
Markov folyamatok és martingálok (BMETE95MM07) ütemterv

Balázs Márton
2011 ősz

Alább egy nagyon hozzávetőleges ütemterv, a félév elején finomodni fog még, aztán úgyse pont így sikerül majd.
A Tematika és irodalomjegyzék a honlapról részletesebb információt ad az anyagról.

-vel kezdődő hét Téma Beadandó

Szept. 5. Feltételes várható é., konvergenciatípusok, martingálok -
Szept. 12. Martingáltételek, egyszerűbb alkalmazások 1. HF: 09.14
Szept. 19. Martingáltételek, egyszerűbb alkalmazások 2. HF: 09.21
Szept. 26. További martingál alkalmazások 3. HF: 09.28
Okt. 3. További martingál alkalmazások 4. HF: 10.05
Okt. 10. Sztoch. foly. ergodtételek 5. HF: 10.12
Okt. 17. Sztoch. foly. ergodtételek, martingál CHT ZH: 10.19, 10:15
Okt. 24. Martingál CHT, szubadditív ergodtétel 6. HF: 10.26

Okt. 31. Nov. 5. Szubadditív ergodtétel, Markov láncokban martingálok, elnye-
lési valószínűségek, megállási idők

7. HF: 11.02

Nov. 7. Markov lánc rekurrenciája; Markov CHT 8. HF: 11.09
Nov. 14. Elektromos áramkörök; - Szerda TDK konf. - 9. HF: 11.21
Nov. 21. Elektromos áramkörök; Pontfolyamatok, Poisson folyamat, je-

lölés, ritkítás, pontfolyamatok transzformációi
10. HF: 11.23

Nov. 28. Poisson folyamat transzformációi, származtatott folyamatok 11. HF: 11.30
Dec. 5. Poisson folyamat további tulajdonságai, rekordok 12. HF: 12.07

Házi feladatok
Markov folyamatok és martingálok, 2011 ősz

12 darab, összesen 10 pontos feladatsor lesz. Minden feladat annyi pontot ér, amennyi • látható mellette.

1. HF: (beadási határidő: szeptember 14.)

HF 1.1 ••• Legyenek X, Y ∈ L1(Ω,F ,P), melyekre tudjuk, hogy E(X|Y ) = Y m.b., és E(Y |X) = X m.b.
Mutassuk meg, hogy P{X = Y } = 1. (Tipp (bár máshogy is lenne szép megoldás, ha L2-beliséget is
feltettünk volna): tekintsük a

E(X − Y ; X > c, Y ≤ c) +E(X − Y ; X ≤ c, Y ≤ c)

kifejezést.)

HF 1.2 ••• Legyen G ⊂ F az (Ω, F , P) valószínűségi mezőn σ-algebra. Ha X már G-mérhető, akkor
E(X | G) = X, ami azt sugallja, hogy az X 7→ E(X | G) leképzés egyfajta projekció. Mutassuk
meg, hogy valóban: az L2(Ω, F , P) Hilbert-téren (skalárszorzás az 〈X, Y 〉P = E(XY )) ez a leképzés
ortogonális projekció az L2(Ω, G, P) altérre.

HF 1.3 •••• Legyenek ξ1, ξ2, . . . fae., standard normális változók. (Emlékezzünk, hogy momentumgeneráló
függvényük E(eλξi) = eλ

2/2.) Legyenek továbbá a, b ∈ R,

Sn =

n∑

k=1

ξk, és Xn = eaSn−bn.

Mutassuk meg, hogy
Xn → 0 m.b. ⇔ b > 0,

de r ≥ 1-re

Xn → 0 Lr-ben ⇔ r <
2b

a2
.

2. HF: (beadási határidő: szeptember 21.)

HF 2.1 •• Legyen Sn egy egyszerű, szimmetrikus bolyongó távolsága az origótól a síkbeli négyzetrácson n
lépés után. Legyen νr = inf{n : Sn > r}.



