The Brownian web and the Brownian web distance

Bálint Vető

Budapest University of Technology and Economics HUN-REN Rényi Institute

Stochastics and Influences Workshop 1st July 2025

Bálint Vető (Budapest)

Brownian web distance

1st July 2025

Outline

- Introduction
- "True" self-avoiding walk and Ray-Knight type results
- Brownian web
- Random walk web distance (joint work with Bálint Virág)
- Brownian web distance: a new universality class and relation to KPZ
- A weighted version: the Bernoulli-Exponential last passage percolation

Introduction

l've known Bálint for 25 years.

This is 60% of my lifetime and 36% of his.

What attracted me to become his PhD student:

- concrete and interesting problems
- crystal clear presentation
- enthusiastic explanations
- generous and kind personality

"True" self-avoiding walk with edge repulsion D. Amit, G. Parisi, L. Peliti, 1983 X_n nearest neighbour random walk on \mathbb{Z} (also defined on \mathbb{Z}^d) Local time on edges:

$$I(n,k) := |\{i \in \{0,1,\ldots,n-1\} : \{X_i,X_{i+1}\} = \{k,k+1\}\}|$$

Jump probabilities:

$$P(X_{n+1} = X_n + 1 | X_0, X_1, \dots, X_n) = \frac{\exp(-2\beta I(n, X_n))}{\exp(-2\beta I(n, X_n - 1)) + \exp(-2\beta I(n, X_n))}$$

for some $\beta > 0$.

The walker is pushed towards less visited areas by its own local time.

Expected to be superdiffusive on \mathbb{Z} .

Ray-Knight approach

Jump probabilities with local time difference $D_n(k) = I(n, k) - I(n, k-1)$:

$$P(X_{n+1} = X_n + 1 | X_0, X_1, \dots, X_n)$$

$$= \frac{\exp(-2\beta I(n, X_n))}{\exp(-2\beta I(n, X_n - 1)) + \exp(-2\beta I(n, X_n))}$$

$$= \frac{\exp(-\beta D_n(X_n))}{\exp(-\beta D_n(X_n)) + \exp(\beta D_n(X_n))}$$

Local time difference is Markovian:

$$\mathsf{P}(D_{n+1}(k) = D_n(k) + 1 | X_n = k) = \frac{\exp(-\beta D_n(k))}{\exp(-\beta D_n(k)) + \exp(\beta D_n(k))}$$

Image: Image:

Ray-Knight approach

The Markov chain $D_n(k)$ is close to its explicit symmetric stationary distribution for large n.

Local time differences at different locations are independent.

Local time profile is a random walk: given I(n, k) = I,

$$l(n, k+1) = l + D_{\tau_l(k)}(k)$$

where $\tau_j(k) = \min\{n : l(n,k) \ge j\}$ is the *j*th use of the edge $\{k, k+1\}$ (inverse local time)

After scaling $(n^{2/3}$ in space and $n^{1/3}$ for the local time), local time profile becomes Brownian.

Scaling limit of local times given by the Brownian web, scaling limit of the position is the true self-repelling motion (Tóth and Werner, 1998)

Ray-Knight type results

- Tóth, 1995
 - convergence of the local time profile to a reflected and absorbed Brownian motion
 - convergence of the "true" self-avoiding walk at large independent random times
- Tóth, V., 2008
 - "true" self-avoiding walk with directed edges: local time profile is a random walk with drift
 - deterministic limit shape of local times, uniformly distributed position
- Tóth, V., 2011
 - "true" self-avoiding walk in continuous time, local time on sites
 - Brownian limit of local times, convergence of position at random times
- Kosygina, Peterson, 2025
 - joint convergence of local time profile at multiple points
 - process convergence of the "true" self-avoiding walk to true self-repelling motion

Brownian web and its dual

Brownian web: coalescing Brownian motions starting at all $(t, x) \in \mathbb{R}^2$ **History**:

- Arratia, 1979, unpublished
- Tóth, Werner, 1998, construction, special points, local time of true self-repelling motion
- Fontes, Isopi, Newman, Ravishankar, 2004, topology, "Brownian web"

Dual: coalescing backward Brownian motions

Forward and backward paths do intersect but they do not cross

Special points of the Brownian web

Special points: point of type $(m_{\rm in}, m_{\rm out})$ has $m_{\rm in}$ incoming and $m_{\rm out}$ outgoing paths

