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Why multi-target tracking is a problem?

Goal

Central problem arising in many scientific and engineering
applications

Tracking accurately, efficiently and simultaneously N (large)
targets
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Why multi-target tracking is a problem?

Example: Tracking Wildlife

Argos: a satellite–based system collecting data from mobile
platforms.

Ecologists tag and track wildlife through Argos consulting
how wildlife behaves.
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Why multi-target tracking is a problem?

Tracking Wildlife

1 Transmitters on animals relay pulses of data

2 Satellite collects data and measures signals’ frequencies

3 Satellite relays data to terrestrial receiving sensors

4 Processing center processes data

5 Researchers view information via Internet avenues.
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Why multi-target tracking is a problem?

Goal
Tracking simultaneously N (large) targets in a fixed domain.

Figure: Image was captured by Summer REU students mentored by
A. Nebenführ and VM

A plethora of scenarios should be considered.
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Why multi-target tracking is a problem?

Decision on Target Number
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Why multi-target tracking is a problem?

Independent Motion
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Why multi-target tracking is a problem?

Dependent Motion
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Why multi-target tracking is a problem?

Mixed Motion
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Why multi-target tracking is a problem?

Change of Motion and Change of Target Number
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Why multi-target tracking is a problem?

Strategies
Random Finite Set Filters

Consider the targets and associated observations as sets
Probability Hypothesis Density (PHD)
Cardinalized Probability Hypothesis Density (CPHD)
Mahler, Vo, Vo, VM...

Sequential Statistics
Sequentially detect and estimate targets
Grossi, Lops, VM...

Particle Filtering
Andrieu, Arulampalam, Bain, Berzuini, Beskos, Crisan, Chopin,
Doucet, Gilks, Godsill, Gordon, Fearnhead, Kantas,
Latuszynski, Lee, Maskel, Papavasiliou, Papaspiliopoulos,
Roberts, Sherlock, Singh, Stinis, Stuart, Whiteley, Weare,
West.....
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Motivation via single-target tracking

Single–Object Bayes filtering: Initialization

t = 0: state x ∈ RN distributed according to a priori f0(x),
where x = (px , py , pz , vx , vy , vz , ax , ay , az)

If there is good information on the target’s position then f0 is
a very peaky density

If not sufficient knowledge then f0 could be the uniform
distribution.
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Motivation via single-target tracking

Single–Object Bayes filtering: Prediction Step

Object moves between time steps t and t + 1. Dynamics of
the statistical motion of the target captured:

Xt+1 = φt(x ′,Vt),

where Vt is a randomly distributed noise and
φt : RN × RN → RN is a family of nonlinear, nonsingular
functions.

The predicted motion of the object is encapsulated:

ft+1|t(x |z1:t) =

∫
ft+1|t(x |x ′)ft|t(x ′|z1:t)dx ′, (1)

where ft+1|t(x |x ′) is the Markov transition density and
z1:t

.
= {z1, z2, · · · , zt}.
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Motivation via single-target tracking

Single–Object Bayes filtering: Update Step

At recursive time t + 1 a new observation is collected,
zt+1 ∈ RM .

(1) needs to be updated using zt+1.

Zt+1 = ηt+1(x ,Wt+1), where Wt+1 is a randomly distributed
noise,η : RN × RM → RM is a family of nonsingular, nonlinear
transformations.

The corrected motion of the object is propagated:

ft+1|t+1(x |z1:t+1) ∝ ft+1(zt+1|x)ft+1|t(x |z1:t), (2)

where ft+1(z |x) is the likelihood function of the sensor.
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Motivation via single-target tracking

Particle Filter Approach

Estimate E [f (XTk
)|{ZTj

}kj=1] or p(XTk
|{ZTj

}kj=1)

XTk
: state vector of our stochastic system.

ZT1 , · · · ,ZTK
: noisy observations of the state of the system at

specified instants T1, · · · ,TK .

Handle non-linear and/or non-Gaussian cases
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Motivation via single-target tracking

PF Approach

Computing averages w.r.t. p(XTk
|{ZTj

}kj=1) is difficult

PF falls in the category of importance sampling.

