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Magyar nyelvű összefoglaló

Az értekezésben az élet számos területén előforduló, véletlen folyamatok által
befolyásolt növekedési, lerakódási, vagy áramlástani jelenségek modellezésére
konstruált modelleket vizsgálunk. E modellek fő jellemzője, hogy sok véletlenül
viselkedő, de egymással kölcsönható objektum együttes fejlődését ı́rják le. Mi e
modellek egy családját egységes keretbe foglalva tárgyaljuk. Ez a család több, a
kölcsönható részecske-rendszerek témaköréből jól ismert modellt tartalmaz, ı́gy
például az egyszerű kizárásos folyamatot, illetve a zero range folyamat bizonyos
fajtáit. Ez utóbbi kismértékű általánośıtásaként a dolgozatban egy új modell,
a kőműves modell is bemutatásra kerül.

Az értekezésben a bevezetőben tárgyalt kitekintés és a modellek definiálása
után tárgyaljuk azok csatolását, azaz több modell közös véletlenek által vezérelt
egyidejű fejlődését. Ennek során definiáljuk a modell által teremtett véletlen
közegben mozgó másodosztályú részecskéket, melyek kulcsfontosságú szerepet
játszanak a tézisben tárgyalt módszerekben. A tézis első részében utalunk mo-
delljeink és bizonyos elsőrendű nemlineáris parciális differenciálegyenletek (ún.
megmaradási törvények) kapcsolatára. Egy egyszerű érveléssel az új kőműves
modellben is alátámasztjuk a differenciálegyenletek ún. lökéshullám megoldá-
sainak és a másodosztályú részecskék kapcsolatát, mely a témához kapcsolódó
egyéb munkákból már jól ismert jelenség. Erre alapozva egy bizonyos kőműves
modellben olyan eloszlás-családot konstruálunk, amely pontosan megfelel a mo-
dellhez tartozó differenciálegyenlet egy lökéshullám-családjának. Mivel ezek
az eloszlások kivételesen egyszerű alakúak, eddig - tudomásunk szerint - nem
találtak lökéshullámnak megfelelő ennyire egyszerű eloszlást.

Az értekezés második részében a modellek fejlődésének fluktuációit vizs-
gáljuk. Martingálok használatával hamar eljutunk ahhoz a ponthoz, ahol a
másodosztályú részecskét természetes módon tudjuk felhasználni, ehhez azon-
ban szükségünk van azok mozgásának bizonyos tulajdonságaira. Mivel az eleve
véletlen közegben mozgó, saját véletlenjétől is függő másodosztályú részecske
viselkedése igen bonyolult, hosszú levezetés szól a nekünk fontos tulajdonságok
bizonýıtásáról. Eközben a modellek csatolásának technikáit egy lépéssel tovább
finomı́tjuk, hogy képessé váljunk a különböző modellek másodosztályú részecs-
kéinek egymással való csatolására is.

Az első két részben olyan modellekkel foglalkozunk, melyek matematikai
konstrukcióját eddig - tudomásunk szerint - senki sem végezte el. Ezek a
modellek bizonyos helyzetekben lényegesen gyorsabb növekedést mutatnak már
megkonstruált társaiknál, ezért a harmadik részben - alkalmas kezdeti feltételek
megléte esetén - elégséges korlátok létezését bizonýıtjuk, melyek biztośıtják,
hogy ezek a modellek is kezelhetőek maradnak fejlődésük során. Habár a mate-
matikai konstrukció még folyamatban van, ı́gy nem lehet része ezen értekezésnek,
eredményeink mégis valósźınűśıthetően a konstrukció nehezebb részét jelentik.
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Summary in English

In the thesis we investigate different behavior of processes constructed for mod-
eling domain growth, deposition processes or current of particles, many phe-
nomena occurring in every day’s life. The main feature in these models is that
they include many randomly behaving objects, interacting with each other. We
consider a family of such processes here in a common framework, which contains
some of the well-known models from the area of interacting particle systems, e.g.
the simple exclusion and the zero range processes. As a slight generalization of
the latter, we also introduce the bricklayers’ process in the present thesis.

After describing many phenomena connected to these types of models, we
give a precise definition of our systems, and show how to couple them. The evo-
lution of a coupled pair of models is partially driven by joint randomness, hence
their evolution is as close to each other as possible. By coupling we introduce
the second class particle, an object playing an essential role in our methods. In
the first part of the thesis, we refer to the connection between our processes and
some first-order non linear partial differential equations, namely, the conserva-
tion laws. By a simple argument, we also indicate for our new bricklayers’ model
the connection of the second class particle to the so-called shock solutions of the
corresponding partial differential equation. This is a well-known phenomenon
from other works in this field. Based on this relation, we construct a class of
distributions in a type of bricklayers’ models, which exactly corresponds to a
class of shock solutions in the model’s partial differential equation. Since these
distributions have extremely simple structure, as far as we know, no such simple
distributions were found showing the properties of shocks in a microscopic level.

In the second part, we examine the fluctuations of our processes’ growth.
By using martingale techniques, we get to the point where the use of second
class particles becomes very natural. However, the arguments require knowing
some special properties of the second class particle, which are quite difficult
to establish since the second class particle performs a random motion in the
random environment created by the model. Hence long arguments are set in
this part to establish the required properties of the second class particle. These
arguments refine the coupling methods providing the ability of coupling second
class particles between different models.

In the first two parts we dealt with systems of which the dynamics has, as
far as we know, not yet been rigorously constructed. In some situations, these
processes perform faster growth than the ones already constructed, hence in the
third part we establish stochastic bounds which are sufficient to show that these
models stay under control while they evolve. Of course, these bounds only apply
in case of appropriate initial conditions. Although the construction of dynamics
is in progress, and so it can not be part of the present thesis, our results in this
direction probably mean the harder part of the problem.
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Part I

Introduction

In the world surrounding us, there are several interesting phenomena, which are
only dealt with in the last few decades. Some of these areas are behavior of
e.g. infection of plants in a plantation, spreading mildew on the wall, residue
in a chemical reaction, electrons in solid matter, cars in a traffic jam, people in
queues. Surprisingly, these different areas of life can be modeled by very similar
processes.

As people realized that randomness is essential in these phenomena, they
came up with stochastic models to describe them. The other essential property
is that the system has many participants interacting with each other. Hence
the randomness of one’s behavior is in some sense driven by the other’s motion.
This is the way how interaction is introduced in the system.

On one hand, these processes are constructed to be simple enough that we
can handle them in a mathematically rigorous way. But, on the other hand,
the randomness influenced by the interaction of the particles makes the models
complicated enough to show new and interesting types of behavior. They show
properties never seen before, new exponents in long-time behavior, different
phenomena in different rescaling limits. In these limits they also have strong
connections to partial differential equations, taking us closer to the understand-
ing of the large-scale deterministic evolution of the systems modeled.

Let us mention some of the interesting problems which can be answered by
such stochastic processes. The infection of a disease in a plantation (or the
expansion of the area covered by mildew) can be imagined as individual points
on a lattice which get infected if their neighborhood is already ill. Of course,
this process is not deterministic; we have a probability of getting the next point
infected in, let us say, the next hour. This probability may very well depend on
the state of the neighboring points. If many of the neighbors are already ill, then
we expect this probability to be larger. We already see the two main components
of stochastic interacting systems: randomness and interaction. Now, the first
question is the speed with which the illness (or mildew) advances. Is it true
that it has a well defined speed at all? If yes, what is its value? Can one expect
that if the edge of the infected area of trees has moved ten meters today then
it will again move about ten meters tomorrow, or is randomness too strong to
make things so predictable?

We shall see later, that this is actually not a difficult question to answer in
our models; in fact the answer is yes, there is usually a well defined speed value
with which the edge moves. The next question is much harder: if one knows the
speed of this edge, how much will it fluctuate? Does one need to cut all trees in
a far distance, or will it be enough to clear up the forest in a few metered-lane
around the expected position of the edge of the area?

By the way, how do we know that there is a well defined edge of the infected
domain at all? Isn’t it the case that the edge of the domain becomes coarser and
coarser anyhow? Which are the initial configurations from which we obtain a
somewhat smooth boundary of the infected area? And how can this smoothness
be violated if starting with other initial states?
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1 Introduction to stochastic deposition models

Let us give a brief description of the models considered. A more detailed and
precise introduction is available in later sections. Imagine columns which consist
of bricks. These columns are put next to each other, forming a wall this way.
The wall itself will represent the infected area of plants, residue in a chemical
reaction, or the mildew on a surface. New bricks are deposited on the top of
the columns by some stochastic method, modeling the growth of the domains
indicated above.

One may think that the speed with which new plants get infected is only
influenced by the local circumstances. Hence we assume that the local growth
rules do not essentially depend on the size and global shape of the occupied
area, they only depend on the local configuration. In our models, this means
that the “speed” with which a new brick is added to a column will only depend
on the relative height of the neighboring columns, not on the proper height of
that column.

In fact, we will have a stochastic method to deposit new bricks rather than
having a real speed; this is the point where we introduce randomness to the
system. We assume that the system has no hidden memory. In other words,
knowing the actual state of the process determines exactly the stochastic rules
which drive the further evolution of the system. Once we know the current
state, the previous history of the process does not influence what happens next.
We call this principle conditional independence. Of course, this is just an(other)
approximation of reality. Almost all phenomena mentioned before may violate
this principle, e.g. a tree may infect the other one more intensively if it has
already been infected for a long time. But this would lead to the need of other
variables to describe the process entirely. Conditional independence makes the
models handleable, as we have arrived to the notion of Markov-processes at
this point. Between the two possibilities, namely, the discrete time and the
continuous time Markov-processes, we choose the latter. It allows us to give
a more subtle description while allowing a not too difficult treatment of the
process.

To talk about continuous time Markov-processes, we use exponential waiting
times, i.e. random times having exponential distribution. By the well-known
renewal property, a process controlled by such waiting times obeys the principle
of conditional independence. To be more precise, given a configuration of the
wall, a brick is added to the top of each column after an exponential waiting
time. In order to introduce interaction in the models, we make the parameters
(rates) of these exponential waiting times depend on the relative heights of the
neighboring columns. We emphasize that they do not depend on the absolute
height of the columns, only on the difference between neighboring columns. By
this rule, the edge of the domain in question advances regardless of the global
size of the domain; we have time-homogeneity in this sense. The speed with
which the infection moves on depends on how many of the neighboring trees are
already ill.

We introduce a bit of notation here. We say that the columns of bricks,
put next to each other, are located between sites, indexed by integer numbers i.
Consider two neighboring columns of bricks and the difference between them:
subtract the height of the column to the right-hand side from the height of the
one to the left-hand side. The result is an integer number ωi, this is the quantity
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Figure 1: A possible move

we are basically interested in. We calculate it between each neighboring columns
i.e. for each site i. When adding a brick to a column between site i and site
i + 1, the difference ωi to the left-neighboring column decreases by one and, by
the same move, the difference ωi+1 to the right-neighboring column increases by
one. See figure 1, where ωi = 1, ωi−1 = 1 becomes ωi = 0, ωi+1 = 2. This move
happens with rate r(ωi, ωi+1), i.e. after an exponential waiting time having
parameter r(ωi, ωi+1) depending on the neighboring columns relative heights.
We shall consider this rate function in more precise forms for different models
later on. For an overview of some possibilities, see section 14.2 on page 29.

A natural assumption is some monotonicity condition: the more ill neighbors
a tree has the faster it gets infected. In the models the higher neighbors a column
has, the bigger rate we have to add the next brick on. The rate function r is non-
decreasing in its first, and is non-increasing in its second variable. We call this
property of the models attractivity. One could very well imagine non-attractive
processes of this type. However, if we require some kind of equilibrium, i.e. a
notion of the edge of the domain, then we need slower growth for a column which
is much higher than its neighbors. Otherwise nothing could stop a column’s
expansion if it becomes a little larger than the others, and there would not be
a front of the domain. Throughout this thesis, we assume attractivity, and we
make essential use of it.

2 Particle systems

Before going more into the details, we show how to connect the models to
particle systems modeling gases, electrons in matter, cars in traffic jams, people
in queues. As we know, ωi decreases by one and ωi+1 increases by one by the
same move. This gives the idea to identify the difference ωi with number of
particles at site i, see the bottom part of figure 1. A particle disappears from
site i and appears at site i+1 when a brick is added to the column between sites
i and i+1. Hence adding a brick corresponds to a jump to the right of a particle
over that edge. Of course, we have some difficulty in case ωi is negative, then
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we have to introduce antiparticles as well. Observe that in this case, adding a
brick to a column means left jump of an antiparticle.

As the rate with which a particle jumps from i to i+1 (i.e. a brick is added to
the corresponding column) depends on ωi and ωi+1, the behavior of the particles
is influenced by the local configuration of the other particles. Our models belong
to the field of interacting particle systems, an intensively investigated area of
mathematics. It is possible to start the models with ωi ≥ 0 for all i, and to
set zero-valued rates for any step which would violate this condition. Then we
obtain a process with particles only, antiparticles will never be created. This is
the way interacting particle systems were introduced and are usually treated.
There are two main types of them.

• Zero valued rates can also be set for moves which would imply too many
(> K) particles at a site. Starting the process from a state with 0 ≤ ωi ≤
K for each i, these rates assure this condition for all later times. These
models are commonly called totally asymmetric K-exclusion processes.
Among them, the most famous one is the totally asymmetric simple ex-
clusion process, which is the case of K = 1. In this model we either have
a particle at a site i or not. When having one, it jumps to the right with
rate one only if the site to its right is not occupied by another particle.
Primarily, these can serve as models for lattice gas, e.g. electrons in solid
matter. But the area of applications is much larger than this: one can
model many phenomena in which objects excluding each other move in a
random way. An interesting example is describing the behavior of cars’
motion in a traffic jam, or people walking in crowd. There is again a
number of interesting questions to answer: what is the speed of a tagged
particle, what is the fluctuation of its position, what happens if something
blocks the flow of particles, and what happens when the blocking object
is removed from the system?

• For the other kind of processes we have an unbounded number of particles
at a site i. Of course, their jump rates depend on the number of them at
site i and i + 1. A famous example is the zero range process, where the
jump rate r(ωi, ωi+1) doesn’t depend on its second variable ωi+1 i.e. the
number of particles at the arrival site.

Another nice application comes from queuing problems. Consider the dis-
tance between two neighboring particles in a simple exclusion process, and rep-
resent this as the length of a queue. Then we have an infinite number of queues
and servers. When a customer is served (a particle jumps) then he goes to
the next queue. We can model the same thing in the zero range process by
identifying the number of particles at a site with length of the queue at that
site.

3 Coupling the processes

Throughout this thesis, couplings are essentially used. The basic idea is quite
simple: one can consider the difference between two realizations of the same
model. This difference may be realized e.g. in such a way, that for a site i,
ωi is larger in one of the models than in the other. Based on attractivity, it
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is possible to couple the exponential waiting times and hence the evolution of
the two processes. The way this coupling is realized is simply that we consider
the waiting times corresponding to similar moves in the two models, and let
the faster one (the one with larger rate) happen always earlier. Clever use
of this principle, together with attractivity, allows us to conserve the number
of differences between the two models. Meanwhile, each model of the coupled
pair evolves according to its own rules. We call the differences between the
models second class particles. In some cases, differences of other sign are also
introduced, they are the second class antiparticles. These objects have their own
life with jumps to neighboring sites, annihilation of a second class particle with a
second class antiparticle and, of course, interaction with the underlying process.
They have one very adorable property: their signed number is conserved by the
evolution.

Second class particles are as useful as simple: by realizing the difference be-
tween models, they can be atoms in computing correlations, comparing the evo-
lution of two processes, proving domination of one model by the other, showing
convergence to some distributions, and characterizing many phenomena shown
later.

4 Steady states of the models

In models with stochastic evolution, one can only make probabilistic statements,
even if the initial configuration of the process was deterministic. After any time
passed, the state realized by the model will be random, having some distribution.
This distribution may change in time. However, there usually exist distributions
which do not change in time, these are called stationary distributions. Of course,
they may not be unique. Once started from a random state having the stationary
distribution, the probabilities of finding the model in given states will not change
in time. In this case, we say that the model is in steady state.

