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Wikipedia: Coupling (Probability)
Wikipedia (2013) describes “coupling” thus (after
dis-ambiguation):

A proof technique that allows one to compare two
unrelated variables by “forcing” them to be related in
some way;

Examples include the thematic cases of synchronous and
reflection couplings for random walk.

Reflection Coupling:
Make one process meet other by doing mirror-opposite!

Lindvall (1982) “On coupling of Brownian motions.”

Wikipedia Theory Questions Tools Shy-ness Rubber bands Conclusion References

Theoretical framework

Given a random process X ,

Intuition: construct two co-dependent copies X , X̃ with
different starting points, so as to maximize chance they
hit and stick together before a specified time T .

Maximality: upper bound is total variation distance

between L (XT ) and L
(
X̃T

)
.

Amazingly, this can be achieved for all T !

Price: X̃t generally depends on entire path of X(s) : s 6 T
(“non-co-adapted”: Griffeath 1975; Pitman 1976;
Goldstein 1978).

Co-adapted: require coupled processes X , X̃ to be
defined using same filtration. (More accurately,
“immersed”; technically more special: “Markovian”.)
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Applications

Many applications, including:

Variance reduction for simulations;

Gradient estimates;

Perfect simulation;

Comparison arguments,
particularly

Heat-flow monotonicity;

Notions of efficiency for Markov Chain Monte Carlo.
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Two General Coupling Questions
Coupling theory has been developed both by the force of
applications and by considering general questions.

Q1: How much can one couple?

(Path functionals as well as particles?)

Q2: When can one avoid coupling?

(Thematic: can one couple reflected BM in compact
domains so as to stay substantially far apart?)

ANIMATION

Call this Shy coupling.
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Q1: Coupling Path functionals
Brief survey of known results for the first question:

Path and functionals Couplings
Brownian motion1 B refl Lindvall (1982)
B, Local time at zero L refl + sync WSK (2014)
B,

∫
B d t refl + sync (Ben Arous et al. 1995)

B,
∫

B d t,
∫ ∫

B d s d t refl + sync WSK and Price (2004)
B,

∫
B d t, . . . ,

∫
. . .

∫
B d s . . .d t Morse-Thue WSK and Price (2004)

BM(R2), stochastic area2 refl + sync (Ben Arous et al. 1995), WSK (2007)
BM(Rn),

(n
2

)
stochastic areas refl + rotate WSK (2007)

Coupling single stochastic area: HEISENBERG ANIMATION

WSK (2010) results extend to bounds on speed of
coupling for (multiple) stochastic areas.

Couple all invariant diffusions on nilpotent Lie groups?

all hypoelliptic diffusions?

1 One-dimensional Brownian motion
2 Stochastic area:

∫
Bi d Bj − Bj d Bi
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Q2: Avoiding coupling

We say that an (immersion) coupling of two instances X
and X̃ of a Markov process, started at two distinct
points, is shy if there is ε > 0 such that

P
[

inf
t>0

|Xt − X̃t | > ε

]
= 1 .

Problem: Describe situations in which shy coupling is
impossible.

* We could also envisage non-immersion shy coupling: but
very little is known about this.
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Q2: Tools for shy-ness (I):
Reflecting Brownian motion

Main focus of this talk: shyly immersion-coupling reflecting
Brownian motions in suitably regular Euclidean domain D.

Theorem

Reflecting Brownian motion X is given by

d X = d B − νX d LX

Here ν is outward-pointing unit normal vector normal to
∂D, LX is local time spent by X on the boundary ∂D.

Regularity: Saisho (1987) (also Lions and Sznitman 1984)
shows that we can make sense of SDE, ν, LX via
Skorokhod construction if D has:

Uniform Exterior Sphere condition (UESC);
Uniform Interior Cone Condition (UICC).
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Uniform Exterior Sphere condition

Uniform Exterior Sphere condition (UESC),
equivalent to “weak convexity” of the domain.
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Uniform Interior Cone Condition

Uniform Interior Cone Condition (UICC),
cone axis can be chosen to be locally constant;
equivalent to the domain being Lipschitz
(local chart using Lipschitz function).
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Tools for shy-ness (II):
Representation of immersion-coupled reflecting Brownian motions

The following is in the folklore of stochastic calculus.