(a) Mutassuk meg, hogy S2
n − n martingál.

(b) Mutassuk meg, hogy r−2
E(νr) → 1 amint r → ∞.

HF 2.2 •• A feladat ugyanez, de ezúttal a síkbeli bolyongó lépései függetlenek, egységnyi hosszúak, és irányuk
egyenletes eloszlású.

HF 2.3 ••• Legyenek X1, X2, . . . független, azonos Exp(1) eloszlású valószínűségi változók, Sn = X1 + · · ·+
Xn, {Fn} a természetes filtráció. Mutassuk meg, hogy

n!

(1 + Sn)n+1
eSn

martingál {Fn}-re nézve.

HF 2.4 ••• Egy urnában n fehér és n fekete golyó van. Visszatevés nélkül sorra kihúzzuk őket. Fekete golyó
húzásakor 1 forintot fizetünk, fehér golyó esetén 1 forintot kapunk. Jelölje Xi a pénzünket i golyó
húzása után (X0 = 0). Legyen

Yi =
Xi

2n− i
(1 ≤ i ≤ 2n− 1), illetve Zi =

X2
i − (2n− i)

(2n− i)(2n− i− 1)
(1 ≤ i ≤ 2n− 2).

(a) Mutassuk meg, hogy Yi és Zi martingál.
(b) Határozzuk meg Xi szórásnégyzetét.

3. HF: (beadási határidő: szeptember 28.)

HF 3.1 ••• A fogadó tönkremenetele. Legyenek X1, X2, . . . faevv., P{Xi = 1} = p, P{Xi = −1} = q, ahol
0 < p = 1− q < 1, és p 6= q. Legyenek továbbá 0 < a < b egészek, és

Sn : = a+X1 +X2 + · · ·+Xn, T : = inf{n : Sn = 0 vagy Sn = b}.

(a) Mutassuk meg, hogy ET < ∞. Tipp: volt erre egy egyszerű lemmánk.

(b) Bizonyítsuk be, hogy

Mn : =
(q
p

)Sn

és Nn : = Sn − n(p− q)

mindketten martingálok (a természetes filtrációra nézve).
(c) Határozzuk meg a P{ST = 0} tönkremenési valószínűséget, és a játék ET várható időtartamát.

HF 3.2 Doob opcionális megállási tétel kiterjesztése. Legyen τ ≥ 0 megállási idő, Eτ < ∞. Vegyük észre,

hogy {τ ≥ k} =
k−1⋂
i=0

{τ 6= i} ∈ Fk−1.

(a) •• Az

|Xτ∧n −X0| =
∣∣∣

n∑

k=1

(Xk −Xk−1) · 1{τ ≥ k}
∣∣∣ ≤

∞∑

k=1

|Xk −Xk−1| · 1{τ ≥ k}

egyszerű észrevétel és Doob opcionális megállási tétele (iii) pontjának bizonyítása alapján mu-
tassuk meg, hogy ha X szupermartingál, melyre van olyan C ∈ R, hogy

E(|Xk −Xk−1|
∣∣Fk−1) ≤ C ∀k > 0, m.b.,

akkor EXτ ≤ EX0. Martingál esetén természetesen egyenlőség van.
(b) •• Hasonlóan, ha M0 = 0, lássuk be, hogy

M2
τ∧n =

n∑

k=1

(
Mk −Mk−1

)2
· 1{τ ≥ k}+ 2

∑

1≤i<j≤n

(Mi −Mi−1) · (Mj −Mj−1) · 1{τ ≥ j},(1)

M2
τ =

∞∑

k=1

(
Mk −Mk−1

)2
· 1{τ ≥ k}+ 2

∑

1≤i<j<∞

(Mi −Mi−1) · (Mj −Mj−1) · 1{τ ≥ j},(2)

(a szummák m.b. véges sok tagból állnak). Legyen M martingál, melyre M0 = 0, és van C ∈ R,
hogy ∣∣Mk −Mk−1

∣∣ ≤ C ∀k > 0, biztosan.

