
Matematika A2

13. feladatsor

1. Vázoljuk fel az integrálási tartományt é számítsuk ki az integrált! (15.1: 5, 6, 7, 9, 19, 20)
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2. Vázoljuk fel az integrálási tartományt, írjuk fel és számítsuk ki az integrált fordított integrálási
sorrenddel! (15.1: 31, 33, 35, 38)

(a)
π∫
0

π∫
x

sin y
y dy dx

(b)
1∫
0

1∫
y

x2exy dx dy

(c)
2
√

ln 3∫
0

√
ln 3∫

y/2

ex
2
dx dy

(d)
8∫
0

2∫
3√x

1
y4+1 dy dx

3. Határozzuk meg a térfogatát annak az éknek, amelyet a z = 12 − 3y2 henger és az x + y = 2 sík
vág ki az els® térnyolcadból! (15.1: 47)

4. Impropius kett®s integrálok az egyváltozós impropius integrálokhoz hasonlóan értelmezhet®k, és
hasonlóan is számíthatók. El®ször meghatározzuk az integrált véges tartományon, és megnézzük
a határértéket, amint a határok a két változóra egymástól függetlenül végtelenbe tartanak.
Számítsuk az integrálokat kétszeres integrálként, majd vizsgáljuk az egyváltozó szerinti végtelenben
vett határértéket! (15.1: 51, 53)
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5. Vázoljuk az adott görbékkel határolt tartományt, azután fejezzük ki a területét mint kétszeres
integrált, majd számítsuk is ki a területet! (15.2: 1, 3, 7)

(a) A koordinátatengelyek és az x+ y = 2 egyenes.

(b) Az x = −y2 parabola és az y = x+ 2 egyenes.

(c) Az x = y2 és x = 2y − y2 parabolák.

6. Az ebben a feladatban szerepl® integrálok, ill. ezek összegei, xy-síkbeli tartományok területét adják.
Vázoljuk fel a tartományokat, adjuk meg a határológörbéket és a metszéspontokat! Majd számítsuk
ki az integrálokat! (15.2: 11, 13, 14)
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7. Térjünk át polárkoordinátákra, és számítsuk ki az integrált! (15.3: 1, 9, 13, 15)
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8. Mekkora az a terület, amit az x-tengely pozitív fele és az r = 4θ/3 spirális 0 ≤ θ ≤ 2π közötti
darabja zár közre? (A tartomány csigaházra emlékeztet.) (15.3: 20)

9. Áttérés polárkoordinátákra: Számítsuk ki az
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integrált! (15.3: 38)

10. Oldjuk meg az
u = 3x+ 2y, v = x+ 4y

egyenleteket x-re és y-ra! Ezután adjuk meg a ∂(x,y)
∂(u,v) Jacobi-determinánst! Mi lesz annak az xy-

síkbeli háromszögnek a képe az u = 3x + 2y, v = x + 4y transzformációval, amelyet az y-tengely,
x-tengely és az x+ y = 1 egyenes határol? Vázoljuk fel a képet az uv-síkban! (15.7: 3)
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integrál kiszámításához, ahol a T tartomány az els® síknegyedben van, és az y = −(3/2)x + 1,
y = −(3/2)x+ 3, y = −(1/4)x, y = −(1/4)x+ 1 egyenesek határolják! (15.7: 7)

12. Legyen T egy tartomány az xy-sík eks® síknegyedében, amelyet az xy = 1, xy = 9 hiperbolák és az
y = x, y = 4x egyenesek határolnak. Használjuk az x = u/v, y = uv, u > 0, v > 0 transzformációt
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integrál átírásához egy megfelel® G tartományra az uv-síkon! Számítsuk ki az integrált! (15.7: 9)

13. Használjuk az x = u+ (1/2)v, y = v transzformációt az
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integrál átírására az uv-sík egy G tartománya fölötti integrállá, majd számítsuk ki az integrál
értékét! (15.7: 14)

14. Adjuk meg a következ® transzformációk ∂(x, y)/∂(u, v) Jacobi-determinánsát! (15.7: 15)

(a) x = u cos v, y = u sin v

(b) x = u sin v, y = u cos v
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