
Félévi időbeosztás(nagyjából)házi feladat beadási határid̋okkel (pontosan)
Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz

Dátum Téma beadandó

Feb 12Cs Konvolúció (normális, Cauchy, exponenciális)
Feb 19Cs / 20P ↑ gyakorlat↑

Feb 26Cs Konvolúció; gen. fv-ek, elágazó folyamatok, bolyongások 1. HF
Már 5Cs / 6P ↑ gyakorlat↑

Már 12Cs Gen. fv-ek, elágazó folyamatok, bolyongások; karakterisztikus fv-ek 2. HF
Már 19Cs / 20P ↑ gyakorlat↑

Már 26Cs Karakterisztikus fv-ek, CHT 3. HF
Már 31K 1. ZH 17:15-kor, K140

Ápr 2Cs / 3P ↑ gyakorlat↑
Ápr 9Cs Véges Markov láncok: alapfogalmak 4. HF

Ápr 16Cs / 17P ↑ gyakorlat↑
Ápr 23Cs Véges Markov láncok: stacionárius eloszlás; végtelen Markov láncok 5. HF
Ápr 30Cs ↑ gyakorlat↑
Máj 5K 2. ZH 17:15-kor, K140
Máj 7Cs Végtelen Markov láncok: rekurrencia-tranziencia 6. HF

Máj 14Cs / 15P ↑ gyakorlat↑

A házi feladatok jelen file-ban kerülnek kitűzésre, és előadás kezdetekor (páratlan hét csütörtökök 8:30) beadandók.
Minden feladat számít, és annyi pontot ér, ahány• van mellette. Az 1. ZH anyaga az első három el̋oadás és gyakorlat, a
2. ZH anyaga az első hat, f̋oképpen 4., 5. és 6. előadás és gyakorlat.

1.HF: (Beadandó: február 26)

HF 1.1••• Móricka matematikushallgató a BME-n, Valószínűségszámítás 1. gyakorlatból próbál átmenni. Ha nem sike-
rül neki az egyik félévben, akkor a következő félévben újra próbálkozik. Az egymást követő félévek próbálko-
zásainak kimenetele független, és minden félévben2

3
valószínűséggel bukik meg. Ha az aláírást megszerezte,

még ugyanabban a félévben próbálkozik az elméleti vizsgával. Ha ez nem sikerül, akkor a következő félév-
ben újra próbálkozik az elméleti vizsgával, egészen addig,amíg át nem megy ezen is. Az egyes félévekben
elméletb̋ol 1

4
valószínűséggel megy át. Határozzuk meg Móricka Valószínűségszámítás 1.-el töltött félévei

számának az eloszlását!

HF 1.2•• Bizonyítsuk be, hogy haX ésY független standard normális eloszlású valószínűségi változók, valaminta és
b valós számok, akkorU = aX + bY ésV = bX − aY valószínűségi változók is függetlenek. Részletesen
indokoljunk! Milyen eloszlású leszU ésV ?

HF 1.3••• LegyenX ésY független Exp(λ), illetve Exp(µ) eloszlású valószínűségi változó. Határozzuk megZ : =
X + Y sűrűségfüggvényét. Mi történik aλ → µ határátmenetben?

HF 1.4••• LegyenX ésY független, Poi(λ), illetve E(0, 1) eloszlású valószínűségi változó. Határozzuk meg aZ : =
X + Y valószínűségi változó eloszlásfüggvényét.

HF 1.5••• LegyenekX ésY független azonos eloszlású valószínűségi változók, melyeknek közös sűrűségfüggvénye
f(x) = 3x2 · 1{x ∈ [0, 1]}. Határozzuk meg azU : = X + Y és aV : = X − Y valószínűségi változók
(marginális) sűrűségfüggvényét.

HF 1.6••• LegyenekX1, X2, . . . független, azonos eloszlású valószínűségi változók, melyeknek sűrűségfüggvénye
xe−x, ha x ≥ 0, és0 egyébként. Legyen továbbáS0 = 0 és Sn = X1 + · · · + Xn, valamint legyen
N(t) = max{n : Sn < t}.

a) Adjuk megS2 sűrűségfüggvényét.

b) Határozzuk megN(t) eloszlását, azazk = 0, 1, 2, . . . -ra P{N(t) = k} értékét! (Számolás nélkül is
megy, ha jól megértettük miről van szó.)

