Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000	0000000 00000000	

Filtering, drift homotopy and target tracking University of Bristol

Vasileios Maroulas

University of Tennessee and University of Bath

maroulas@math.utk.edu

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 00000000	0000000 00000000	

1 Introduction

- Why multi-target tracking is a problem?
- Motivation via single-target tracking

2 Particle Filters Algorithms for multiple targets

- Classical Algorithm
- Drift homotopy

3 Numerical Results

- Example 1: Double-well potential
- Example 2: Mutli-target-tracking

4 Conclusion

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	000000000				
	00000000	00000000	00000000		
Why multi-target tracking is a problem?					

Goal

Central problem arising in many scientific and engineering applications

 Tracking accurately, efficiently and simultaneously N (large) targets

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	000000000				
Why multi-target tracking is a problem?					

Example: Tracking Wildlife

 Argos: a satellite-based system collecting data from mobile platforms.

 Ecologists tag and track wildlife through Argos consulting how wildlife behaves.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Tracking Wildlife

- 1 Transmitters on animals relay pulses of data
- 2 Satellite collects data and measures signals' frequencies
- 3 Satellite relays data to terrestrial receiving sensors
- 4 Processing center processes data
- 5 Researchers view information via Internet avenues.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
Why multi-target tracking is a problem?					

Goal

Tracking simultaneously N (large) targets in a fixed domain.

Figure: Image was captured by Summer REU students mentored by A. Nebenführ and **VM**

• A plethora of scenarios should be considered.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

\sim	. 1		
	гι	IIn	

Introduction

Particle Filters Algorithms for multiple targets

Numerical Results

Conclusion

Why multi-target tracking is a problem?

Decision on Target Number

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 00000000	0000	0000000 00000000		
Why multi-target tracking is a problem?					

Independent Motion

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	\sim			
Outime		÷		
		L		

Introduction

Particle Filters Algorithms for multiple targets

Numerical Results

Conclusion

Why multi-target tracking is a problem?

Dependent Motion

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000				
Why multi-target tracking is a problem?					

Mixed Motion

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Introduction

Particle Filters Algorithms for multiple targets

Numerical Results

Conclusion

Why multi-target tracking is a problem?

Change of Motion and Change of Target Number

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion		
	000000000 00000000	0000	0000000 00000000			
Why multi-target tracking is a problem?						

Strategies

- Random Finite Set Filters
 - Consider the targets and associated observations as sets
 - Probability Hypothesis Density (PHD)
 - Cardinalized Probability Hypothesis Density (CPHD)
 - Mahler, Vo, Vo, VM...
- Sequential Statistics
 - Sequentially detect and estimate targets
 - Grossi, Lops, VM...

Particle Filtering

 Andrieu, Arulampalam, Bain, Berzuini, Beskos, Crisan, Chopin, Doucet, Gilks, Godsill, Gordon, Fearnhead, Kantas, Latuszynski, Lee, Maskel, Papavasiliou, Papaspiliopoulos, Roberts, Sherlock, Singh, Stinis, Stuart, Whiteley, Weare, West.....

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 0000000	0000 00000000	0000000 00000000		
Mativation via single target tracking					

Single–Object Bayes filtering: Initialization

■ t = 0: state $x \in \mathbb{R}^N$ distributed according to a priori $f_0(x)$, where $x = (p_x, p_y, p_z, v_x, v_y, v_z, a_x, a_y, a_z)$

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 0000000	0000 00000000	0000000 00000000		
Motivation via single target tracking					

Single–Object Bayes filtering: Initialization

- t = 0: state $x \in \mathbb{R}^N$ distributed according to a priori $f_0(x)$, where $x = (p_x, p_y, p_z, v_x, v_y, v_z, a_x, a_y, a_z)$
- If there is good information on the target's position then f₀ is a very peaky density

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 0000000	0000 00000000	0000000 00000000		
Mativation via single-target tracking					

Single–Object Bayes filtering: Initialization

- t = 0: state $x \in \mathbb{R}^N$ distributed according to a priori $f_0(x)$, where $x = (p_x, p_y, p_z, v_x, v_y, v_z, a_x, a_y, a_z)$
- If there is good information on the target's position then f₀ is a very peaky density
- If not sufficient knowledge then f₀ could be the uniform distribution.

