frac{1}{n} \Longrightarrow \tau(t) \approx \log t$ will do.

Under above modifications, earlier results hold:

1. Bounded delays 'squeezed out' (i.e., they lead to asymptotically negligible error) due to time scaling (more generally, conditional moment conditions suffice)
2. Asynchrony / local clocks compensated for by the choice of stepsize (get back the original limiting ODE modulo time-scaling)

References

1. VB, R. Makhijani, R. Sundaresan, Asynchronous gossip for averaging and spectral ranking, IEEE J. Selected Topics in Signal Processing 8(4), 2014.
2. VB, A. Karnik, U. Jayakrishnan Nair, S. Nalli, Manufacturing consent, to appear in IEEE Transactions on Automatic Control.
3. A. S. Mathkar, VB, Nonlinear gossip, submitted.