(Nyilván ezt lehetne gyengíteni, de most elégedjünk meg ennyivel.) Feltesszük továbbá, hogy
Eτ2 < ∞. Ekkor lássuk be, hogy (1) jobb oldalának első szummája monotonon konvergál (2) jobb
oldalának első szummájához melynek várható értéke véges, a második szummák várható értéke
pedig nulla mindkét esetben. Tipp: Fubini tétel. Vonjuk le a következtetést: lim

n→∞
EM2

τ∧n =

EM2
τ .



HF 3.3 Wald azonosságok. Legyenek Y1, Y2, . . . faevv.-k L1-ben, µ : = EYi, és τ ≥ 1 megállási idő (a

természetes σ-algebra szerint), Eτ < ∞. Legyen Sn =
n∑

i=1

Yi. Mutassuk meg, hogy

(a) • ekkor ESτ = µ ·Eτ .
(b) •• Ha Yi korlátos és Eτ2 < ∞ is teljesül (nyilván ezeket lehetne gyengíteni, de most elégedjünk

meg ennyivel), σ2 : = D
2Yi, akkor E(Sτ − µτ)2 = σ2 ·Eτ . (Ezt általában a µ = 0 esetben szokás

használni.)

Tipp: Használjunk martingált, és az előző feladat két részét.

4. HF: (beadási határidő: október 5.)

HF 4.1 Repül az egyenletes, ki tudja hol áll meg... Legyenek Y1, Y2, . . . faevv., Egyenletes(0, 1) eloszlással.

Legyen Sn : =
n∑

i=1

Yi, és τ : = min{n : Sn > 1}.

(a) • Mutassuk meg, hogy rögzített 0 ≤ z ≤ 1-re P{Sn < z} = zn/n!. Figyelem, ez nem igaz z > 1
esetén!

(b) • Határozzuk meg Eτ -t. Tipp: τ nemnegatív, úgyhogy lehet farokvalószínűségeket összegezni. A
farokvalószínűségek viszont szoros összefüggésben vannak az (a) feladattal.

(c) • Mivel τ megállási idő, a Wald azonosság alapján számoljuk ki E(Sτ−1)-et, azaz, hogy várhatóan
hol van a faevv. egyenletes időközű felújítási folyamatban az 1 után következő első felújítási
időpont.

HF 4.2 ••• A log-optimális portfólió, avagy Bellman optimalitási elv. Az n-edik fogadás során egységnyi
fogadási összeg nyereménye ξn, ahol (ξn)n∈N független és azonos eloszlású valószínűségi változók,
melyeknek közös eloszlása P{ξn = +1} = p, P{ξn = −1} = q, q+p = 1, p > 1/2. Magyarul: q < 1/2
valószínűséggel elveszítjük a befizetett összeget és p = 1− q > 1/2 valószínűséggel a dupláját nyerjük
vissza. Az n-edik fogadás során Cn összegre fogadunk. Y0 a kezdeti vagyonunk és Yn-el jelöljük
az n-edik fogadás eredményhirdetése utáni teljes vagyonunkat. Nyilván: 0 ≤ Cn ≤ Yn−1, n > 0.
Célunk: rögzített N számú fogadás során maximalizálni az E log(YN/Y0) várható nyereség rátánkat.
Fn = σ(ξ1, . . . , ξn) a folyamat természetes filtrációja.

(a) Bizonyítandó, hogy tetszőleges jósolható Cn fogadási stratégia mellett Zn := log Yn−nα szuper-
martingál, ahol α = p log p+ q log q + log 2. Ebből következik, hogy E log(YN/Y0) ≤ Nα.

(b) Ám létezik olyan fogadási stratégia, amely mellett a fenti Zn martingál. Tehát a várható nyereség
ráta fenti optimális felső korlátja megfelelő stratégia választással elérhető.