There is one peculiar property of all our processes: the sum of ωi-s is con-
served. Whenever a move happens, ωi decreases by one, while ωi+1 increases
by one, the sum does not change. This phenomenon is clear in the deposition
approach: local changes can not effect the sum of the gradient of the wall. It
is also obvious if thinking of jumping particles: their total number is conserved
by the jumps. We call this phenomenon conservation of particles.

As the models evolve on an infinite line, instead of total number of ”steps
on the wall” or total number of particles, one has to talk about average slope
of the wall or average density of particles. Of course, these quantities do not
necessarily exist for all states. However, if looking for the steady state behavior,
one expects states in which such space-averages can be computed.

By conservation of particles, the slope of the wall or the particle density is
not affected by the evolution of the system. Starting from a state with a given
density, it is conserved by the process. Hence the steady state distributions
can be characterized by their densities. For any given density, it can be shown
that there is a unique stationary distribution; this property is also mentioned
as ergodicity. See proposition 14.1 on page 31 concerning this question.

As we are primarily interested in the steady state behavior of the processes,
we need to handle at least the steady state distributions. Distributions on the
state space of our models can be very complicated. For any site i, ωi can be some
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integer number, hence our state space is (a subset of) Z
Z. The main difficulty

with measures on this space is the presence of correlations: ωi and ωj may not
be independent for different sites i, j. In view of the interaction between the
particles, independence for different sites would be surprising.

The fact is, as we shall see later on, that in some cases the stationary measure
has the property that the quantities ωi are completely independent for different
j’s. This allows us to handle the stationary measures and to make computations
with them.

5 Conservation laws,

microscopic shape of shocks

For the large-scale behavior of the models, which is one of the primer interests
in view of applications, one can consider the so-called hydrodynamic limit of the
processes. The idea is that one examines the “local steady state” behavior of
the process. Locally, the distribution of the process agrees with the steady state
distribution, but one allows its density parameter to change on a large space
scale. Of course, this leads out from the steady state distribution of the process,
the situation will not be stable anymore. However, things happen slowly in such
large scale: one has to rescale time as well. Rescaling space and time this way
leads to a deterministic partial differential equation for the density depending
on (the rescaled) space and time. Once started from a large-scale density profile,
the equation describes its long-time evolution. This equation is usually a non-
linear first order hyperbolic equation, called the hyperbolic conservation law.
Derived by conservation of particles, these equations describe the evolution of
a conserved quantity, whence their name comes from.

There are many ways to rescale space and time, see e.g. Tóth and Valkó [29].
The method we are interested in is when time and space are rescaled by the
same constant, this is called Euler scaling. In context of Eulerian hydrodynamic
limit of our type of models, see Rezakhanlou [22], Seppäläinen [25] and Tóth
and Werner [30], we do not deal with this very nice and deep area here.

Solutions of the hyperbolic conservation laws show new and interesting be-
havior. For a large class of smooth initial data, the solution becomes discontin-
uous after a finite amount of time passed. The discontinuities are called shocks,
and they move with a speed determined by the so-called Rankine-Hugoniot for-
mula. For other initial configurations, even a discontinuous solution becomes
smooth in an arbitrarily small time interval. These kinds of evolution are called
rarefaction waves. Concerning physical applications, shocks and rarefaction
waves describe the behavior of the edge between phases (of cars’ traffic, elec-
trons, particles) with different densities. There are many extremely interesting
questions concerning uniqueness, time-reversal and physical relevance of solu-
tions, see e.g. Smoller [27] in this direction.

While the hydrodynamic limit shows us this rich large-scale macroscopic
behavior of the models, one is interested in how these structures look like in
the microscopic level, i.e. in the stochastic model itself. A shock solution de-
scribes a discontinuity in a rescaled space variable, but is there really something
discontinuous in the microscopic model itself? The surprising fact is that the
microscopic objects corresponding to shocks are in close connection to the sec-

12



ond class particles. More precisely, these objects are usually constructed by
putting one single second class particle to the system, and building up a special
distribution on the state space relative to the position of the second class parti-
cle. Many works consider this problem, e.g. De Masi, Kipnis, Presutti, Saada
[5], Derrida, Lebowitz, Speer [6], Ferrari [7], Ferrari, Fontes, Kohayakawa [9],
Gärtner and Presutti [10], Rezakhanlou [23]. Part II of the present thesis con-
tains a more detailed description of this problem and a new, simple result in
this direction.

The natural question of putting the second class particle into a rarefaction
wave raises here. See Kipnis and Ferrari [18] concerning this situation.

6 Fluctuations of the growth

Once started from stationary distribution, it is easy to calculate the average
speed of growth of the wall or the average current of the particles. The difficult
thing is to determine the fluctuation of this quantity. Ferrari and Fontes [8]
calculated it for the case of the simple exclusion process. As a nice application
of second class particles, the result is obtained by combinatorial considerations
and by knowing that a single second class particle put in a steady state model
has a well defined speed. The latter fact is shown in Ferrari [7].

Generalizing this result to our wider class of models seemed to be a work
worth to do. It is contained in part III. As in Ferrari and Fontes’ work, the
arguments are separated into two parts. In the first part, the result is achieved
by using martingale considerations and algebraic computations based on the
well defined speed of the second class particle put in a steady state model. In
the second part, this speed value is determined and its precise probabilistic
meaning is shown under some extra conditions on the rate function r. This part
includes various new coupling methods and a diffusion-type random process in
the random environment provided by the models. Generalizing the results led
to better understanding of the formula which describes the asymptotic behavior
of the growth fluctuations in large time scale.

However, in some special cases the asymptotic behavior of the fluctuations
is uninteresting in the time scale we worked on. In these cases much more
complicated and detailed analysis is needed. Spohn and Prähofer [20] indicate
results in this field.

7 Bounds on the growth

When talking about a model, the first question to raise is the existence of
dynamics. One need to check if there really exists a Markov-process with the
desired properties. This is easily done as far as we have a countable state space.
But many of our arguments (on long-time behavior, for example) use essentially
the model on an infinite line, where the values of i are not bounded. Even in the
simplest case of the simple exclusion process, this implies an uncountably infinite
state space. The construction of similar Markov-processes on such spaces is not
trivial at all. There are methods for doing this in Liggett’s book [15] in cases
when the number of particles at a site, i.e. the values of ωi are bounded.

The case of zero range and bricklayers’ process is different. We do not have
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a bounded number of particles (or wall-gradients) at a site for these processes.
The problem may be here that for some initial configurations an avalanche of
particles (or deposited bricks, respectively) comes in from infinity, causing an
infinite number of jumps in a finite time-interval over a site i. In this case
the process becomes unmanageable, one can not talk about Poisson processes
anymore, we say that the dynamics does not exist.

Nevertheless, there are construction methods for this case as well. Liggett
[13] gives a construction for the zero range process, when the jump rates r
satisfy a regularity assumption. Andjel [1] weakens these assumptions to a
Lifshitz condition |r(z + 1) − r(z)| ≤ K for each z ∈ Z. In this latter case, the
growth of the process can be compared to branching processes, a well-known
area of probability theory, and the desired bounds on the models’ growth can be
given. Having these bounds, one can show that the process in question is really
Markovian, and really has the jump rates (more precisely, Markovian generator)
which we wanted. Similar arguments work for the bricklayers’ process as well,
see Booth [4] or Quant [21].

For the shock-like distribution shown in part II of the thesis, we need ex-
ponentially growing rate functions r. Also, when establishing the speed of the
second class particle in part III, our coupling methods requires convex rate func-
tions r, which, in some cases, may imply faster than linear growth of them. As
far as we know, no construction method is available in this situation.

In the case of attractive bricklayers’ and zero range processes, with the help of
an auxiliary finite-volumed process with nice stationary distributions, coupling
is again applicable to prove stochastic bounds on the growth of a column, hence
to show a.s. finiteness of them. The arguments work regardless the rate of
growth of r depending on ωi’s, and are shown in part IV. As stochastic bounds
are usually the harder part of constructing the process, one has the hope that
existence of dynamics follows from the present stage of statements; this is a
work in progress.

8 The structure of the thesis

The material of this PhD thesis is contained in “two and a half” papers. The
first of them on a shock-like distribution is published [2], and is contained in
part II. The second one containing the formula for the asymptotic variation of
the particle current (or the column’s growth, respectively) and the speed of a
single second class particle put in a steady state model has been accepted for
publication [3], and is contained in part III. Finally, the results so far achieved
concerning the existence of dynamics for these models are prepared in a form
for a future paper, and are placed in part IV. We decided not to change the
original form of the papers, hence each part represents an individual paper. For
this reason, introductions of them may at some points overlap, for which the
author asks for the Reader’s excuse.
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Part II

Microscopic shape of shocks in a

domain growth model

Abstract

Considering the hydrodynamical limit of some interacting particle sys-
tems leads to hyperbolic differential equation for the conserved quantities,
e.g. the inviscid Burgers equation for the simple exclusion process. The
physical solutions of these partial differential equations develop discon-
tinuities, called shocks. The microscopic structure of these shocks is of
much interest and far from being well understood. We introduce a domain
growth model in which we find a stationary (in time) product measure for
the model, as seen from a defect tracer or second class particle, traveling
with the shock. We also show that under some natural assumptions valid
for a wider class of domain growth models, no other model has stationary
product measure as seen from the moving defect tracer.

Key-words: second class particle; shock solution.

9 Introduction

The hydrodynamical limit of the nearest neighbor asymmetric simple exclusion
model leads to the inviscid Burgers equation

∂u

∂t
+

1

2

∂u2

∂x
= 0

which is a special case of the one-component hyperbolic conservation law

(1)
∂u

∂t
+

∂J(u)

∂x
= 0

where u 7→ J(u) is a smooth, typically convex function. (By changing x to −x,
concave J-s can be transformed to convex ones.) This equation has a shock
(weak) solution starting with initial data

u(0, x) =




uleft , x < 0

uright , x ≥ 0

with uleft > uright. The stable weak solution is of the form

u(t, x) =




uleft , x < st

uright , x ≥ st

where the speed s of the traveling shock is determined by the Rankine-Hugoniot
formula

(2) s =
J(uright) − J(uleft)

uright − uleft
,
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see e.g. [27]. This is what we see on a macroscopic scale. The microscopic
structure (i.e. on the level of particles) of the shock is of great interest. It has
been considered in the context of the asymmetric simple exclusion process, and
rather complicated microscopic structures have been found [5] [6] [7] [9] [10]. In
the more general context of attractive particle systems the microscopic structure
of the shock was investigated by [23].

In the present note we consider a class of one-dimensional domain growth
models, parametrised by a jump rate function, r : Z → R. In a special case of
the rate function we show that the shock, as seen from a defect tracer (second
class particle) has stationary (in time) distribution of product structure which
we identify. We also show that this is a peculiarity of the case considered, no
other model in the wide class of these models has this property. The structure
of the paper is the following:
In section 10 we define the class of models considered and determine the sta-
tionary distributions for them.
We describe the hydrodynamic limit of these models and calculate the speed of
the shocks using Rankine-Hugoniot formula (2) in section 11.
In section 12 we introduce the defect tracer in our models. Via Rankine-
Hugoniot formula, we also give an indication on the fact that, in general, shock
solutions are closely related to measures stationary as seen from the defect
tracer.
The last section contains our main result on the product structure of such a
stationary distribution as seen from the defect tracer. This gives an explicit
description of the microscopic shape of some types of shock solutions.

10 The bricklayers’ model

10.1 Infinitesimal generator

We consider the phase space

Ω = {ω = (ωi)i∈Z : ωi ∈ Z} = Z
Z .

For each pair of neighboring sites i and i + 1 of Z, we can imagine a column
built of bricks, above the edge (i, i + 1). The height of this column is denoted
by hi. If ω(t) ∈ Ω for a fixed time t ∈ R then ωi(t) = hi−1(t)− hi(t) ∈ Z is the
negative discrete gradient of the height of the “wall”. The growth of a column
is described by Poisson processes. A brick can be added to a column:

(ωi, ωi+1) −→ (ωi − 1, ωi+1 + 1) with rate r(ωi) + r(−ωi+1) .

See fig. 2 for some possible instantaneous changes. The process can be repre-
sented by bricklayers standing at each site i, laying a brick on the column on
their right with rate r(ωi) and laying a brick to their left with rate r(−ωi). This
interpretation gives reason to call these model bricklayers’ model. For small ε
the conditional expectation of the growth of the column between i and i + 1 in
the time interval [t, t + ε] is {r(ωi(t)) + r(−ωi+1(t))} · ε + o(ε). Note that the
process has a left-right mirror symmetry, i.e. the rate of a column’s growth is
the same as if looking at the reflected configuration. We want the dynamics to
smoothen our interface, that is why we assume monotonicity of the rate function
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i i+1

}
ωi

}
ωi+1 r(ωi) + r(−ωi+1)−−−−−−−−−−−−−→

i i+1

Figure 2: A possible move

r, which means that a column grows more rapidly if it has a higher neighbor
on the right or on the left. In later sections we shall impose another restrictive
condition on r, see (5).

At time t, the interface mentioned before is described by ω(t). Let ϕ :
Ω → R be a bounded cylinder function i.e. ϕ depends on a finite number of
values of ωi. The growth of this interface is a Markov process, with the formal
infinitesimal generator L:

(Lϕ)(ω) =
∑

i∈Z

{
[r(ωi) + r(−ωi+1)] · [ϕ(. . . , ωi − 1, ωi+1 + 1, . . . ) − ϕ(ω)]

}
.

Note that for each index i, ωi can also be negative hence direct particle inter-
pretation fails, see the remark after formula (4).

When constructing the process rigorously, problems may arise due to the
unbounded growth rates. The system being one-component and attractive, we
assume that existence of dynamics on a set of tempered configurations Ω̃ (i.e.
configurations obeying some restrictive growth conditions) can be established
by applying methods initiated by Liggett and Andjel [1] [12]. Technically we

assume that Ω̃ is of full measure w.r.t. the canonical Gibbs measures defined in
10.2. We do not deal with this question in the present paper.

The exponential bricklayers’ model

A special case of the models is the exponential bricklayers’ model (EBL), where
for z ∈ Z

(3) r(z) = e−
β
2 eβz

with a positive real parameter β.

10.2 Translation invariant stationary product measures

In this subsection we show a natural way to construct a stationary translation
invariant product measure for our models. By chapter one of [15], a measure µ
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is stationary, iff for any bounded cylinder function ϕ,

E(Lϕ)(ω) = 0

is satisfied for a process distributed according to µ. We assume µ to be a product
measure with marginals

µ(z) = µ{ω : ωi = z}
for z ∈ Z. By changing variables and using product structure of µ,

E(Lϕ)(ω) =

= E
∑

i∈Z

{
[r(ωi) + r(−ωi+1)] · [ϕ(. . . , ωi − 1, ωi+1 + 1, . . . ) − ϕ(ω)]

}
=

= E
∑

i∈Z

[
r(ωi+1)·µ(ωi + 1)

µ(ωi)
·µ(ωi+1 − 1)

µ(ωi+1)
+r(−ωi+1+1)·µ(ωi + 1)

µ(ωi)
·µ(ωi+1 − 1)

µ(ωi+1)

− r(ωi) − r(−ωi+1)

]
· ϕ(ω) .

This expression becomes zero if we make the sum telescopic on the cylinder set
supporting ϕ. Hence stationarity of µ is assured by assuming

r(z) · µ(z)

µ(z − 1)
and r(−z) · µ(z)

µ(z + 1)

to be constants. As a consequence, we obtain the condition

(4) r(z) · r(−z + 1) = constant .

There are two essentially different choices.

r(z) · r(−z + 1) = 0

defines models of zero range types, we do not consider this possibility here. The
other choice is choosing the right-hand side of (4) to be a positive constant. In
this case, by rescaling time, we can turn this constant to be one without loss of
generality:

(5) r(z) · r(−z + 1) = 1 .