Sampling from q(XTk
|{ZTj

}kj=1) which can be easily sampled

E [f (XTk
)|{ZTj

}kj=1] ≈ 1
N

∑N
n=1 f (X n

Tk
)
p(X n

Tk
|{ZTj

}kj=1)

q(X n
Tk
|{ZTj

}kj=1)

E [f (XTk
)|{ZTj

}kj=1] ≈

∑N
n=1 f (X n

Tk
)
p(X n

Tk
|{ZTj

}kj=1)

q(X n
Tk
|{ZTj

}kj=1)∑N
n=1

p(X n
Tk
|{ZTj

}kj=1)

q(X n
Tk
|{ZTj

}kj=1)

(3)

where N ≈
∑N

n=1

p(X n
Tk
|{ZTj

}kj=1)

q(X n
Tk
|{ZTj

}kj=1)
.
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Motivation via single-target tracking

PF Approach

Filtering is based on the recursion:

p(XTk
|{ZTj

}kj=1) ∝ g(XTk
,ZTk

)p(XTk
|{ZTj

}k−1
j=1 ), (4)

where

p(XTk
|{ZTj

}k−1
j=1 ) =

∫
p(XTk

|XTk−1
)p(XTk−1

|{ZTj
}k−1
j=1 )dXTk−1

.

(5)
Particle filtering is a recursive implementation of the importance
sampling approach.

q(XTk
|{ZTj

}kj=1) = p(XTk
|{ZTj

}k−1
j=1 ),

then from (4) we get
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Motivation via single-target tracking

PF Approach

E [f (XTi
)|{ZTj

}kj=1] ≈
∑N

n=1 f (X n
Tk

)g(X n
Tk
,ZTk

)∑N
n=1 g(X n

Tk
,ZTk

)
, (6)

N is the number of samples.

From (6) if we can construct samples from p(XTk
|{ZTj

}k−1
j=1 )

then we can define the (normalized) weights

W n
Tk

=
g(X n

Tk
,ZTk

)∑N
n=1 g(X n

Tk
,ZTk

)
.

Weigh the samples and the weighted samples will be
distributed according to the posterior distribution
p(XTk

|{ZTj
}kj=1)
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Motivation via single-target tracking

A few comments

Need to associate each target to an observation.

Twofold problem:

Combinatorial explosion of the number of possible
target-observation arrangements.
Targets may come very close or even cross paths requiring the
target-observation problem to be solved at every step.

Target-observation relies heavily on the accuracy of the
underlying filtering algorithm, i.e. if the filtering algorithm
performs poorly at one step then the targets’ samples
generated at the next step can be off from their true
trajectories.
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Classical Algorithm

Classical Algorithm
1 Begin with N unweighted samples X n

Tk−1
from

p(XTk−1
|{ZTj

}k−1
j=1 ) =

Λ∏
λ=1

p(Xλ,Tk−1
|{Zλ,Tj

}k−1
j=1 ).

2 Prediction: Generate N samples X ′nTk
from

p(XTk
|XTk−1

) =
Λ∏
λ=1

p(Xλ,Tk
|Xλ,Tk−1

).

3 Target-Observation Association: Hungarian Algorithm
4 Update: Evaluate the weights

W n
Tk

=

∏Λ
λ=1 gλ(X ′nλ,Tk

,Zλ,Tk
)∑N

n=1

∏Λ
λ=1 gλ(X ′nλ,Tk

,Zλ,Tk
)
.
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Classical Algorithm

1 picture= 1,000 words

Figure: Particles evolution in the generic particle filter. Courtesy of
Casarin (2004)

Vasileios Maroulas University of Tennessee and University of Bath maroulas@math.utk.edu

Filtering, drift homotopy and target tracking



Outline Introduction Particle Filters Algorithms for multiple targets Numerical Results Conclusion

Classical Algorithm

Classical Algorithm

Most particles will have a negligible weight with respect to the
observation.

5 Resampling: Creating more copies of the samples with
significant weights based on the current observation.

6 Set k = k + 1 and proceed to Step 1.
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Classical Algorithm

1 picture= 1,000 words

Figure: Particles evolution in the generic particle filter with resampling.
Courtesy of Casarin (2004)
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Drift homotopy

Move samples into statistically significant regions

Particle filters still need a lot of samples to approximate
accurately the target distribution.

