Problems for the third week

1. In each of the following problems (a) through (d) find the solution of the given initial value problem and compute $\lim _{t \rightarrow \infty} y(t)$.
(a) $y^{\prime \prime}+5 y^{\prime}+6 y=0, \quad y(0)=2, y^{\prime}(0)=3$
(b) $y^{\prime \prime}+y^{\prime}-2 y=0, \quad y(0)=1, y^{\prime}(0)=1$,
(c) $y^{\prime \prime}+4 y^{\prime}+3 y=0, \quad y(0)=2, y^{\prime}(0)=-1$,
(d) $y^{\prime \prime}+8 y^{\prime}-9 y=0, \quad y(1)=1, y^{\prime}(1)=0$.
2. Consider the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0, \quad y(0)=2, y^{\prime}(0)=\beta,
$$

where $\beta>0$.
(a) Solve the initial value problem.
(b) Determine the coordinates $\left(t_{m}, y_{m}\right)$ of the maximum point of the solution as functions of β
(c) Determine the smallest value of β for which $y_{m} \geq 4$.
(d) Determine the behavior of t_{m} and y_{m} as $\beta \rightarrow \infty$.
3. In each problems (a) through (d) use Euler's formula to write the given expression in the form $a+i b$.
(a) $e^{-3+6 i}$
(b) $e^{1+2 i}$
(c) $e^{i \pi}$
(d) 2^{1-i}
4. In each of the following problems (a) through (d) find the solution of the given initial value problem
(a) $16 y^{\prime \prime}-8 y^{\prime}+145 y=0, \quad y(0)=-2, y^{\prime}(0)=1$
(b) $y^{\prime \prime}+4 y=0, \quad y(0)=1, y^{\prime}(0)=1$,
(c) $y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(\pi / 2)=0, y^{\prime}(\pi / 2)=2$,
(d) $y^{\prime \prime}+2 y^{\prime}+2 y=0, \quad y(\pi / 4)=2, y^{\prime}(\pi / 4)=-2$.
5. In each of the following problems (a) through (d) find the solution of the given initial value problem
(a) $y^{\prime \prime}-y^{\prime}+0.25 y=0, \quad y(0)=2, y^{\prime}(0)=\frac{1}{3}$
(b) $9 y^{\prime \prime}-12 y^{\prime}+4 y=0, \quad y(0)=2, y^{\prime}(0)=-1$
(c) $9 y^{\prime \prime}+6 y^{\prime}+82 y=0, \quad y(0)=-1, y^{\prime}(0)=2$
(d) $y^{\prime \prime}+4 y^{\prime}+4 y=0, \quad y(-1)=2, y^{\prime}(-1)=1$
6. Consider the initial value problem

$$
4 y^{\prime \prime}+12 y^{\prime}+9 y=0, \quad y(0)=1, y^{\prime}(0)=-4 .
$$

(a) Solve the initial value problem and plot its solution for $0 \leq t \leq 5$.
(b) Determine where the solution has the value zero.
(c) Determine the coordinates $\left(t_{0}, y_{0}\right)$ of the minimum points.
(d) Change the second initial condition to $y^{\prime}(0)=b$ and find the solution as a function of b. Then find the critical value of b that separates solutions that always remain positive from those that eventually become negative.