Rates (3) of the EBL model satisfy this condition.
For n ∈ N, we define

r(n)! : =

n∏

y=1

r(y)

with the convention that the empty product has value one. Let

θ̄ : = log
(
lim inf
n→∞

(r(n)!)
1/n

)
= lim

n→∞
log(r(n)) ,

which is strictly positive by (5) and by monotonicity of r, and can even be
infinite. With a generic real parameter θ ∈

(
−θ̄, θ̄

)
, we define

Z(θ) :=
∞∑

z=−∞

eθz

r(|z|)!
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and the product measure µ(θ) with marginals

(6) µ(θ)(z) :=
1

Z(θ)
· eθz

r(|z|)! ,

which has the property

r(z) · µ(θ)(z)

µ(θ)(z − 1)
= eθ

r(−z) · µ(θ)(z)

µ(θ)(z + 1)
= e−θ ,

(7)

thus it is stationary. We call these measures canonical Gibbs-measures.
For the special case of the EBL model, for θ ∈ (−∞, ∞), we obtain the

discrete normal distribution

(8) µ(θ)(z) =
e−

β
2 (z− θ

β )
2

e−
θ2

2β Z(θ)
=

e−
β
2 (z−m)2

Z̃(β, m)

with the notation m := θ/β.

11 Hydrodynamical limit

Being attractive due to monotonicity of r, we can take the hydrodynamical limit
of a bricklayers’ model by

(9) u(t, x) := Eωx/ε(t/ε) .

Then via formal computations we obtain differential equation (1)

∂u

∂t
+

∂J(u)

∂x
= 0

as ε → 0, where J(u) is defined as follows. The function u(θ) = E(θ)(ω) of θ is
strictly increasing since the derivative

du(θ)

dθ
=

(
E(θ)(ω2) −

(
E(θ)(ω)

)2
)

is positive (−θ̄ < θ < θ̄). Let θ(u) be the inverse function. The quantity
E(θ) (r(ω) + r(−ω)) depends on θ, and J is defined by

(10) J(u) := E(θ(u)) (r(ω) + r(−ω)) = 2 cosh(θ(u)) .

Proposition 11.1. There exist θ1 < 0 < θ2 numbers such that J(u) defined
above is convex on the interval (u(θ1), u(θ2)).

Proof. With the notations

u′(θ) :=
du(θ)

dθ
and u′′(θ) :=

d2u(θ)

dθ2
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and by computing derivatives of inverse functions, we obtain from (10)

d2J

du2
◦ (u(θ)) =

cosh(θ)

2

1

(u′(θ))2
− sinh(θ)

2

u′′(θ)

(u′(θ))3
.

The positivity of the left-hand side is assured in case θ = 0, and is equivalent
to the condition

(11)

u′′(θ)

u′(θ)
< ctanh(θ) , if θ > 0 ,

u′′(θ)

u′(θ)
> ctanh(θ) , if θ < 0

by positivity of u′(θ). The function θ 7→ u(θ) is analytic in (−θ̄, θ̄), u′(θ) is
strictly positive, hence the left-hand side of (11) is bounded on the interval
(−θ∗, θ∗) for each 0 < θ∗ < θ̄. Due to the unbounded behavior of ctanh(θ) on
any interval containing zero, there exist θ1 < 0 < θ2 for which (11) and hence
convexity of J(u) is satisfied.

Using definitions (10) and (9) in Rankine-Hugoniot formula (2), the speed
of the shock can now be written as

(12) s =
E(θ(uright)) (r(ω) + r(−ω)) − E(θ(uleft)) (r(ω) + r(−ω))

E(θ(uright))(ω) − E(θ(uleft))(ω)
.

12 The defect tracer

12.1 Coupling the models

Let ω+(0) and ω−(0) be two elements of Ω̃. At time t = 0 we start with a
configuration where these two realizations differ at only one site:

ω+
i (0) = ω−

i (0) if i 6= 0 and ω+
0 (0) = ω−

0 (0) + 1 .

One possible representation can be imagined by two walls. At time 0, the walls
are the same on the right side of position 0, and every column of the wall + is
higher by one brick than column of wall − on the left side of zero. We want the
two processes to grow together in such a way, that the difference between them
remains “one step” at any time t > 0:

(∀ t > 0) (∃1 Q(t) ∈ Z) : ω+
i (t) = ω−

i (t) if i 6= Q(t) and

ω+
Q(t)(t) = ω−

Q(t)(t) + 1 .

We shall call this difference between the two models defect tracer, and Q(t) is
its position at time t. We show the coupling which preserves the only one defect
tracer while both ω− and ω+ evolves as usual. This coupling for the simple
exclusion model is described (with particle notations) in [14] and [15]. Let our
defect tracer be posed at point Q (i.e. ω+

Q = ω−
Q + 1; ω+

i = ω−
i if i 6= Q),

and let h+
i ↑ (or h−

i ↑) mean that the column of ω+ (or the column of ω−,
respectively) between the points i and i + 1 has grown by one brick. Then
the growing rule for the columns h±

Q−1 and h±
Q is shown in table 1. Every line
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with rate h−
Q−1 ↑ h+

Q−1 ↑ h−
Q ↑ h+

Q ↑ Q has. . .

r(−ω−
Q) − r(−ω+

Q) • decreased

r(ω−
Q−1) + r(−ω+

Q) • • −
r(ω+

Q) − r(ω−
Q) • increased

r(ω−
Q) + r(−ω−

Q+1) • • −

Table 1: The coupling rules

of that table represents a possible step with rate written on the first column.
These rates are non-negative due to monotonicity of r. For each column of this
table, summing the rates corresponding to the possible steps assures us that
columns of each ω+ and ω− evolve as usual in the neighborhood of Q. For
i 6= Q − 1 or Q, h+

i and h−
i increases at the same time with the original rate

r(ω−
i ) + r(−ω−

i+1) = r(ω+
i ) + r(−ω+

i+1).
How does an observer following the defect tracer see the surface? We intro-

duce the drifted form τ k ω of an ω ∈ Ω as follows. Let k ∈ Z, then τ k ω ∈ Ω
and

(τ k ω)i : = ωi−k .

From now on, we denote by ω(t) the ω−(t) process as seen from the position
Q(t) of the defect tracer, i.e. ωi : = ω−

Q+i. According to the coupling rules, we
can write the infinitesimal generator for ω:

(13) (L(d.t.)ϕ)(ω) =

=
∑

i6=−1, 0

{
[r(ωi) + r(−ωi+1)] · [ϕ(. . . , ωi − 1, ωi+1 + 1, . . . ) − ϕ(ω)]

}
+

+ [r(ω−1) + r(−ω0 − 1)] · [ϕ(. . . , ω−1 − 1, ω0 + 1, . . . ) − ϕ(ω)] +

+ [r(ω0) + r(−ω1)] · [ϕ(. . . , ω0 − 1, ω1 + 1, . . . ) − ϕ(ω)] +

+ [r(−ω0) − r(−ω0 − 1)] · [ϕ(τ 1(. . . , ω−1 − 1, ω0 + 1, . . . )) − ϕ(ω)] +

+ [r(ω0 + 1) − r(ω0)] · [ϕ(τ−1 ω) − ϕ(ω)] .

12.2 The speed of the defect tracer

The main problem of this note is to find a stationary measure for the process
as seen from the defect tracer, i.e. to find a measure µ(d.t.), for which

E(L(d.t.)ϕ)(ω) = 0

is satisfied. Before giving a partial answer to this question, we give an early
indication on the correspondence to shocks of such a measure µ(d.t.).

Let a < −1 (and b > 1) be sites far on the left side (and far on the right
side, respectively) of the defect tracer. We choose the function

ϕ(ω) :=

b∑

k=a

ωk
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in (13) to obtain

(L(d.t.)ϕ)(ω) = [r(ωa−1) + r(−ωa)] − [r(ωb) + r(−ωb+1)] +

+ [r(−ω0) − r(−ω0 − 1)] · (ωa−1 − ωb) + [r(ω0 + 1) − r(ω0)] · (ωb+1 − ωa) .

Let us assume that a measure µ(d.t.) is stationary for L(d.t.). Let us also assume
that as l → ±∞, the random variable ωl becomes asymptotically independent
of ω−1, ω0, ω1, and the distribution of ωl converges weakly. Then we have

(14) 0 = E(L(d.t.)ϕ)(ω) = E [r(ωa) + r(−ωa)] − E [r(ωb) + r(−ωb)] +

+ E [r(−ω0) − r(−ω0 − 1)] · E(ωa − ωb) + E [r(ω0 + 1) − r(ω0)] · E(ωb − ωa)+

+ H(a, b) ,

where the error function H(a, b) tends to zero if a → −∞ and b → ∞. (For
the product measure µ(d.t.) we find in the next section, H(a, b) = 0 for any
a < −1, b > 1.) According to the rules of the coupling, and assuming also
ergodicity of the process as seen from the view of the defect tracer, we have the
law of large numbers

v := lim
t→∞

Q(t)

t
= E {[r(ω0 + 1) − r(ω0)] − [r(−ω0) − r(−ω0 − 1)]} a.s.

for the speed of the defect tracer. Hence we conclude from (14) that

v = lim
a→−∞, b→∞

E [r(ωb) + r(−ωb)] − E [r(ωa) + r(−ωa)]

E(ωb) − E(ωa)

in case E(ωa) 6= E(ωb) and their limits are not equal i.e. the slope of the surface
is different far on the two sides. This formula is the same as (12), which we
obtained for the speed of the shock using the Rankine-Hugoniot formula. This
shows that a measure µ(d.t.) with different asymptotics on the left and on the
right can be identified as the microscopic structure of a shock solution of (1).

13 Stationary measures as seen from the defect

tracer

In this section we find a stationary product measure satisfying (7) for the defect
tracer of the EBL model. We also show that this kind of measure only exists
for the EBL model.

Intuitively one expects that far from the defect tracer a stationary measure
behaves like the canonical Gibbs-measure µ(θ), since the defect tracer is only a
local “error” for the evolution of the process. The canonical measure has one
parameter θ, but it is not necessary that in this case parameter θleft far on the
left side would be equal to the parameter θright far on the right side. Let

θ : = {θi : i ∈ Z}

be a sequence of parameters. Then it seems to be reasonable to assume that
the product measure µ(θ) with marginals

µi(z) = µ(θ) {ω : ωi = z} : = µ(θi)(z) =
1

Z(θi)
· eθiz

r(|z|)!
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is stationary for Ld.t. (13) (i ∈ Z). This measure only differs from the canonical
µ(θ) (6) in that the parameter of its one-dimensional marginals depends on the
position. The question is whether there are any choices of θ for µ(θ) to be
stationary.

Theorem 13.1. For a bricklayers’ model, if r is not the constant function, then
the measure µ(θ) described above is stationary for L(d.t.) if and only if r is the
rate of an EBL model with any parameter β > 0, and for the θ parameters of
µ(θ)

θi =

{
θleft if i ≤ −1 ,
θright : = θleft − β if i ≥ 0

is satisfied with an arbitrary real number θleft.

Proof. Stationarity means

E(θ)(Ld.t.ϕ)(ω) = 0 ,

after some changes of variables, by straightforward computations we obtain from
(13)

(15) 0 = E(θ)

{{
A + B + C + D

}
ϕ(ω)

}
,

where

A =
∑

i6=−1

[
[r(ωi + 1) + r(−ωi+1 + 1)] · µi(ωi + 1)µi+1(ωi+1 − 1)

µi(ωi)µi+1(ωi+1)
−

− [r(ωi) + r(−ωi+1)]
]

,

B = [r(ω−1 + 1) + r(−ω0)] ·
µ−1(ω−1 + 1)µ0(ω0 − 1)

µ−1(ω−1)µ0(ω0)
−

− r(ω−1) − r(−ω0) − r(ω0 + 1) + r(ω0) ,

C = [r(−ω1 + 1) − r(−ω1)] ·
µ−1(ω0 + 1)µ0(ω1 − 1)

µ−1(ω0)µ0(ω1)
·
∏

j∈Z

µj−1(ωj)

µj(ωj)
,

D = [r(ω−1 + 1) − r(ω−1)] ·
∏

j∈Z

µj+1(ωj)

µj(ωj)
.

We eliminate the expressions µk for all k ∈ Z with the use of (5) and (7)

r(z) · µk(z)

µk(z − 1)
= eθk and

r(−z) · µk(z)

µk(z + 1)
= e−θk
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to obtain

A =
∑

i6=−1

[
eθi−θi+1 r(ωi+1) + eθi−θi+1 r(−ωi) − r(ωi) − r(−ωi+1)

]
,

B = eθ−1−θ0 r(ω0) + eθ−1−θ0 r(−ω−1)
r(ω0)

r(ω0 + 1)
−

− r(ω−1) − r(−ω0) − r(ω0 + 1) + r(ω0) ,

C = r(−ω0)

(
1 − r(ω1)

r(ω1 + 1)

)
eθ−1−θ0

∏

j∈Z

e(θj−1−θj) ωj
Z(θj)

Z(θj−1)
,

D = [r(ω−1 + 1) − r(ω−1)]
∏

j∈Z

e(θj+1−θj) ωj
Z(θj)

Z(θj+1)
.

For a < −1, b > 1 fixed, let us consider bounded cylinder functions ϕ, which
depend on the variables ωa, ωa+1, . . . , ωb. By stationarity of µ(θ), (15) is satis-
fied for all of them. Hence it is necessary that A + B + C + D does not depend
on the variables ωa, ωa+1, . . . , ωb and its mean is zero according to µ(θ). Only
C, D, and the second term in B are the terms which can contain product of
functions of different variables ωk. Each of them is positive by monotonicity of
r. Thus it follows that each of these three terms must not depend on more than
one variable. This implies

r(z)

r(z + 1)
= constant = r(0)2

due to the form of the second term in B. The value r(0)2 of this constant is a
consequence of (5). Thus we conclude that r is necessarily exponential, the rates
are that of the EBL model (3). C and D can also contain at most one variable,
hence we obtain θk = θ−1 for k ≤ −1 and θk = θ0 for k ≥ 0. This means that
we have at most two kinds of marginals of µ(θ), one on the left-hand side of the
defect tracer and an other one on its right-hand side. In (15), computing the
expectation value of ϕ times the terms of A, summed up for i ≤ a − 2 and for
i ≥ b + 1, gives zero. The reason for this is that the variables in these terms are
independent of the variables which ϕ depends on. For the rest of the indices,
note that we have a telescopic sum for A. Due to this and using the rates of
the EBL model, we can simplify our expressions to

A = r(−ωa−1) − r(ωa−1) + r(ωb+1) − r(−ωb+1) +

+ r(ω−1) − r(−ω−1) + r(−ω0) − r(ω0) ,

B = eθ−1−θ0 r(ω0) + eθ−1−θ0−βr(−ω−1) −
− r(ω−1) − r(−ω0) − eβr(ω0) + r(ω0) ,

C =
(
1 − e−β

)
r(−ω0) e(θ−1−θ0) (ω0+1) Z(θ0)

Z(θ−1)
,

D =
(
eβ − 1

)
r(ω−1) e(θ0−θ−1) ω−1

Z(θ−1)

Z(θ0)
.

It is easy to check that simply choosing θ−1 = θ0 does not eliminate the variables
ω−1, ω0 from A + B + C + D. Hence this can not be a solution for θ to make
equation (15) be satisfied for all ϕ. This means that the marginals on the left-
hand side of the defect tracer are different from those on the right-hand side.
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When taking expectation value in (15), this leads to having constant times ϕ
from the terms containing ωa−1 and ωb+1 in the first part of the expression of
A. In order to make (15) be satisfied for all ϕ, it is necessary that we obtain
other constants to have zero together with. They can only come from C and D.
Thus we conclude

(16) eθ−1−θ0 = eβ

with the use of the form (3) of r. In view of (8), we have the measures

(17) µi(z) =
e
− β

2

“
z−

θi
β

”2

e−
θ2

i
2β Z(θi)

=
e−

β
2 (z−mi)

2

Z̃(β, mi)

with mi := θi/β. We know that the normalization Z̃(β, m) in the right-hand
side of (17) is periodic in the parameter m with period one, which tells us

Z(θ−1)

Z(θ0)
=

Z(θ0 + β)

Z(θ0)
=

e
(θ0+β)2

2β Z̃(β, θ0

β + 1)

e
(θ0)2

2β Z̃(β, θ0

β )
= e

β
2 +θ0 .

