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Probability and Combinatorics

▶ We all know that Probability and Combinatorics are
closely related!

▶ For example integrable systems and young tableaux

▶ Recently Blocking Measures for Interacting Particle
Systems have been shown to be linked to combinatorial
objects.
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Our story begins ...

▶ Balázs and Bowen (2018) gave a purely probabilistic
proof of a well-known combinatorial identity:

Jacobi Triple Product

For q ∈ (0, 1) and z ̸= 0,∑
m∈Z

q
m(m+1)

2 zm =
∏
i≥1

(1− qi )(1 + qiz)(1 + qi−1z−1)

▶ This paper constructs a family of blocking measures for
Interacting Particle Systems on Z.

▶ This proof of the Jacobi Triple Product identity follows
from the Exclusion - Zero-range correspondence
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The story begins ...
▶ Balázs and Bowen (2018) gave a purely probabilistic

proof of a well-known combinatorial identity:

Jacobi Triple Product (JTP)

For q ∈ (0, 1) and c ∈ R,∑
m∈Z

q
m(m+1)

2
−mc∏

i≥1
(1 + qi−c)(1 + qi−1+c)

=
∏
i≥1

(1− qi )

▶ This paper constructs a family of blocking measures for
Interacting Particle Systems on Z.

▶ This proof of the Jacobi Triple Product identity follows
from the Exclusion - Zero-range correspondence, by
equating blocking measures.
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The story continues ...
Natural questions for ASEP leads to proofs of other well
known combinatorial identities. (Adams, Balázs, J.)

▶ Distribution of #{particles to left of a site} leads to,

Euler’s Identity

For q ∈ (0, 1) and z ∈ R>0,
∞∑
k=0

q
k(k−1)

2 zk

k∏
i=1

(1−qi )

=
∞∏
i=0

(1 + zqi ).

▶ Particle - Hole symmetry for ASEP leads to,

Durfee Rectangles Identity

For q ∈ (0, 1) and any fixed n ∈ Z,

1∏
i≥1

(1− qi )
=

∞∑
k=max{−n,0}

qk(n+k)

n+k∏
i=1

(1− qi ) ·
k∏

j=1
(1− qj)

.
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Natural Questions:

▶ Are ASEP/AZRP the only particle systems
that have this connection to combinatorics
via these identities?

▶ If this connection is deeper, does it reveal
new results in Probability or
Combinatorics?
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0-1-2 Systems on Z

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

RMHLMP

q(0,2)
↶ p(1,1)

↷↷X

Jump rate functions: Right jump from site i to i + 1 w/r
p(ηi , ηi+1). Left jump from site i to i − 1 w/r q(ηi−1, ηi ).
The rates satisfy the blocking conditions.

• Exclusion: p(0, ·) = p(·, 2) = q(2, ·) = q(·, 0) = 0

• Attractivity: p(y + 1, z) ≥ p(y , z), p(y , z + 1) ≤ p(y , z),
q(y + 1, z) ≤ q(y , z), q(y , z + 1) ≥ q(y , z)

• Algebraic recursive rates: an explicit condition. The rates
can be parametrised by q ∈ (0, 1) and t ≥ 1,

q ··=
q(0, 1)

p(1, 0)
, t ··=

(
p(1, 0)q(0, 2)

q(0, 1)p(1, 1)

) 1
2

.
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−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

RMHLMP

q(0,2)
↶ p(1,1)

↷↷X

Family of reversible stationary measures

For any c ∈ R the following is reversible and stationary for
the dynamics,

µc(η) =
0∏

i=−∞

tI{ηi=1}q(c−i)ηi

(1 + tqc−i + q2(c−i))

∞∏
i=1

tI{ηi=1}q(2−ηi )(i−c)

(1 + tqi−c + q2(i−c))
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0-1-2 Systems on Z

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

RMHLMP

q(0,2)
↶ p(1,1)

↷↷X

Conserved Quantity: N(η) =
∞∑
i=1

(2− ηi )−
0∑

i=−∞
ηi < ∞

Unique stationary measures

The unique stationary measure on {η : N(η) = n} (for n
even) is given by,

νn(η) =

2
∞∑

ℓ=−∞
qℓ(ℓ+1)−2ℓcµc(η)I{N(η) = n}

q
n(n+2)

4
−nc

(
1 +

∞∏
i=−∞

(
1− 2µc

i (1)
))
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An equivalent family of particle systems on Z<0

For each n ∈ Z there is a bijection, T n : Ωn → H, for some
specific state space H ⊂ ZZ<0

≥0 .