HF 1.7••• LegyenX egyenletes a{0, 1, . . . , n−1} halmazon. Bizonyítsuk be, hogy han nem prím, akkorX eloszlása
előáll, mint két egészértékű eloszlás konvolúciója.

2.HF: (Beadandó: március 12)

HF 2.1•••• LegyenX egy N-értékű valószínűségi változó. Jelöljük eloszlásának generátorfüggvényétP (z)-vel. Írjuk
fel az an : = P{X ≤ n}, bn : = P{X < n}, cn : = P{X ≥ n}, dn : = P{X > n + 1} és
en : = P{X = 2n} számsorozatok generátorfüggvényeit. (Figyelem: ezek nemeloszlások.)
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HF 2.2••• LegyenekX1, X2, X3, . . . független és azonos eloszlású valószínűségi változók, közös eloszlásfüggvényük
F (x) := P

{

Xi < x
}

. Legyenν ezekt̋ol független,N-értékű valószínűségi változó; jelöljükG(z)-vel a
ν eloszlásának generátorfüggvényét. Mutassuk meg, hogy azY : = max{X1, X2, . . . , Xν} valószínűségi
változó eloszlásfüggvényeH(x) = G(F (x)).

HF 2.3••• LegyenA0, A1, . . . An egy(n+1)-szögű konvex poligon a síkban. Legyena1 = 1, ésn ≥ 2 esetén jelöljean

azt a számot, ahányféle különböző módon ezt a poligont(n−1) háromszögre tudjuk bontani,(n−2) egymást
át nem metsz̋o átló berajzolásával. Bizonyítsuk be, hogyn ≥ 2 esetén fennáll a következő azonosság:

an = a1an−1 + a2an−2 + · · · + an−1a1 =
n−1
∑

k=1

akan−k.

A fenti azonosság alapján határozzuk meg azan sorozat generátorfüggvényét.

Bónusz:• Az előbbi generátorfüggvény segítségével adjunk explicit kifejezéstan-re.

HF 2.4••• LegyenekX1, X2, . . . független (optimista, azaz a siker sorszámát tekintjük) Geom(p1) eloszlású valószínű-
ségi változók, ésν egy t̋olük független, (szintén optimista) Geom(p2) eloszlású valószínűségi változó. Lássuk
be generátorfüggvény-módszerrel, hogy

ν
∑

i=1

Xi ∼ Geom(p1p2).

Adjunk valószínűségszámítási értelmet is a kapott formulának.

HF 2.5•••• Egy utca autóforgalmát úgy modellezzük, hogy

a) az id̋oskálát fix és oszthatatlan egy másodpercnyi időegységekre osztjuk,
b) feltesszük, hogyp ∈ (0, 1) annak a valószínűsége, hogy az egyes időintervallumokban elhalad az utcán

egy autó,
c) továbbá azt is feltesszük, hogy az egyes időegységekben történő események egymástól függetlenek.

Egy gyalogos akkor tud átmenni az utca túloldalára, ha legalább négy másodpercig forgalommentes az utca.
(Feltesszük, hogy az utca belátható: a gyalogos el tudja dönteni, hogy a következ̋o négy másodpercben lesz-e
forgalom.) Határozzuk meg a gyalogos várakozási idejének generátorfüggvényét!Segítség: Alkalmazuk a
teljes várhatóérték tételét (avagy toronyszabályt) arra vonatkozóan, hogy az első kocsi mikor érkezik!

HF 2.6••• Egy pókpk = 1

log 3

2

3−k

k
valószínűséggel rakk darab petétk = 1, 2, . . . esetén (tehát biztosan rak legalább

egy petét).

a) Határozzuk meg a lerakott peték számának generátorfüggvényét!
b) Minden egyes pete a többitől és a peték számától függetlenül1

2
valószínűséggel kel ki. Határozzuk meg

a kikelt peték számának generátorfüggvényét, várható értékét és annak a valószínűségét, hogy pontosan
egy kikelt utóda lesz a póknak!

