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Introduction

I've known Bálint for 25 years.

This is 60% of my lifetime and 36% of his.

What attracted me to become his PhD student:

concrete and interesting problems

crystal clear presentation

enthusiastic explanations

generous and kind personality
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�True� self-avoiding walk with edge repulsion

D. Amit, G. Parisi, L. Peliti, 1983

Xn nearest neighbour random walk on Z (also de�ned on Zd)

Local time on edges:

l(n, k) := | {i ∈ {0, 1, . . . , n − 1} : {Xi ,Xi+1} = {k , k + 1}} |

Jump probabilities:

P(Xn+1 = Xn + 1|X0,X1, . . . ,Xn)

=
exp(−2βl(n,Xn))

exp(−2βl(n,Xn − 1)) + exp(−2βl(n,Xn))

for some β > 0.

The walker is pushed towards less

visited areas by its own local time.

Expected to be superdi�usive on Z.
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Ray�Knight approach

Jump probabilities with local time di�erence Dn(k) = l(n, k)− l(n, k − 1):

P(Xn+1 = Xn + 1|X0,X1, . . . ,Xn)

=
exp(−2βl(n,Xn))

exp(−2βl(n,Xn − 1)) + exp(−2βl(n,Xn))

=
exp(−βDn(Xn))

exp(−βDn(Xn)) + exp(βDn(Xn))

Local time di�erence is Markovian:

P(Dn+1(k) = Dn(k) + 1|Xn = k) =
exp(−βDn(k))

exp(−βDn(k)) + exp(βDn(k))
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Ray�Knight approach

The Markov chain Dn(k) is close to its explicit symmetric stationary

distribution for large n.

Local time di�erences at di�erent locations are independent.

Local time pro�le is a random walk: given l(n, k) = l ,

l(n, k + 1) = l + Dτl (k)(k)

where τj(k) = min{n : l(n, k) ≥ j} is the jth use of the edge {k , k + 1}
(inverse local time)

After scaling (n2/3 in space and n1/3 for the local time), local time pro�le

becomes Brownian.

Scaling limit of local times given by the Brownian web,

scaling limit of the position is the true self-repelling motion

(Tóth and Werner, 1998)
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Ray�Knight type results

Tóth, 1995
▶ convergence of the local time pro�le to a re�ected and absorbed

Brownian motion
▶ convergence of the �true� self-avoiding walk at large independent

random times

Tóth, V., 2008
▶ �true� self-avoiding walk with directed edges: local time pro�le is a

random walk with drift
▶ deterministic limit shape of local times, uniformly distributed position

Tóth, V., 2011
▶ �true� self-avoiding walk in continuous time, local time on sites
▶ Brownian limit of local times, convergence of position at random times

Kosygina, Peterson, 2025
▶ joint convergence of local time pro�le at multiple points
▶ process convergence of the �true� self-avoiding walk to true

self-repelling motion

Bálint Vet® (Budapest) Brownian web distance 1st July 2025 7 / 20



Brownian web and its dual

Brownian web: coalescing Brownian

motions starting at all (t, x) ∈ R2

History:

Arratia, 1979, unpublished

Tóth, Werner, 1998,

construction, special points,

local time of true self-repelling

motion

Fontes, Isopi, Newman,

Ravishankar, 2004, topology,

�Brownian web�

Dual: coalescing backward Brownian

motions

Forward and backward paths do

intersect but they do not cross
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Special points of the Brownian web

Special points: point of type

(min,mout) has min incoming and

mout outgoing paths

Possible types: (0, 1), (0, 2), (0, 3),
(1, 1), (1, 2), (2, 1)

Almost all points of R2 are of type

(0, 1)

Characterization of (1, 2) points (see
�gure): those hit by a forward and a

backward path

Brownian web: unique path starting

from almost every point of R2, an

additional path at each (1, 2) point
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Random walk web
Lattice:

{(i , n) ∈ Z2 : i + n is even}
with directed lattice edges from

(i , n) to (i + 1, n ± 1)

Graph of free edges: exactly

one of the outgoing lattice

edges with equal probabilities

independently, i.e. coalescing

random walks to the right
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Random walk web
Lattice:

{(i , n) ∈ Z2 : i + n is even}
with directed lattice edges from

(i , n) to (i + 1, n ± 1)

Graph of free edges: exactly

one of the outgoing lattice

edges with equal probabilities

independently, i.e. coalescing

random walks to the right

Edge weights: edges of the

graph with weight 0, other

lattice edges with weight 1

Distance DRW(i , n; j ,m):
weight of the directed path

between (i , n) and (j ,m) with
minimal total weight
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Random walk web distance

Distance DRW(i , n; j ,m):
weight of the directed path

between (i , n) and (j ,m) with
minimal total weight

In other words: minimal number

of jumps to get from (i , n) to
(j ,m)
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Random walk web distance

Distance DRW(i , n; j ,m):
weight of the directed path

between (i , n) and (j ,m) with
minimal total weight

In other words: minimal number

of jumps to get from (i , n) to
(j ,m)

