Problems for the third week

1. In each of the following problems (a) through (d) find the solution of the given initial value problem and compute $\lim_{t\to\infty} y(t)$.

(a)
$$y'' + 5y' + 6y = 0$$
, $y(0) = 2, y'(0) = 3$
(b) $y'' + y' - 2y = 0$, $y(0) = 1, y'(0) = 1$,
(c) $y'' + 4y' + 3y = 0$, $y(0) = 2, y'(0) = -1$,
(d) $y'' + 8y' - 9y = 0$, $y(1) = 1, y'(1) = 0$.

2. Consider the initial value problem

$$y'' + 5y' + 6y = 0,$$
 $y(0) = 2, y'(0) = \beta,$

where $\beta > 0$.

- (a) Solve the initial value problem.
- (b) Determine the coordinates (t_m, y_m) of the maximum point of the solution as functions of β
- (c) Determine the smallest value of β for which $y_m \ge 4$.
- (d) Determine the behavior of t_m and y_m as $\beta \to \infty$.
- 3. In each problems (a) through (d) use Euler's formula to write the given expression in the form a + ib.
 - (a) e^{-3+6i}
 - (b) e^{1+2i}
 - (c) $e^{i\pi}$
 - (d) 2^{1-i}
- 4. In each of the following problems (a) through (d) find the solution of the given initial value problem
 - (a) 16y'' 8y' + 145y = 0, y(0) = -2, y'(0) = 1
 - (b) y'' + 4y = 0, y(0) = 1, y'(0) = 1,
 - (c) y'' 2y' + 5y = 0, $y(\pi/2) = 0, y'(\pi/2) = 2$,

(d)
$$y'' + 2y' + 2y = 0$$
, $y(\pi/4) = 2, y'(\pi/4) = -2$.

- 5. In each of the following problems (a) through (d) find the solution of the given initial value problem
 - (a) y'' y' + 0.25y = 0, $y(0) = 2, y'(0) = \frac{1}{3}$
 - (b) 9y'' 12y' + 4y = 0, y(0) = 2, y'(0) = -1(c) 9y'' + 6y' + 82y = 0, y(0) = -1, y'(0) = 2

 - (d) y'' + 4y' + 4y = 0, y(-1) = 2, y'(-1) = 1
- 6. Consider the initial value problem

$$4y'' + 12y' + 9y = 0, \qquad y(0) = 1, y'(0) = -4.$$

- (a) Solve the initial value problem and plot its solution for $0 \le t \le 5$.
- (b) Determine where the solution has the value zero.
- (c) Determine the coordinates (t_0, y_0) of the minimum points.
- (d) Change the second initial condition to y'(0) = b and find the solution as a function of b. Then find the critical value of b that separates solutions that always remain positive from those that eventually become negative.