3.HF: (Beadandó: március 26)

HF 3.1•••• Legyenekζ1, ζ2, . . . független és azonos eloszlású valószínűségi változók,P{ζi = ±1} = 1
2
. Legyen

Sn =
n
∑

i=1

ζi egyszerű, szimmetrikus bolyongásZ-n. Legyenτ = min{n |Sn = 1} az els̋o szint elérési ideje.

Határozzuk megP{τ = k} értékét!
lim

k→∞
k

3

2 · P{τ = k} =?

HF 3.2•••• TekintsükZ helyett a (végtelen)Gg, g-ed fokú homogén fát mint alapgráfot és rajta a szimmetrikusbolyon-
gást. Azaz:Sn egy véletlen bolyongásGg-n, amely egy megjelölt csúcsról (origóról) indul és időegységen-
ként lép az aktuális helyg szomszédja közül egyet egyenletesg−1 valószínűséggel választva. Számoljuk ki
a Φ, F , L generátorfüggvényeket. (Φ(z): egy kijelölt els̋o szomszéd elérési idejének generátorfüggvénye,
F (z): origóba való els̋o viszatéés idejének generátorfüggvénye;L(z): origóba való utolsó látogatás idejének
generátorfüggvénye.)

HF 3.3••• Jelölje θ(p) annak a valószínűségét, hogy soha nem pusztul ki egy olyan elágazó folyamat, amelyben az
utódok eloszlása Pesszimista Geom(p). Rajzoljuk fel ap 7→ θ(p) függvény grafikonját.

HF 3.4••• Legyenf(x) = 1− |x|, ha|x| ≤ 1 ésf(x) = 0, ha|x| > 1. Határozzuk meg azf sűrűségfüggvényű eloszlás
karakterisztikus függvényét.

HF 3.5••• Legyen azX valószínűségi változó eloszlásának sűrűségfüggvénye

f(x) =
a

2
e−a|x|,

ahola pozitív konstans. Határozzuk meg azX valószínűségi változó karakterisztikus függvényét.
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HF 3.6••• Magyarázzuk a karakterisztikus függvények segítségével a

sin t

t
=

sin t/2

t/2
cos t/2

azonosságot.

Bónusz:•• Bizonyítsuk be valószínűségszámítási úton a

sin t

t
=

∞
∏

k=1

cos
t

2k

azonosságot.

4.HF: (Beadandó: április 9)

HF 4.1••• LegyenekX ésY független, Exp(λ) eloszlású valószínűségi változók, és tőlük függetlenül

Z =

{

1, 1/2 valószínűséggel,

−1, 1/2 valószínűséggel.

Mutassuk meg, hogy azX − Y valószínűségi változó karakterisztikus függvénye megegyezik aZ · X való-

színűségi változó karakterisztikus függvényével. Azaz:X − Y
d
= Z · X; próbáljuk meg megmagyarázni ezt

a tényt valószínűségszámítási terminusokban is. (Vajon mért pont exponenciális változókkal működik?)

HF 4.2••• Kovácsék naponta olvassák az újságot, majd a szoba sarkábanlévő újságkupac tetejére teszik a kiolvasott pél-
dányt. Esténként 1/3 valószínűséggel valamelyik családtag fogja a teljes újságkupacot és kidobja a szemétbe.
Valahányszor öt újság gyűlik fel a kupacban, Kovács úr fogja magát és kidobja a kupacot (1 valószínűséggel).
Tekintsük esténként (tehát az esetleges selejtezés után) akupacban lév̋o újságok számát.

a) Ésszerű-e Markov lánccal modellezni a folyamatot? Ha igen, azonosítsuk a Markov lánc állapotterét és
írjuk fel az átmenetvalószínűségek mátrixát.

b) Vasárnap este üres volt az újságkupac. Mekkora valószínűséggel lesz csütörtök este pontosan egy újság
a kupacban? Számítsuk ki esetszétválasztással és mátrixhatványozással is.