Vasileios Maroulas

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 0 000000	0000	0000000 00000000		
Mativation via cinele target tracking					

Single–Object Bayes filtering: Prediction Step

Object moves between time steps t and t + 1. Dynamics of the statistical motion of the target captured:

$$X_{t+1} = \phi_t(x', V_t),$$

where V_t is a randomly distributed noise and $\phi_t : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ is a family of nonlinear, nonsingular functions.

• The *predicted* motion of the object is encapsulated:

$$f_{t+1|t}(x|z_{1:t}) = \int f_{t+1|t}(x|x')f_{t|t}(x'|z_{1:t})dx', \quad (1)$$

where $f_{t+1|t}(x|x')$ is the Markov transition density and $z_{1:t} \doteq \{z_1, z_2, \cdots, z_t\}.$

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 0000000	0000 00000000	0000000 00000000		
Masteria de stante serves sus altern					

Motivation via single-target tracking

Single–Object Bayes filtering: Update Step

- At recursive time t + 1 a new observation is collected, $z_{t+1} \in \mathbb{R}^M$.
- (1) needs to be updated using z_{t+1} .
- $Z_{t+1} = \eta_{t+1}(x, W_{t+1})$, where W_{t+1} is a randomly distributed noise, $\eta : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^M$ is a family of nonsingular, nonlinear transformations.
- The *corrected* motion of the object is propagated:

 $f_{t+1|t+1}(x|z_{1:t+1}) \propto f_{t+1}(z_{t+1}|x) f_{t+1|t}(x|z_{1:t}), \qquad (2)$

where $f_{t+1}(z|x)$ is the likelihood function of the sensor.

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 00000000	0000 00000000	0000000 00000000		
Motivation via single-target tracking					

Particle Filter Approach

- Estimate $E[f(X_{T_k})|\{Z_{T_j}\}_{j=1}^k]$ or $p(X_{T_k}|\{Z_{T_j}\}_{j=1}^k)$
- X_{T_k} : state vector of our stochastic system.
- Z_{T1}, · · · , Z_{TK}: noisy observations of the state of the system at specified instants T₁, · · · , T_K.
- Handle non-linear and/or non-Gaussian cases

Vasileios Maroulas

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 00000000	0000 00000000	0000000 00000000		
Motivation via single-target tracking					

- Computing averages w.r.t. $p(X_{T_k}|\{Z_{T_i}\}_{i=1}^k)$ is difficult
- PF falls in the category of importance sampling.
- Sampling from $q(X_{T_k}|\{Z_{T_j}\}_{j=1}^k)$ which can be easily sampled

•
$$E[f(X_{T_k})|\{Z_{T_j}\}_{j=1}^k] \approx \frac{1}{N} \sum_{n=1}^N f(X_{T_k}^n) \frac{p(X_{T_k}^n|\{Z_{T_j}\}_{j=1}^k)}{q(X_{T_k}^n|\{Z_{T_j}\}_{j=1}^k)}$$

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 00000000	0000	0000000 00000000		
Motivation via single-target tracking					

- Computing averages w.r.t. $p(X_{T_k}|\{Z_{T_i}\}_{i=1}^k)$ is difficult
- PF falls in the category of importance sampling.
- Sampling from $q(X_{T_k}|\{Z_{T_j}\}_{j=1}^k)$ which can be easily sampled

$$= E[f(X_{T_k})|\{Z_{T_j}\}_{j=1}^k] \approx \frac{1}{N} \sum_{n=1}^N f(X_{T_k}^n) \frac{p(X_{T_k}^n|\{Z_{T_j}\}_{j=1}^k)}{q(X_{T_k}^n|\{Z_{T_j}\}_{j=1}^k)}$$

$$E[f(X_{T_k})|\{Z_{T_j}\}_{j=1}^k] \approx \frac{\sum_{n=1}^N f(X_{T_k}^n) \frac{p(X_{T_k}^n|\{Z_{T_j}\}_{j=1}^k)}{q(X_{T_k}^n|\{Z_{T_j}\}_{j=1}^k)}}{\sum_{n=1}^N \frac{p(X_{T_k}^n|\{Z_{T_j}\}_{j=1}^k)}{q(X_{T_k}^n|\{Z_{T_j}\}_{j=1}^k)}}$$
(3)