HF 4.3 •••• Azuma-Höffding egyenlőtlenség.

(a) Legyen c > 0, és −c ≤ Y ≤ c nulla várható értékű valószínűségi változó. Ekkor minden θ ∈ R-re

EeθY ≤ cosh(θc) ≤ eθ
2c2/2.

Tipp: minden konvex f függvényre – például az eθ· függvényre is – igaz, hogy

f(y) ≤
c− y

2c
· f(−c) +

c+ y

2c
· f(c).

ha −c ≤ y ≤ c.

(b) Legyen M egy martingál, melyre M0 = 0, és valamely {cn}n∈N sorozatra |Mn−Mn−1| ≤ cn, ∀n.
Ekkor minden x > 0 esetén

P

{
sup
k≤n

Mk ≥ x
}
≤ e

−x2/(2
n∑

k=1

c2k)
.

Tipp: kövessük az iterált logaritmus tétel bizonyítása ➀ részének gondolatmenetét.

5. HF: (beadási határidő: október 12.)

HF 5.1 •• A Black-Scholes lemma második fele. Legyen N > 0 egész, és

Ω = {ω1, ω2, . . . , ωN : ωi = ±1},

F a természetes σ-algebra, Fn = σ
(
{ωi}

n
i=1

)
, és P a szorzatmérték, mely szerint ωi-k fae., P{ωi =

1} = p = 1−P{ωi = −1}. Legyen továbbá M egy martingál az {Fn} filtrációra nézve. Órán láttuk,
hogy van olyan jósolható H folyamat, hogy

M = M0 +H • Z, azaz Mn = M0 +
n∑

k=1

Hk · (Zk − Zk−1) (0 ≤ n ≤ N),



ahol

Zk =
k∑

i=1

(ωk − 2p+ 1).

A feladat belátni H egyértelműségét.

HF 5.2 ••• Szóegyezés. Egy s elemű ABC-ből függetlenül, egyenletes eloszlással írunk n betűt egymás mögé.
Legyen B egy adott, k ≤ n hosszúságú szó, és X az a szám, ahányszor B előfordul az n hosszú
betűsorozatunkban. (Átfedés is lehetséges, pl. a B = AJJAJ k = 5 hosszú szó kétszer fordul elő az
n = 11 hosszú, BAJJAJJAJDF sorozatban.). Mutassuk meg, hogy

P

{∣∣∣X − (n− k + 1)
(1
s

)k∣∣∣ ≥ ε
}
≤ 2e−ε2/2nk2

.

HF 5.3 Golyók és urnák finomítva. m golyót egymástól függetlenül, egyenletesen elhelyezünk n urnába.
Legyen Fi az első i golyó helye által generált σ-algebra, és Mi = E(F | Fi), ahol F az üres urnák
száma az utolsó golyó elhelyezése után. Legyen Yi az üres urnák száma az i. lépés után (i = 0, . . . , m).
Mutassuk meg, hogy

(a) • Mi = Yi ·
(

n−1
n

)m−i

;

(b) •• |Mi −Mi−1| ≤
(

n−1
n

)m−i

;

(c) ••

P{|F − µ| ≥ ε} ≤ 2e−
ε2(n−1/2)

n2
−µ2 ,

ahol µ = EF = n
(
n−1
n

)m
.

6. HF: (beadási határidő: október 26.)

HF 6.1 •• Legyen Ω = Z, és T az eltolás: Tn = n + 1 ha n ∈ Z. Mutassuk meg, hogy Z-n nincs eltolás-
invariáns valószínűségi mérték.

HF 6.2 Ergodicitás játékmodell. Legyen N > 0 egész, X = {0, 1}N , és ̺ ∈ [0, 1]. A Bernoulli(̺) szorzatmér-
ték X -en az a P

(̺) eloszlás, mely szerint

P
(̺){x} = ̺

N∑

i=1
xi

· (1− ̺)

N∑

i=1
(1−xi)

, x ∈ X .