Using this result together with (16) and with the property E(θ)r(±ωi) = e±θi ,
we see that (15) is satisfied, which completes the proof.

The form of the measure described in this theorem shows that the discrete
normal distribution of ωi, i ≤ −1 is shifted by +1 compared to the distribution
of ωj , j ≥ 0. This gives us the picture of a (random) valley with the (randomly)
moving defect tracer in its center. Since the position of the defect tracer is not
deterministic, we do not see the sharp change between the distribution of the
two sides of this valley, if looking the model from outside.
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25



Part III

Growth fluctuations in a class of

deposition models

Abstract

We compute the growth fluctuations in equilibrium of a wide class of
deposition models. These models also serve as general frame to several
nearest-neighbor particle jump processes, e.g. the simple exclusion or the
zero range process, where our result turns to current fluctuations of the
particles. We use martingale technique and coupling methods to show
that, rescaled by time, the variance of the growth as seen by a deter-
ministic moving observer has the form |V − C| · D, where V and C is
the speed of the observer and the second class particle, respectively, and
D is a constant connected to the equilibrium distribution of the model.
Our main result is a generalization of Ferrari and Fontes’ result for simple
exclusion process. Law of large numbers and central limit theorem are
also proven. We need some properties of the motion of the second class
particle, which are known for simple exclusion and are partly known for
zero range processes, and which are proven here for a type of deposition
models and also for a type of zero range processes.

Résumé

On compute les fluctuations du grandissement dans l’état d’équilibre
d’une classe vaste des processus de décharge. Ces processus forment aussi
bien un cadre pour quelques modèles des bonds voisins des particules, p.
e. le modèle simple exclusion ou zero range, où notre résultats deviennent
des résultats sur les fluctuations du flux des particules. On utilise de
méthode martingale et des techniques des couplages pour présenter que le
variance du grandissement, regradué par le temps et vu par un observateur
qui avance déterminement à une vitesse V , a la forme |V − C| · D, où C

est la vélocité de la particule de deuxième classe, et D est une cons-
tante connectée à l’état d’équilibre du modèle. Notre résultat principal
est une généralisation du résultat de Ferrari et Fontes pour le modèle
simple exclusion. La loi des grandes nombres et le théorème de la limite
centrale sont aussi démontrés. Nous avons besoin de quelques propriétés
du mouvement du particule de deuxième classe, qui sont connues pour
simple exclusion et partiellement pour le modèle zero range, et qui sont
démontrées ici pour un type des processus de décharge et pour un type
des modèles zero range aussi.

Keywords: Current fluctuations; second class particle; coupling methods.
MSC: 60K35, 82C41.

14 Introduction

Stochastic deposition models can be used to obtain microscopic description of
domain growths, e.g. a colony of cells or an infected area of plants. The fluc-
tuation of the growth is itself of great interest. Moreover, these models are
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in close connection to interacting particle systems, where the particle diffusion
corresponds to rescaled surface fluctuation. As it is shown below, an additional
feature of deposition models is the possibility of handling antiparticles as well as
particles in the particle representation of the process. It has been known [8] for
the simple exclusion process, that the current fluctuation is in close connection
to the motion of the so-called second class particle, and, divided by time, its
variance vanishes for an observer moving with the speed of this particle. In this
latter case, Prähofer and Spohn [20] suggest this quantity to be in the order of
t2/3.

In the present note we consider a wide class of one-dimensional deposition
models, parameterized by rate functions describing a column’s growth depend-
ing on the neighboring columns’ relative heights. By monotonicity properties of
the rate functions, our models are attractive. For a treatment of these models
in a hydrodynamical context, without using attractivity, see Tóth and Valkó
[29]; Tóth and Werner [30]. Following Rezakhanlou [23], we first show some
conditions on the model in order to have product measures as stationary ones
for the process. (By stationarity, we mean time-invariance in this paper.) Our
description is general enough to include the asymmetric simple exclusion pro-
cess, some types of the zero range process, and a family of deposition models,
which we call bricklayers’ models. In this general frame, we compute the growth
fluctuations in order O(t), hence generalize the result of Ferrari and Fontes [8].
In the computations we couple two processes, which only differ at one site. This
is the position of the so-called defect tracer, or also called second class particle.
We need law of large numbers and a second moment condition for the position
of this extra particle. These have been established for simple exclusion [7], but,
as far as we know, only L1-convergence is known for most kinds of zero range
processes [23]. We prove Ln-convergence with any n for the defect tracer of the
totally asymmetric zero range process and for our new bricklayers’ models via
various coupling techniques.

14.1 The model

The class of models described here is a generalization of the so-called misan-
thrope process. For −∞ ≤ ωmin ≤ 0 and 1 ≤ ωmax ≤ ∞ (possibly infinite
valued) integers, we define

I : =
{
z ∈ Z : ωmin − 1 < z < ωmax + 1

}

and the phase space

Ω = {ω = (ωi)i∈Z : ωi ∈ I} = IZ.

For each pair of neighboring sites i and i + 1 of Z, we can imagine a column
built of bricks, above the edge (i, i + 1). The height of this column is denoted
by hi. If ω(t) ∈ Ω for a fixed time t ∈ R then ωi(t) = hi−1(t) − hi(t) ∈ I is the
negative discrete gradient of the height of the “wall”. The growth of a column
is described by jump processes. A brick can be added:

(ωi, ωi+1) −→ (ωi − 1, ωi+1 + 1) with rate r(ωi, ωi+1).

Conditionally on ω(t), these moves are independent. See fig. 3 for some possible
instantaneous changes. For small ε, the conditional expectation of the growth of

27



the column between i and i+1 in the time interval [t, t+ ε] is r(ωi(t), ωi+1(t)) ·
ε + o(ε).

i i+1

}
ωi

}
ωi+1 r(ωi, ωi+1)−−−−−−−−→

i i+1

Figure 3: A possible move

The rates must satisfy

r(ωmin, · ) ≡ r( · , ωmax) ≡ 0

whenever either ωmin or ωmax is finite. We assume r to be non-zero in all other
cases. We want the dynamics to smoothen our interface, that is why we assume
monotonicity in the following way:

(18) r(z + 1, y) ≥ r(z, y), r(y, z + 1) ≤ r(y, z)

for y, z, z + 1 ∈ I. This means that the higher neighbors a column has, the
faster it grows. Our model is hence attractive.

We are going to use product property of the model’s stationary measure. For
this reason, similarly to Rezakhanlou [23], we assume that for any x, y, z ∈ I

(19) r(x, y) + r(y, z) + r(z, x) = r(x, z) + r(z, y) + r(y, x),

and for ωmin < x, y, z < ωmax + 1

(20) r(x, y − 1) · r(y, z − 1) · r(z, x − 1) = r(x, z − 1) · r(z, y − 1) · r(y, x − 1).

These two conditions imply product structure of the stationary measure, see
section 14.3. Equation (20) is equivalent to the condition r(y, z) = s(y, z + 1) ·
f(y) for some function f and a symmetric function s.

At time t, the interface mentioned above is described by ω(t). Let ϕ : Ω → R

be a finite cylinder function i.e. ϕ depends on a finite number of values of ωi.
The growth of this interface is a Markov process, with the formal infinitesimal
generator L:

(21) (Lϕ)(ω) =
∑

i∈Z

r(ωi, ωi+1) · [ϕ(. . . , ωi − 1, ωi+1 + 1, . . . ) − ϕ(ω)] .

When constructing the process rigorously, problems may arise due to the
unbounded growth rates. The system being one-component and attractive,
we assume that, with appropriate growth conditions on the rates, existence
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of dynamics on a set of tempered configurations Ω̃ (i.e. configurations obeying
some restrictive growth conditions) can be established by applying methods

initiated by Liggett and Andjel [12] [1]. Technically we assume that Ω̃ is of full
measure w.r.t. the canonical Gibbs measures defined in section 14.3. In fact this
has been proved for some kinds of these models, see below. We do not deal with
questions of existence of dynamics in the present paper.

14.2 Examples

There are three essentially different cases of these models, all of them are of
nearest neighbor type.

1. Generalized exclusion processes are described by our models in case
both ωmin and ωmax are finite.

• The totally asymmetric simple exclusion process (SE) intro-
duced by F. Spitzer [28] is described this way by ωmin = 0, ωmax = 1,

r(ωi, ωi+1) = ωi · (1 − ωi+1).

Here ωi is the occupation number for the site i, and r(ωi, ωi+1) is
the rate for a particle to jump from site i to i + 1. Conditions (18),
(19) and (20) for these rates are satisfied.

• A particle-antiparticle exclusion process is also shown to de-
monstrate the generality of the frame described above. Let ωmin =
−1, ωmax = 1. Fix c (creation), a (annihilation) positive rates with
c ≤ a/2. Put

r(0, 0) = c, r(0, −1) =
a

2
, r(1, 0) =

a

2
, r(1, −1) = a,

and all other rates are zero. If ωi is the number of particles at site
i, with ωi = −1 meaning the presence of an antiparticle, then this
model describes a totally asymmetric exclusion process of particles
and antiparticles with annihilation and particle-antiparticle pair cre-
ation. These rates also satisfy our conditions.

Other generalizations are possible allowing a bounded number of particles
(or antiparticles) to jump to the same site. By the bounded jump rates
and by nearest-neighbor type of interaction, the construction of dynamics
of these processes is well understood, see e.g. Liggett [15].

2. Generalized misanthrope processes are obtained by choosing ωmin >
−∞, ωmax = ∞.

• The zero range process (ZR) is included by ωmin = 0, ωmax = ∞,

r(z, y) = f(z)

with an arbitrary f : Z
+ → R

+ nondecreasing function and f(0) =
0. Here ωi represents the number of particles at site i. These rates
trivially satisfy conditions (18), (19), (20). The dynamics of this
process is constructed by Andjel [1] under the condition that the
rate function f obeys the growth condition |f(z + 1)− f(z)| ≤ K for
some K > 0 and all z ≥ 0.
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3. General deposition processes are the type of these models where
ωmin = −∞ and ωmax = ∞. In this case, the height difference between
columns next to each other can be arbitrary in Z. Hence the presence of
antiparticles can not be avoided when trying to give a particle represen-
tation of the process.

• Bricklayers’ models (BL). Let

r(z, y) := f(z) + f(−y)

with the property
f(z) · f(−z + 1) = 1

for the nondecreasing function f and for any z ∈ Z. This process can
be represented by bricklayers standing at each site i, laying a brick on
the column on their left with rate f(−ωi) and laying a brick to their
right with rate f(ωi). This interpretation gives reason to call these
models bricklayers’ model. Conditions (18), (19) and (20) hold for r.
Similarly to the ZR process, this model is constructed by Booth and
Quant [21] only in case |f(z + 1) − f(z)| is bounded in Z.

14.3 Translation invariant stationary product measures

We are interested in translation invariant stationary measures for these pro-
cesses, i.e. canonical Gibbs-measures. We construct such measures similarly to
Rezakhanlou [23] of the following form. Fix f(1) > 0 and define

(22) f(z) :=
r(z, 0)

r(1, z − 1)
· f(1)

for ωmin < z < ωmax + 1. Then f is a nondecreasing strictly positive function.
For I 3 z > 0 we define

f(z)! : =

z∏

y=1

f(y),

while for I 3 z < 0 let

f(z)! : =
1

0∏
y=z+1

f(y)

,

finally f(0)! : = 1. Then we have

f(z)! · f(z + 1) = f(z + 1)!

for all z ∈ I. Let

θ̄ : =





log
(
lim inf
z→∞

(f(z)!)
1/z

)
= lim

z→∞
log(f(z)) , if ωmax = ∞

∞ , else

and

θ : =





log

(
lim sup

z→∞
(f(−z)!)

1/z

)
= lim

z→∞
log(f(−z)) , if ωmin = −∞

−∞ , else.
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By monotonicity of f , we have θ̄ ≥ θ. We assume θ̄ > θ. With a generic real
parameter θ ∈

(
θ, θ̄

)
, we define

Z(θ) :=
∑

z∈I

eθz

f(z)!
.

Let the product-measure µ
θ

have marginals

(23) µθ(z) = µ
θ
{ω : ωi = z} : =

1

Z(θ)
· eθz

f(z)!
.

By definition it has the property

µθ(z + 1)

µθ(z)
=

eθ

f(z + 1)

which implies

(24) r(z + 1, y − 1) · µθ(z + 1)µθ(y − 1)

µθ(z)µθ(y)
= r(y, z)

due to (22) and (20). Hence stationarity of µ
θ

follows via (19).
As can be verified, the expectation value %(θ) := Eθ(ωi) is a strictly increas-

ing function of θ. We introduce its inverse θ(%) and the function

(25) H(%) := Eθ(%) {r(ωi, ωi+1)} ,

playing an important role in hydrodynamical considerations. For the SE model,
the construction leads to the well-known Bernoulli product-measure with mar-
ginals

µ(1) = µ{ω : ωi = 1} : = %,

µ(0) = µ{ω : ωi = 0} : = 1 − %

with a real number % between zero and one (the density of the particles). In
our notations, −% describes the average slope of the interface.

For the particle-antiparticle exclusion process, the relative probability of
having a particle or an antiparticle as a function of the rates goes as

√
c/a,

independently for the sites. The density of particles relative to antiparticles can
be set by an arbitrary parameter.

Both for the ZR process and for BL models, it turns out that f defined in
(22) and f in the definition of the rates agree.

It is not hard to show ergodicity of these models, which also implies ex-
tremality of the invariant measures µ

θ
:

Proposition 14.1. The processes given in subsection 14.1, distributed according
to their stationary measures µ

θ
(23), are ergodic.

Proof. We need to show that any (time-) stationary bounded measurable func-
tion defined on the trajectories of the process is constant a.s. By proposi-
tion V.2.4 of Neveu [17], this follows once we see that any bounded function
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ϕ on Ω̃ satisfying Pϕ = ϕ is constant for µ-almost all ω with the Markov-
transition operator P . Hence ergodicity of the process follows if Lϕ = 0 implies
ϕ(ω) = constant for almost all ω ∈ Ω̃. We compute the Dirichlet-form

− Eθ(ϕ · Lϕ) =

=
1

2
Eθ

{
∑

i∈Z

r(ωi, ωi+1) · [ϕ(. . . , ωi − 1, ωi+1 + 1, . . . ) − ϕ(ω)]
2

}
.

By positivity of the rates, this shows that assuming Lϕ ≡ 0 results in

ϕ(. . . , ωi − 1, ωi+1 + 1, . . . ) = ϕ(ω)

for almost all ω ∈ Ω̃. Consecutive use of this equation shows that any function
obeying Lϕ = 0 does a.s. not depend on any finite cylinder set in Ω̃. Especially,
for ε > 0 and a constant K ∈ Ran(ϕ), the event

{ϕ(ω) ∈ (K, K + ε]}

does not depend on any finite cylinder set. Hence by Kolmogorov’s 0-1 law,
the probability of these events is zero or one w.r.t. the product measure µ.
Partitioning the bounded image of ϕ, this shows that this function is constant
for almost all ω.

14.4 Results

We start our model in a canonical Gibbs-distribution, with parameter θ. For a
fixed speed value V > 0 we define

J (V )(t) := hbV tc(t) − h0(0),

the height of column at site bV tc at time t, relative to the initial height of the
column at the origin. For V < 0, we introduce

J (V )(t) := hdV te(t) − h0(0),

which is the mirror-symmetric form of J (V ) defined above for positive V ’s. For
V = 0 we write

J(t) = J (0)(t) := h0(t) − h0(0).

In particle notations of the models, J (V )(t) is the current, i.e. the algebraic
number of particles jumping through the moving window positioned at V t, in
the time interval [0, t]. We prove law of large numbers for this quantity:

(26) lim
t→∞

J (V )

t
= E(r) − V E(ω) a.s.