• where
$$N \approx \sum_{n=1}^{N} \frac{P(X_{T_k}^n | \{Z_{T_j}\}_{j=1}^k)}{q(X_{T_k}^n | \{Z_{T_j}\}_{j=1}^k)}.$$

Vasileios Maroulas

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	0000000000 00000000	0000	0000000 00000000		
Motivation via single-target tracking					

Filtering is based on the recursion:

$$p(X_{T_k}|\{Z_{T_j}\}_{j=1}^k) \propto g(X_{T_k}, Z_{T_k}) p(X_{T_k}|\{Z_{T_j}\}_{j=1}^{k-1}), \qquad (4)$$

where

$$p(X_{T_k}|\{Z_{T_j}\}_{j=1}^{k-1}) = \int p(X_{T_k}|X_{T_{k-1}})p(X_{T_{k-1}}|\{Z_{T_j}\}_{j=1}^{k-1})dX_{T_{k-1}}.$$
(5)

Particle filtering is a recursive implementation of the importance sampling approach.

$$q(X_{T_k}|\{Z_{T_j}\}_{j=1}^k) = p(X_{T_k}|\{Z_{T_j}\}_{j=1}^{k-1}),$$

then from (4) we get

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
	00000000000000000000000000000000000000	0000	0000000 00000000		
Motivation via single-target tracking					

$$E[f(X_{T_i})|\{Z_{T_j}\}_{j=1}^k] \approx \frac{\sum_{n=1}^N f(X_{T_k}^n)g(X_{T_k}^n, Z_{T_k})}{\sum_{n=1}^N g(X_{T_k}^n, Z_{T_k})}, \qquad (6)$$

N is the number of samples.

From (6) if we can construct samples from $p(X_{T_k}|\{Z_{T_j}\}_{j=1}^{k-1})$ then we can define the (normalized) weights

$$W_{T_k}^n = rac{g(X_{T_k}^n, Z_{T_k})}{\sum_{n=1}^N g(X_{T_k}^n, Z_{T_k})}$$

 Weigh the samples and the weighted samples will be distributed according to the posterior distribution p(X_{T_k} | {Z_{T_i}}^k_{i=1})

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 0000000	0000	0000000 00000000	
Motivation v	via single-target track	ing		

Need to associate each target to an observation.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

- Need to associate each target to an observation.
- Twofold problem:
 - Combinatorial explosion of the number of possible target-observation arrangements.
 - Targets may come very close or even cross paths requiring the target-observation problem to be solved at every step.
- Target-observation relies heavily on the accuracy of the underlying filtering algorithm, i.e. if the filtering algorithm performs poorly at one step then the targets' samples generated at the next step can be off from their true trajectories.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	• • • • • • • • • • • • • • • • • • •	0000000 00000000	
Classical AI	gorithm			

Classical Algorithm

1 Begin with N unweighted samples $X_{T_{k-1}}^n$ from

$$p(X_{T_{k-1}}|\{Z_{T_j}\}_{j=1}^{k-1}) = \prod_{\lambda=1}^{n} p(X_{\lambda,T_{k-1}}|\{Z_{\lambda,T_j}\}_{j=1}^{k-1}).$$

2 Prediction: Generate N samples $X_{T_k}^{\prime n}$ from

$$p(X_{\mathcal{T}_k}|X_{\mathcal{T}_{k-1}}) = \prod_{\lambda=1}^{\Lambda} p(X_{\lambda,\mathcal{T}_k}|X_{\lambda,\mathcal{T}_{k-1}}).$$