One extra step to move samples in statistically significant
regions (Gillks-Berzuini 1999, Weare 2009)

Must preserve the conditional density p(XTk
|{ZTj

}kj=1).
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Drift homotopy

Move samples into statistically significant regions

Create more copies not only of the good samples according to
the current observation, but also of the values (initial
conditions) of the samples at the previous observation.

These values are the ones which evolved into good samples for
the current observation.
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Drift homotopy

MCMC step appended: a 2-step process:

STEP 1:

Resampling: Generate N independent uniform random variables
{θn}Nn=1 in (0, 1). For n = 1, . . . ,N let

(X n
Tk−1

,X n
Tk

) = (X ′jTk−1
,X ′jTk

) where

j−1∑
l=1

W l
Tk
≤ θj <

j∑
l=1

W l
Tk
, j = 1, · · · ,N
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Drift homotopy

MCMC step appended: a 2-step process:

STEP 2:

Through Bayes rule one can show that the posterior density
p(XTk

|{ZTj
}kj=1) is preserved if sampling from

g(XTk
,ZTk

)p(XTk
|XTk−1

),

where XTk−1
are given by the modified resampling step.

This is a problem of conditional sampling.

Important issue is to perform the necessary sampling efficiently
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Drift homotopy

Drift homotopy

Consider the signal process: dXt = a(Xt)dt + σ(Xt)dBt

Consider an SDE system with modified drift

dYt = b(Yt)dt + σ(Yt)dBt ,

b(Yt) is suitably chosen to facilitate the conditional sampling
problem.

Consider a collection of L + 1 modified SDE systems

dY `
t = (1− ε`)b(Y `

t )dt + ε`a(Y `
t )dt + σ(Y `

t )dBt ,

` = 0, . . . , L, with ε` < ε`+1, ε0 = 0 and εL = 1.
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Drift homotopy

Drift homotopy

Instead of sampling directly from the density

g(XTk
,ZTk

)p(XTk
|XTk−1

) (7)

Sample from the density

g(Y 0
Tk
,ZTk

)p(Y 0
Tk
|XTk−1

)

and gradually morph the sample into a sample of (7) by sampling
from the ` levels:

g(Y `
Tk
,ZTk

)p(Y `
Tk
|XTk−1

)
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Drift homotopy

A few comments

The levels from 0 to L− 1 are auxiliary and only serve the
purpose of providing the sampler at level L with a better
initial condition. The final sampling is performed at the Lth
level which corresponds to the original SDE.

The idea behind drift relaxation resembles the main idea
behind Homotopy Methods used in deterministic optimization
problems.

The drift homotopy algorithm is similar to Simulated
Annealing (SA) used in equilibrium statistical mechanics.
However, instead of modifying a temperature as in SA, here
we modify the drift of the system.
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Drift homotopy

Drift Homotopy algorithm

Sample through MCMC the density g(Y 0
Tk
,ZTk

)p(Y 0
Tk
|XTk−1

).

For ` = 1, ..., L take the last sample from the (`− 1)st SDE
and use it as in initial condition for MCMC sampling of the
density

g(Y `
Tk
,ZTk

)p(Y `
Tk
|XTk−1

)

at the `th level.

Keep the last sample at the Lth level.
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Drift homotopy

MCMC step with drift homotopy appended

5 Resampling: Based on the current and previous observation.

6 Drift homotopy MCMC step: For n = 1, . . . ,N and
λ = 1, . . . ,Λ choose a modified drift (possibly different for
each n and each λ). Construct through drift homotopy a
Markov chain for Y n

Tk
with initial value X n

Tk
and stationary

distribution

Λ∏
λ=1

gλ(Y n
λ ,Zλ,Tk

)pλ(Y n
λ |X n

λ,Tk−1
).

7 Set X n
Tk

= Y n
Tk
.

8 Set k = k + 1 and proceed to Step 1.
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Example 1: Double-well potential

Model: Double-well potential
Consider the diffusion problem in a double well potential:

dXt = −4Xt(X 2
t − 1)dt +

1

2
dBt (8)

The deterministic part of (8) describes a gradient flow for
potential U(x) = x4 − 2x2 which has two minima at ±1.