Theorem

Representation: suppose A, B are two immersion-coupled Eu-
clidean Brownian motions. Suppose the filtration also sup-
ports an independent Euclidean Brownian motion. Then one
can construct adapted matrix-valued processes J, K, and a
Brownian motion C independent of B, with

d A = J> d B +K> d C .

In fact it also follows that J>J+K>K = I the identity matrix.

(So we can parametrize immersion couplings using J.)
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Shy-ness (I)

Brief survey of previous results for Question 2.
Shy-ness clearly relates to convexity . . .

Evidently shy coupling can occur in an annulus.
SHY ANIMATION (II)

However it is reasonable to suppose that
domain-convexity precludes shy coupling.
Convex C2 planar domain, regularity1 (Benjamini et al. 2007)
Convex planar domain WSK (2009)
Convex domain in Rn, regularity3 WSK (2009)

WSK (2009) method of proof: potential theory; view
coupling as a degenerate problem in stochastic control;
find an appropriate function which is a supermartingale
under all couplings.

1 supporting lines touch boundary only at isolated points
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Shy-ness (II)

Can one go further than convexity-related conditions? YES!

Bramson suggested (2008, personal communication):
no shy-ness in any planar simply-connected domain!

Bramson, Burdzy, and WSK (2013) prove this, so long as
domain is Lipschitz (UICC) and satisfies UESC.
(Nearly required for strong reflecting BM: Saisho 1987.)

This is a special case of a much stronger result:
no shy-ness in CAT(0) (regular) domains!

SHY ANIMATION (III)

Bramson, Burdzy, and WSK (2013):
Shy Couplings, CAT(0) Spaces, and the Lion and Man.
We now introduce further tools required for this
investigation.
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Health warning

Itô analysis of intrinsic distance produces singularities in
drift away from zero!

So it appears that generalizations need an approach working
with 1st- rather than 2nd-order quantities.
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CAT(0) spaces

CAT(0) is an integrated form of a curvature constraint, so
may be such a first-order quantity.
Consider a connected (open) subset D of Euclidean space.

Furnish it with the intrinsic metric;
the distance between two points is the least length of a
connecting path lying completely in D.

Say D is a CAT(0) domain if intrinsic geodesic triangles
are skinnier than comparable Euclidean triangles.
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Reshetnyak majorization

A powerful result capturing the intuition that CAT(0)
geometry can be guessed from Euclidean analogues:

Theorem

(Rešetnjak 1968) Given a regular closed unit-speed curve ζ in
a CAT(0) domain D, one can construct

a convex subset C of the plane bounded by a closed
unit-speed curve ζ,

and a distance-non-increasing map φ : C → R2,

such that φ ◦ ζ = ζ, with φ preserving arc-length distance
between ζ and ζ.

There is a similar result for CAT(1) spaces, referring to the
unit sphere, subject to the constraint that the curve ζ should
have length less than 2π.
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The Lion and Man

A problem in recreational mathematics:

Richard Rado (1925) proposed the Lion and Man
problem: Lion X chases Man Y around disk.
Both move at unit speed, are arbitrarily agile, and
tireless. Can the Lion catch the Man?

Obviously yes; X to centre of disk, Y moves as far away
as possible and keeps running, X can capture Y by
moving on circle of half radius.

Never trust an argument containing the word
“obviously”. Besicovitch showed that if Y moves slightly
away from boundary then Y can avoid X for ever (pretty
argument revolving around standard criterion for
convergence / divergence of

∑
n−α).

The Lion gets arbitrarily close, but never actually catches
up with Man. What has this to do with shy coupling?
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Shy-ness ideas of proof (I)

The idea is fairly simple, but careful new CAT(0)
geometry arguments are required.

