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I have a truly marvellous full academic tree
which this slide is too small to contain!
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» For example integrable systems and young tableaux

» Recently Blocking Measures for Interacting Particle
Systems have been shown to be linked to combinatorial
objects.



Our story begins ...

» Baldzs and Bowen (2018) gave a purely probabilistic
proof of a well-known combinatorial identity:
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Jacobi Triple Product

For g € (0,1) and z # 0,

> a5 =[] - a)(1+ 7)1 +q )
meZ i>1
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» This paper constructs a family of blocking measures for
Interacting Particle Systems on Z.
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» This paper constructs a family of blocking measures for
Interacting Particle Systems on Z.

» This proof of the Jacobi Triple Product identity follows
from the Exclusion - Zero-range correspondence
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For g € (0,1) and c € R,

m(m+1

> q 2

meEZ _ I,
T[T+ g—¢)1 + gi~1tc) il;[l(l q')

i>1

» This paper constructs a family of blocking measures for
Interacting Particle Systems on Z.

» This proof of the Jacobi Triple Product identity follows
from the Exclusion - Zero-range correspondence, by
equating blocking measures.



The story continues ...

Natural questions for ASEP leads to proofs of other well
known combinatorial identities. (Adams, Balazs, J.)
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» Distribution of #{particles to left of a site} leads to,
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Euler's Identity

oo k(k=1) 1) 0

For g € (0,1) and z € R>0, qk 2= — 11+ zg').
=0 10— q) =0

» Particle - Hole symmetry for ASEP leads to,

Durfee Rectangles Identity

For g € (0,1) and any fixed n € Z,

1 ce qk(n+k)
Ma-a) 2 o &
>1 k=max{=n0} T[(1—-¢q')- [I(1 - ¢)

i=1 j=1




Natural Questions:

» Are ASEP/AZRP the only particle systems
that have this connection to combinatorics
via these identities?
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Natural Questions:

» Are ASEP/AZRP the only particle systems
that have this connection to combinatorics
via these identities?

» If this connection is deeper, does it reveal
new results in Probability or
Combinatorics?
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Jump rate functions: Right jump from site i to i + 1 w/r

p(ni,ni+1). Left jump from site i to i — 1 w/r q(ni—1,mi)-
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Jump rate functions: Right jump from site i to i + 1 w/r

p(ni,ni+1). Left jump from site i to i — 1 w/r q(ni—1,mi)-
The rates satisfy the blocking conditions.

e Exclusion: p(0,-) = p(-,2) = q(2,-) =q(-,0) =0
e Attractivity: p(y +1,2) > p(y,z), p(y,z+1) < p(y, 2),
q(y +1,2) < qly,2), q(y,z+1) > q(y, 2)

e Algebraic recursive rates: an explicit condition. The rates
can be parametrised by g € (0,1) and t > 1,

LD (,;(10%,(02))
~ p(1,0) g0, 1)p(1,1))

t:=



Connecting
O_ 1_2 Systems On Z blocking measures
of interacting
particle systems
with combinatorial

q(0’2) objects
%’ 2 p(]"l) Jessica Jay
° e ™ e 0 0 0 0
[ ] o o ® 6 6 6 06 0 0 O
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 0-1-2 IPS’s
LMP RMH

Family of reversible stationary measures

For any ¢ € R the following is reversible and stationary for
the dynamics,

. 0 fim=1} gle=imi 22 fl{ni=1} g(2=n:)(i—c)
(77 HOO 1+ tqc—i + q2(c—i)) ,1;[1 (1 + tqi—c o q2(i—c))
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Unique stationary measures

The unique stationary measure on {n : N(n) = n} (for n
even) is given by,

M8

Conserved Quantity: N(n) =

D) %o: q£(£+l)—2£cﬁc(ﬂ)H{N(ﬂ)= n}

V() = === -
g' o ne (1+ T (1-2u¢ (1)))

i=—00



An equivalent family of particle systems on Z_

For each n € Z there is a bijection, T" : Q" — H, for some

Z<o

specific state space H C Z-3’.

LMP

A staten € Q71
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State space:

» Any number of particles allowed per site, H C Zzgo

P Restriction: No 2 consecutive empty sites

HCH = {gEZiﬁo: w_i=0=w_j—1 #0,Vi>0}

» Far to the left agrees with 1,0,1,0,1... H = He U H°
HE:={weH :IN>0 stw_;=1I{ieven} Vi> N},
HO ={weH :IN>0 stw ;=1I{iodd} Vi> N}

Dynamics: inherited from family of 0-1-2 systems.



