
Sum of independent exponentials

Lemma 1. Let (Xi)i=1...n, n ≥ 2, be independent exponential random variables with pairwise distinct

respective parameters λi. Then the density of their sum is

(1) fX1+X2+···+Xn
(x) =

[

n
∏

i=1

λi

]

n
∑

j=1

e−λjx

n
∏

k 6=j
k=1

(λk − λj)
, x > 0.

Remark. I once (in 2005, to be more precise) thought this stuff would be part of some research-related
arguments, but I ended up not using it. Later on I realized it’s actually Problem 12 of Chapter I in
Feller: An Introduction to Probability Theory and its Applications, Volume II. And recently I have
read about it, together with further references, in “Notes on the sum and maximum of independent
exponentially distributed random variables with different scale parameters” by Markus Bibinger under
http://arxiv.org/abs/1307.3945. Moreover, I now know that this distribution is known as the
Hypoexponential distribution (thanks János!).

Proof. First we compute the convolutions needed in the proof.

e−ax
∗ e−bx =

x
∫

0

e−a(x−u)e−bu du = e−ax e
(a−b)x − 1

a− b
=

e−bx − e−ax

a− b
.

For n = 2,

fX1+X2
(x) = fX1

(x) ∗ fX2
(x) = λ1λ2

e−λ2x − e−λ1x

λ1 − λ2
= λ1λ2

[

e−λ1x

λ2 − λ1
+

e−λ2x

λ1 − λ2

]

,

in accordance to (1). Now inductively, fix n ≥ 3, and assume the statement is true for n− 1. Then

fX1+X2+···+Xn
(x) = fX1+X2+···+Xn−1

(x) ∗ fXn
(x) =

[

n−1
∏

i=1

λi

]

n−1
∑

j=1

e−λjx

n−1
∏

k 6=j
k=1

(λk − λj)

∗ fXn
(x)

=

[

n
∏

i=1

λi

]

n−1
∑

j=1

e−λnx − e−λjx

(λj − λn)
n−1
∏

k 6=j
k=1

(λk − λj)

=

[

n
∏

i=1

λi

][

n−1
∑

j=1

e−λjx

n
∏

k 6=j
k=1

(λk − λj)
−

n−1
∑

j=1

e−λnx

n
∏

k 6=j
k=1

(λk − λj)

]

.

The proof is done as soon as we show that the coefficient of e−λnx fits the coefficients seen in the sum
of (1), i.e.

(2) −

n−1
∑

j=1

1
n
∏

k 6=j
k=1

(λk − λj)
=

1
n−1
∏

k=1

(λk − λn)
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or, equivalently,
n
∑

j=1

1
n
∏

k 6=j
k=1

(λk − λj)

= 0.

To this order, we write

n
∑

j=1

1
n
∏

k 6=j
k=1

(λk − λj)
=

n
∑

j=1

n
∏

k 6=l 6=j
k, l=1

(λk − λl)

n
∏

k 6=l
k, l=1

(λk − λl)

which is zero if and only if
n
∑

j=1

n
∏

k 6=l 6=j
k, l=1

(λk − λl)

is zero. We transform the latter in the following display. The nontrivial steps are changing orders of
λ’s and thus signs in the factors of the products.

n
∑

j=1

n
∏

k 6=l 6=j
k, l=1

(λk − λl) =

n
∑

j=1

n
∏

j 6=k 6=l 6=j
k, l=1

(λk − λl)

n
∏

k=j 6=l
k, l=1

(λk − λl)

= ±

n
∑

j=1

n
∏

j 6=k>l 6=j
k, l=1

(λk − λl)
2

n
∏

k=j>l
k, l=1

(λk − λl)

n
∏

k=j<l
k, l=1

(λk − λl)

= ±

n
∑

j=1

n
∏

j 6=k>l 6=j
k, l=1

(λk − λl)
2

n
∏

j=k>l
k, l=1

(λk − λl)

n
∏

k>l=j
k, l=1

(λk − λl) (−1)n−j =

= ±

n
∏

k>l
k, l=1

(λk − λl)

n
∑

j=1

n
∏

j 6=k>l 6=j
k, l=1

(λk − λl) (−1)n−j ,

which is zero if and only if

(3)

n
∑

j=1

n
∏

j 6=k>l 6=j
k, l=1

(λk − λl) (−1)j

is zero. Notice that the product here is a Vandermonde determinant of the form
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and hence (3) is nothing but the expansion of the determinant
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w.r.t. its second column. As this determinant is zero, so is (3) and thus (2) is proven.
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