Stability of multi-dimensional Markov chains, with applications

Joint work with S. Foss (HWU), A. Turlikov (SUAI), J. Thomas and T. Worrall (UoE)

Seva Shneer
Heriot-Watt University

Bristol, 28 November 2014

Network

- M devices
- Wi-Max (IEEE 802.16) and Wi-Fi (IEEE 802.11) protocols
- Schedule for Wi-Max traffic
- Random access for Wi-Fi traffic
- Data streams of the same standard interfere with each other
- Data streams from different standards generated by different devices do not interfere
- Data streams from different standards generated by the same device do interfere

Model

- M transmitters
- Slotted time
- Each transmission duration equals 1
- High- and low- priority messages
- At most one high- and at most one low-priority messages transmitted in a time slot
- A transmitter cannot transmit both high- and low-priority messages in a time slot
- Schedule for high-priority messages, no collisions
- Random access for low-priority messages, collided messages return to their origins

High-priority (red) messages assumptions

- At time slot t, ξ_{n}^{t} new ones arrive at device $n, \mathbf{E} \xi_{n}^{t}=\lambda_{R} / M$
- $\left\{\xi_{n}^{t}\right\}$ are i.i.d. in t
- Symmetrical schedule for transmissions: at time slot t, transmitter number $i(t)=((t-1) \bmod M)+1$ is scheduled to transmit a red message
- If transmitter $i(t)$ has a red message, its transmission is attempted and is successful
- Otherwise no red message is transmitted in the time slot

Red-messages dynamics

Let R_{n}^{t} be the number of red messages in the queue of transmitter n at time t. Then

$$
\left(R_{1}^{t}, . ., R_{M}^{t}\right)
$$

is a Markov chain which is positive recurrent if $\lambda_{R}<1$. Moreover,

$$
\mathbf{P}\left(R_{i(t)}^{t}=0\right) \rightarrow 1-\lambda_{R}, \quad t \rightarrow \infty .
$$

Low-priority (green) messages assumptions

- At time slot t, η_{n}^{t} new ones arrive at device $n, \mathbf{E} \eta_{n}^{t}=\lambda_{G} / M$
- $\left\{\eta_{n}^{t}\right\}$ are i.i.d. in t
- Transmission attempts are governed by a random-access ALOHA-type protocol: every transmitter not currently transmitting a red message with a non-empty green queue attempts to transmit a green message with (fixed) probability p
- Three possibilities:
- No transmission attempted
- Exactly one transmission attempted. It is successful
- More than one transmission attempts. All of them unsuccessful, messages stay in their queues

Model dynamics

Let G_{n}^{t} be the number of green messages in the queue of transmitter n at time t. Then

$$
\left(G_{1}^{t}, . ., G_{M}^{t}, R_{1}^{t}, . ., R_{M}^{t}\right)
$$

is a Markov chain and we are interested in its long-time behaviour. Let first $M=1$. Then a green message transmission will be attempted (and will always be successful) with probability p every time the red queue is empty. We expect that

$$
\lambda_{G}<\left(1-\lambda_{R}\right) p
$$

leads to stability (positive recurrence).

Model dynamics

Let now $M \geq 2$. Two cases:

- Transmitter $i(t)$ has a red message to transmit. Then probability of a successful transmission of a green message is $(M-1) p(1-p)^{M-2}$
- Transmitter $i(t)$ does not have a red message to transmit. Then probability of a successful transmission of a green message is $M p(1-p)^{M-1}$
Stability should be achieved if

$$
\lambda_{G}<\lambda_{R}(M-1) p(1-p)^{M-2}+\left(1-\lambda_{R}\right) M p(1-p)^{M-1} .
$$

General mathematical model

Let $\left\{X^{t}\right\}$ and $\left\{Y^{t}\right\}$ be random sequences taking values in measurable spaces $\left(\mathcal{X}, \mathcal{B}_{\mathcal{X}}\right)$ and $\left(\mathcal{Y}, \mathcal{B}_{\mathcal{Y}}\right)$, respectively, and assume that $\left\{\left(X^{t}, Y^{t}\right)\right\}$ is a Markov Chain. Assume also that

- $\left\{X^{t}\right\}$ is a Markov Chain with autonomous dynamics: for all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$,

$$
\mathbf{P}_{x, y}\left(X^{1} \in \cdot\right)=\mathbf{P}_{x}\left(X^{1} \in \cdot\right)
$$

- The X-chain is Harris ergodic, so there exists a stationary distribution $\pi=\pi_{X}$ such that

$$
\sup _{B \in \mathcal{B}}\left|\mathbf{P}_{x}\left(X^{t} \in B\right)-\pi(B)\right| \rightarrow 0
$$

as $t \rightarrow \infty$, for any $x \in \mathcal{X}$.