Family of Restricted Particle Systems

To find the reversible stationary measures on H€ and H°,

» First relax the restriction on the dynamics and use
Baldzs and Bowen blocking measure construction.
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Family of Restricted Particle Systems

To find the reversible stationary measures on H€ and H°,
» First relax the restriction on the dynamics and use
Baldzs and Bowen blocking measure construction.

> Markov “cuts” Theorem gives that this is also reversible
stationary for the process with restricted dynamics.

» Condition on having the 1,0,1,0,1,0 ... block far to the
left (this has measure zero but can use the product
structure of the measure)
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To find the reversible stationary measures on H¢ and H°, with combimatoril
objects
» First relax the restriction on the dynamics and use R
Baldzs and Bowen blocking measure construction.
> Markov “cuts” Theorem gives that this is also reversible A

stationary for the process with restricted dynamics.

» Condition on having the 1,0,1,0,1,0 ... block far to the
left (this has measure zero but can use the product
structure of the measure)

Reversible stationary measure

On € the unique reversible stationary measure is,

¥ ot X iw_i-1) 2(2 Hw_>1}— 3 H{w_,-:O})

q i odd i even i odd i even

¢ (w) =

even(qa t)
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This equivalence proves new Jacobi style identities!
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Probability Influencing Combinatorics

This equivalence proves new Jacobi style identities!

Theorem (Balazs, Fretwell, J., (2022))
ForO<g<l1l, t>1landz>0

2Seven(q,) Y gt
LeZ

_ H(l + tzqi + 22q2i)(1 + tz—lqi—l + Z—2q2(i—1))
i>1

+H1—tzq+z2 21)(1_t 111+z q2(l 1))
i>1
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Probability Influencing Combinatorics

This equivalence proves new Jacobi style identities!

Theorem (Balazs, Fretwell, J., (2022))

ForO<g<l1l,t>1landz>0

25even((7a t)z q€(€+1)22£

LeZ
_ H 1 + tzq +22 21)(1 + tz—lqi—l +Z_2q2(i_1))
i>1
+H(1 _ tzqi+z q2r)( -1 I 1 4z q2(i—1))
i>1

This identity was found from the probability and then we
found the combinatorial interpretation.
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Combinatorics Influencing Probability
When we specialise to the 2-Exclusion process (all possible
left jumps with rate g, right with rate 1) the identity
specialises to a known one in the combinatorics literature.
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Combinatorics Influencing Probability

When we specialise to the 2-Exclusion process (all possible
left jumps with rate g, right with rate 1) the identity
specialises to a known one in the combinatorics literature.

e
([ ] ([ ] (] ([ ] ([ ]

w

—-11 —-10 -9 -8 -7 -6 -5 —4 -3 -2 -1

He={weZly wi=0=w;1#0Vi>0
and 3N >0 stw_j=w®; Vi> N}
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Combinatorics Influencing Probability

When we specialise to the 2-Exclusion process (all possible
left jumps with rate g, right with rate 1) the identity
specialises to a known one in the combinatorics literature.

e
([ ] ([ ] (] ([ ] ([ ]

w

—-11 —-10 -9 -8 -7 -6 -5 —4 -3 -2 -1

He={weZly wi=0=w;1#0Vi>0
and 3N >0 stw_j=w®; Vi> N}

Combinatorics gives:
Z Z iw_i+ Z i(w_,-—l)

q iodd i ‘even
weHe
1

1;[1(1 — qi)(l _ q12i—10)(1 _ q12i—9)(1 _ q12i—3)(1 _ q12i—2)
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Combinatorics Influencing Probability
When we specialise to the 2-Exclusion process (all possible
left jumps with rate g, right with rate 1) the identity
specialises to a known one in the combinatorics literature.

e
([ ] ([ ] (] ([ ] ([ ]

w

—-11 —-10 -9 -8 -7 -6 -5 —4 -3 -2 -1

He={weZly wi=0=w;1#0Vi>0
and 3N >0 stw_j=w®; Vi> N}

Combinatorics gives:
Z Z iw_i+ Z i(w_,-—l)

q iodd i ‘even

weHe

_ 1

- H (1 _ ql)(l _ q12i—10)(1 _ q12i—9)(1 _ q12i—3)(1 _ q12i—2)
i>1

This is completely non-obvious from the form of the
blocking measure!
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A mystery remains ...