Target-Observation Association: Hungarian Algorithm
 Update: Evaluate the weights

$$W^n_{T_k} = \frac{\prod_{\lambda=1}^{\Lambda} g_{\lambda}(X'^n_{\lambda,T_k},Z_{\lambda,T_k})}{\sum_{n=1}^{N} \prod_{\lambda=1}^{\Lambda} g_{\lambda}(X'^n_{\lambda,T_k},Z_{\lambda,T_k})}.$$

Outline

000000000

Particle Filters Algorithms for multiple targets

Numerical Results

Conclusion

Classical Algorithm

1 picture = 1,000 words

Figure: Particles evolution in the generic particle filter. Courtesy of Casarin (2004)

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion	
		0000			
	00000000	00000000	000000000		
Classical Algorithm					

Classical Algorithm

- Most particles will have a negligible weight with respect to the observation.
- **5 Resampling**: Creating more copies of the samples with significant weights based on the current observation.
- 6 Set k = k + 1 and proceed to Step 1.

Outline

00000000

Particle Filters Algorithms for multiple targets

Numerical Results

Conclusion

Classical Algorithm

1 picture= 1,000 words

Figure: Particles evolution in the generic particle filter with resampling. Courtesy of Casarin (2004)

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Move samples into statistically significant regions

- Particle filters still need a lot of samples to approximate accurately the target distribution.
- One extra step to move samples in statistically significant regions (Gillks-Berzuini 1999, Weare 2009)
- Must preserve the conditional density $p(X_{T_k}|\{Z_{T_i}\}_{i=1}^k)$.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 00000000	0000000 00000000	
Duift home	* a			

Move samples into statistically significant regions

- Create more copies not only of the good samples according to the current observation, but also of the values (initial conditions) of the samples at the previous observation.
- These values are the ones which evolved into good samples for the current observation.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 0000000	0000000 00000000	
Drift home	topy			

MCMC step appended: a 2-step process:

STEP 1:

Resampling: Generate *N* independent uniform random variables $\{\theta^n\}_{n=1}^N$ in (0, 1). For n = 1, ..., N let $(X_{T_{k-1}}^n, X_{T_k}^n) = (X_{T_{k-1}}^{\prime j}, X_{T_k}^{\prime j})$ where $\sum_{l=1}^{j-1} W_{T_k}^l \le \theta^j < \sum_{l=1}^j W_{T_k}^l, \ j = 1, \cdots, N$

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 0000000	0000000 00000000	
Drift homo	topy			

MCMC step appended: a 2-step process:

STEP 2:

Through Bayes rule one can show that the posterior density $p(X_{T_k}|\{Z_{T_i}\}_{i=1}^k)$ is preserved if sampling from

 $g(X_{T_k}, Z_{T_k}) p(X_{T_k} | X_{T_{k-1}}),$

where $X_{T_{k-1}}$ are given by the modified resampling step.

- This is a problem of conditional sampling.
- Important issue is to perform the necessary sampling efficiently

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 00000000	0000000 00000000	
Drift homo	topy			

Drift homotopy

- Consider the signal process: $dX_t = a(X_t)dt + \sigma(X_t)dB_t$
- Consider an SDE system with modified drift

$$dY_t = b(Y_t)dt + \sigma(Y_t)dB_t,$$

 $b(Y_t)$ is suitably chosen to facilitate the conditional sampling problem.

• Consider a collection of L + 1 modified SDE systems

 $dY_t^\ell = (1 - \epsilon_\ell)b(Y_t^\ell)dt + \epsilon_\ell a(Y_t^\ell)dt + \sigma(Y_t^\ell)dB_t,$

$$\ell = 0, \ldots, L$$
, with $\epsilon_{\ell} < \epsilon_{\ell+1}, \ \epsilon_0 = 0$ and $\epsilon_L = 1$.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 000000000	0000000 00000000	
Drift homo	topy			

Drift homotopy

Instead of sampling directly from the density

$$g(X_{T_k}, Z_{T_k}) \rho(X_{T_k} | X_{T_{k-1}})$$
(7)