We need law of large numbers and a second-moment condition for the po-
sition Q(t) of the defect tracer (also called second class particle, see section
16 for its definition) if one of the coupled models is started from its canonical
Gibbs-measure:
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Condition 14.2. With initial distribution µ
θ

of ω, weak law of large numbers

(27) lim
t→∞

Pθ

(∣∣∣∣
Q(t)

t
− C(θ)

∣∣∣∣ > δ

)
= 0

for a speed value C(θ) and for any δ > 0 holds, and the bound

(28) Eθ

(
Q(t)2

t2

)
< K < ∞

is satisfied for all large t for the position Q(t) of the defect tracer.

Inequality (28) is obvious in case of bounded rates, since in this situation, the
process |Q(t)| is bounded by some Poisson-process.

Theorem 14.3 (Main). Assume condition 14.2. Then

(29) lim
t→∞

Varθ(J
(V )(t))

t
= |V − C(θ)| · Varθ(ω0) = : DJ (θ)

for any V ∈ R, where Varθ stands for the variance w.r.t. µθ.

Theorem 14.4 (Central limit theorem). Assuming condition 14.2,

lim
t→∞

Pθ

(
J̃ (V )(t)√
DJ (θ) ·

√
t
≤ x

)
= Φ(x) =

x∫

−∞

e−y2/2

√
2π

dy,

i.e. J̃ (V )(t)/
√

t converges in distribution to N(0, DJ (θ)), a centered normal
random variable with variance DJ(θ) of (29). Tilde means here that the mean
value of J (V )(t) is subtracted.

For the SE model, (27) is proven in [7]. It is shown there that

lim
t→∞

Q(t)

t
= 1 − 2% a.s.

Condition 14.2 is satisfied by this law, hence theorem 14.3 gives

lim
t→∞

Var(J (V )(t))

t
= % (1 − %) |(1 − 2 %) − V |,

and the central limit theorem 14.4 also holds. These results have been known
for SE by Ferrari and Fontes [8].

For the ZR and BL models, we need a condition on the growth rates:

Condition 14.5. For ZR and BL processes defined above, the rate function f
is convex.

For the ZR process, under this condition and assuming either strict convexity
or concavity of H(%) defined in (25), more than (27), namely, L1-convergence is
established by Rezakhanlou [23] with speed

(30) C(θ) =
eθ

Varθ(ω)
.

As far as we know, the second-moment condition (28) has not yet been proven
for this model.
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Theorem 14.6. For ZR and BL models satisfying condition 14.5 with initial
distribution µ

θ
of ω, and for any n ∈ Z

+,

Q(t)

t
→ C(θ) in Ln,

where C(θ) is defined in (30) for the ZR process, and

(31) C(θ) :=
2 sinh(θ)

Varθ(ω)

for the BL model.

Hence under condition 14.5, condition 14.2 and thus theorem 14.3 and 14.4
hold for both ZR and BL models with C(θ) defined in (30) and (31), respectively.
As we expect by mirror symmetric properties of the BL model, the speed C(θ)
of the defect tracer is zero in case θ = 0 in this model.

Our methods do not rely on hydrodynamic limits. C(θ) is a nondecreasing
function for the totally asymmetric ZR process and BL model under condition
14.5, see remark 18.10. This shows (non strict) convexity of the function H(%)
of (25) for these models, since

C(θ(%)) =
dH(%)

d%

after some computations, and θ(%) is also a monotone function.

Proposition 14.7. Under condition 14.5, the function H(%) is strictly convex
for the BL model. For the ZR process satisfying 14.5, linearity of H(%) is equiv-
alent to linearity of the rate function f on Z, which is the case of independent
random walk of the particles. If this is not the case, then H(%) is strictly convex.

This is an important observation for [2], since this property is only proved
for small θ values there. It is also remarkable for [23], where strict convexity is
just assumed.

We remark that rates for removal of the bricks can also be introduced to ob-
tain a model with both growth and decrease of columns. In particle notations
this represents possible left jumps of particles (or right jump of antiparticles,
respectively). Therefore, not only the totally asymmetric case, but the general
asymmetric case of particle processes (SE or ZR, for example) can also be in-
cluded in the description. The extension of the proof of theorems 14.3 and 14.4
to this case is straightforward. However, the coupling arguments used to estab-
lish condition 14.2 for ZR and BL models in later sections are not applicable in
case of brick-removal.

We see that lim
t→∞

Var(J(V )(t))
t vanishes if we observe this quantity from the

moving position V t = C(θ)t, having the characteristic speed of the hydrodynam-
ical equation. This has been known for the SE model with strongly restricted
values of ωi, and now it is proven for the class of more general models with pos-
sibly ωi ∈ all Z also. The interesting question, of which the answer is strongly
suggested for some models [20], is the correct exponent of t leading to nontrivial
limit of Var(J (C)(t))/t2α as t → ∞. α is believed to be 1/3, in close connection
to t2/3 order fluctuations of the position Q(t) of the defect tracer.
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The structure of the paper is the following: after some definitions on the
reversed chain, we begin with separating martingales from Var(J(t)) in section
15.2. Then we proceed in section 15.3 by computing the generator’s inverse on
the rates and then by transforming Var(J(t)) into nontrivial correlations. These
correlations can be computed using monotonicity thus coupling possibilities of
the model, this is done in section 16. This section also includes a technical
lemma showing an interesting relation of space-time correlations to the motion
of the defect tracer. After J(t), we deal with J (V )(t), the growth in non-vertical
directions in section 17. Our results are proven in this section, except for the-
orem 14.6, which is proven in the last section for the totally asymmetric ZR
process and for BL models. This last section includes the introduction of a new
random walk depending on our processes, and new coupling techniques based
on convexity of the rate function f . As another consequence of these methods,
this part is followed by a proof of strict convexity of the function H(%).

15 The growth and correlations

In this section we obtain a formula for Var(J(t)), which contains only space-
time correlations of ωi(t)’s as non-trivial expressions.

15.1 The reversed chain

The formal infinitesimal generator L∗ for the reversed chain is of the form

(L∗ϕ)(ω) =
∑

i∈Z

r∗(ωi, ωi+1) · [ϕ(. . . , ωi + 1, ωi+1 − 1, . . . ) − ϕ(ω)]

on the finite cylinder functions. The rates r∗ of the reversed process w.r.t. µ
θ

can be determined by the equation

Eθ (ψ(ω) · Lϕ(ω)) = Eθ (ϕ(ω) · L∗ψ(ω)) .

Proposition 15.1. For ωmin ≤ z, y ≤ ωmax,

(32) r∗(z, y) = r(y, z).

Note that the rates of the reversed process do not depend on the parameter
θ of the original process’ distribution.

Proof. Let ψ, ϕ be finite cylinder functions, and let I ⊂ Z be a finite discrete
interval of which the size can be divided by three, and which contains the set

{i ∈ Z : ψ, or ϕ depends on ωi or on ωi−1} .

Then the summation index i in the definition (21) of the generator can be run
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on the set I. We begin by changing variables ωi, ωi+1:

Eθ (ψ(ω) · Lϕ(ω)) =

= Eθ

∑

i∈I

{r(ωi, ωi+1) · [ψ(ω)ϕ(. . . , ωi − 1, ωi+1 + 1, . . . ) − ψ(ω) · ϕ(ω)]} =

= Eθ

∑

i∈I

{
r(ωi + 1, ωi+1 − 1) · µθ(ωi + 1)µθ(ωi+1 − 1)

µθ(ωi)µθ(ωi+1)
×

×ψ(. . . , ωi +1, ωi+1 − 1, . . . )ϕ(ω)

}
−Eθ

{(
∑

i∈I

r(ωi, ωi+1)

)
· ψ(ω)ϕ(ω)

}
.

Since |I| can be divided by three, we can apply (19) in order to show that

∑

i∈I

r(ωi, ωi+1) =
∑

i∈I

r(ωi+1, ωi)

in the second term. By using (24) for the first term we finally obtain

Eθ (ψ(ω) · Lϕ(ω)) =

= Eθ

∑

i∈I

{r(ωi+1, ωi) · [ψ(. . . , ωi + 1, ωi+1 − 1, . . . )ϕ(ω) − ψ(ω) · ϕ(ω)]} ,

which equals to Eθ (ϕ(ω) · L∗ψ(ω)) by choosing r∗ according to (32).

Combining (24) with (32) leads to

(33) r∗ (z, y) =
µθ(z + 1)µθ(y − 1)

µθ(z)µθ(y)
· r (z + 1, y − 1) ,

which is the natural formula suggested by considering conditional expectation
values.

In order to simplify notations, let

r(t) := r(ω0(t), ω1(t)), r∗(t) := r∗(ω0(t), ω1(t)).

15.2 Preparatory computations

For a quantity A(ω) with E|A| < ∞, let

Ã = Ã(ω) := A − EA.

Lemma 15.2. Var(J(t)) = tE(r) + 2
t∫
0

(t − v)E (r̃(v) r∗(0)) dv.

Proof. By definition, E(J(t) |ω(0)) = t r(0) + o(t), hence

M(t) := J(t) −
t∫

0

r(s) ds

36



is a martingale with M(0) = 0. Using this,

(34) Var(J(t)) = EM(t)2 + 2E


M(t)

t∫

0

r̃(s) ds


 + E







t∫

0

r̃(s) ds




2

 .

Due to E
(
M(t)2 |ω(0)

)
= t r(0) + o(t), the process

N(t) := M(t)2 −
t∫

0

r(s) ds

is also a martingale with N(0) = 0. Hence

EM(t)2 = tE(r).

Using the martingale property of M , the second term of (34) can be written as

2

t∫

0

E (M(t) r̃(s)) ds = 2

t∫

0

E (M(s) r̃(s)) ds.

Simply changing the limits of integration in the third term of (34), we have

E







t∫

0

r̃(s) ds




2

 = 2

t∫

0

E


r̃(s)

s∫

0

r̃(u) du


 ds.

These calculations lead to

(35) Var(J(t)) = tE(r) + 2

t∫

0

E


r̃(s)


M(s) +

s∫

0

r̃(u) du





 ds =

= tE(r) + 2

t∫

0

E (r̃(s)J(s)) ds.

In order to handle E (r̃(s)J(s)), we introduce J (s) ∗, the quantity corre-
sponding to J in the reversed model by

J (s) ∗(u) := J(s) − J(s − u) (s ≥ u ≥ 0).

This is the number of bricks removed from the column in the reversed model
started from time s. As in case of J(t), a reversed martingale can be separated
by

M (s) ∗(u) := J (s) ∗(u) −
u∫

0

r∗(s − v) dv.

For this reversed object, M (s) ∗(0) = 0 and E
(
M (s) ∗(u) | F[t,∞)

)
= M (s) ∗(s−

t) if 0 ≤ s − t ≤ u, where F stands for the natural filtration of the (forward)
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process. In view of this,

E (r̃(s)J(s)) = E
[
r̃(s)E

(
J (s) ∗(s) | F[s,∞)

)]
=

= E


r̃(s)

s∫

0

r∗(s − v) dv


 =

s∫

0

E (r̃(v) r∗(0)) dv,

where in the last step we used time-invariance of the measure. Using this result,
we obtain

Var(J(t)) = tE(r) + 2

t∫

0

(t − v) E (r̃(v) r∗(0)) dv

from (35) by changing the order of integration.

15.3 Occurrence of space-time correlations

In this subsection we denote r(ωi, ωi+1) and r̃(ωi, ωi+1) by ri and r̃i, respec-
tively. For k ∈ Z, let

dk : Ω → I ; dk(ω) = ωk

be the k-th coordinate of Ω. Then

(36)
(Ldk) (ω) = rk−1 − rk and

(L∗dk) (ω) = −r∗k−1 + r∗k ,

where L∗ is the infinitesimal generator (15.1) for the reversed process.

Lemma 15.3. For 0 < α < 1 the expressions

(37) ϕα : =

∞∑

k=1

αk−1dk ψα : =

∞∑

k=0

αkd−k

exist a.s., and

lim
α→1

(Lϕα)(ω) = − lim
α→1

(Lψα)(ω) = r̃,

lim
α→1

(L∗ψα)(ω) = − lim
α→1

(L∗ϕα)(ω)= r̃∗

in L2.

Proof. The a.s. existence of the sums above can be easily shown by using the
Borel-Cantelli lemma for the sets

An : = {ω : |ωn| ≥ n} .

We show the first equation for ϕα. By (36)

(38) (Lϕα) (ω) = r0 + (α − 1)

∞∑

k=1

rkαk−1 =

= r0 − E r + (α − 1)

∞∑

k=1

(rk − E r)αk−1 = r̃0 + (α − 1)

∞∑

k=1

r̃kαk−1.
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By independence of ωi and ωj for i 6= j, E(r̃l · r̃k) = 0 if |l − k| > 1 and
|E(r̃l · r̃k)| ≤ E(r̃l · r̃l) = ||r̃||22, if |k − l| = 0 or 1. Hence the L2-norm of the
second term on the right-hand side of (38) tends to zero as α → 1:

∣∣∣∣∣

∣∣∣∣∣(α − 1)

∞∑

k=1

r̃kαk−1

∣∣∣∣∣

∣∣∣∣∣

2

2

≤ (α − 1)2
∞∑

k=1

||r̃k||22α2k−2+

+ 2(α − 1)2
∞∑

k=1

||r̃k||22α2k−3 =
(α − 1)2

1 − α2
||r̃||22(1 + 2α−1) −→

α→1
0.

The proof of the other three equations is similar.

Now we can compute the integrals in our expression for Var(J).

Theorem 15.4.

Var(J(t)) = tE(r) − 2 tE(r∗(0) · ω̃1(0)) + 2
∞∑

n=1

nE(ω̃0(0) ω̃n(t)) =

= tE(r) + 2 tE(r∗(0) · ω̃0(0)) + 2
∞∑

n=1

nE(ω̃0(0) ω̃−n(t)).(39)

As can be seen in the next session, the sums on the right-hand side are
convergent.

Proof. Using L2 convergence stated in lemma 15.3 and Cauchy’s inequality, we
rewrite the integral in the result of lemma 15.2. We can write r̃∗(0) instead of

r∗(0) there, since E(Ã B) = E(Ã B̃) if both sides exist.

∣∣∣∣∣∣

t∫

0

(t − v)E(r̃(v) r̃∗(0)) dv − lim
α→1

t∫

0

(t − v)E(Lϕα(v) r̃∗(0)) dv

∣∣∣∣∣∣
≤

≤ lim
α→1

t∫

0

(t − v)
√

E ([r̃(v) − Lϕα(v)]2) · E(r̃∗(0)2) dv =

= lim
α→1

√
E ([r̃(0) − Lϕα(0)]2) · E(r̃∗(0)2)

t∫

0

(t − v) dv = 0,

hence we can apply integration by parts:

Var(J(t)) = tE(r) + 2 lim
α→1

t∫

0

(t − v)E (Lϕα(v) r̃∗(0)) dv =

= tE(r) + 2 lim
α→1

t∫

0

(t − v)
d

dv
E(ϕα(v) r̃∗(0)) dv =

= tE(r) − 2 t lim
α→1

E(ϕ̃α(0) r̃∗(0)) + 2 lim
α→1

t∫

0

E(ϕ̃α(v) r̃∗(0)) dv.

39



The last integral here can be transformed in the same way, using lemma 15.3
again:

t∫

0

E(ϕ̃α(v) r̃∗(0)) dv =

t∫

0

E(ϕ̃α(0) r̃∗(−v)) dv =

= lim
γ→1

t∫

0

E(ϕ̃α(0)L∗ψγ(−v)) dv = lim
γ→1

t∫

0

d

dv
E(ϕ̃α(0)ψγ(−v)) dv =

= lim
γ→1

E(ϕ̃α(0) ψ̃γ(−t)) − lim
γ→1

E(ϕ̃α(0) ψ̃γ(0)).