Nagyon formálisan, de csak annyi van ideírva, hogy N urna mindegyikében egymástól függetlenül ̺
valószínűséggel van egy golyó, 1− ̺ valószínűséggel nincs golyó.
Definiáljuk a következő, X -ben haladó folyamatot: minden lépésben egyenletesen és mindentől füg-
getlenül választunk egy permutációt az {1, 2, . . . , N} számok N ! permutációja közül, és az aktuális
állapotot ezzel megpermutáljuk, azaz az n. lépésben

X(n) 7→ X(n+ 1); Xi(n+ 1) = Xπi(n)(n), i = 1 2, . . . , N ; n ∈ Z,

ahol a π(n) permutációk különböző n-ekre függetlenek. Azaz: az urnákat golyóstul megpermutáljuk
minden lépésben függetlenül, így kapjuk a következő 0-1 sorozatot az előzőből.

(a) •• Mutassuk meg, hogy minden 0 ≤ ̺ ≤ 1 esetén a Bernoulli(̺) eloszlás stacionárius eloszlása az
X(n) folyamatnak.

(b) •• Ergodikus-e a Bernoulli(̺) eloszlás ezzel a dinamikával? (Pontosabban a Bernoulli(̺) kezdeti
eloszlás és a dinamika által indukált eloszlás a trajektóriák terén ergodikus-e?) Ha igen, miért,
ha nem, mik az extremális valószínűségi mértékek, ők miért extremálisak, és hogyan keverhető
ki belőlük a Bernoulli(̺) eloszlás? Indokoljunk!

(c) •• Legyen f annak indikátora, hogy (a nulla időben) van az első urnában golyó, azaz

f : Ω → {0, 1} ; f({X(n)}n∈Z) = X1(0).

Határozzuk meg f ergodikus átlagát, azaz a

g = g({X(n)}n∈Z) = lim
n→∞

1

n

n−1∑

i=0

X1(i) m.b.

valószínűségi változót, mint a trajektóriák (azaz elemi események) függvényét. Mik az invariáns
halmazok, és igaz-e, hogy g ezekre mérhető? Indokoljunk!



(d) • Határozzuk meg g eloszlását, ha a rendszer Bernoulli(ρ) eloszlásban fejlődik.

(e) • Mi köze van a fenti válaszoknak a folyamat irreducibilis komponenseihez? Megjegyzés: e
játékmodellben ez triviális, de az élet persze nem mindig ilyen egyszerű.

7. HF: (beadási határidő: november 2.)

HF 7.1 ••••• Az X = {−1, 2} kételemű állapottéren tekintsük azt a Markov láncot, melynek átmenetmátrixa

(
17
18

1
18

1
9

8
9

)
.

Az órán tanultak mentén bizonyítsunk CHT-t magára az Xn Markov láncra az ő stacionárius elosz-
lásában, adjuk meg a CHT-ban szereplő szórást is. (Később lesz erre egy jobb módszerünk is, de most
csináljuk izomból: keressük meg a mátrix bal oldali sajátvektorait, az ezekre való felbontás segítségével
a P{Xn = i |X0 = j} valószínűségek expliciten számolhatók (i, j = −1 vagy 2). Ezért a feltételes
várható értékek is expliciten számolhatók, és erre volt szükség az órán látott sémához (Xn felbontása
egy stacionárius Zn folyamat növekményére és egy martingálnövekményre). Ezután jöhet a martingál
CHT.)

HF 7.2 ••••• Az előbbi feladatban bizonyítsunk nagy számok törvényét és centrális határeloszlástételt arra,
hogy (stacionárius eloszlásból indulva) n-ig hányszor történik meg a −1 → 2 ugrás. (Tipp: Ii : =
1{Xi−1 = −1, Xi = 2}−P{Xi−1 = −1, Xi = 2}, és nagyon figyeljünk arra, hogy ez Xi−1-től is függ,
nem csak Xi-től. Használjuk az előző feladat részeredményeit.)