Sample from the density

$$g(Y_{T_k}^0, Z_{T_k}) p(Y_{T_k}^0 | X_{T_{k-1}})$$

and **gradually morph** the sample into a sample of (7) by sampling from the ℓ levels:

$$g(Y_{T_k}^{\ell}, Z_{T_k}) p(Y_{T_k}^{\ell} | X_{T_{k-1}})$$

Vasileios Maroulas

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	000000000000000000000000000000000000000	0000 000000000	0000000	
Drift homot	ору			

The levels from 0 to L - 1 are auxiliary and only serve the purpose of providing the sampler at level L with a better initial condition. The final sampling is performed at the Lth level which corresponds to the original SDE.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 000000000	0000000 00000000	
Drift homot	ору			

- The levels from 0 to L 1 are auxiliary and only serve the purpose of providing the sampler at level L with a better initial condition. The final sampling is performed at the Lth level which corresponds to the original SDE.
- The idea behind drift relaxation resembles the main idea behind *Homotopy Methods* used in deterministic optimization problems.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 000000000	0000000 00000000	
Drift homot	ору			

- The levels from 0 to L 1 are auxiliary and only serve the purpose of providing the sampler at level L with a better initial condition. The final sampling is performed at the Lth level which corresponds to the original SDE.
- The idea behind drift relaxation resembles the main idea behind *Homotopy Methods* used in deterministic optimization problems.
- The drift homotopy algorithm is similar to Simulated Annealing (SA) used in equilibrium statistical mechanics. However, instead of modifying a temperature as in SA, here we modify the drift of the system.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 00000000	0000000 00000000	
Drift homo	topy			

Drift Homotopy algorithm

Sample through MCMC the density $g(Y_{T_k}^0, Z_{T_k})p(Y_{T_k}^0|X_{T_{k-1}})$.

■ For l = 1, ..., L take the last sample from the (l − 1)st SDE and use it as in initial condition for MCMC sampling of the density

$$g(Y_{T_k}^{\ell}, Z_{T_k}) p(Y_{T_k}^{\ell} | X_{T_{k-1}})$$

at the ℓ th level.

• Keep the last sample at the *L*th level.

Vasileios Maroulas

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 00000000	0000000 00000000	
Drift homo	topy			

MCMC step with drift homotopy appended

- **5 Resampling:** Based on the current and previous observation.
- Drift homotopy MCMC step: For n = 1,..., N and λ = 1,..., Λ choose a modified drift (possibly different for each n and each λ). Construct through drift homotopy a Markov chain for Yⁿ_{Tk} with initial value Xⁿ_{Tk} and stationary distribution

$$\prod_{\lambda=1}^{\Lambda} g_{\lambda}(Y_{\lambda}^{n}, Z_{\lambda, T_{k}}) p_{\lambda}(Y_{\lambda}^{n}|X_{\lambda, T_{k-1}}^{n}).$$

7 Set
$$X_{T_k}^n = Y_{T_k}^n$$
.
8 Set $k = k + 1$ and proceed to Step 1.

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
Example 1:	Double-well potential			

Model: Double-well potential

• Consider the diffusion problem in a double well potential:

$$dX_t = -4X_t(X_t^2 - 1)dt + \frac{1}{2}dB_t$$
(8)

- The deterministic part of (8) describes a gradient flow for potential U(x) = x⁴ - 2x² which has two minima at ±1.
- If the stochastic term is 0 then the solution wanders around one of the minima depending on the value of the initial condition.
- A weak stochastic term leads to rare transitions between the minima of the potential.
- Discretize (8) by an Euler-Maruyama scheme with step size $\Delta t = 10^{-2}$

Model: Observation

• Observations are considered an additive Gaussian model:

$$Z_{t_k}=X_{t_k}+\xi_{t_k},$$

- Noise $\xi_{t_k} \sim \mathcal{N}(0, .01)$.
- Consider 10 observations in total at $t_k = k = 1, \cdots, 10$.
- Observations alternate between 1 and -1: Z_{tk} is around 1 if k is odd, and Z_{tk} is around -1 if k is even.