Hence with definitions (37), the variance of J(t) can now be written as

Var(J(t)) = tE(r) − 2 t lim
α→1

E(ϕ̃α(0) r̃∗(0))+

+ 2 lim
α,γ→1

E(ϕ̃α(0) ψ̃γ(−t)) − 2 lim
α,γ→1

E(ϕ̃α(0) ψ̃γ(0)) =

= tE(r) − 2 t lim
α→1

E

(
∞∑

k=1

αk−1 ω̃k(0) r̃∗(0)

)
+

+ 2 lim
α,γ→1

E

(
∞∑

k=1

αk−1 ω̃k(0)
∞∑

l=0

γl ω̃−l(−t)

)
−

− 2 lim
α,γ→1

E

(
∞∑

k=1

αk−1 ω̃k(0)

∞∑

l=0

αl ω̃−l(0)

)
.

Using product property of the measure at time t = 0 and the fact that r∗

depends only on ω0 and ω1, most of our expressions become simple (recall that
all quantities with tilde are centered random variables):

Var(J(t)) = tE(r) − 2 tE(ω̃1(0) r̃∗(0)) + 2

∞∑

k=1

∞∑

l=0

E(ω̃k(0) ω̃−l(−t)) − 0 =

= tE(r) − 2 tE(ω̃1(0) r̃∗(0)) + 2

∞∑

n=1

nE(ω̃n(t) ω̃0(0)).

In the last step, we used translation- and time-invariance of the measure.
We needed Lϕα → r̃ and L∗ψα → r̃∗ in L2 so far. The properties −Lψα → r̃

and −L∗ϕα → r̃∗ can be used in a similar way to prove the second equation of
the theorem. However, we need both ϕα and ψα: using only one of them would
have lead to a divergent sum in the last step.

The first two expressions of formula (39) can be computed easily. The diffi-
culty is in determining the space-time correlations E(ω̃0(0) ω̃k(t)). In order to
do this, we use coupling technique.

16 Coupling and correlations

In this section, we show how to couple a pair of our models, with the help of
the so-called second class particles. We can use second particles to compute our
expressions containing space-time correlations.
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16.1 The basic coupling

We consider two realizations of a model, namely, ζ and η. We show the basic
coupling preserving

(40) ζi(t) ≥ ηi(t),

if this property holds initially for t = 0. We say that n = ζi(t)− ηi(t) ≥ 0 is the
number of second class particles present at site i at time t. During the evolution
of the processes, the total number of these particles is preserved, and each of
them performs a nearest neighbor random walk.

The height of the column of ζ (or η) between sites i and i + 1 is denoted by
gi (or hi, respectively). (These quantities are just used for easier understanding,
they are not essential for the processes.) Let gi ↑ (or hi ↑) mean that the column
of ζ (or the column of η, respectively) between the sites i and i + 1 has grown
by one brick. Then the coupling rules are shown in table 2. Each line of this
table represents a possible move, with rate written in the first column. In the
last column, y (or x) means that a second class particle has jumped from i
to i + 1 (or from i + 1 to i, respectively). This coupling for the SE model is
described (with particle notations) in Liggett [14], [15] and [16]. The rates of
these steps are non-negative due to (40) and monotonicity (18) of r. These rules
clearly preserve property (40), since the rate of any move which could destroy
this condition becomes zero. Summing the rates corresponding to either gi ↑ or
to hi ↑ shows that each ζ and η evolves according to its own rates. It would be
possible to couple models possessing rates for removal of bricks as well.

with rate gi ↑ hi ↑ a second class particle

r(ζi, ζi+1) − r(ηi, ζi+1) • y

r(ηi, ηi+1) − r(ηi, ζi+1) • x

r(ηi, ζi+1) • •

Table 2: Growth coupling rules

16.2 Correlations and the defect tracer

We introduce the notation δi ∈ Ω, a configuration being one at site i and
zero at all other sites. Let ω be a model distributed according to µ

θ
, and

ζ(0) = ω(0) + δ0, i.e. we have a single one second class particle between ζ and
ω, initially at site 0. In order to avoid confusions, we call this particle the defect
tracer. According to the basic coupling, this single defect tracer is conserved
for any time t:

(41) ζ(t) = ω(t) + δQ(t)

The quantity Q(t) is the position of the defect tracer, performing a nearest
neighbor random walk on Z.

In this subsection we consider the process (ω(t), Q(t)), the model distributed
according to the Gibbs measure µ and the random walk Q(t) connected to it
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with Q(0) = 0. Using condition 14.2, we prove theorem 14.3 for V = 0. We
begin with a technical lemma, showing how to make use of the defect tracer.

Lemma 16.1. For the pair (ω(t), Q(t)) defined above, and for a function F :
I → R with F (ωmax) = 0 and with finite expectation value

∑
F (z)µ(z),

(42) E

(
ωn(t)

[
F (ω0(0) − 1)µ(ω0(0) − 1)

µ(ω0(0))
− F (ω0(0))

])
=

= E (1{Q(t) = n}F (ω0(0))) .

Proof. We take conditional expectation value of (41):

(43) E (ζn(t) |ω0(0) = z) = E (ωn(t) |ω0(0) = z) + P (Q(t) = n |ω0(0) = z) .

Initially, ζ(0) = ω(0) + δ0. Therefore, ζ itself is also a model with initial
distribution µ, except for the origin. Hence

E (ζn(t) |ω0(0) = z) = E (ζn(t) | ζ0(0) = z + 1) = E (ωn(t) |ω0(0) = z + 1) ,

and (43) can be written as

E (ωn(t) |ω0(0) = z + 1) − E (ωn(t) |ω0(0) = z) = P (Q(t) = n |ω0(0) = z) .

We multiply both sides with F (z)µ(z) and then add up for all z ∈ I to obtain

∑

z∈I

E (ωn(t) |ω0(0) = z) · (F (z − 1)µ(z − 1) − F (z)µ(z)) =

=
∑

z∈I

P (Q(t) = n |ω0(0) = z) · F (z)µ(z).

Here we used that F (ωmax) = 0 and we write µ(ωmin − 1) = 0. We know that
P(ω0(0) = z) = µ(z), hence the proof follows.

Corollary 16.2. We use the convention that the empty sum equals zero. Let

g(z) := z −
∑

y∈I

y µ(y).

For n ∈ Z,

E(ω̃0(0) ω̃n(t)) = E

(
1{Q(t) = n} ·

ωmax∑

z=ω0+1

g(z)
µ(z)

µ(ω0)

)
.

Proof. By the previous lemma, our goal is now to find the correct function F ,
for which

F (z − 1)µ(z − 1)

µ(z)
− F (z) = g(z) = z −

∑

y∈I

y µ(y)

is satisfied. By inverting the operation on the left side, we find

F (z) :=
ωmax∑

y=z+1

g(y)
µ(y)

µ(z)
.
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This function satisfies the conditions of the lemma. Using (42),

E(ω̃n(t) ω̃0(0)) = E(ωn(t) ω̃0(0)) = E(ωn(t) · g(ω0(0))) =

= E

(
ωn(t)

[
F (ω0(0) − 1)µ(ω0(0) − 1)

µ(ω0(0))
− F (ω0(0))

])
=

= E (1{Q(t) = n}F (ω0(0))) =

= E


1{Q(t) = n} ·

ωmax∑

y=ω0(0)+1

g(y)
µ(y)

µ(ω0(0))


 .

Now it becomes clear that we need to know something about the motion
of the defect tracer. ζ and ω can not be started together from their original
stationary distribution due to the initial difference between them, present at the
origin. We could follow our defect tracer. Knowing a measure stationary as seen
from site Q(t) for all time t would help us to state the law of large numbers for
the Q(t) process. In general, we don’t know such a stationary measure which
has the same asymptotics far on the left and far on the right side. It is shown
in [2], that under some weak assumptions for BL models, this measure can not
be a product-distribution. (Instead, a shock-like stationary product-measure is
described there for certain type of rates, under which the slope of the surface
differs on the left side from that on the right side.)

For SE and some types of ZR processes, law of large numbers (27) is known.
This law and the second moment condition (28) for BL and ZR models pos-
sessing convexity condition 14.5 are proven in section 18. As shown in the next
theorem, this allows us to do further computations on the space-time correla-
tions of the models. We need the following properties of the canonical measure:

Lemma 16.3. (i) The sum

∑

z∈I

ωmax∑

y=z+1

g(y)
µ(y)√
µ(z)

is convergent, and
(ii) the sum

∑

z∈I

ωmax∑

y=z+1

g(y)µ(y) = Var(ω0)

is convergent and the equality holds.

Proof. For θ ∈ (θ, θ̄), the tails of the measure µθ(·) have exponential decay.
Hence the convergence in both expressions holds. The identity in (ii) is straight-
forward and is left to the reader.

The next lemma shows the essential connection of the defect tracer to space-
time correlations in the model.

Lemma 16.4. Assume condition 14.2 with speed value C. Let B(t) be a real-
valued function with limt→∞ B(t) = B ∈ R, n1, n2 ∈ Z, A ∈ R, V1 < V2 in
R ∪ {−∞, ∞} and the real interval V : = [V1, V2]. If either
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(i) C 6= V1, V2, or

(ii) C ∈ R and A · C = −B

holds, then

lim
t→∞

btV2c+n2∑

n=dtV1e+n1

(n

t
A + B(t)

)
· E(ω̃0(0) ω̃n(t)) =

= (AC + B) · 1{C ∈ V} · Var(ω0),

where Var(ω0) is the variance of ω0 w.r.t. the canonical Gibbs-measure.

Proof. We define Vt by

Vt : =
[
V1 +

n1

t
, V2 +

n2

t

]
.

By corollary 16.2,

(44) lim
t→∞

btV2c+n2∑

n=dtV1e+n1

(n

t
A + B(t)

)
· E(ω̃0(0) ω̃n(t)) =

= lim
t→∞

btV2c+n2∑

n=dtV1e+n1

(n

t
A + B(t)

)
E


1{Q(t) = n} ·

ωmax∑

y=ω0(0)+1

g(y)
µ(y)

µ(ω0(0))


 =

= lim
t→∞

E




(
A

Q(t)

t
+ B(t)

)
· 1{Q(t)/t ∈ Vt} ·

ωmax∑

y=ω0(0)+1

g(y)
µ(y)

µ(ω0(0))


 =

= lim
t→∞

∑

z∈I

E

((
A

Q(t)

t
+ B(t)

)
· 1{Q(t)/t ∈ Vt} · 1{ω0(0) = z}

)
×

×
ωmax∑

y=z+1

g(y)
µ(y)

µ(z)
.

We show that the limit and the summation can be interchanged in this expres-
sion. We use Cauchy’s inequality to obtain

∣∣∣∣E
((

A
Q(t)

t
+ B(t)

)
· 1{Q(t)/t ∈ Vt} · 1{ω0(0) = z}

)∣∣∣∣ ≤

≤

√√√√E

((
A

Q(t)

t
+ B(t)

)2
)

·
√

P

(
Q(t)

t
∈ Vt and ω0(0) = z

)
≤

≤ K ′ ·
√

P

(
Q(t)

t
∈ Vt

∣∣∣∣ ω0(0) = z

)
·
√

µ(z) ≤ K ′ ·
√

µ(z)

for some constant K ′ by (28). Since g(y) is monotone in y and

ωmax∑

y=ωmin

g(y)µ(y) = 0,
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the sum
ωmax∑

y=z+1

g(y)µ(y)

is non-negative for any z ∈ I. Hence we can bound from above the absolute
value of the terms in (44) for each z ∈ I by

K ′ ·
ωmax∑

y=z+1

g(y)
µ(y)√
µ(z)

,

and the sum
∑

z∈I

K ′ ·
ωmax∑

y=z+1

g(y)
µ(y)√
µ(z)

is convergent by lemma 16.3. Using dominated convergence, we write

lim
t→∞

btV2c+n2∑

n=dtV1e+n1

(n

t
A + B(t)

)
· E(ω̃0(0) ω̃n(t)) =

=
∑

z∈I

lim
t→∞

E

((
A

Q(t)

t
+ B(t)

)
· 1{Q(t)/t ∈ Vt} · 1{ω0(0) = z}

)
×

×
ωmax∑

y=z+1

g(y)
µ(y)

µ(z)
.

We introduce the set Vt
ε : = Vt∩Bε(C), where for ε > 0, Bε(C) = (C−ε, C+ε) ⊂

R. Hence Vt = Vt
ε ∪ (Vt \ Bε(C)):

(45) lim
t→∞

btV2c+n2∑

n=dtV1e+n1

(n

t
A + B(t)

)
· E(ω̃0(0) ω̃n(t)) =

=
∑

z∈I

lim
t→∞

E

((
A

Q(t)

t
+ B(t)

)
· 1{Q(t)/t ∈ Vt

ε} · 1{ω0(0) = z}
)
×

×
ωmax∑

y=z+1

g(y)
µ(y)

µ(z)
+

+
∑

z∈I

lim
t→∞

E

((
A

Q(t)

t
+ B(t)

)
· 1{Q(t)/t ∈ Vt \ Bε(C)} · 1{ω0(0) = z}

)
×

×
ωmax∑

y=z+1

g(y)
µ(y)

µ(z)
.

(45) contains two terms. We use Cauchy’s inequality on the second term as we
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have done before:

∣∣∣∣E
((

A
Q(t)

t
+ B(t)

)
· 1{Q(t)/t ∈ Vt \ Bε(C)} · 1{ω0(0) = z}

)∣∣∣∣ ≤

≤ K ′ ·
√

P

(
Q(t)

t
∈ Vt \ Bε(C) and ω0(0) = z

)
≤

≤ K ′ ·
√

P

(
Q(t)

t
/∈ Bε(C)

)
→ 0

as t → ∞ by the law of large numbers (27). Only the first term of (45) remained,
for which we write

(46) lim
t→∞

btV2c+n2∑

n=dtV1e+n1

(n

t
A + B(t)

)
· E(ω̃0(0) ω̃n(t)) =

=
∑

z∈I

lim
t→∞

(A · C + B(t) + O(ε)) · P
(
Q(t)/t ∈ Vt

ε and ω0(0) = z
)
×

×
ωmax∑

y=z+1

g(y)
µ(y)

µ(z)
.

We have three possibilities.
(i) If C ∈ V, C 6= V1, V2, then for small ε and large t, Vt

ε = Bε(C), and by (27),

lim
t→∞

P
(
Q(t)/t ∈ Vt

ε and ω0(0) = z
)

=

= lim
t→∞

P (Q(t)/t ∈ Bε(C) and ω0(0) = z) = P(ω0(0) = z) = µ(z).

Hence we can continue (46) by

lim
t→∞

btV2c+n2∑

n=dtV1e+n1

(n

t
A + B(t)

)
· E(ω̃0(0) ω̃n(t)) =

=
∑

z∈I

lim
t→∞

(A · C + B(t) + O(ε)) ·
ωmax∑

y=z+1

g(y)µ(y) →

(A · C + B) ·
∑

z∈I

ωmax∑

y=z+1

g(y)µ(y) = (A · C + B) · Var(ω0)

as ε → 0. The last equality is a result of lemma 16.3.
(ii) If A ·C = −B, then the right-hand side of (46) tends to O(ε) as t → ∞ for
all ε > 0, hence is zero in this limit. Here we used that

P
(
Q(t)/t ∈ Vt

ε and ω0(0) = z
)
≤ P(ω0(0) = z) = µ(z),

and that
∑

z∈I

ωmax∑

y=z+1

g(y)µ(y)
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is convergent.
(iii) In case C /∈ V, then Vt

ε is empty for ε small and t large enough, and hence
the right-hand side of (46) is zero.
The result of these three cases completes the proof the lemma.

Now we are able to compute limt→∞
Var(JV (t))

t for V = 0. The proof of the
general formula (29) requires some more computations in the next subsection.

Theorem 16.5. Assume condition 14.2 with speed C. Then

lim
t→∞

Var(J(t))

t
= E(r) − 2E(r∗(0) · ω̃1(0)) + 2C+ · Var(ω0) =

= E(r) + 2E(r∗(0) · ω̃0(0)) + 2C− · Var(ω0).(47)

Here 0 ≤ C± is the positive or the negative part of C, respectively.

Proof. We consider the result of theorem 15.4. Dividing (39) by t and taking
the limit t → ∞ allows us to use the result of lemma 16.4. For the first equality
of (39), we use this lemma with parameters V1 = 0, V2 = ∞, n1 = 1, n2 =
0, A = 1, B(t) = 0. Then we obtain

lim
t→∞

VarJ(t)

t
= E(r) − 2E(r∗(0) · ω̃1(0)) + 2C · 1{C ≥ 0} · Var(ω0).

