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Figure: Piero di Cosimo: The forest fire (c. 1505)
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Drossel, Schwabl (1992): S.O.C. cellular automaton
independently (and earlier): Henley (1989)

van den Berg, T6th (2001): inhomogeneous 1-dim model
van den Berg and Brouwer (2006): strange behaviour of
2-dim forest fires

Kiss, Manolescu, Sidoravicius (2015): nonexistence of
planar forest-fire model



NS
Mean field forest fire model (intr. by Balint in 2006)



NS
Mean field forest fire model (intr. by Balint in 2006)



NS
Mean field forest fire model (intr. by Balint in 2006)

There are n vertices, () possible edges.



NS
Mean field forest fire model (intr. by Balint in 2006)

There are n vertices, () possible edges.
» Vacant edges become occupied at rate



NS
Mean field forest fire model (intr. by Balint in 2006)

There are n vertices, () possible edges.
» Vacant edges become occupied at rate
» Each vertex gets hit by lightning at rate



NS
Mean field forest fire model (intr. by Balint in 2006)

There are n vertices, () possible edges.
» Vacant edges become occupied at rate
» Each vertex gets hit by lightning at rate

» Fire spreads along the occupied edges and burns them
(the number of vertices remains unchanged)



NS
Mean field forest fire model (intr. by Balint in 2006)

There are n vertices, () possible edges.
» Vacant edges become occupied at rate
» Each vertex gets hit by lightning at rate

» Fire spreads along the occupied edges and burns them
(the number of vertices remains unchanged)

> is the critical domain



NS
Mean field forest fire model (intr. by Balint in 2006)

There are n vertices, () possible edges.
» Vacant edges become occupied at rate
» Each vertex gets hit by lightning at rate

» Fire spreads along the occupied edges and burns them
(the number of vertices remains unchanged)
> is the critical domain
» A(n) — 0O: the fire does no harm small components



NS
Mean field forest fire model (intr. by Balint in 2006)

There are n vertices, () possible edges.
» Vacant edges become occupied at rate
» Each vertex gets hit by lightning at rate

» Fire spreads along the occupied edges and burns them
(the number of vertices remains unchanged)
> is the critical domain

» A(n) — 0O: the fire does no harm small components
> nA(n) — oo: giant components burn very fast
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Results of Rath-Téth (2009)

> Let v/(t) denote I times the total number of vertices
contained in components of size k at time t

Theorem
For all k € N, we have v/(t) — vk(t) in probability, where

Well-posed system of ODEs!



NS
Self-organized criticality

> If t < 1 then vi(t) is the same as the Erd6s-Rényi v (1)



NS
Self-organized criticality

> If t < 1 then vi(t) is the same as the Erd6s-Rényi v (1)

» Fort > 1 we have ,
Vk(t) =K 2



Self-organized criticality

> If t < 1 then vi(t) is the same as the Erd6s-Rényi v (1)

» Fort > 1 we have ,
Vk(t) =K 2

» The functions vk(-) do not depend on the exact decay rate
of A(n), i.e., we do not have to fine-tune the model to see
permanent criticality in the limit:
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Nostalgia and an open question

d k
V() = —hvi(D) + 5 ; vi(tvii(t), k> 2,
vk(0) = L[k = 1],
> () =1
k=1
Stationary solution:
2(2k-2\, 4 3
Vk(o0) = k<k_1 )4 , k=1,2,...

Open question (up to this day): do we have

tl—l>ngo Vk(l’) = Vk(oo) ?
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Controlled Burgers’ equation
Generating function / Laplace transform:

Controlled Smoluchowski — Controlled Burgers’ eq:

OVt x) = BxV(t,x) — %ax V2(t X) + ,
where the control function ¢(+) is chosen such that
V(t,0)=1.
Note: if in the above eq. then we obtain:

Erdés-Rényi — Burgers’ equation
giant component — shockwave
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