

• Uniform Interior Cone Condition (UICC).

Warwick Statistics

Warwick Statistics

¹ supporting lines touch boundary only at isolated points

CAT(0) is an integrated form of a curvature constraint, so may be such a first-order quantity.

Consider a connected (open) subset D of Euclidean space.

- Furnish it with the intrinsic metric; the distance between two points is the least length of a connecting path lying completely in *D*.
- Say *D* is a CAT(0) domain if intrinsic geodesic triangles are skinnier than comparable Euclidean triangles.

Reshetnyak majorization

A powerful result capturing the intuition that CAT(0)geometry can be guessed from Euclidean analogues:

Theorem

(Rešetnjak 1968) Given a regular closed unit-speed curve ζ in a CAT(0) domain D, one can construct

- a convex subset *C* of the plane bounded by a closed unit-speed curve $\overline{\zeta}$,
- and a distance-non-increasing map $\phi: C \to \mathbb{R}^2$, such that $\phi \circ \overline{\zeta} = \zeta$, with ϕ preserving arc-length distance between $\overline{\zeta}$ and ζ .

There is a similar result for CAT(1) spaces, referring to the unit sphere, subject to the constraint that the curve ζ should have length less than 2π .

Statistics

References

Wikipedia

Shy-ness Rubber bands

References

The Lion and Man

A problem in recreational mathematics:

Wikipedia

Wikipedia

- Richard Rado (1925) proposed the Lion and Man problem: Lion X chases Man Y around disk. Both move at unit speed, are arbitrarily agile, and tireless. Can the Lion catch the Man?
- Obviously yes; X to centre of disk, Y moves as far away as possible and keeps running, X can capture Y by moving on circle of half radius.
- Never trust an argument containing the word "obviously". Besicovitch showed that if Y moves slightly away from boundary then Y can avoid X for ever (pretty argument revolving around standard criterion for convergence / divergence of $\sum n^{-\alpha}$).
- The Lion gets arbitrarily close, but never actually catches up with Man. What has this to do with shy coupling? Statistics

Shy-ness ideas of proof (II)

Shy-ness

Rubber bands

- Derive vector-field $\chi(X, Y)$ from "greedy" pursuit strategy using CAT(0) arguments;
- Impose large multiple of χ on SDE for coupled reflecting BMs (WSK 2009):

$$dX = dB + n_{\chi}(X, Y) dt - \nu_{\chi} dL^{\chi},$$

$$dY = \left(\mathbb{J}^{\top} dB + \mathbb{K}^{\top} dA \right) + n \mathbb{J}^{\top} \chi(X, Y) dt - \nu_{Y} dL^{Y};$$

- Weak convergence, time-change \Rightarrow deterministic Lion-and-Man \Rightarrow X gets close to Y for large *n*;
- Use Cameron-Martin-Girsanov theorem to translate vector-field into change-of-measure;
- Deduce positive chance for X, Y to break shy-ness however coupled.

Technical part:

establish regularity of χ , make above quantitative.

Shy-ness ideas of proof (I)

The idea is fairly simple, but careful new CAT(0) geometry arguments are required.

CAT(0) version of Lion-and-Man problem;

Theorem

The Lion can draw arbitrarily close to the Man in a bounded CAT(0) domain.

IDEA:

- Lion uses "greedy" strategy of direct pursuit;
- Lion draws close if Man does not run directly away;
- Man runs out of domain if he does not curve enough.

Statistics

Statistics

Shyness and CAT(0) domains

Shy-ness

Rubber bands

Theorem

Wikipedia

References

Suppose D is a bounded CAT(0) domain satisfying UESC and UICC. Then there are no shy immersion couplings of reflected Brownian motion in D.

Corollary

Suppose *D* is a bounded planar simply-connected domain satisfying UESC and UICC. Then there are no shy immersion couplings of reflected Brownian motion in D.

Corollary

Brownian motion in D.

Suppose D is bounded, starlike, and is UESC and UICC. Then there can be no shy immersion coupling for reflected

Graphic of idea to show capture in RB-contractible domain

Wikipedia Theory Questions Tools Shy-ness Rubber bands Conclusion References Pitman, J. W. (1975).	s Wikipedia Theory Questions Tools Shy-ness Rubber band
Che-dimensional Brownian motion and the three-dimensional Bessel process. Advances in Applied Probability 7, 511–526.	Wikipedia (2013). Coupling (probability) — Wikipedia, The Fr
Pitman, J. W. (1976). On coupling of Markov chains. Zeitschrift für Wahrscheinlichkeitstheorie und verwandteGebiete 35(4), 315–322.	WSK (2007, May). Coupling all the Lévy stochastic areas of m Brownian motion. The Annals of Probability 35(3), 935-953.
Rešetnjak, J. G. (1968). Non-expansive maps in a space of curvature no greater than K. <i>Sibirsk. Mat. Ž. 9</i> , 918-927.	WSK (2009, September). Brownian couplings, convexity, and shy-ne Electronic Communications in Probability
Saisho, Y. (1987). Stochastic differential equations for multidimensional	00-80.

domain with reflecting boundary.

Probability Theory and Related Fields 74(3), 455–477. Statistics

Rubber bands References

WSK (2010).

Wikipedia

Coupling time distribution asymptotics for some couplings of the Lévy stochastic area.

In N. H. Bingham and C. M. Goldie (Eds.), Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman, Chapter 19, pp. 446–463. Cambridge: Cambridge University Press.

WSK (2014).

Coupling, local times, immersions. Bernoulli to appear, 1–26.

WSK and C. J. Price (2004). Coupling iterated Kolmogorov diffusions. Electronic Journal of Probability 9(Paper 13), 382-410. ee Encyclopedia.

ultidimensional

SS. 4(Paper 7),

Statistics

References

Coupling BM and stochastic area

WSK (2010) distributional asymptotics for coupling time: (U_0^2/V_0^2) × reciprocal of Gamma; uses Lamperti (1972). **BACK**

Statistics

Stable rubber bands and evasion

► BACK

- Man X moves along stable rubber band;
- Lion Y in ε -hot-pursuit;
- When Lion close at *t*, follow geodesic to *X*(*t*);
- Lion then chases Man round rubber band.
- Ditto for opposite direction, contradicts stability.

RB-contractible domains and shy coupling