Auxiliary chain

Introduce an auxiliary (time-homogeneous) Markov chain $\left\{\widehat{Y}^{t}\right\}$ with transition probabilities

$$
\mathbf{P}\left(\widehat{Y}^{t+1} \in \cdot \mid \widehat{Y}^{t}=y\right)=\int_{\mathcal{X}} \pi_{X}(d x) \mathbf{P}\left(Y^{1} \in \cdot \mid X^{1}=x, Y^{0}=y\right) .
$$

Hypothesis
If $\left\{\hat{Y}^{t}\right\}$ is positive recurrent, then so is $\left(X^{t}, Y^{t}\right)$.

Theorem

Natural (Foster-Lyapunov type conditions) imply positive recurrence of both $\left\{\widehat{Y}^{t}\right\}$ and $\left(X^{t}, Y^{t}\right)$.

Conditions on Y

For the sequence $\left\{Y^{t}\right\}$ we assume that there exists a non-negative measurable function L_{2} such that:

- The expectations of the absolute values of the increments of the sequence $\left\{L_{2}\left(Y^{t}\right)\right\}$ are bounded from above by a constant U :

$$
\sup _{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{E}_{x, y}\left|L_{2}\left(Y^{1}\right)-L_{2}\left(Y^{0}\right)\right| \leq U<\infty
$$

- There exist a non-negative and non-increasing function $h(N), N \geq 0$ such that $h(N) \downarrow 0$ as $N \rightarrow \infty$, and a measurable function $f: \mathcal{X} \rightarrow(-\infty, \infty)$ such that

$$
\int_{\mathcal{X}} f(x) \pi(d x):=-\varepsilon<0
$$

and

$$
\mathbf{E}_{x, y}\left(L_{2}\left(Y^{1}\right)-L_{2}(y)\right) \leq f(x)+h\left(L_{2}(y)\right)
$$

for all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.

Main result

Remark

Conditions on Y imply positive recurrence of \widehat{Y}^{t}.

Theorem (Foss, S, Turlikov (2012))
Under assumptions for X and Y, the Markov chain $\left\{\left(X^{t}, Y^{t}\right)\right\}$ is positive recurrent.

Corollary

Stability of the communication network under natural conditions

(Some of the) related models

- Bin-packing problems (Gamarnik, 2004; Gamarnik and Squillante, 2005)
- Cat-and-mouse Markov chain (Litvak and Robert, 2012)
- Other communication-networks applications (Borst, Jonckheere, Leskela, 2008; Shah, Shin, 2012)
- Queueing systems, storage processes, etc.....

Work in progress and research plans

- No knowledge of stationary distribution
- Non-autonomous dynamics, stronger dependence
- Other standard methods for proving stability
- Other applications
- Unstable first component

Stochastic recursive sequences

Under some (very weak) assumptions, every Markov chain may be represented as a stochastic recursive sequence

$$
X_{t+1}=f\left(X_{t}, \xi_{t}\right)
$$

with a certain function f and an i.i.d. sequence $\left\{\xi_{t}\right\}$. SRS (with specific functions f) have applications in economics.

Precautionary savings model (Huggett, 1993)

Agents maximise expected discounted utility

$$
\mathbf{E}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right]
$$

subject to a budget constraint

$$
c_{t}+R^{-1} a_{t+1} \leq a_{t}+e_{t},
$$

a non-negativity constraint on consumption $c_{t} \geq 0$ where e_{t} is the endowment, a_{t} is current assets, a_{t+1} are assets next period, c_{t} is consumption, $\beta \in(0,1)$ is the discount factor and R^{-1} is the price of assets.