For the second equality of (39), we rewrite the sum as

lim
t→∞

VarJ(t)

t
= E(r) + 2E(r∗(0) · ω̃0(0)) − 2

−1∑

n=−∞

nE(ω̃0(0) ω̃n(t)),

in order to use lemma 16.4 with parameters V1 = −∞, V2 = 0, n1 = 0, n2 =
−1, A = 1, B(t) = 0. Hence

lim
t→∞

VarJ(t)

t
= E(r) + 2E(r∗(0) · ω̃0(0)) − 2C · 1{C ≤ 0} · Var(ω0),

which proves the second equality of the theorem.

We obtained two formulas for the variance of J(t). If the characteristic speed
C exists, then we can compute it by subtracting the two lines of (47).

17 The growth in non-vertical directions

We have examined so far Var(J(t)), the growth fluctuation of a fixed column,
i.e. the fluctuation of vertical growth. In this section we deal with the growth
fluctuation of the surface in equilibrium, but considered in a slanting direction,
namely, Var(J (V )(t)). From now on, we assume without loss of generity h0(0) =
0.

Proof of (26). By definition ωj(t) = hj−1(t) − hj(t), we have

(48) hi(t) = h0(t) −
i∑

j=1

ωj(t)
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for any site i > 0, hence for V > 0,

J (V )(t) = hbV tc(t) = h0(t) −
bV tc∑

j=1

ωj(t) = h0(t) − bV tc 1

bV tc

bV tc∑

j=1

ωj(t).

By ergodicity, the first term has the limit Er a.s. when divided by t. The second
term is bV tc times the average of an increasing number of different iid. variables.
These variables have finite moments, hence the fourth-moment argument (see
e.g. [11, Theorem 7.1]) is applicable with the discretization series tn : = n/V to
show that

lim
n→∞

1

btnV c

btnV c∑

j=1

ωj(tn) = lim
n→∞

1

n

n∑

j=1

ωj(tn) = E(ω) a.s.

This shows (26) for the limit taken along the subsequence tn. For any t ∈ R
+,

there is a unique nt ∈ Z
+ for which tnt

≤ t < tnt+1, and J (V )(t) − J (V )(tnt
)

is the number of bricks laid on column nt in a time interval shorter than 1/V ,
hence dividing it by t leads a.s. to zero in the limit. Therefore (26) holds for
the limit of J (V )(t)/t as well. Similar computation works for V < 0, and finally,
the case V = 0 is trivial.

Now we consider the fluctuations (with tilde meaning the mean value sub-
tracted).

(49) Var(J (V )(t)) = E

{(
J (V )(t) − EJ (V )(t)

)2
}

=

= E

{(
h̃bV tc(t)

)2
}

= E

{([
h̃bV tc(t) − h̃bV tc(0)

]
+ h̃bV tc(0)

)2
}

=

= E

{(
h̃bV tc(t) − h̃bV tc(0)

)2
}
−E

{(
h̃bV tc(0)

)2
}

+2E
(
h̃bV tc(t) h̃bV tc(0)

)
.

By translation-invariance, the first term is Var(J(t)), computed in the previous
sections. By (48) and by product structure of the measure, the second term of
the right-hand side of (49) is

−E

{(
h̃bV tc(0)

)2
}

= −bV tc · E(ω̃0(0)2) = −bV tc · Var(ω).

The limit of the third term divided by t in (49) is computed in the following
two lemmas:

Lemma 17.1. For V > 0,

(50) E
(
h̃bV tc(t) h̃bV tc(0)

)
=

=

bV tc−1∑

n=−∞

(bV tc − n)E(ω̃n(t) ω̃0(0)) +

−1∑

n=−∞

nE(ω̃n(t) ω̃0(0)).
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Proof. Using (48) again,

(51) E
(
h̃bV tc(t) h̃bV tc(0)

)
=

= −E


h0(t)

bV tc∑

j=1

ω̃j(0)


 + E




bV tc∑

i=1

ω̃i(t)

bV tc∑

j=1

ω̃j(0)


 =

= −
bV tc∑

j=1

E(h0(t) ω̃j(0)) +

bV tc∑

i=1

bV tc∑

j=1

E(ω̃i(t) ω̃j(0)).

A martingale

H(t) := h0(t) −
t∫

0

r0(s) ds

with H(0) = 0 can be separated in order to show that

E(h0(t) ω̃j(0)) = E(H(t) ω̃j(0)) +

t∫

0

E(r0(s) ω̃j(0)) ds =

=

t∫

0

E(r̃0(s) ω̃j(0)) ds.

Now we use an argument very similar to the proof of theorem 15.4. By lemma
15.3, the L2-convergence

− lim
α→1

(Lψα)(ω) = r̃0

can be used to replace our integral: for j ≥ 1 we continue by

E(h0(t) ω̃j(0)) =

t∫

0

E(r̃0(s) ω̃j(0)) ds = − lim
α→1

t∫

0

E(Lψα(s) ω̃j(0)) ds =

= − lim
α→1

t∫

0

d

ds
E(ψα(s) ω̃j(0)) ds = E(ψα(t) ω̃j(0)) − E(ψα(0) ω̃j(0)).

Using definition (37) of ψα and product structure of the canonical measure,

E(h0(t) ω̃j(0)) = E

(
−

∞∑

i=0

ω−i(t) ω̃j(0)

)
− E

(
−

∞∑

i=0

ω−i(0) ω̃j(0)

)
=

= −
∞∑

i=0

E(ω̃−i(t) ω̃j(0)) = −
0∑

i=−∞

E(ω̃i(t) ω̃j(0)).
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Combining this expression with (51) leads to

E
(
h̃bV tc(t) h̃bV tc(0)

)
=

0∑

i=−∞

bV tc∑

j=1

E(ω̃i(t) ω̃j(0)) +

bV tc∑

i=1

bV tc∑

j=1

E(ω̃i(t) ω̃j(0)) =

=

bV tc∑

i=−∞

bV tc∑

j=1

E(ω̃i(t) ω̃j(0)) =

bV tc∑

i=−∞

bV tc∑

j=1

E(ω̃i−j(t) ω̃0(0))

by translation-invariance. Changing the summation indices leads to the proof
of the lemma.

Lemma 17.2. Assume condition 14.2. Then for V > 0,

lim
t→∞

1

t
E

(
h̃bV tc(t) h̃bV tc(0)

)
= (V − C+)+ · Var(ω).

Proof. We use lemma 16.4 for the two terms on the right-hand side of (50). For
the first one we set V1 = −∞, V2 = V, n1 = 0, n2 = −1, A = −1, B(t) =
bV tc/t, while for the second term in (50) we put V1 = −∞, V2 = 0, n1 =
0, n2 = −1, A = 1, B(t) = 0. One can easily check that for any C ∈ R and
V > 0, one of the cases (i) or (ii) of lemma 16.4 apply. Consequently, we obtain

lim
t→∞

1

t
E

(
h̃bV tc(t) h̃bV tc(0)

)
=

= [(V − C) · 1{C ≤ V } + C · 1{C ≤ 0}] · Var(ω) = (V − C+)+ · Var(ω).

Now we divide equation (49) by t and take the limit t → ∞. We use the
result of lemma 17.2 to obtain

(52) lim
t→∞

Var(J (V )(t))

t
= lim

t→∞

Var(J(t))

t
+ [2(V − C+)+ − V ] · Var(ω)

for V > 0.
For V < 0, we proceed as we did above with J (V ) for positive V ’s. The only

important difference is using ϕα instead of −ψα in the proof of lemma 17.1.
The result of a similar lemma for V < 0 is

E(h̃dV te(t) h̃dV te(0)) =

= −
∞∑

n=dV te+1

(dV te − n)E(ω̃n(t) ω̃0(0)) −
∞∑

n=1

nE(ω̃n(t) ω̃0(0)).

Therefore, lemma 16.4 is applicable in a similar way as in lemma 17.2 above.
The result of this application is

lim
t→∞

1

t
E

(
h̃dV te(t) h̃dV te(0)

)
= (V + C−)− · Var(ω).

Computing Var(J (V )) for V < 0 as we did in (49) leads then to

(53) lim
t→∞

Var(J (V )(t))

t
= lim

t→∞

Var(J(t))

t
+ [2(V + C−)− + V ] · Var(ω).

Now, assuming condition 14.2, we can prove (29) by the result of theorem
16.5.

50



Proof of theorem 14.3. All time arguments of our variables for this proof are
thought to be zero without mentioning it. By (33),

E (r∗ · (ω̃0 − ω̃1)) = E (r∗ · (ω0 − ω1)) =

= E

(
r(ω0 + 1, ω1 − 1) · µ(ω0 + 1)µ(ω1 − 1)

µ(ω0)µ(ω1)
· (ω0 − ω1)

)
=

E(r ·(ω0−ω1))−2E(r) = E(r ·(ω̃0−ω̃1))−2E(r) = −E(r∗ ·(ω̃0−ω̃1))−2E(r),

we used (32) in the last step. Hence we obtain

E (r∗ · (ω̃0 − ω̃1)) = −E(r).

We have two formulas for the variance Var(J(t)) by theorem 16.5, which are
used together with (52) and (53) to obtain

lim
t→∞

Var(J (V )(t))

t
= E(r) − 2E(r∗ · ω̃1) + (|V − C| + C) · Var(ω) =

= E(r) + 2E(r∗ · ω̃0) + (|V − C| − C) · Var(ω).

We take the average of these two formulas:

lim
t→∞

Var(J (V )(t))

t
= E(r) + E (r∗ · (ω̃0 − ω̃1)) + |V − C| · Var(ω) =

= |V − C| · Var(ω).

Now it is easy to prove central limit theorem for J (V ).

Proof of theorem 14.4. We introduce the drifted form of J (C) by i ∈ Z:

J
(C)
i (t) := hbCtc+i(t) − hi(0)

for C ≥ 0, and

J
(C)
i (t) := hdCte+i(t) − hi(0)

for C < 0. Due to translation-invariance, the distribution of this quantity is
independent of i. Hence by (29), for C ≥ 0 and V ≥ 0, the variance of

J
(C)
bV tc−bCtc(t) = hbV tc(t) − hbV tc−bCtc(0) = J (V )(t) − hbV tc−bCtc(0)

is o(t) as t → ∞. Thus it follows that we only need central limit theorem for
hbV tc−bCtc(0), which is, by (48) and by h0(0) = 0, the sum of |bV tc − bCtc|
number of iid. ωi(0) variables with finite moments. Hence the theorem follows
for V ≥ 0, C ≥ 0. For V ≥ 0, C < 0,

J
(C)
bV tc−dCte(t) = hbV tc(t) − hbV tc−dCte(0) = J (V )(t) − hbV tc−dCte(0),

here we have (and we only need) central limit theorem for the sum of |bV tc −
dCte| number of iid. ωi(0) variables, which proves the theorem. Similar argu-
ment works for V < 0 also.

51



18 The motion of the defect tracer

With the help of another type of coupling, with any n ∈ Z
+, we prove Ln-

convergence for Q(t)/t of BL and totally asymmetric ZR models in this section.
This coupling only works under convexity condition 14.5, which we assume for
the rest of the paper. The idea of the proof is the following: we fix our (ω, Q)
pair and compare it with another model ζ. The difference between ω and ζ is
realized by second class particles. The current of these particles satisfies law of
large numbers by separate ergodicity of ω and ζ, and we compare their motion
to our defect tracer Q placed on ω. The main difficulty is finding the way
to couple the defect tracer to the second class particles. As shown later, this
coupling can not be made directly; we need to introduce a new process called
the S-particles, a random process defined in terms of the second class particles.

We set θ1 < θ2, then there exists a two dimensional measure µ on Z×Z, which
has marginals µθ1

and µθ2
, respectively, and for which µ(x, y) = 0 if x > y. We

fix two configurations η and ζ of our model, distributed initially according to a
product measure with marginals P(ηi(0) = x, ζi(0) = y) = µ(x, y). Therefore,
η is itself in distribution µ

θ1
, ζ is in distribution µ

θ2
, and ηi(0) ≤ ζi(0) for each

site i is satisfied. According to the basic coupling described in subsection 16.1,
ηi(t) ≤ ζi(t) holds for all later times t, and we have a positive density of second
class particles between these two models. The number of these particles at site
i is ζi − ηi ≥ 0. Hence they are initially distributed according to a product
measure but, at later times, only the marginal distributions of η or of ζ will
possess a product structure. Note that the joint distribution of the processes is
translation invariant.

18.1 The Palm distribution

For further applications, we want to select “a typical second class particle”. We
do it as follows. We introduce the drifted form of the models: for k ∈ Z,

(τ k η)i : = ηi+k, (τ k ζ)i : = ζi+k.

If N ∈ Z
+ is large enough, we choose uniformly one second class particle among

the particles present at sites −N ≤ i ≤ N . We determine the distribution of the
values of a function g depending on (η, ζ), as seen from the position k of the
randomly selected second class particle. For N large enough, the total number

N∑

j=−N

(ζi − ηi)

of second class particles at sites −N ≤ i ≤ N is positive, and then

E(N)
(
g(τ k η, τ k ζ)

)
= E

[
E

(
g(τ k η, τ k ζ)

∣∣ η, ζ
)]

=

= E

(
N∑

i=−N

g(τ i η, τ i ζ) · ζi − ηi∑N
j=−N (ζj − ηj)

)
=

= E

(
1

2N+1

∑N
i=−N g(τ i η, τ i ζ) · (ζi − ηi)

1
2N+1

∑N
j=−N (ζj − ηj)

)
.
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For bounded g, the random variable we see in the last line of the display is
bounded, and is the quotient of two random variables, both having a.s. limit
as N → ∞ by translation invariance and ergodicity of translations. Hence our
expression converges due to dominated convergence, and have the limit

(54) Ê
(
g(η, ζ)

)
: = lim

N→∞
E(N)

(
g(τ k η, τ k ζ)

)
=

E
(
g(η, ζ) · (ζ0 − η0)

)

E (ζ0 − η0)
.

The distribution µ̂ defined by (54) is called the Palm distribution of the process.
The Palm measure can be extended to non-negative functions g, see [19]. Note

that P̂(ζ0(0)−η0(0) > 0) = 1 according to this measure, i.e. we necessarily have
at least one second class particle at the origin, if looking the process “as seen
from a typical second class particle”.

By initial product distribution of (η, ζ), µ̂ is initially also a product measure,
consisting of the original marginals µ for sites i 6= 0, and of marginal

(55) µ̂(x, y) :=
µ(x, y) · (y − x)

E(ζ0 − η0)

for site i = 0. For later use, we introduce the pair (η′(t), ζ ′(t)) started from this
initial product distribution µ̂.

18.2 Random walk on the second class particles

We label the second class particles between η and ζ in space-order. Let U (m)(t)
denote the position of the m-th second class particle at time t. Initially, we look
for the first site possessing second class particle on the right side of the origin.
We choose one of the particles at this site, giving it label m = 0:

U (0)(0) := min {i ≥ 0 : ζi > ηi} .

We label the particles at t = 0 in such a way that U (m)(0) ≤ U (m+1)(0) (∀m ∈ Z)

(the order of particles at the same site is not important). We define J
(2nd)
i (t) to

be the algebraic number of second class particles passing the column between i
and i+1 in the time interval [0, t]. This quantity is determined by the evolution
of the processes η and ζ. For t = 0, we define

(56) mi(0) := max{m : U (m)(0) ≤ i},

while for t > 0,

mi(t) := mi(0) − J
(2nd)
i (t).

We label the particles at later times such that (56) holds at any time t as well.
This method assures U (m)(t) ≤ U (m+1)(t) for all time t. The particles labeled
from mi−1 + 1 up to mi, exactly ζi − ηi = mi −mi−1 of them are at site i. (At
sites i for which mi = mi−1, there is no second class particle).

We have defined so far the coupled pair η and ζ with the U (m)(t) process of
the second class particles indexed in space order at any time t. The latter will
serve us as a background environment for a new random process,

(
s(n)(t)

)
n∈Z

.