8. HF: (beadási határidő: november 9.)

HF 8.1 (a) •
R

d-n a p-norma:

||x||p =
( d∑

i=1

x
p
i

)1/p
(1 ≤ p < ∞)

segítségével definiált operátornorma:

||A|| = sup
x 6=0

||Ax||p
||x||p

a valós d× d mátrixokon a norma tulajdonságokon kívül szubmultiplikatív is:

||A ·B|| ≤ ||A|| · ||B||.

Mutassuk ezt meg a definíció alapján. (Tipp: Bővítsük a bal oldalt a sup alatt ||Bx||-szel.)

(b) ••• Legyenek most An fae. véletlen d × d mátrixok, melyekről felteszünk annyi regularitást,
amennyi csak szükséges. (Mennyit is...?) Mutassuk meg, hogy a

λ : = lim
n→∞

1

n
ln ||

n−1∏

i=0

Ai||

aszimptotikus növekedési ráta m.b. létezik.

(c) • Sőt, λ m.b. konstans is. Részletesen indokoljunk. (Tipp: szubmultiplikativitás és szubadditív
ergodtétel.)

HF 8.2 Legyen X = [0, 1] az 1/2π sugarú körvonal, melynek 0 és 1 pontjait azonosítjuk egymással. Legyenek
Vi, i = 1, 2, . . . független, Exp(λ) eloszlású valószínűségi változók, és legyen Xn+1 = Xn + Vn mod
1, n ≥ 0.

(a) • Mutassuk meg, hogy {Xn}
∞
n=0 egy Markov lánc az (X , B) állapottéren, B a Borel σ-algebra.

(b) •• Határozzuk meg a π(x, A) átmenetmagot, ha x ∈ X és A ∈ B. Pontosabban: legyen 0 < a < 1,
és határozzuk meg az

∫ a

0
π(x, dy) = π

(
x, [0, a)

)
valószínűséget.

(c) • Keressük meg a Markov lánc (egy) µ stacionárius eloszlását.

(d) • Ergodikus-e a Markov lánc az előbb talált stacionárius eloszlásban?

9. HF: (beadási határidő: november 21.)

HF 9.1 Legyen (Ω, F , P) egy Markov lánc egy megszámlálható X halmazon, melynek átmenetvalószínűsége
π és stacionárius eloszlása µ.



(a) •• Mutassuk meg, hogy az időmegfordítás, azaz az a leképzés, ami {Xn}-t {X−n}-be viszi,
a Markov láncot átviszi egy (Ω, F̂ , P̂) láncba, melynek szintén µ a stacionárius eloszlása, π̂
átmenetvalószínűségei viszont nem feltétlenül egyeznek meg az eredeti π-vel. Határozzuk meg
π̂-ot µ és π segítségével.

(b) •• Mutassuk meg, hogy a feltételes várható érték leképzés: Π : f(·) 7→
∑
y
f(y)π(·, y) egy kont-

rakció Lp(µ)-n, minden p ∈ [1, ∞]-re.

(c) •• Azt mondjuk, hogy a Markov lánc reverzibilis, ha az (a) részben szereplő megfordított P̂ meg-
egyezik az eredeti P-vel. Mutassuk meg, hogy ez pontosan akkor történik meg, ha Π önadjungált
L2(µ)-n.

HF 9.2 Legyen Xn egy irreducibilis Markov lánc, mely a nemnegatív egész számokon lépked, és átmenetva-
lószínűségei nullák, ha nem szomszédos egészek között vannak: π(i, j) = 0, ha |i− j| 6= 1.

(a) • Mutassuk meg, hogy amennyiben van stacionárius eloszlás (azaz a lánc pozitív rekurrens),
akkor a lánc reverzibilis.

(b) •• Ennek segítségével határozzuk meg a stacionárius eloszlást, mint az átmenetvalószínűségek
függvényét.