LMP 0 RMH

A state η ∈ Ω−1

1 2

3

4

5

6 7

8

9

10

1

-1-2-3-4-5-6-7-8-9-10-11

Its image ω ∈ H

0-1
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Family of Restricted Particle Systems

-1-2-3-4-5-6-7-8-9-10-11 0

State space:

▶ Any number of particles allowed per site, H ⊂ ZZ<0

≥0

▶ Restriction: No 2 consecutive empty sites

H ⊂ H′ ··= {ω ∈ ZZ<0

≥0 : ω−i = 0 ⇒ ω−i−1 ̸= 0, ∀i > 0}

▶ Far to the left agrees with 1,0,1,0,1... H = He ∪Ho

He ··= {ω ∈ H′ : ∃N > 0 s.t ω−i = I{i even} ∀i ≥ N},

Ho ··= {ω ∈ H′ : ∃N > 0 s.t ω−i = I{i odd} ∀i ≥ N}.
Dynamics: inherited from family of 0-1-2 systems.
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State space:
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Family of Restricted Particle Systems

To find the reversible stationary measures on He and Ho ,

▶ First relax the restriction on the dynamics and use
Balázs and Bowen blocking measure construction.

▶ Markov “cuts” Theorem gives that this is also reversible
stationary for the process with restricted dynamics.

▶ Condition on having the 1,0,1,0,1,0 ... block far to the
left (this has measure zero but can use the product
structure of the measure)

Reversible stationary measure

On He the unique reversible stationary measure is,

πe(ω) =
q

∑
i odd

iω−i+
∑

i even
i(ω−i−1)

t
2

( ∑
i odd

I{ω−i≥1}−
∑

i even
I{ω−i=0}

)
Seven(q, t)
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Probability Influencing Combinatorics

This equivalence proves new Jacobi style identities!

Theorem (Balázs, Fretwell, J., (2022))

For 0 < q < 1, t ≥ 1 and z > 0

2Seven(q, t)
∑
ℓ∈Z

qℓ(ℓ+1)z2ℓ

=
∏
i≥1

(1 + tzqi + z2q2i )(1 + tz−1qi−1 + z−2q2(i−1))

+
∏
i≥1

(1− tzqi + z2q2i )(1− tz−1qi−1 + z−2q2(i−1))
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This identity was found from the probability and then we
found the combinatorial interpretation.
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Combinatorics Influencing Probability
When we specialise to the 2-Exclusion process (all possible
left jumps with rate q, right with rate 1) the identity
specialises to a known one in the combinatorics literature.

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

ωe

He = {ω ∈ ZZ<0

≥0 : ω−i = 0 ⇒ ω−i−1 ̸= 0,∀i > 0

and ∃N > 0 s.t ω−i = ωe
−i ∀i ≥ N}

Combinatorics gives:∑
ω∈He

q

∑
i odd

iω−i+
∑

i even

i(ω−i−1)

=
1∏

i≥1

(1− qi )(1− q12i−10)(1− q12i−9)(1− q12i−3)(1− q12i−2)

This is completely non-obvious from the form of the
blocking measure!
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A mystery remains ...

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

ωe

He = {ω ∈ ZZ<0

≥0 : ω−i = 0 ⇒ ω−i−1 ̸= 0,∀i > 0

and ∃N > 0 s.t ω−i = ωe
−i ∀i ≥ N}

Conjecture:∑
ω∈He

q

∑
i odd

iω−i+
∑

i even
i(ω−i−1)

t
2

( ∑
i odd

I{ω−i≥1}−
∑

i even
I{ω−i=0}

)

=
1∏

m≥1
(1− q2m)

+

∑
i≥1

∑
n≥i

(−1)n−i
(n+i−1

2i−1

)
n
i q

n2t2i∏
m≥1

(1− qm)2

This is not clear from either the probability or combinatorics
interpretation of our identities.
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(Blocking) Ising process
State space: ΩIs ··= {−1,+1}Z

−5 −4 −3 −2 −1 0 1 2 3 4 5

– + – + – – + + – + +

To any state we associate two quantities:

▶ “Energy”:

H(σ) ··=
∑
i∈Z

I{σi ̸= σi+1}.