HF 4.3••• Írjuk le egy olyan elágazó folyamat átmenet mátrixát, amelyben az egyes egyedek leszármazottainak száma
(pesszimista) geometriai eloszlású. (E Markov lánc állapottere nem véges, hanem megszámlálható végtelen –
no de sebaj!)

HF 4.4••• (Bernoulli-Laplace urnamodell keverésre.) Két urnában vannak golyóink:N darab mindkett̋oben. A go-
lyók közül N kék ésN piros. A golyókat a következ̋oképpen keverjük: id̋oegységenként kiválasztunk vélet-
lenszerűen egy-egy golyót mindkét urnából és a kettőt kicseréljük. (Az egyes urnákban lévő golyók száma
nem változik, de a színek száma változhat.) Írjuk le a folyamatS állapotterét ésP átmenetmátrixát.

HF 4.5•••• A ξt, t = 1, 2, . . . valószínűségi változók legyenek függetlenek és azonosP{ξt = 1} = p = 1−P{ξt = −1}
eloszlásúak. Vizsgáljuk meg, hogy Markov láncot alkotnak-e a következ̋o valószínűségi változó sorozatok:

a) Xt : = ξtξt+1 (beugratós kérdés!);

b) Yt : = ξ1ξ2 . . . ξt;

c) Zt : = Φ(ξt, ξt+1), aholΦ(−1, −1) = 1, Φ(−1, 1) = 2, Φ(1, −1) = 3, Φ(1, 1) = 4.

A Markov láncokra számítsuk ki az egy lépéses átmenetvalószínűség-mátrixokat.

HF 4.6•••• Legyenξ0, ξ1, ξ2, . . . független és azonos eloszlású valószínűségi változók sorozata,

g : R → {1, 2, . . . , N} és f : {1, 2, . . . , N} × R → {1, 2, . . . , N}

rögzített (mérhet̋o) függvények. Értelmezzük azXt, t = 0, 1, 2, . . . folyamatot a következ̋oképpen:X0 =
g(ξ0), Xt+1 = f(Xt, ξt+1). Markov láncot alkot-e azXt sorozat? Ha igen, adjuk meg az átmenet-mátrixát
(a ξt valószínűségi változók közös eloszlásának és azf ésg függvények ismeretében).

5.HF: (Beadandó: április 23)

HF 5.1•••• Legyenek azY1, Y2, . . . független és azonos E(0, 1) eloszlású valószínűségi változók, és legyenXk = kYk, Sn =
X1 + X2 + · · · + Xn. Bizonyítsunk NSZGYT-t és CHT-t azSn valószínűségi változó sorozatra.

HF 5.2••• LegyenXp ∼Pesszimista Geom(p). Lássuk be karakterisztikus függvény-módszerrel, hogyp · Xp határeloszlása
Exp(1), ahogyp ց 0.
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HF 5.3••• Mutassuk meg, hogy a Pesszimista Negatív Binomiális(r, p) eloszlás gyengén konvergál a Poi(λ) eloszláshoz, ha
r → ∞ (a sokadik sikerre várunk) úgy, hogyr · (1 − p) → λ (a siker valószínűsége így tart 1-hez).

HF 5.4••• Osztályozzuk az alábbi Markov láncok állapotait:

a)

S = {1, 2, 3}, P =





0 1/2 1/2
1/2 0 1/2
1/2 1/2 0





b)

S = {1, 2, 3, 4}, P =









0 0 0 1
0 0 0 1

1/2 1/2 0 0
0 0 1 0









c)

S = {1, 2, 3, 4, 5}, P =













1/2 0 1/2 0 0
1/4 1/2 1/4 0 0
1/2 0 1/2 0 0
0 0 0 1/2 1/2
0 0 0 1/2 1/2













d)

S = {1, 2, 3, 4, 5, 6}, P =

















0 1/2 1/2 0 0 0
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

















HF 5.5••• Egy szabályos érmét dobálok. Várhatóan hányszor kell feldobnom az érmét, hogyFFF -et lássak? És hogyFIF -et
lássak?

Segítség: érdemes egy nyolc állapotú állapotteret felrajzolni. (A harmadik érmedobás után van csak értelme álla-
potokról beszélni). Használhatunk Maple-t vagy Mathematica-t az adódó egyenletrendszer megoldására.