(c) • Adjunk feltételt az átmenetvalószínűségekre, melyek garantálják, hogy a lánc pozitív rekurrens,
illetve nem pozitív rekurrens.

10. HF: (beadási határidő: november 23.)

HF 10.1 Legyen Xn egy egyszerű bolyongás az alábbi gráfon:

•

•

•

•

a b

(a) • Határozzuk meg a Markov láncnak megfelelő ellenálláshálózatot.

(b) •• Az ellenálláshálózat segítségével minden x csúcsra határozzuk meg a Px{τa < τb} valószínű-
ségeket.

(c) • Az ellenálláshálózat segítségével minden x csúcsra határozzuk meg, hogy várhatóan hányszor
jár ott a lánc, mielőtt b-ben elnyelődik, ha a-ból indul.

HF 10.2 A 9.2. feladatban

(a) • Írjuk fel a láncnak megfelelő ellenálláshálózatot, mint az átmenetvalószínűségek függvényét.

(b) • Adjunk feltételt az átmenetvalószínűségekre, melyek garantálják, hogy a lánc rekurrens, illetve
tranziens.

HF 10.3 A 9.2. feladatban legyen

π(i, j) : =





1, ha i = 0, j = 1;

1

2
+

α

i
, ha i > 0, j = i+ 1;

1

2
−

α

i
, ha i > 0, j = i− 1;

0, minden más esetben

(
−
1

2
< α <

1

2

)
.

(a) •• Mutassuk meg, hogy a lánc pozitív rekurrens, ha α < −1/4, és nem pozitív rekurrens, ha
α > −1/4.

(b) •• Mutassuk meg, hogy a lánc rekurrens, ha α < 1/4, és tranziens, ha α > 1/4.

11. HF: (beadási határidő: november 30.) Kicst visszanézünk korábbra, a CHT-re:

HF 11.1 ••• 7.1-es feladat újra, ezúttal az órán látott markovi módszerrel.



HF 11.2 Tekintsük a következő bolyongást a nemnegatív egészeken:

π(x, y) =





1

2
ha x = y ≥ 0.

1− δ

4
ha y = x+ 1, x ≥ 1,

1 + δ

4
ha y = x− 1, x ≥ 1,

1

2
ha x = 0, y = 1.

(a) •• Mutassuk meg, hogy a lánc pozitív rekurrens, és határozzuk meg a µ stacionárius eloszlást.
(b) • Legyen f egy kompakt tartójú függvény a nemnegatív egészeken, és U egy megoldása az

[I −Π]U = f egyenletnek. π alakját felhasználva mutassuk meg, hogy ez az egyenlet egy lineáris
másodrendű rekurzió. (Ezért aztán minden f -re van megoldása.)

(c) • Íme egy hibás (!!) érvelés: szorozzuk meg a fenti egyenletet a stacionárius µ eloszlással, majd
összegezzünk:

∞∑

x,y=0

µ(y)(δyx − π(y, x))Ux =

∞∑

y=0

µ(y)f(y)

∞∑

x=0

µ(x)Ux −

∞∑

x=0

( ∞∑

y=0

µ(y)π(y, x)
)
Ux =

∞∑

y=0

µ(y)f(y)

∞∑

x=0

µ(x)Ux −

∞∑

x=0

µ(x)Ux =

∞∑

y=0

µ(y)f(y)

0 =

∞∑

y=0

µ(y)f(y),

ami persze nem stimmelhet, hiszen f tetszőleges kompakt tartójú függvény. Hol a hiba az
érvelésben?

