Probability 1, Autumn 2015, Problem sheet 8

To be discussed on the week 23 Nov...27 Nov.

Problems marked with "PrCl" are discussed in the large problem class on Thursday 19 Nov.

Assessed homework 2 will be available on Thu, 26 Nov.

Thus no mandatory HW on this sheet, nevertheless it is an important sheet.

Solutions will be available on Blackboard on the 5th Dec.

- 8.1 2% of electric components of a given type break down within 1000 hours of operation. Assume that time before breakdown has an exponential distribution. What is the probability that such a component will work for longer than the average?
- **8.2** For a memoryless light bulb, the probability that it operates for more than 2000 hours is 2/3. In a city 20 of these light bulbs are installed.
 - (a) What is the probability that after 1000 hours exactly 15 bulbs are operational?
 - (b) What is the probability that after 1000 hours exactly 15 bulbs are operational and after an additional 500 hours exactly 13 are operational?
- **8.3** The lifetime of the *probabilium* radioactive particle is exponentially distributed with mean value 3 years. What is its half-life (the amount of time required for half of the number of atoms of a sample to decay)?
- **8.4** If X is a normal random variable with parameters $\mu = 10$ and $\sigma^2 = 36$, compute
 - (a) $P{X > 5}$;
 - (b) $\mathbf{P}{4 < X < 16}$;
 - (c) $P{X < 8}$;
 - (d) $\mathbf{P}\{X < 20\};$
 - (e) $\mathbf{P}\{X > 16\}.$
- **8.5** Suppose that X is a normal random variable with mean (that is, expected value) 5. If $\mathbf{P}\{X > 9\} = 0.2$, approximately what is $\mathbf{Var}(X)$?
- 8.6 The length of the Probability 1 lecture is well approximated by a normal random variable of mean $\mu = 52$ minutes and standard deviation $\sigma = 2$ minutes.
 - (a) What percentage of classes are over 55 minutes long?
 - (b) It's 55 past and the lecturer is still speaking. What is the probability that he will finish before 57 past?
- PrCl 8.7 What is the probability that the number of outcomes is between 970 and 1050 if we roll a die 6 000 times?
 - **8.8** How many times should a coin be tossed so as to having the number of heads between 47% and 53% of the number of all tosses with probability at least 0.95?
 - 8.9 Given are two very similar insurance companies each having 10 000 customers. At the beginning of the year each customer pays their insurance company a fee of £200, and during the year each customer independently puts in a claim for £800 of damages with probability $\frac{1}{4}$. Both companies have a capital of £40 000 from the previous year. An insurance company goes bankrupt if it cannot pay for these claims. Should these two companies unite? Let p_1 be the probability that at least one of the two companies goes bankrupt, and p_2 the probability that the united company goes bankrupt. Find the numerical values of p_1 and p_2 and conclude whether joining the two companies is a good idea.
 - **8.10** A stick of length ℓ is broken randomly. What is the distribution function of the length of the shorter piece?
 - **8.11** Let X be uniformly distributed on the interval [-3, 4], and let g(x) = |x 1| + |x + 1|. Determine the distribution function $F_Y(y)$ of the random variable Y = g(X). Is this variable absolutely continuous? Is it discrete?
 - **8.12** An explosion throws debris at a constant velocity v but in a uniform random direction α on $(0, \frac{\pi}{2})$. Such a piece of debris then lands at distance $R = \frac{v^2}{g} \cdot \sin(2\alpha)$ from the explosion site (g is the gravitational acceleration). Find the density of debris as a function of the distance from the explosion.

- PrCl 8.13 Let $X \sim \text{Exp}(\lambda)$, and c > 0. Show that $cX \sim \text{Exp}(\frac{\lambda}{c})$.
 - **8.14** Variables Z and 2Z have the same distribution, What is it?
 - 8.15 We roll two fair dice, and let
 - (a) X be the larger of the two numbers and Y be the sum of the two numbers;
 - (b) X be the first number and Y the larger of the two numbers;
 - (c) X be the smaller and Y the larger of the two numbers.

In each of these cases determine the joint probability mass function of X and Y.

- 8.16 We distribute n points uniformly and independently on the circumference of a circle, and want to compute the probability that there is a semicircle in which they each fall. (In other words, the probability that there is a line through the center of the circle such that all n points lie on the same side of this line.) Let E be the event that such a semicircle exists. Denote by P_1, P_2, \ldots, P_n the random points, and by E_i the event that each point is contained in the semicircle that starts from P_i in the counterclockwise direction $(i = 1, 2, \ldots, n)$.
 - (a) Write E in terms of E_i .
 - (b) Are the E_i 's mutually exclusive? (Or "almost mutually exclusive"?)
 - (c) Calculate $P\{E\}$.
 - (d) Now answer this question: if we drop n points uniformly and independently on a disk, what is the probability that the center of the disk is contained in the set formed by convex combinations of the n points? (That is, inside the convex polygon of the random points as vertices.) Mind the previous version with the circumference of the circle.