• Kang and **VM** (2013):
$$\xi_{t_k} \sim GMM$$

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
Example 1: E	Double-well potential			

Potential U

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
Example 1:	Double-well potential			

Drift homotopy

- The difficulty in tracking the observations comes from the rate transitions between the two minima.
- Take $dY_t = b(Y_t)dt + \frac{1}{2}dB_t$.
- Choose $b(Y_t) = -c4Y_t(Y_t^2 1)$, where 0 < c < 1.
- The drift corresponds to the potential $W(y) = c(y^4 2y^2)$.
- *W*(*y*) has its minima also located at ±1 but the value at the minima is −*c*.
- This means that the wells corresponding to the minima are shallower
- Transitions between the two wells become more frequent.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion		
Example 1:	Example 1: Double-well potential					

Potential W

Figure: Potentials which correspond to the modified drift of (8).

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results 00000●0 00000000	Conclusion
Example 1:	Double-well potential			

Drift homotopy

Let consider the SDE with the modified drifts and its corresponding L levels,

$$dY_t^{\ell} = (1 - \epsilon_{\ell})b(Y_t^{\ell})dt + \epsilon_{\ell}a(Y_t^{\ell})dt + \frac{1}{2}dB_t$$
(9)

where $\ell = 0, \cdots, L$, $\epsilon_{\ell} = \frac{\ell}{L}$ for $\ell \neq 0$ and $\epsilon_{\ell} = 0$ when $\ell = 0$.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
			000000	
Example 1:	Double-well potential			

Numerical Results

Figure: Comparison of the conditional expectation of X_t computed by the generic PF and the MCMC PF.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results ○○○○○○○ ●○○○○○○○○	Conclusion
Example 2:	Mutli-target-tracking			

Model: Dynamics

- At each time t we have a total of Λ_t targets
- The evolution of the λth target (λ = 1,..., Λ_t) is given by the near constant velocity model:

$$\mathbf{x}_{\lambda,t} = \mathbf{A}\mathbf{x}_{\lambda,t-1} + \mathbf{B}\mathbf{v}_{\lambda,t} = [x_{\lambda,t}, \dot{x}_{\lambda,t}, y_{\lambda,t}, \dot{y}_{\lambda,t}]^*,$$
$$\mathbf{A} = \begin{bmatrix} 1 & T & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & T \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} T^2/2 & 0 \\ T & 0 \\ 0 & T^2/2 \\ 0 & T \end{bmatrix}, (10)$$

• T = 1 is the time between observations.

•
$$\mathbf{v}_{\lambda,t}$$
 i.i.d $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{v}}), \mathbf{\Sigma}_{\mathbf{v}} = diag(\sigma_x^2, \sigma_y^2), \ \sigma_x^2 = \sigma_y^2 = 1.$

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results ○○○○○○ ○●○○○○○○○	Conclusion
Example 2:	Mutli-target-tracking			

Model: Observation

Bearing θ and range r of a target. Given the λ th target propagates the *m*th observation

$$\mathbf{Z}_{m,t} = \begin{bmatrix} \arctan(\frac{y_{\lambda,t}}{x_{\lambda,t}}) \\ (x_{\lambda,t}^2 + y_{\lambda,t}^2)^{1/2} \end{bmatrix} + \mathbf{w}_{m,t}.$$
 (11)

•
$$\mathbf{w}_{m,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_w)$$
, where $\mathbf{\Sigma}_w = diag(\sigma_{\theta}^2, \sigma_r^2)$

• For the numerical experiments we chose $\sigma_{\theta}^2 = 10^{-4}$ and $\sigma_r^2 = 1$.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Model: Comments

- The synthesized target tracks were created by evolving a number of targets according to (10) and recording the state of each target at each step.
- The observations were created in bearing and range space θ, r by using (11).
- The number of targets at each observation instant is: $\Lambda_0=\dots=\Lambda_{100}=10$