(d) •• Tegyük rendbe a dolgokat. Mivel f kompakt tartójú, vegyünk egy olyan a-t, hogy f(z) = 0
ha z ≥ a. A fenti egyenletet összegezzük a-ig csak, a jobb oldalon nem számít, hogy a-ig
megyünk vagy ∞-ig. A bal oldalon írjuk fel az összegzést a − 1-ig, és válasszuk külön az a-dik
tagot. Kihasználva, hogy π(y, x) = 0 ha |x − y| > 1, és azt, hogy µ stacionárius, a bal oldal
jelentősen egyszerűsödik. π és µ konrét alakját beírva (és a határok környékén nagyon figyelve)
végül mutassuk meg, hogy U exponenciálisan növekszik nagy a-kra, vagy konstanshoz tart, és ez
utóbbi pontosan akkor történik, ha

∑
x f(x)µ(x) = 0.

(e) • Tudunk-e CHT-t bizonyítani a
∑n

j=0 f(Xj) mennyiségre, ha
∑

x f(x)µ(x) = 0?

12. HF: (beadási határidő: december 7.)

HF 12.1 •• Rényi forgalommodell. Kezdetben az autók egy mindkét irányban végtelen autópályán vannak el-
helyezve, homogén, α intenzitású N0 Poisson folyamat szerint. Az autók eme véletlen kezdő helyzeteit
Xn-ek jelölik. Mindegyik autó kap egy mindentől független, véletlen −∞ < Vn < ∞ kezdősebességet,
és ezzel a sebességgel egyenletesen halad az autópályán (negatív sebesség azt jelenti, hogy balra megy
az autó). Feltesszük, hogy E|V1| < ∞, és az autók sosem ütköznek, a modellben inkább áthaladnak
egymáson.

(a) Mi az autók Nt helyzetének eloszlása t-kor?
(b) Legyen Tn az a(z esetleg negatív) időpillanat, amikor az n. autó áthalad az origón. Határozzuk

meg a
∑

n ǫTn
pontfolyamat eloszlását.

HF 12.2 •• M/G/∞ sor. Hívások homogén, α intenzitású Poisson folyamat szerint kezdődnek (0, ∞)-ben.
Minden hívás hossza mindentől független, G eloszlású. Legyen N(t) a t-kor folyamatban levő hívások
száma. Határozzuk meg N(t) eloszlását egy adott t esetén.

HF 12.3 •• Tekintsük az N =
∑

n ǫXn
Poisson folyamatot (0, ∞]-en, melynek intenzitás-mértéke µ( dx) =

αx−α−1 dx, ha x > 0; itt α > 0 paraméter. Legyen Y1 = supn Xn a legnagyobb pont, és Y2 a második
legnagyobb pont (ezek m.b. léteznek, miért is?). Határozzuk meg Y1 és Y2 együttes eloszlását.

HF 12.4 • Harry és a jégeső; ez is Resnick 1992. Harry éttermének laposteteje van, mely jégesőben fokozott
veszélynek van kitéve. Amikor jégeső esik a tetőre, kárt okoz a közvetlen becsapódás, de ezután
visszapattan a jégszem, és másodszor is becsapódva ismét megüti a tetőt. Harry és a biztosítási
szakember is egyetértenek, hogy az elsődleges becsapódások síkbeli Poisson folyamat szerint hagytak



nyomot a tetőn. Azonban Harry úgy gondolja, hogy az összes becsapódásnyom, tehát az elsődleges
és a másodlagos becsapódások nyomai együttesen is Poisson folyamatot alkotnak. A biztosítási
szakember ezzel nem ért egyet. Melyiküknek van igaza?

HF 12.5 ••• Egy önkiszolgáló üzlethez homogén α intenzitású Poisson folyamat szerint érkeznek az ügyfelek.
A j. ügyfél Vj ideig vásárol, azután Fj ideig fizet (sor nincs). A {Vj , Fj}j valószínűségi változó
párosok különböző j-kre függetlenek, és a Poisson folyamattól is függetlenek, egyazon j-re viszont Vj

és Fj egymástól általában nem függetlenek. Legyenek X(t) illetve Y (t) a vásárlással illetve fizetéssel
foglalkozó vásárlók száma t-kor. Határozzuk meg X(t) és Y (t) együttes eloszlását Vj és Fj együttes
eloszlásának függvényében.


