
Matematika A2

2. gyakorlat

Számsorok

Az integrál teszt

1. Állapítsuk meg, hogy az alábbi sorok közül melyek konvergensek és melyek divergensek! Válaszunkat
indokoljuk! (A válasz ellen®rzéséhez hasznos, ha szem elött tartjuk azt, hogy egy sor konvergenciája
többféle módon vizsgálható.) (11.3: 1, 3, 9, 17, 21, 25)
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sor? (11.3: 31)

3. Logaritmikus p-sorok: (11.3: 39)

(a) Legyen p pozitív állandó. Igazoljuk, hogy
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pontosan akkor konvergens, ha p > 1!

(b) Milyen következtetést vonhatunk le a feladat (a) része alapján a
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sorra vonatkozóan? Válaszunkat indokoljuk!

Összehasonlító tesztek

4. Az alább megadott végtelen sorok közül melyek konvergensek, és melyek divergensek? Válaszunkat
indokoljuk! (11.4: 1, 7, 13, 17, 25, 33)
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A hányados és gyök teszt

5. Az alább megadott végtelen sorok közül melyek konvergensek, és melyek divergensek? Válaszunkat
indokoljuk! (11.5: 1, 5, 9, 15, 19, 25, 43)
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6. Az alább megadott
∑∞

n=1 an sorok közül melyek konvergensek, és melyek divergensek? Válaszunkat
indokoljuk! (11.5: 27, 31, 35)
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Abszolút és feltételes konvergencia

7. Az alábbi sorok közül melyek az abszolút konvergensek, feltételesen konvergensek, illetve divergen-
sek? (11.6: 11, 19, 27, 39)
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Hatványsorok

8. Adjuk meg az itt szerepl® sorok (i) konvergenciasugarát és konvergenciaintervallumát! Állapítsuk
meg, hogy a sorok (ii) mely x értékek esetén abszolút konvergensek, és (iii) mely x értékek esetén
feltételesen konvergensek? (11.7: 7, 13 ,15 , 29)
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9. Mely x-ek esetén konvergens az
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végtelen sor? Mi a sor összege? Melyik sort kapjuk tagonkénti deriválással? Mely x-ek esetén kon-
vergens az új sor? Ahol konvergens, mennyi az összege? (11.7: 39)
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hatványsor minden x esetén konvergens. (11.7: 41)

(a) Adjuk meg a cos függvény sorának els® hat tagját! Mely x-ek esetén konvergens ez a sor?

(b) A sinx sorában x helyébe 2x-et írva adjuk meg a sin 2x függvény � minden x estetén konvergens
� hatványsorát!

(c) A feladat (a) részének eredményét felhasználva számítsuk ki a 2 sinx cosx függvény hatvány-
sorának els® hat tagját! Vessük ezt össze a feladat (b) részére adott válaszunkkal!

Taylor-sorok

11. Írjuk fel a függvény nullad- els®- másod- és harmad-rend¶ Taylor-polinomjait a megadott helyen!
(11.8: 1, 5, 7)

(a) f(x) = lnx, a = 1

(b) f(x) = sinx, a = π/4

(c) f(x) =
√
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12. Határozzuk meg az f által (a jelzett helyen) generált Taylor-sort! (11.8: 21, 25, 27)

(a) f(x) = x3 − 2x+ 4, a = 2

(b) f(x) = 1/x2, a = 1

(c) f(x) = ex, a = 2
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