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
Example 2:	Mutli-target-tracking			

Drift homotopy

The dynamics of the targets for the modified drift system at the ℓth level are given by

$$\mathbf{y}_{\lambda,t}^\ell = \mathbf{A}\mathbf{y}_{\lambda,t-1}^\ell + \mathbf{C}^\ell + \mathbf{B}\mathbf{v}_{\lambda,t},$$

where $y_{1,\lambda,t}, y_{3,\lambda,t}$ and $y_{2,\lambda,t}, y_{4,\lambda,t}$ are the *xy* positions and velocities respectively for the λ th target at time *t*.

The matrix \mathbf{c}^{ℓ} is given by

$$\mathbf{c}^{\ell} = (1 - \epsilon_I) [\mu_x \frac{T^2}{2}, \mu_x T, \mu_y \frac{T^2}{2}, \mu_y T]^*$$

where $\epsilon_{\ell} \in [0, 1]$, $\ell = 0, ..., L$, with $\epsilon_{\ell} < \epsilon_{\ell+1}$, $\epsilon_0 = 0$ and $\epsilon_L = 1$. In the numerical experiments we chose L = 10 i.e. 10 levels for the drift homotopy.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
Example 2:	Mutli-target-tracking			

Drift homotopy

where μ_x^n and μ_y^n for the *n*-th sample as

$$\mu_{x,\lambda}^{n} = \frac{\frac{1}{N} \sum_{n'=1}^{N} (y_{1,\lambda,k-1}^{n'} + y_{2,\lambda,k-1}^{n'}T) - y_{1,\lambda,k-1}^{n}}{T^{2}/2} - \frac{2y_{2,\lambda,k-1}^{n}}{T}$$

and

$$\mu_{y,\lambda}^{n} = \frac{\frac{1}{N} \sum_{n'=1}^{N} (y_{3,\lambda,k-1}^{n'} + y_{4,\lambda,k-1}^{n'}T) - y_{3,\lambda,k-1}^{n}}{T^{2}/2} - \frac{2y_{4,\lambda,k-1}^{n}}{T}.$$

This choice of modified drift corresponds to a mean drift while at the same time offsetting the individual sample's properties. More sophisticated drift choices will be explored in future work.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
			000000000	
Example 2:	Mutli-target-tracking			

Numerical Results

(a) MCMC PF with 20 samples (b) Generic PF with 5000 samples Figure: Grey lines: true target, Crosses: observations, Colored lines: estimates

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
Example 2:	Mutli-target-tracking			

Error

The RMS error per target (RMSE) is defined with reference to the true target tracks by the formula

$$RMSE(t) = \sqrt{\frac{1}{\Lambda_t} \sum_{k=1}^{\Lambda_t} \|\mathbf{x}_{k,t} - E[\mathbf{x}_{k,t}|Z_1, \dots, Z_t]\|^2}$$
(12)

 $\mathbf{x}_{k,t}$ is the true state vector for target k. $E[\mathbf{x}_{k,t}|Z_1, \ldots, Z_t]$ is the conditional expectation estimate calculated with the MCMC or generic particle filter depending on whose filter's performance we want to calculate.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
			000000	
			000000000	
Example 2:	Mutli-target-tracking			

Figure: Comparison of RMS error per target for the MCMC particle filter and the generic particle filter.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
			00000000	
Example 2:	Mutli-target-tracking			

Figure: Comparison of RMS error per target for the MCMC particle filter with drift homotopy (L = 10) and the MCMC particle filter without drift homotopy (L = 0).

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000	0000000 00000000	

Conclusion

- Drift homotopy: new MCMC method appended
- MCMC particle filter follows accurately the targets
- There is no ambiguity in the identification of the target tracks.
- The accuracy of the generic particle filter's estimate deteriorates fast.

• Drift homotopy error grows slower in comparison without $(\ell = 0)$.