Possible types: (0,1), (0,2), (0,3), (1,1), (1,2), (2,1)

Almost all points of \mathbb{R}^2 are of type (0,1)

Characterization of (1,2) points (see figure): those hit by a forward and a backward path

Brownian web: unique path starting from almost every point of \mathbb{R}^2 , an additional path at each (1,2) point

Random walk web

Lattice:

 $\{(i, n) \in \mathbb{Z}^2 : i + n \text{ is even}\}$ with directed lattice edges from (i, n) to $(i + 1, n \pm 1)$

• Graph of free edges: exactly one of the outgoing lattice edges with equal probabilities independently, i.e. coalescing random walks to the right

Random walk web

Lattice:

 $\{(i, n) \in \mathbb{Z}^2 : i + n \text{ is even}\}$ with directed lattice edges from (i, n) to $(i + 1, n \pm 1)$

- Graph of free edges: exactly one of the outgoing lattice edges with equal probabilities independently, i.e. coalescing random walks to the right
- Edge weights: edges of the graph with weight 0, other lattice edges with weight 1
- Distance D^{RW}(i, n; j, m): weight of the directed path between (i, n) and (j, m) with minimal total weight

Random walk web distance

- Distance D^{RW}(i, n; j, m): weight of the directed path between (i, n) and (j, m) with minimal total weight
- In other words: minimal number of jumps to get from (i, n) to (j, m)

Random walk web distance

- Distance D^{RW}(i, n; j, m): weight of the directed path between (i, n) and (j, m) with minimal total weight
- In other words: minimal number of jumps to get from (i, n) to (j, m)
- Blue, red, green regions: set of starting points with 0, 1 and 2 jumps to the purple target point
- Aim: distance function between remote points, scaling, continuum limit

Brownian web distance

Brownian web distance $D^{\text{Br}}(t, x; s, y)$: minimal number of jumps from (t, x) to (s, y) using Brownian web paths and with jumps at (1, 2) points from the incoming path to the additional path

Basic properties:

- ullet D^{Br} is integer valued
- D^{Br} is non-symmetric
- $D^{\mathrm{Br}}(t,x;s,y) = \infty$ for a typical (s,y) which is not hit by a Brownian web path

•
$$D^{\mathrm{Br}}(t,x;t,x) = 0$$

• Triangle inequality:

$$D^{\mathrm{Br}}(t,x;s,y) \leq D^{\mathrm{Br}}(t,x;u,z) + D^{\mathrm{Br}}(u,z;s,y)$$

Lower semicontinuous version $D^{Br,LSC}(t,x;s,y)$ differs from $D^{Br}(t,x;s,y)$ by at most 1 only for special (t,x)

Main results

0:1:2 scale invariance (c.f. 1:2:3 scaling in the KPZ class):

Proposition

For all $\alpha > 0$, it holds that

$$D^{\mathrm{Br}}(\alpha^2 t, \alpha x; \alpha^2 s, \alpha y) \stackrel{\mathrm{d}}{=} D^{\mathrm{Br}}(t, x; s, y).$$

Convergence:

Theorem (B. V., B. Virág, 2023)

- The Brownian web distance as a function $D^{\mathrm{Br,LSC}}: \mathbb{R}^4 \to \mathbb{R} \cup \{\infty\}$ is almost surely lower semicontinuous.
- There is a coupling of the underlying random walk webs and Brownian web such that

$$D^{\mathrm{RW}}(nt, n^{1/2}x; ns, n^{1/2}y) \rightarrow D^{\mathrm{Br,LSC}}(t, x; s, y)$$

as $n \to \infty$ almost surely in the epigraph sense.