If the stochastic term is 0 then the solution wanders around
one of the minima depending on the value of the initial
condition.

A weak stochastic term leads to rare transitions between the
minima of the potential.

Discretize (8) by an Euler-Maruyama scheme with step size
∆t = 10−2
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Example 1: Double-well potential

Model: Observation

Observations are considered an additive Gaussian model:

Ztk = Xtk + ξtk ,

Noise ξtk ∼ N (0, .01).

Consider 10 observations in total at tk = k = 1, · · · , 10.

Observations alternate between 1 and -1: Ztk is around 1 if k
is odd, and Ztk is around -1 if k is even.

Kang and VM (2013): ξtk ∼ GMM
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Example 1: Double-well potential

Potential U

Figure: The potential which corresponds to the deterministic part of (8).
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Example 1: Double-well potential

Drift homotopy

The difficulty in tracking the observations comes from the
rate transitions between the two minima.

Take dYt = b(Yt)dt + 1
2 dBt .

Choose b(Yt) = −c4Yt(Y 2
t − 1), where 0 < c < 1.

The drift corresponds to the potential W (y) = c(y 4 − 2y 2).

W (y) has its minima also located at ±1 but the value at the
minima is −c .

This means that the wells corresponding to the minima are
shallower

Transitions between the two wells become more frequent.
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Example 1: Double-well potential

Potential W

Figure: Potentials which correspond to the modified drift of (8).
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Example 1: Double-well potential

Drift homotopy

Let consider the SDE with the modified drifts and its
corresponding L levels,

dY `
t = (1− ε`)b(Y `

t )dt + ε`a(Y `
t )dt +

1

2
dBt (9)

where ` = 0, · · · , L, ε` = `
L for ` 6= 0 and ε` = 0 when ` = 0.
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Example 1: Double-well potential

Numerical Results

Figure: Comparison of the conditional expectation of Xt computed by the
generic PF and the MCMC PF.
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Example 2: Mutli-target-tracking

Model: Dynamics

At each time t we have a total of Λt targets

The evolution of the λth target (λ = 1, . . . ,Λt) is given by
the near constant velocity model:

xλ,t = Axλ,t−1 + Bvλ,t = [xλ,t , ẋλ,t , yλ,t , ẏλ,t ]
∗,

A =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 and B =


T 2/2 0

T 0
0 T 2/2
0 T

 , (10)

T = 1 is the time between observations.

vλ,t i.i.d N (0,Σv), Σv = diag(σ2
x , σ

2
y ), σ2

x = σ2
y = 1.
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Example 2: Mutli-target-tracking

Model: Observation

Bearing θ and range r of a target. Given the λth target
propagates the mth observation

Zm,t =

[
arctan(

yλ,t
xλ,t

)

(x2
λ,t + y 2

λ,t)
1/2

]
+ wm,t . (11)

wm,t ∼ N (0,Σw ), where Σw = diag(σ2
θ , σ

2
r )

For the numerical experiments we chose σ2
θ = 10−4 and

σ2
r = 1.
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Example 2: Mutli-target-tracking

Model: Comments

The synthesized target tracks were created by evolving a
number of targets according to (10) and recording the state of
each target at each step.

The observations were created in bearing and range space θ, r
by using (11).

The number of targets at each observation instant is:
Λ0 = · · · = Λ100 = 10
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Example 2: Mutli-target-tracking

Drift homotopy
The dynamics of the targets for the modified drift system at the
`th level are given by

y`λ,t = Ay`λ,t−1 + c` + Bvλ,t ,

where y1,λ,t , y3,λ,t and y2,λ,t , y4,λ,t are the xy positions and
velocities respectively for the λth target at time t.

The matrix c` is given by

c` = (1− εl)[µx
T 2

2
, µxT , µy

T 2

2
, µyT ]∗

where ε` ∈ [0, 1], ` = 0, . . . , L, with ε` < ε`+1, ε0 = 0 and εL = 1.
In the numerical experiments we chose L = 10 i.e. 10 levels for the
drift homotopy.
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Example 2: Mutli-target-tracking

Drift homotopy

where µnx and µny for the n-th sample as

µnx ,λ =
1
N

∑N
n′=1(yn′

1,λ,k−1 + yn′
2,λ,k−1T )− yn

1,λ,k−1

T 2/2
−

2yn
2,λ,k−1

T

and

µny ,λ =
1
N

∑N
n′=1(yn′

3,λ,k−1 + yn′
4,λ,k−1T )− yn

3,λ,k−1

T 2/2
−

2yn
4,λ,k−1

T
.