Blue, red, green regions: set of

starting points with 0, 1 and 2

jumps to the purple target point

Aim: distance function between

remote points, scaling,

continuum limit
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Brownian web distance

Brownian web distance DBr(t, x ; s, y): minimal number of jumps from

(t, x) to (s, y) using Brownian web paths and with jumps at (1, 2) points
from the incoming path to the additional path

Basic properties:

DBr is integer valued

DBr is non-symmetric

DBr(t, x ; s, y) = ∞ for a typical (s, y) which is not hit by a Brownian

web path

DBr(t, x ; t, x) = 0

Triangle inequality:

DBr(t, x ; s, y) ≤ DBr(t, x ; u, z) + DBr(u, z ; s, y)

Lower semicontinuous version DBr,LSC(t, x ; s, y) di�ers
from DBr(t, x ; s, y) by at most 1 only for special (t, x)
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Main results
0:1:2 scale invariance (c.f. 1:2:3 scaling in the KPZ class):

Proposition

For all α > 0, it holds that

DBr(α2t, αx ;α2s, αy)
d
= DBr(t, x ; s, y).

Convergence:

Theorem (B. V., B. Virág, 2023)

The Brownian web distance as a function DBr,LSC : R4 → R ∪ {∞} is

almost surely lower semicontinuous.

There is a coupling of the underlying random walk webs and Brownian

web such that

DRW(nt, n1/2x ; ns, n1/2y) → DBr,LSC(t, x ; s, y)

as n → ∞ almost surely in the epigraph sense.
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KPZ limit after a shear mapping

Theorem (B. V., B. Virág, 2023)

For η ∈ (0, 1), we have as n → ∞ that

η2n
4 + η4/3zn2/3

21/3
− DBr(−n, ηn + 22/3η1/3zn2/3; 0,R−)

2−2/3η2/3n1/3
d

=⇒ L(0, 0; z , 1)
and

c1(η)n − c2(η)zn
2/3 − DRW(−n, ηn + c3(η)zn

2/3; 0,Z−)

c4(η)n1/3
d

=⇒ L(0, 0; z , 1)

where L is the directed landscape and L(0, 0; z , 1) = A(z)− z2 is the

parabolic Airy process.

The function c1(η) =
1−
√

1−η2

2 for

η ∈ (0, 1) determines the limit shape

of discs in DRW in directions di�erent

from horizontal: t −
√
t2 − x2 ≤ 2
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Directed landscape and the 1:2:3 scaling
Directed landscape L(x , t; y , s) constructed by Dauvergne, Ortmann,

Virág, 2018

Last passage percolation: let ξij for (i , j) ∈ Z2 be i.i.d. random variables

with geometric or exponential distribution. The last passage value

L((i , j), (k , l)) = sup
π:(i ,j)↗(k,l)

∑
(a,b)∈π

ξab

Theorem (Dauvergne, Virág, 2022)

L(tn3u + xn2v , sn3u + yn2v)− αn3(t − s)

χn
d

=⇒ L(x , t; y , s)

as n → ∞ where u = (1, 1), v = (1,−1) and α, χ are explicit constants.

Proposition (1:2:3 scale invariance of directed landscape)

For α > 0,

α−1L(α2x , α3t;α2y , α3s)
d
= L(x , t; y , s)

Bálint Vet® (Budapest) Brownian web distance 1st July 2025 17 / 20



Bernoulli-Exponential �rst passage percolation

Lattice:

{(i , n) ∈ Z2 : i + n is even}
with directed lattice edges from

(i , n) to (i + 1, n ± 1)

Free edges: coalescing random

walks

Edge weights: 0 for free edges,

independent EXP(1) weights for

all other edges

Distance T (i , n; j ,m): weight
of the directed path between

(i , n) and (j ,m) with minimal

total weight

T (i , n; j , [m,∞)) = min
l∈[m,∞)

T (i ,m; j , l)
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Results on Bernoulli-Exponential �rst passage percolation
Based on explicit formulas by Barraquand�Corwin, 2017:

Theorem (B.V., 2024)

For any h ∈ R, as n → ∞,√
nT (0, 0; n, [h

√
n,∞))

d
=⇒ Th

where the distribution of Th can be given explicitly.

Height function H(n, r) = max{k ∈ Z : T (0, 0; n, k) ≤ r}: as n → ∞

n−1/2H
(
n, sn−1/2

)
d

=⇒ Hs

For s = 0, H0 is Gaussian

As s → ∞, 24/93−1/3s1/9
(
Hs − 2−2/33s1/3

) d
=⇒ TW

Conjecture (Convergence and -1:1:2 scaling)

n1/2T (nt, n1/2x ; ns, n1/2y) → DBN(t, x ; s, y)

as n → ∞ where DBN(0, 0; 1, [h,∞))
d
= Th and

n1/2DBN(nt, n1/2x ; ns, n1/2y)
d
= DBN(t, x ; s, y).
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The end

Happy birthday, Bálint!
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