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Mean field forest fire model (intr. by Bálint in 2006)

The dynamics of G(n, t):
There are n vertices,

(n
2

)
possible edges.

▶ Vacant edges become occupied at rate 1
n

▶ Each vertex gets hit by lightning at rate λ(n)
▶ Fire spreads along the occupied edges and burns them

(the number of vertices remains unchanged)
▶ 1

n ≪ λ(n) ≪ 1 is the critical domain
▶ λ(n) → 0: the fire does no harm small components
▶ nλ(n) → ∞: giant components burn very fast
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Results of Ráth-Tóth (2009)

▶ Let vn
k (t) denote 1

n times the total number of vertices
contained in components of size k at time t

Theorem
For all k ∈ N, we have vn

k (t) → vk (t) in probability, where

d
dt

vk (t) = −kvk (t) +
k
2

k−1∑
l=1

vl(t)vk−l(t), k ≥ 2,

vk (0) = 1[ k = 1 ],
∞∑

k=1

vk (t) ≡ 1.

Controlled Smoluchowski equations
Well-posed system of ODEs!
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Self-organized criticality

▶ If t ≤ 1 then vk (t) is the same as the Erdős-Rényi vk (t)

▶ For t ≥ 1 we have
vk (t) ≍ k− 3

2

▶ The functions vk (·) do not depend on the exact decay rate
of λ(n), i.e., we do not have to fine-tune the model to see
permanent criticality in the limit: S.O.C.
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Nostalgia and an open question
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Stationary solution:
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)
4−k , k = 1,2, . . .

Open question (up to this day): do we have

lim
t→∞

vk (t) = vk (∞) ?
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Controlled Burgers’ equation
Generating function / Laplace transform:

(vk (t))∞k=1 7→ V (t , x) :=
∞∑

k=1

vk (t)e−kx

Controlled Smoluchowski 7→ Controlled Burgers’ eq:

∂tV (t , x) = ∂xV (t , x)− 1
2
∂xV 2(t , x) + φ(t)e−x ,

where the control function φ(·) is chosen such that

V (t ,0) ≡ 1.

Note: if φ ≡ 0 in the above eq. then we obtain:

Erdős-Rényi 7→ Burgers’ equation
giant component 7→ shockwave
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Erdős-Rényi 7→ Burgers’ equation
giant component 7→ shockwave



Controlled Burgers’ equation
Generating function / Laplace transform:

(vk (t))∞k=1 7→ V (t , x) :=
∞∑

k=1

vk (t)e−kx

Controlled Smoluchowski 7→ Controlled Burgers’ eq:

∂tV (t , x) = ∂xV (t , x)− 1
2
∂xV 2(t , x) + φ(t)e−x ,

where the control function φ(·) is chosen such that

V (t ,0) ≡ 1.

Note: if φ ≡ 0 in the above eq. then we obtain:
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The fire continues to spread

▶ Crane, Freeman, Tóth (2015): local limit of the forest fire
cluster growth dynamics viewed from a vertex:
explosive branching process (with reset)

▶ Crane, Ráth, Yeo (2021): the forest fire graph is an
inhomogeneous random graph, its local limit is a
multi-type branching process

▶ many papers on frozen percolation
▶ [Ráth, Tóth, 2009] has 74 citations on Google Scholar:

Regulation of soil micro-foodwebs to root secondary
metabolites in cultivated and wild licorice plants
by Liu, Li, Gao, Li, Chen, Jiao, Wei
Science of The Total Environment Vol. 828 (2022)

Other supercritical branching processes initiated by Bálint?
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Many happy returns of the day, Bálint!