He={weZly wi=0=w_1#0Vi>0
and 3N >0 stw_;j=ws; Vi> N}
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A mystery remains ...
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—I11 —I10 —I9 —Is —I7 -6 -5 —I4 -3 -2 -1 Jessica Jay
={weZiy: wi=0=w_ i 1#0Vi>0 0.121ps's
and 3N >0 stw_;j=ws; Vi> N}
Conjecture:
iw_ i+ S i(w_i—1) 2(2 Ho_i>1}— 3 Hw_; 70})
Z q i odd i even t i even
weHE
+i—1 2
_Z Z,( 1)™ '(nzfl 1 )nqn t=
. 1 4 i>1n>i

II(1—¢*m)

m>1

[1(1—qm)>
m>1
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-1 -10 -9 -8 -7 -6 -5 —4 -3 -2 -1 Jessica Jay
Z<o .
={weZyy: wi=0=w_;1#0,Vi>0 0-1-2 IPS's

and 3N >0 stw_;j=ws; Vi> N}

Conjecture:

iw_ i+ S i(w_i—1) 2(2 Hw_i>1}— 3 Hw_; 70})
t

g q i odd i even i even

weHE
1)n—i n+i—1 nqn t2l
TR
I a—-¢m) [1(1—-qm)?
m>1 m>1

This is not clear from either the probability or combinatorics
interpretation of our identities.



(Blocking) Ising process
State space: Q'S := {—1,+1}%
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5 -4-3-2-10 1 2 3 4 5
Blocking Ising

To any state we associate two quantities:

> “Energy”:
H(o) := ZH{O‘,‘ # 0it1}
i€Z

> “Asymmetry”: for any given ¢ € R,

fo(o) =2 Z(i —o)l{oi=-1} -2 Y (i—c){o; =1}.

i=—o0

We can also consider inhomogeneous interactions



(Blocking) Ising process

State space:

B = {O' c QIS : Ela,bE ZStVI S N [ — —17 Opti = +1}

-+t -+ - -+ + -+ o+

5-4-3-2-10 1 2 3 4 5
LM+ RM-
To any state we associate two quantities:
> “Energy”:
H(o) := Z]I{U,- # 0ojy1} < 00

i€EZ

> “Asymmetry”: for any given ¢ € R,

fo(o) == 2Z(i—c)]1{a,- =-1}-2 Y (i—o)l{o; =1} < o0

i=—o00

Connecting
blocking measures
of interacting
particle systems
with combinatorial
objects

Jessica Jay

Blocking Ising
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of interacting
particle systems

We consider Kawasaki dynamics for the Ising process, where i comppatora
spins swap at sites (7,7 + 1) with rates of the form,

Jessica Jay

w(o,o') = %(1 + tanh(BJ(i ), ? S+ 1)))qjﬂ.
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(Blocking) Ising process

We consider Kawasaki dynamics for the Ising process, where
spins swap at sites (7,7 + 1) with rates of the form,

w(o,0') = %(1 + tanh(ﬁJ(i ), t S+ 1)))qjﬂ.

Compared to ASEP: the rate of a jump over edge (i, i+ 1)
now also depends on sites i — 1 and i + 2.
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We consider Kawasaki dynamics for the Ising process, where i comppatora
spins swap at sites (7,7 + 1) with rates of the form, Jessica Jay
1 Ji—1)x£J(i+1
w(o,0') = 5 (1% tanh(3 (i=1) : (T 1)y g1
Blocking Ising

Compared to ASEP: the rate of a jump over edge (i,i + 1)
now also depends on sites i — 1 and i + 2.

Family of Stationary Reversible Measures

For any ¢ € R the measure,

e—BH(a)qfc(a)

pe(o) = Z;
»q,¢C

is stationary and reversible for the described dynamics.
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Compared to ASEP: the rate of a jump over edge (i,i + 1)
now also depends on sites i — 1 and i + 2.

Family of Stationary Reversible Measures

For any ¢ € R the measure,

e—BH(a)qfc(a)

pe(o) = Z;
»q,¢C

is stationary and reversible for the described dynamics.
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Blocking Ising

Conserved Quantity:
0o 0

Nio)=> {oi=-1} - > I{o;=1} < oc.
i=1 i

I=—00
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Blocking Ising

Conserved Quantity:

N(o) = ;il]l{a,-: _1}_& H{o; = 1} < .

I=—00

Unique stationary measures

The unique stationary measure on {0 : N(o) = n} is,

z qm(m+1)—2mc X e—ﬁH(cr)qfc(U)

V7 (o) = ML I{N(c) = n}.
ﬁ,q( ) qn(n+1)—2nczﬁ7q’c { ( ) }
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Blocking Ising

Conserved Quantity:

N(o) = éﬂ{a,- - Y Hoi=1} <o

i=—o00

Unique stationary measures

The unique stationary measure on {0 : N(o) = n} is,
Z qm (m+1)—2mc . e—BH(a)qfc(U)
vh (o) = 2= I{N(c) = n}.
B9 qn(n+1)_2nCZﬁ,q,c
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Combinatorics Influencing Probability

» Using the maps from the ASEP-AZRP correspondence
we can find an equivalent particle system.