Outline	Introduction 0000000000 00000000	Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion

References

- VM and P. Stinis. A drift homotopy Monte Carlo approach to particle filtering for multi-target tracking, *Journal of Computational Physics*, 231(2), pp. 602-611, 2012.
- K. Kang and VM. Drift homotopy methods for a nonGaussian filter, *The Proceedings of Information Fusion*, pp. 1088 -1094, 2013.
- R.P.S. Mahler and VM. Tracking spawning objects. IET Radar, Sonar & Navigation, 7(3), pp.321-331, 2013.
- VM and J. Xiong. Large deviations for optimal filtering with fractional Brownian motion. *Stochastic Processes and their Applications*, 123 (6), pp. 2340-2352, 2013.

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Conclusion

Thanks to my Research Sponsors

SIMONS FOUNDATION Advancing Research in Basic Science and Mathematics

IMA Institute for Mathematics and its Applications

LOCKHEED MARTIN We never forget who we're working for"

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 00000000	0000000 00000000	

Conditional path sampling

- Consider an SDE: $dX_t = a(X_t)dt + \sigma(X_t)dB_t$
- Discretize the SDE in [0,T] using a step size $\Delta t = T/I$
- We want to construct in the time interval [0, T] sample paths from the SDE such that the endpoints are distributed according to densities h(X₀) and g(X_T), i.e. need to sample the density

$$h(X_{T_0}) \prod_{i=1}^{l} p(X_{T_i}|X_{T_i-1})g(X_T)$$

• Assuming that the transitions densities $p(X_{T_i}|X_{T_{i-1}})$ can be evaluated then we can use MCMC.

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	000000000000000000000000000000000000000	0000 00000000	0000000 00000000	

ℓ th density for the double-well potential problem

We can replace the sampling the sampling of $g(X_{T_k}, Z_{T_k})p(X_{T_k}|X_{T_{k-1}})$ by sampling from the density

$$\exp\left[-\frac{(Z_{T_k} - X_T^n(\{\Delta B_i^n\}_{i=0}^{l-1}))^2}{2\sigma_{\xi}^2} + \sum_{i=0}^{l-1}\frac{(\Delta B_i^n)^2}{2\Delta t}\right]$$

Instead we use drift homotopy to produce samples by considering the L system of modified SDEs:

$$\exp\left[-\frac{(Z_{T_k} - Y_T^{\ell,n}(\{\Delta B_i^{\ell,n}\}_{i=0}^{l-1}))^2}{2\sigma_{\xi}^2} + \sum_{i=0}^{l-1}\frac{(\Delta B_i^{\ell,n})^2}{2\Delta t}\right]$$

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu

Outline		Particle Filters Algorithms for multiple targets	Numerical Results	Conclusion
	0000000000 00000000	0000 00000000	0000000 00000000	

ℓ th density for multi-target tracking problem

For the *n*th sample, the density to be sampled at the *I*-th level is

$$\begin{split} \prod_{\lambda=1}^{\Lambda_{t_k}} g_x(z_{\lambda,k}^{\ell,n}, Z_{\theta,\lambda,k}) g_y(z_{\lambda,k}^{\ell,n}, Z_{r,\lambda,k}) p(z_{\lambda,k}^{\ell,n} | z_{\lambda,k-1}^{\ell,n}) \\ \propto \prod_{\lambda=1}^{\Lambda_{t_k}} \exp\left(-\left\{\frac{\left(Z_{\theta,\lambda,k} - \arctan\left(\frac{z_{3,\lambda,k}^{\ell,n}}{z_{1,\lambda,k}}\right)\right)^2}{2\sigma_{\theta}^2} + \frac{\left(Z_{r,\lambda,k} - \left(z_{1,\lambda,k}^{\ell,n-2} + z_{3,\lambda,k}^{\ell,n-2}\right)^{1/2}\right)^2}{2\sigma_r^2} + \frac{\left(v_{x,\lambda,k}^n\right)^2 + \frac{\left(v_{y,\lambda,k}^n\right)^2}{2\sigma_y^2}\right\}\right), \quad (13) \end{split}$$

Vasileios Maroulas

University of Tennessee and University of Bath maroulas@math.utk.edu