Problems for the fifth week

1. Solve the following initial value problem:

$$
y^{\prime \prime}=\frac{1}{\sqrt{1-x^{2}}}, \quad y(0)=3, y^{\prime}(0)=1
$$

2. A rod is loaded by a bending moment that is proportinal to the value $f(x)$ at each coordinate x. It is known that the shape of this rod's median can be computed by solving the following differential equation:

$$
\frac{y^{\prime \prime}}{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}=f(x) .
$$

Determine the shape of the rod if the bending moment follows

$$
f(x)=1-x
$$

and the initial conditions are given by

$$
y(0)=y^{\prime}(0)=0 .
$$

3. (a) Consider the differential equation of free mechanical vibration without damping

$$
\begin{equation*}
m y^{\prime \prime}+k y=0 \tag{1}
\end{equation*}
$$

Solve it as an incomplete second order differential equation.
(b) Solve differential equation (1) as a second order linear equation.
(c) Prove that the solutions you obtained in 3 a and 3 b are the same.
4. Find the general solution of the following differential equations.
(a)

$$
\left(y^{\prime}\right)^{2}+2 y y^{\prime \prime}=0,
$$

(b)

$$
y^{\prime \prime}=\frac{1}{\sqrt[4]{y}}
$$

(c)

$$
y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=1
$$

5. Solve the following second order differential equation:

$$
x y^{\prime \prime}-y^{\prime}=x^{3} .
$$

6. Solve the following differential equations:
(a) $2 x \cos y+\left[2 y \cos y-\left(x^{2}+y^{2}\right) \sin y\right] y^{\prime}=0$,
(b) $x d y+y d x=0$,
(c) $\frac{x}{x^{2}+y^{2}} y^{\prime}=\frac{y}{x^{2}+y^{2}}$,
(d) $2 x(\sin y+1)+x^{2} \cos y \cdot y^{\prime}=0$.