This choice of modified drift corresponds to a mean drift while at
the same time offsetting the individual sample’s properties. More
sophisticated drift choices will be explored in future work.
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Example 2: Mutli-target-tracking

Numerical Results
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(b) Generic PF with 5000 samples

Figure: Grey lines: true target, Crosses: observations, Colored lines:
estimates
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Example 2: Mutli-target-tracking

Error

The RMS error per target (RMSE) is defined with reference to the
true target tracks by the formula

RMSE (t) =

√√√√ 1

Λt

Λt∑
k=1

‖xk,t − E [xk,t |Z1, . . . ,Zt ]‖2 (12)

xk,t is the true state vector for target k . E [xk,t |Z1, . . . ,Zt ] is the
conditional expectation estimate calculated with the MCMC or
generic particle filter depending on whose filter’s performance we
want to calculate.
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Example 2: Mutli-target-tracking
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Figure: Comparison of RMS error per target for the MCMC particle filter
and the generic particle filter.
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Example 2: Mutli-target-tracking
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Figure: Comparison of RMS error per target for the MCMC particle filter
with drift homotopy (L = 10) and the MCMC particle filter without drift
homotopy (L = 0).
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Conclusion

Drift homotopy: new MCMC method appended

MCMC particle filter follows accurately the targets

There is no ambiguity in the identification of the target
tracks.

The accuracy of the generic particle filter’s estimate
deteriorates fast.

Drift homotopy error grows slower in comparison without
(` = 0).
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Conditional path sampling

Consider an SDE: dXt = a(Xt)dt + σ(Xt)dBt

Discretize the SDE in [0,T] using a step size ∆t = T/I

We want to construct in the time interval [0,T ] sample paths
from the SDE such that the endpoints are distributed
according to densities h(X0) and g(XT ), i.e. need to sample
the density

h(XT0)
I∏

i=1

p(XTi
|XTi−1)g(XT )

Assuming that the transitions densities p(XTi
|XTi−1) can be

evaluated then we can use MCMC.
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`th density for the double-well potential problem

We can replace the sampling the sampling of
g(XTk

,ZTk
)p(XTk

|XTk−1
) by sampling from the density

exp
[
−

(ZTk
− X n

T ({∆Bn
i }

I−1
i=0))2

2σ2
ξ

+
I−1∑
i=0

(∆Bn
i )2

2∆t

]
Instead we use drift homotopy to produce samples by considering
the L system of modified SDEs:

exp
[
−

(ZTk
− Y `,n

T ({∆B`,n
i }

I−1
i=0))2

2σ2
ξ

+
I−1∑
i=0

(∆B`,n
i )2

2∆t

]
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`th density for multi-target tracking problem
For the nth sample, the density to be sampled at the l-th level is

Λtk∏
λ=1

gx(z`,nλ,k ,Zθ,λ,k)gy (z`,nλ,k ,Zr ,λ,k)p(z`,nλ,k |z
`,n
λ,k−1)

∝
Λtk∏
λ=1

exp

(
−
{(Zθ,λ,k − arctan(

z`,n3,λ,k

z`,n1,λ,k

)
)2

2σ2
θ

+

(
Zr ,λ,k − (z`,n1,λ,k

2
+ z`,n3,λ,k

2
)1/2

)2

2σ2
r

+
(vn

x ,λ,k)2

2σ2
x

+
(vn

y ,λ,k)2

2σ2
y

})
, (13)

Vasileios Maroulas University of Tennessee and University of Bath maroulas@math.utk.edu

Filtering, drift homotopy and target tracking


	Introduction
	Why multi-target tracking is a problem?
	Motivation via single-target tracking

	Particle Filters Algorithms for multiple targets
	Classical Algorithm
	Drift homotopy

	Numerical Results
	Example 1: Double-well potential
	Example 2: Mutli-target-tracking

	Conclusion