KPZ limit after a shear mapping

Theorem (B. V., B. Virág, 2023)
For
$$\eta \in (0, 1)$$
, we have as $n \to \infty$ that

$$\frac{\frac{\eta^2 n}{4} + \frac{\eta^{4/3} z n^{2/3}}{2^{1/3}} - D^{\text{Br}}(-n, \eta n + 2^{2/3} \eta^{1/3} z n^{2/3}; 0, \mathbb{R}_{-})}{2^{-2/3} \eta^{2/3} n^{1/3}} \stackrel{d}{\Longrightarrow} \mathcal{L}(0, 0; z, 1)$$
and

$$\frac{c_1(\eta) n - c_2(\eta) z n^{2/3} - D^{\text{RW}}(-n, \eta n + c_3(\eta) z n^{2/3}; 0, \mathbb{Z}_{-})}{c_4(\eta) n^{1/3}} \stackrel{d}{\Longrightarrow} \mathcal{L}(0, 0; z, 1)$$
where \mathcal{L} is the directed landscape and $\mathcal{L}(0, 0; z, 1) = \mathcal{A}(z) - z^2$ is the
parabolic Airy process.

1st July 2025

Directed landscape and the 1:2:3 scaling

Directed landscape $\mathcal{L}(x, t; y, s)$ constructed by Dauvergne, Ortmann, Virág, 2018

Last passage percolation: let ξ_{ij} for $(i, j) \in \mathbb{Z}^2$ be i.i.d. random variables with geometric or exponential distribution. The last passage value

$$L((i,j),(k,l)) = \sup_{\pi:(i,j)\nearrow(k,l)} \sum_{(a,b)\in\pi} \xi_{ab}$$

Theorem (Dauvergne, Virág, 2022)

$$\frac{L(tn^3u + xn^2v, sn^3u + yn^2v) - \alpha n^3(t-s)}{\chi n} \stackrel{\mathrm{d}}{\Longrightarrow} \mathcal{L}(x, t; y, s)$$

as n $ightarrow \infty$ where u = (1, 1), v = (1, -1) and $lpha, \chi$ are explicit constants.

Proposition (1:2:3 scale invariance of directed landscape) For $\alpha > 0$,

$$\alpha^{-1}\mathcal{L}(\alpha^2 x, \alpha^3 t; \alpha^2 y, \alpha^3 s) \stackrel{\mathrm{d}}{=} \mathcal{L}(x, t; y, s)$$

Bálint Vető (Budapest)

Bernoulli-Exponential first passage percolation

- Lattice: $\{(i, n) \in \mathbb{Z}^2 : i + n \text{ is even}\}$ with directed lattice edges from (i, n) to $(i + 1, n \pm 1)$
- Free edges: coalescing random walks
- Edge weights: 0 for free edges, independent EXP(1) weights for all other edges
- Distance T(i, n; j, m): weight of the directed path between (i, n) and (j, m) with minimal total weight

$$T(i, n; j, [m, \infty)) = \min_{l \in [m, \infty)} T(i, m; j, l)$$

Results on Bernoulli-Exponential first passage percolation

Based on explicit formulas by Barraquand-Corwin, 2017:

Theorem (B.V., 2024)

For any
$$h \in \mathbb{R}$$
, as $n \to \infty$,
 $\sqrt{n}T(0,0;n,[h\sqrt{n},\infty)) \stackrel{d}{\Longrightarrow} T_h$
where the distribution of T_h can be given explicitly

where the distribution of T_h can be given explicitly.

 $\text{Height function } H(n,r) = \max\{k \in \mathbb{Z}: T(0,0;n,k) \leq r\}: \text{ as } n \to \infty$

$$n^{-1/2}H\left(n,sn^{-1/2}\right) \stackrel{\mathrm{d}}{\Longrightarrow} H_s$$

• For s = 0, H_0 is Gaussian

• As
$$s \to \infty$$
, $2^{4/9} 3^{-1/3} s^{1/9} \left(H_s - 2^{-2/3} 3 s^{1/3}\right) \stackrel{\mathrm{d}}{\Longrightarrow} \mathrm{TW}$

Conjecture (Convergence and -1:1:2 scaling)

$$n^{1/2} T(nt, n^{1/2}x; ns, n^{1/2}y) o D^{BN}(t, x; s, y)$$

as $n \to \infty$ where $D^{BN}(0, 0; 1, [h, \infty)) \stackrel{d}{=} T_h$ and
 $n^{1/2} D^{BN}(nt, n^{1/2}x; ns, n^{1/2}y) \stackrel{d}{=} D^{BN}(t, x; s, y).$

The end

Happy birthday, Bálint!

Bálint Vető (Budapest)

Brownian web distance

1st July 2025

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