HF 5.6•••• Tekintsünk egy egyszerű bolyongást azon a gráfon aminek a csúcsaiA, B, C, D, E és élei:AB, AC, BC, CD,
BD, BE, DE.

a) Tegyük fel, hogy a bolyongó azA csúcsból indul. Mennyi aC csúcs els̋o eléréséig megtett lépések számának
várható értéke?

b) Tegyük fel, hogy a bolyongó aC csúcsból indul. Mennyi az első visszatérésig megtett lépések számának
várható értéke? (Pl. az első lépésre való feltételezéssel ezt is meg tudjuk csinálni.)

c) Tegyük fel, hogy a bolyongó azA csúcsból indul. Várhatóan hányszor járE-ben miel̋ott először elérné aC
csúcsot?

d) Tegyük fel, hogy a bolyongó aB csúcsból indul. Mennyi annak a valószínűsége, hogy előbb éri el azA
csúcsot, mint aC csúcsot?

6.HF: (Beadandó: május 7)

HF 6.1••• Kovácsék naponta olvassák az újságot, majd a szoba sarkábanlévő újságkupac tetejére teszik a kiolvasott példányt.
Esténként 1/3 valószínűséggel valamelyik családtag fogja a teljes újságkupacot és kidobja a szemétbe. Valahányszor
öt újság gyűlik fel a kupacban, Kovács úr fogja magát és kidobja a kupacot (1 valószínűséggel). Tekintsük esténként
(tehát az esetleges selejtezés után) a kupacban lévő újságok számát.

a) Hosszú id̋o után mennyi a kupacban lévő újságok számának várható értéke?

b) Tegyük fel, hogy kezdetben 0 újság van a kupacban. Várhatóanhány nap múlva lesz újból üres a kupac?

HF 6.2•••• (Ehrenfest urna modell.) Egy vizslán és egy labradoron összesenN bolha van. Minden id̋opillanatban egy véletle-
nül választott bolha átugrik az egyik kutyáról a másikra. Határozzuk meg a modell stacionárius eloszlását.

HF 6.3••• (Bernoulli-Laplace keverési modell) Két urnában szétosztunk N fehér ésN feket golyót úgy, hogy mindegyik
urnábaN golyó kerüljön. Minden lépésben véletlenszerűen kiválasztunk egy-egy golyót mindkét urnából, és ki-
cseréljükőket. JelöljeXn az els̋o urnában lév̋o fehér golyók számát azn. lépés után.
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a) Mutassuk meg, hogyXn Markov lánc, és írjuk fel az egylépéses átmenetvalószínűségek mátrixát.

b) Mutassuk meg, hogy az egyetlen stacionárius eloszlás

π(k) =

(

N
k

)2

(

2N
N

) .

HF 6.4••• Tekintsünk egy elágazó folyamatot, melynél egy szülő gyermekei számának eloszlása
(

pi

)∞

i=0
. Ebb̋ol irreducibilis

Markov láncot csinálunk úgy, hogy ha a populáció kihal, a következ̋o lépésben egy új egyedet ültetünk be kívülről.
Mely

(

pi

)∞

i=0
eloszlásokra lesz az így értelmezett Markov lánc pozitív rekurrens, null rekurrens, illetve tranziens?

HF 6.5•••• LegyenekX1, X2, X3, . . . független és azonos eloszlású, egész értékű valószínűségi változók, melyeknek van
várható értékük ésE

(

Xi

)

= 0. LegyenS0 = 0 és

Sn = X1 + X2 + · · · + Xn.

(Azaz:Sn bolyongásZ-n, melynek egymásutáni lépéseiX1, X2, . . . .) Legyen továbbá

Gn(x) := E

(

n
∑

j=0

1{Sj=x}

)

,

a [0, n] időintervallumban azx rácsponton töltött részidő várható értéke. (E függvényt a bolyongás Green-függvé-
nyének nevezzük.)

a) Bizonyítsuk be, hogy mindenn ∈ N ésx ∈ Z esetén

Gn(0) ≥ Gn(x).