Precautionary savings model

The individual's maximisation problem can be written recursively as

$$
v_{e}(a)=\max _{\left(c, a^{\prime}\right) \in \Gamma(a, e)} u(c)+\beta \mathrm{E}_{e^{\prime} \mid e} v_{e^{\prime}}\left(a^{\prime}\right)
$$

where

$$
\Gamma(a, e)=\left\{\left(c, a^{\prime}\right) \mid c+R^{-1} a^{\prime} \leq a+e, a^{\prime} \geq \underline{a}, c \geq 0\right\}
$$

is the constraint set and $v_{e}(a)$ are the value functions (one for each realisation $e)$. The policy functions are $c=c(a, e)$ and $a^{\prime}=f(a, e)$, and f is continuous and non-decreasing in the first argument.

Known results

We have

$$
a_{t+1}=f\left(a_{t}, e_{t}\right), \quad \text { or } \quad X_{t+1}=f\left(X_{t}, \xi_{t}\right)
$$

with a continuous and non-decreasing f.
Question: does $\left\{X_{t}\right\}$ converge to a stationary regime?

- Most known results in economics assume $\left\{\xi_{t}\right\}$ to be i.i.d.
- Huggett(1993) assumes that $\left\{e_{t}\right\}$ is a two-state Markov chain with a positive correlation between e_{t} and e_{t+1}.

Known results

Theorem (Bhattacharya, Majumdar (2007))
Assume a time-homogeneous Markov chain $\left\{X_{t}\right\}$ is represented as a stochastic recursion with i.i.d. driving sequence $\left\{\xi_{n}\right\}$, where function $f:[0,1] \times \mathcal{V} \rightarrow[0,1]$ is monotone increasing in the first argument. Assume there exist a number $c \in[0,1]$ and an integer $N \geq 1$ such that

$$
\varepsilon_{1}:=\mathbf{P}^{(1)}\left(X_{N} \leq c\right)>0
$$

and

$$
\varepsilon_{2}:=\mathbf{P}^{(0)}\left(X_{N} \geq c\right)>0
$$

Then there exists a unique distribution π on $[0,1]$ such that

$$
\sup _{x} d\left(F_{t}^{(x)}, \pi\right) \rightarrow 0, \quad n \rightarrow \infty
$$

exponentially fast.

Our model

Introduce an SRS

$$
X_{t+1}=f\left(X_{t}, Z_{t}\right)
$$

with a regenerative sequence $\left\{Z_{t}\right\}$ and a non-decreasing and continuous (in the first argument) function f.
Introduce also an auxiliary process $\tilde{X}_{n}^{(a)}$ that starts from $\tilde{X}_{0}^{(a)}=a$ at time 0 and follows recursion

$$
\tilde{X}_{n+1}^{(a)}=f\left(\tilde{X}_{n}^{(a)}, Z_{T_{0}+n}\right) \quad \text { for all } \quad n \geq 0
$$

Main result

Theorem (Foss, S., Thomas, Worrall (2014))
Assume that the function f is monotone increasing in the first argument and the following assumptions hold:

$$
\varepsilon_{1}:=\mathbf{P}\left(\tilde{X}_{T_{1}-T_{0}}^{(1)} \leq c\right)>0,
$$

and

$$
\varepsilon_{2}:=\mathbf{P}\left(\tilde{X}_{T_{1}-T_{0}}^{(0)} \geq c\right)>0
$$

Then there exists a distribution $\widetilde{\pi}$ on $[0,1]$ such that $\sup _{x} d\left(G_{n}^{(x)}, \widetilde{\pi}\right) \rightarrow 0$ as $n \rightarrow \infty$ exponentially fast. Here $G_{n}^{(x)}$ is the distribution of $X_{T_{n}}$ if $X_{T_{0}}=x$.
Further, if in addition the function f is continuous in the first argument, then there exists a distribution π such that the distributions of X_{t} converge weakly to π, for any initial value X_{0}.

Corollaries

- Stationary regime in the Huggett model with an arbitrary finite state space Markov chain
- Stationary regime in a number of other well-known economics models with Markov driving sequences rather than i.i.d.