▶ “Asymmetry”: for any given c ∈ R,

fc(σ) ··= 2
∞∑
i=1

(i − c)I{σi = −1} − 2
0∑

i=−∞

(i − c)I{σi = 1}.

We can also consider inhomogeneous interactions
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(Blocking) Ising process
State space:

B ··= {σ ∈ ΩIs : ∃a, b ∈ Z s.t.∀i ∈ N σa−i = −1, σb+i = +1}.

−5 −4 −3 −2 −1 0 1 2 3 4 5

– + – + – – + + – + +

LM+ RM-

To any state we associate two quantities:

▶ “Energy”:

H(σ) ··=
∑
i∈Z

I{σi ̸= σi+1} < ∞

▶ “Asymmetry”: for any given c ∈ R,

fc(σ) ··= 2
∞∑
i=1

(i−c)I{σi = −1}−2
0∑

i=−∞

(i−c)I{σi = 1} < ∞
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(Blocking) Ising process

We consider Kawasaki dynamics for the Ising process, where
spins swap at sites (i , i + 1) with rates of the form,

w(σ, σ′) =
1

2
(1± tanh(β

J(i − 1)± J(i + 1)

2
))q±1.

Compared to ASEP: the rate of a jump over edge (i , i + 1)
now also depends on sites i − 1 and i + 2.

Family of Stationary Reversible Measures

For any c ∈ R the measure,

µc(σ) ··=
e−βH(σ)qfc (σ)

Zβ,q,c

is stationary and reversible for the described dynamics.
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(Blocking) Ising process

−5 −4 −3 −2 −1 0 1 2 3 4 5

– + – + – – + + – + +

LM+ RM-

Conserved Quantity:

N(σ) =
∞∑
i=1

I{σi = −1} −
0∑

i=−∞
I{σi = 1} < ∞.

Unique stationary measures

The unique stationary measure on {σ : N(σ) = n} is,

νnβ,q(σ) =

∑
m∈Z

qm(m+1)−2mc · e−βH(σ)qfc (σ)

qn(n+1)−2ncZβ,q,c
I{N(σ) = n}.
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Combinatorics Influencing Probability

▶ Using the maps from the ASEP-AZRP correspondence
we can find an equivalent particle system.

▶ We find the unique reversible measures for this
equivalent system and hence have an identity.

▶ The identity relates to certain integer partitions.

▶ As a consequence of this identity and the Jacobi Triple
Product identity we can write the partition function of
the blocking Ising as a product,

Zβ,q,c = e−β
∞∏
i=1

(1+(e−2β−1)q2i )(1+q2(i−c))(1+q2(i−1+c))

Without the identity/ combinatorics the partition function is

very complicated!
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Combinatorics Influencing Probability

If we let Q ··= q2, z ··= q−2c and y ··= e−2β the partition
function of Blocking Ising is,

y +
∑

L,R≥0
L+R>0

y (L+R+1)
∑

ℓ1,...,ℓL≥1
m1,...,mR≥1

L∏
j=1

Q
1
2
ℓj (ℓj−1)+(ℓL−j+1)(ℓL+···+ℓL−j+1)z

−ℓj

1 − Q
ℓL+···+ℓL−j+1

R∏
j=1

Q
1
2
mj (mj−1)+(mR−j+1)(mR+···+mR−j+1)z

mj

1 − Q
mR+···+mR−j+1

((
1 − y−1)QℓL+···+ℓ1QmR+···+m1 + y−1

)
.

So the combinatorial identity gives us something highly non
trivial!
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Not the end of the story ...

Amir, Bahadoran, Busani, Saada (2023) characterised
invariant measures for multi-lane exclusion (including
blocking measures).

Work in progress (Fretwell, J., Lees) exploring combinatorial
identities coming from the 2-lane simple exclusion process.

▶ We are seeing identities related to the ones from 0-1-2
systems.

▶ The parameter t in the 0-1-2 system can be seen as
some sort of strength of gravity.

▶ We believe we can extend Balázs and Bowen’s blocking
family to 2 (potentially multiple) lanes.
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Some other mysteries ...

▶ Often these combinatorial identities also have algebraic
meaning!

▶ Carinci, Giardiná, Redig and Sasamoto, also Kuan found
certain particle systems can be built algebraically.

▶ Question: Can these particle system equivalences be
seen algebraically?

▶ Question: Can the link with algebra give us more new
results in probability?
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Boldog Születésnapot Bálint!
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