CAT(0) version of Lion-and-Man problem;

Theorem

The Lion can draw arbitrarily close to the Man in a bounded
CAT(0) domain.

IDEA:

Lion uses “greedy” strategy of direct pursuit;

Lion draws close if Man does not run directly away;

Man runs out of domain if he does not curve enough.
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Shy-ness ideas of proof (II)

Derive vector-field χ(X ,Y ) from “greedy” pursuit strategy
using CAT(0) arguments;

Impose large multiple of χ on SDE for coupled reflecting
BMs (WSK 2009):

d X = d B + nχ(X ,Y )d t −νX d LX ,

d Y =
(
J> d B +K> d A

)
+ nJ>χ(X ,Y )d t −νY d LY ;

Weak convergence, time-change ⇒ deterministic
Lion-and-Man ⇒ X gets close to Y for large n;

Use Cameron-Martin-Girsanov theorem to translate
vector-field into change-of-measure;

Deduce positive chance for X , Y to break shy-ness
however coupled.

Technical part:
establish regularity of χ, make above quantitative.
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Shyness and CAT(0) domains

Theorem

Suppose D is a bounded CAT(0) domain satisfying UESC and
UICC. Then there are no shy immersion couplings of reflected
Brownian motion in D.

Corollary

Suppose D is a bounded planar simply-connected domain sat-
isfying UESC and UICC. Then there are no shy immersion coup-
lings of reflected Brownian motion in D.
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Geometry of shy-ness?

(Bramson, Burdzy, and WSK 2014, ignoring technicalities)

What geometric structures might be connected to
shy-ness?

Notion of contractible rubber band: a loop which is
length-monotonic homotopic to a point.

Well-contractible rubber band: the homotopy can be
chosen so that relative rate of contraction is bounded
away from unity.

RB-contractible domain: every loop is well-contractible
(with uniformly specified bound).

Stable rubber band: no concatenation power of the loop
` can be locally perturbed to a loop which is quantifiably
far from ` and quantifiably shorter.

Wikipedia Theory Questions Tools Shy-ness Rubber bands Conclusion References

Stable rubber bands and evasion

Theorem

Suppose D is a bounded CAT(1) domain and contains a stable
rubber band. If the Man starts on the rubber band, and the
Lion starts away from the Man, then the Man has a successful
evasion strategy.

Graphic of idea to show evasion for stable rubber band
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RB-contractible domains and capture

Theorem

Suppose D is a bounded CAT(1) domain and RB-contractible.
If the Lion starts within π of the Man, then the Lion can draw
arbitrarily close to the Man.

Graphic of idea to show capture in RB-contractible domain
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RB-contractible domains and shy coupling

We can now describe a wide class of domains which support
no shy coupling.

Theorem

Suppose D is bounded, CAT(1) and RB-contractible, and sup-
pose D is UESC and UICC. Then there can be no shy immersion
coupling for reflected Brownian motion in D.

Corollary

Suppose D is bounded, starlike, and is UESC and UICC.
Then there can be no shy immersion coupling for reflected
Brownian motion in D.
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Further Questions

These results suggest some significant foundational
questions for Coupling (Probability)1.

Can one say anything about bounded domains in which
shy coupling occurs? Conjecture: in such domains one
can implement a shy coupling using domain symmetries.

Bold conjecture:
It is impossible to be shy in simply-connected bounded
domains of any dimension.

Can one develop a theory for non-co-adapted shy
coupling?

THE END

1Immersion coupling! (unless otherwise stated . . . )
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Stable rubber bands and evasion

Man X moves along stable rubber band;

Lion Y in ε-hot-pursuit;

When Lion close at t, follow geodesic to X(t);

Lion then chases Man round rubber band.

Ditto for opposite direction, contradicts stability.

BACK

RB-contractible domains and shy coupling

Man X escapes: construct doubly-infinite geodesic;

Dense by boundedness: build closed curve K by appending small segment;

Consider any curve K̃ tracing K closely;

Trap off curvilinear rectangles. Reshetnyak majorization and spherical
trigonometry show K̃ cannot be much shorter than K.
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