Útmutatás:Tekintsük azx rácspont els̋o elérésének idejét.

b) Emlékezzünk a Nagy Számok Gyenge Törvényére: bármelyε > 0 esetén

lim
n→∞

P

(

|Sn| < εn
)

= 1.

Ennek segítségével bizonyítsuk be, hogy rögzítettε > 0 mellett

lim
n→∞

1

n

∑

|x|<εn

Gn(x) = 1.

c) Az (a) és (b) pontok eredményének felhasználásával bizonyítsuk be, hogy

lim
n→∞

Gn(0) = ∞.

d) A fentiek alapján lássuk be, hogy azSn Markov lánc rekurrens.

e) Alkalmazható-e a fenti okoskodás magasabb dimenziós bolyongásra?

HF 6.6••• A P = (Pi,j)
N

i,j=1
sztochasztikus mátrixotduplán sztochasztikusnakvagybisztochasztikusnaknevezzük, ha nem

csak sorösszegei, hanem oszlop-összegei is egyenlőek 1-el. Legyen azXt Markov lánc irreducibilis azS =
{1, 2, . . . , N} állapot-halmazon és átmenetvalószínűségeinek mátrixa bisztochasztikus. Mutassuk meg, hogy az
Xt Markov lánc stacionárius eloszlása egyenletes azS halmazon, és fordítva: ha a stacionárius eloszlás egyenletes,
akkor az átmenetmátrix bisztochasztikus.

Bónusz:•••• Tekintsük a következ̋o sorbanállási problémát:Xn a sorbanálló vásárlók száman-kor. Minden(n, n + 1], n ∈
N időintervallumbanp ∈ (0, 1) valószínűséggel egy új vásárló érkezik és a sor végére áll.Ettől függetlenül,
ugyanebben az id̋ointervallumban a sor elején álló vásárlótq ∈ (0, 1) valószínűséggel kiszolgálják éső elhagyja a
sort. Legfeljebb egy új vásárló érkezhet és legfeljebb egy vásárlót szolgálnak ki egységnyi időintervallumonként.
A különböz̋o időintervallumokban történ̋o események egymástól függetlenek.

a) Markov lánc-e azXn folyamat? Ha igen, írjuk le az állapotterét és átmenetmátrixát és állapítsuk meg, hogy
irreducibilis-e, illetve, aperiodikus-e.

b) Mely (p, q) paraméter értékekre lesz azXn Markov lánc pozitív rekurrens, null rekurrens illetve tranziens?

c) A pozitív rekurrens esetben határozzuk meg a Markov láncπ stacionárius (invariáns) eloszlását. Mennyi a sor
átlagos hossza a stacionárius állapotban?
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d) A tranziens esetben határozzuk meg annak a valószínűségét, hogy kezdetbenj hosszú sorral indulva, valaha
is kiürül a sor.

Bónusz:•••••• Alább három Markov lánc szóban és hozzá három eloszlás. Írjuk fel a Markov láncok állapottereit, átmenetvalószí-
nűségeit, és igazoljuk, hogy a megfelelő eloszlások a stacionáriusak.

a) n, körben elhelyezett urnábank golyó közül minden másodpercben egyet véletlenszerűen kisorsolunk, és azt
az óramutató irányába eső szomszéd urnába áthelyezzük, amennyiben az üres. Ha nem üres, akkor nem csiná-
lunk semmit.Fermi-Dirac eloszlás:k golyót véletlenszerűen elosztunkn ≥ k urnába úgy, hogy mindegyik
urnába legfeljebb egy kerülhet.

b) n, körben elhelyezett urnábank golyó közül minden másodpercben egyet véletlenszerűen kisorsolunk, és azt
az óramutató irányába eső szomszéd urnába áthelyezzük.Maxwell-Boltzmann eloszlás:k megkülönböztet-
het̋o golyót véletlenszerűen elosztunkn urnába.

c) n, körben elhelyezett urna közül minden másodpercben egyet véletlenszerűen kisorsolunk, és egy abban levő
golyót – ha van – az óramutató irányába eső szomszéd urnába áthelyezzük.Bose-Einstein eloszlás:k meg-
különböztethetetlen golyót véletlenszerűen elosztunkn urnába.
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