» We find the unique reversible measures for this
equivalent system and hence have an identity.

P> The identity relates to certain integer partitions.
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» Using the maps from the ASEP-AZRP correspondence objects
we can find an equivalent particle system. Jessica Jay

» We find the unique reversible measures for this

equivalent system and hence have an identity.
Blocking Ising

P> The identity relates to certain integer partitions.

> As a consequence of this identity and the Jacobi Triple
Product identity we can write the partition function of
the blocking Ising as a product,

Zsqe = e [[(1+(e ~1)¢?) (1420 ))(1+¢20149)
i=1



Connecting

Comblnatorlcs Infl UenC|ng PrOba blllty blocking measures

of interacting
particle systems
with combinatorial

» Using the maps from the ASEP-AZRP correspondence objects
we can find an equivalent particle system. Jessica Jay

» We find the unique reversible measures for this

equivalent system and hence have an identity.
Blocking Ising

P> The identity relates to certain integer partitions.

> As a consequence of this identity and the Jacobi Triple
Product identity we can write the partition function of
the blocking Ising as a product,

o0

Zﬁ,q,c = e’rB H(1+(ef2ﬂ_1)q2i)(1+q2(i7c))(1+q2(i71+c))
i=1

Without the identity/ combinatorics the partition function is

very complicated!
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function of Blocking Ising is,
L le'(e‘*l)Jr(eLf'+1)(ZL+“'+2L—' 1) _—¢; Blocking Ising
(L+R4D) Q24 J j+1) ;74
v Dy > I Fr
L,R>0 0,221 j=1 1 Qir Hi—jn
L+R>0 My, mp>1

1
I mi(mi—1)+(mp_ i +1)(mp+--+mp_ 1) _m;
Q27N R—j R R—j+1) ;M (17 —1)Q£L+"'+21QmR+"'+m1+ —1
1_ QRT FMR_ji1 y y .
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If we let Q := g2, z:= g 2¢ and y := e~ 2P the partition Jessica Jay
function of Blocking Ising is,
L le'(e'*l)Jr(eLf'+1)(ZL+“‘+2L—' 1) _—¢; Blocking Ising
(L+R+1) Q2% J j+1) ;74

v Dy > I Fr

L,R>0 0,221 j=1 1 Qir Hi—jn

L+R>0 My, mp>1

1
R Aimi(mi—1)+(mp_i+1)(mp+-+mp_; m;

Q2 (D HmR—j (MR R J+1)Z J 1 —1\ A+l oMt +my =1
I1 1_ QRT FMR_ji1 (t-y7)e Q )

So the combinatorial identity gives us something highly non
trivial!



Not the end of the story ...

Amir, Bahadoran, Busani, Saada (2023) characterised
invariant measures for multi-lane exclusion (including
blocking measures).
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Not the end of the story ...

Amir, Bahadoran, Busani, Saada (2023) characterised
invariant measures for multi-lane exclusion (including
blocking measures).

Work in progress (Fretwell, J., Lees) exploring combinatorial
identities coming from the 2-lane simple exclusion process.

> \We are seeing identities related to the ones from 0-1-2
systems.
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> \We are seeing identities related to the ones from 0-1-2
systems.

» The parameter t in the 0-1-2 system can be seen as
some sort of strength of gravity.
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Not the end of the story ...

Amir, Bahadoran, Busani, Saada (2023) characterised
invariant measures for multi-lane exclusion (including
blocking measures).

Work in progress (Fretwell, J., Lees) exploring combinatorial
identities coming from the 2-lane simple exclusion process.

> \We are seeing identities related to the ones from 0-1-2
systems.

» The parameter t in the 0-1-2 system can be seen as
some sort of strength of gravity.

> We believe we can extend Baldzs and Bowen's blocking
family to 2 (potentially multiple) lanes.

Connecting
blocking measures
of interacting
particle systems
with combinatorial
objects

Jessica Jay

2-Lane ASEP



Some other mysteries ...

» Often these combinatorial identities also have algebraic
meaning!
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» Carinci, Giardind, Redig and Sasamoto, also Kuan found |
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certain particle systems can be built algebraically.
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» Question: Can these particle system equivalences be
seen algebraically?



Some other mysteries ...

» Often these combinatorial identities also have algebraic
meaning!

» Carinci, Giardind, Redig and Sasamoto, also Kuan found
certain particle systems can be built algebraically.

» Question: Can these particle system equivalences be
seen algebraically?

» Question: Can the link with algebra give us more new
results in probability?
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