Initially, we put s(n)(0) := n for each n. Assume that just before a second
class particle jumps from a site i at a time t, s(n)(t) ∈ {mi−1(t) + 1, mi−1(t) +
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2, . . . ,mi(t)}, which means U (s(n))(t) = i just before the jump. Then by the
time t+0 of this jump, s(n)(t+0) := Πi(s

(n)(t)), where Πi is a random uniform
permutation on the integer set {mi−1(t) + 1, mi−1(t) + 2, . . . ,mi(t)}.

We can represent this new process as follows. Initially, we put an extra
particle, which we call S-particle, on each second class particle. The S-particles
are labeled by n, and initially we put the n-th S-particle on the n-th second
particle. s(n)(t) stands for the index of the second class particle carrying the
n-th S-particle. Whenever a jump of second class particle happens from site i,
we permute uniformly and randomly the S-particles present at site i just before
the jump. According to the labeling of second class particles, one jumping to
the right (or to the left, respectively) from site i has index mi(t) (or mi−1(t)+1,
respectively) and is carrying exactly the n-th S-particle, for which s(n)(t+0) =
Πi(s

(n)(t)) = mi(t) (or mi−1(t) + 1, respectively). Hence a uniformly and
randomly chosen S-particle is taken from the site i with the jumping second
class particle.

For simplicity, we define s(t) := s(0)(t) and S(t) := U (s(t)), and by simply
saying the S-particle, we mean the zeroth S-particle at site S(t). Then S(t)
represents a random walk moving always together with a second class particle,
but having always probability 1/(mi −mi−1) = 1/(ζi − ηi) of jumping together
with a second class particle jumping from the site i. As can be derived from
table 2, the rate for a second class particle to jump to the left (or to the right)
is f(−ηi) − f(−ζi) (or f(ζi) − f(ηi), respectively). Hence the rate for the S-
particle to jump to the left (or to the right) together with the jumping second
class particle from site i = S(t) is

(57)
f(−ηi) − f(−ζi)

ζi − ηi
(or

f(ζi) − f(ηi)

ζi − ηi
, respectively).

Recall that S(0) = U (s(0))(0) = U (0)(0) is the first site on the right-hand
side of the origin initially with second class particles. We introduce the notation
(η′′(t), ζ ′′(t)) := (τS(0)η(t), τS(0)ζ(t)), which is the (η(t), ζ(t)) process shifted
to this initial position S(0) of the S-particle. We also introduce its S′′-particle:
S′′(t) := S(t)−S(0). Hence the initial distribution of (η′′(0), ζ ′′(0)) is modified
according to this random shifting-procedure; we show the details in the proof
of the next lemma.

Using the Palm measures, we show that the expected rates for S to jump
are bounded in time.

Lemma 18.1. Let n ∈ Z
+, k ∈ Z, and

(58) ci(t) := f(ζi(t)) − f(ηi(t)) + f(−ηi(t)) − f(−ζi(t))

the rate for any second class particle to jump from site i. Then

E
(
[cS(t)(t)]

n · [ζS(t)(t) − ηS(t)(t)]
k
)
≤ K(n, k)

uniformly in time.

Proof. First we consider the pair (η′(0), ζ ′(0)) defined following (55). As de-
scribed there, this is in fact the pair (η(0), ζ(0)) at time t = 0, as seen from
“a typical second class particle”, or equivalently, as seen from “a typical S-
particle”. In this pair, we have at least one second class particle at the origin,
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which we call S′. We let our process (η′, ζ ′) evolve, and we follow this “typical”
S′-particle. Started from the Palm-distribution, this tagged S′-particle keeps
on “being typical” (see [19]), i.e. for a function g of the process as seen by S′,

E
(
g(τS′(t)η

′(t), τS′(t)ζ
′(t))

)
= Ê

(
g(η(t), ζ(t))

)

with definition (54).
Now we first show the desired result for the S′-particle of (η′, ζ ′) instead of

the S-particle of (η, ζ). In the previous display, we put the function

g(η(t), ζ(t)) := [c0(t)]
n · [ζ0(t) − η0(t)]

k,

and we denote by k+ the positive part of k. We know that ζ0(t) − η0(t) ≥ 1

holds P̂-a.s., hence

E
(
[cS′(t)(t)]

n · [ζ ′S′(t)(t) − η′
S′(t)(t)]

k
)

= Ê
(
[c0(t)]

n · [ζ0(t) − η0(t)]
k
)
≤

≤ Ê
(
[c0(t)]

n · [ζ0(t) − η0(t)]
k+

)
=

E
(
[c0(t)]

n · [ζ0(t) − η0(t)]
k++1

)

E(ζ0(t) − η0(t))

by (54). The function c0(t) consists of sums of f(±η0(t)) and f(±ζ0(t)), hence
the numerator is an n + k+ + 1-order polinom of these functions and of ζ0(t),
η0(t). These are all random variables with all moments finite. Therefore, using
Cauchy’s inequality, the numerator can be bounded from above by products of
moments of either f(η0(t)) or f(ζ0(t)) or η0(t), or ζ0(t). The models η and ζ
are both separately in their stationary distributions, hence these bounds are
constants in time. The denominator is a positive number due to θ2 > θ1 and
strict monotonicity of Eθ(z) in θ. We see that we found a bound, uniform in
time for the function g of (η′, ζ ′) as seen from S′.

We need to find similar bound for a function g of the original pair (η, ζ),

as seen from S. This is equivalent to finding a bound for g of (η′′, ζ ′′) defined
above, as seen from S′′ of this pair. Let us consider first the initial distribution
of (η′′, ζ ′′), which we shall call µ′′. By definition, it is clear that this distribution
is the product of the original marginals µ for sites i > 0. Fix a K positive integer
and two vectors x, y ∈ Z

Z. For simplicity we introduce the notations

η
[a, b]

: = (ηa, . . . , ηb) and ζ
[a, b]

: = (ζa, . . . , ζb) ,

x[a, b] : = (xa, . . . , xb) and y
[a, b]

: = (ya, . . . , yb)

and, where not written, we consider our models at time zero. We break the
events according to the initial position S(0) of the S-particle in the original pair
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(η, ζ):

P
(
η′′
[−K, 0]

= x[−K, 0], ζ ′′
[−K, 0]

= y
[−K, 0]

)
=

= P
(
η
[S(0)−K, S(0)]

= x[−K, 0], ζ
[S(0)−K, S(0)]

= y
[−K, 0]

)
=

=
K∑

n=0

P
(
η
[n−K, n]

= x[−K, 0], ζ
[n−K, n]

= y
[−K, 0]

, S(0) = n
)

+

+

∞∑

n=K+1

P
(
η
[n−K, n]

= x[−K, 0], ζ
[n−K, n]

= y
[−K, 0]

, S(0) = n
)

=

=

K∑

n=0

P
(
η
[n−K, n]

= x[−K, 0], ζ
[n−K, n]

= y
[−K, 0]

)
· En(x, y)+

∞∑

n=K+1

P
(
η
[n−K, n]

= x[−K, 0], ζ
[n−K, n]

= y
[−K, 0]

)
· EK(x, y) · P{Fn−K},

where the function En of x and y is an indicator defined by

En(x, y) := 1 {x−n = y−n, x−n+1 = y−n+1, . . . , x−1 = y−1, x0 < y0} ,

and the event Fn−K is

Fn−K : = {η0 = ζ0, η1 = ζ1, . . . , ηn−K−1 = ζn−K−1} .

The last equality follows from the product structure of µ and from the fact that
S(0) is the first site to the right of the origin where ηi 6= ζi. Continuing the
computation results in

P
(
η′′
[−K, 0]

= x[−K, 0], ζ ′′
[−K, 0]

= y
[−K, 0]

)
=

=

0∏

i=−K

µ(xi, yi) ·
[

K∑

n=0

En(x, y) + EK(x, y) ·
∞∑

n=K+1

µ {η0 = ζ0}n−K

]

=

0∏

i=−K

µ(xi, yi) ·
[

K∑

n=0

En(x, y) + EK(x, y) · µ {η0 = ζ0}
µ {η0 < ζ0}

]

using translation-invariance.
For later purposes, we are interested in the Radon-Nikodym derivative of

the distribution µ′′ of (η′′, ζ ′′) w.r.t. the Palm distribution µ̂ of (η′, ζ ′). Since
both have product of marginals µ for sites i > 0, we only have to deal with the
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left part of the origin. Passing to the limit K → ∞, we have

dµ′′

dµ̂
(x, y) = lim

K→∞

P
(
η′′
[−K, 0]

= x[−K, 0], ζ ′′
[−K, 0]

= y
[−K, 0]

)

P
(
η′
[−K, 0]

= x[−K, 0], ζ ′
[−K, 0]

= y
[−K, 0]

) =

= lim
K→∞

∏0
i=−K µ(xi, yi)∏−1

i=−K µ(xi, yi)µ̂(x0, y0)
·
[

K∑

n=0

En(x, y) + EK(x, y) · µ {η0 = ζ0}
µ {η0 < ζ0}

]
=

=
µ(x0, y0)

µ̂(x0, y0)
·
[

∞∑

n=0

En(x, y) + lim
K→∞

EK(x, y) · µ {η0 = ζ0}
µ {η0 < ζ0}

]
=

=
µ(x0, y0)

µ̂(x0, y0)
·

∞∑

n=0

En(x, y)

for µ̂-almost all configurations (x, y). Note that the sum on the right-hand side
gives exactly the distance between the origin and the first position i to the left of
the origin with xi 6= yi. Hence this sum is finite for µ̂-almost all configurations
(x, y).

In view of this result, we can now obtain our estimates. The main idea here
is that the pairs (η′, ζ ′) and (η′′, ζ ′′) only differ in their initial distribution,
hence their behavior conditioned on the same initial configuration agree. This
is used for obtaining the third expression, and Cauchy’s inequality is used for
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the fourth one below.

E
(
[cS′′(t)(t)]

n · [ζS′′(t)(t) − ηS′′(t)(t)]
k
)

=

=

∫

eΩ∩{x0<y0}

E
(
[cS′′(t)(t)]

n · [ζS′′(t)(t) − ηS′′(t)(t)]
k | η′′(0) = x, ζ ′′(0) = y

)
×

× dµ′′(x, y) =

=

∫

eΩ∩{x0<y0}

E
(
[cS′(t)(t)]

n · [ζS′(t)(t) − ηS′(t)(t)]
k | η′(0) = x, ζ ′(0) = y

)
×

× µ(x0, y0)

µ̂(x0, y0)
·

∞∑

n=0

En(x, y) dµ̂(x, y) ≤

≤
[ ∫

eΩ∩{x0<y0}

[
E

(
[cS′(t)(t)]

n · [ζS′(t)(t) − ηS′(t)(t)]
k | η′(0) = x, ζ ′(0) = y

)]2 ×

× dµ̂(x, y)

] 1
2

·
[ ∫

eΩ∩{x0<y0}

[
µ(x0, y0)

µ̂(x0, y0)
·

∞∑

n=0

En(x, y)

]2

· dµ̂(x, y)

] 1
2

≤

≤
[ ∫

eΩ∩{x0<y0}

E
(
[cS′(t)(t)]

2n · [ζS′(t)(t) − ηS′(t)(t)]
2k | η′(0) = x, ζ ′(0) = y

)
×

× dµ̂(x, y)

] 1
2

·
[ ∫

eΩ∩{x0<y0}

µ(x0, y0)

µ̂(x0, y0)
·
[

∞∑

n=0

En(x, y)

]2

· dµ(x, y)

] 1
2

=

=
[
E

(
[cS′(t)(t)]

2n · [ζS′(t)(t) − ηS′(t)(t)]
2k

)] 1
2 ×

×




∫

eΩ∩{x0<y0}

E(ζ0 − η0)

y0 − x0
·
[

∞∑

n=0

En(x, y)

]2

· dµ(x, y)




1
2

by (55). The first factor of the last display is finite by the first part of the proof.
Using the definition of the indicator En, the second factor can be bounded from
above by

[E(ζ0 − η0)]
1
2 ·




∫

eΩ∩{x0<y0}

[
∞∑

n=0

(2n + 1) · En(x, y)

]
· dµ(x, y)




1
2

=

= [E(ζ0 − η0)]
1
2 ·

[
∞∑

n=0

(2n + 1) · µ{η0 = ζ0}n · µ{η0 < ζ0}
] 1

2

using the product property of µ, and is again finite.

Using the rates for the S-particle to move, we can prove the following bound
for the moments of S(t):
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Proposition 18.2. For n ∈ Z
+,

(59) E

( |S(t)|n
tn

)
< K(n) < ∞

for all large t.

Proof. For this proof, we denote the jumping rates (57) for the S-particle by
rS left and rS right, respectively. For t > 0, we consider the derivative of the
quantity above, using these rates:

d

dt
E

( |S(t)|n
tn

)
= − n

tn+1
E (|S(t)|n)+

1

tn
d

dt
E (|S(t)|n) = − n

tn+1
E (|S(t)|n) +

+
1

tn
E

[
rS left · (|S(t) − 1|n − |S(t)|n) + rS right(·|S(t) + 1|n − |S(t)|n)

]
.

For |S(t)| ≥ 1, we can bound our expressions:

d

dt
E

( |S(t)|n
tn

)
≤ − n

tn+1
E (|S(t)|n) +

2n

tn
E

(
(rS right + rS left) · |S(t)|n−1

)
.

We continue by using Hölder’s inequality on the right-hand side:

(60)
d

dt
E

( |S(t)|n
tn

)
≤

≤ −n

t
E

( |S(t)|n
tn

)
+

2n

t

{
E

[
(rS right + rS left)n

]} 1
n ·

{
E

( |S(t)|n
tn

)}n−1
n

.

Recall that

rS right(t) + rS left(t) = cS(t)(t) · [ζS(t)(t) − ηS(t)(t)]
−1,

hence lemma 18.1 is applicable with k = −n to show that

E
[
(rS right(t) + rS left(t))n

]

is bounded in time. Therefore, (60) can be written in the form

d

dt
E

( |S(t)|n
tn

)
≤ −n

t
E

( |S(t)|n
tn

)
+

K ′(n)

t
·
{
E

( |S(t)|n
tn

)}n−1
n

with some positive constant K ′(n). This means that E(|S(t)|n/tn) is bounded
from above by a solution of the differential equation

ẏ(t) = −n

t
y(t) +

K ′(n)

t
· y(t)

n−1
n .

Observe that the right-hand side is negative whenever

y(t) >

(
K ′(n)

n

)n

,

hence assuming y(t0) < ∞ for some t0 > 0, y(t) is bounded (for all t > t0),
which gives the proof.

59



Now we show law of large numbers for s(t), and then we can show law
of large numbers for S(t). For what follows, E′ stands for the expectation
values according to the distribution of η, ζ, {U (m)}m∈Z, i.e. our background
process which determine mi(t), also. Let F(t) denote the σ-field containing all
information about these quantities at time t. Then F(t) contains all randomness
except for the random permutations on

(
s(n)

)
n∈Z

. With (58), we also introduce
the notations

(61)

Ci(t) : = (mi(t) − mi−1(t))
2 · ci(t),

p (y, t) : = P(s(t) = y | F(t)),

and

Ai(t) : = max
mi−1(t)<y≤mi(t)

p (y, t) − min
mi−1(t)<y≤mi(t)

p (y, t)

if mi(t) − mi−1(t) > 1, and Ai(t) := 0 otherwise.

Lemma 18.3.

(62)
d

dt
E(|s(t)|) ≤

√√√√E′

∞∑

i=−∞

Ai(t) ·

√√√√E′

∞∑

j=−∞

Aj(t)C2
j (t).

Proof. We use convention that the empty sum equals zero.

d

dt
E(|s(t)|) = lim

ε→0

E(|s(t + ε)|) − E(|s(t)|)
ε

=

= lim
ε→0

∞∑

z=−∞

P(s(t + ε) = z) · |z| − P(s(t) = z) · |z|
ε

=

= lim
ε→0

E′
∞∑

i=−∞

mi(t)∑

z=mi−1(t)+1

P(s(t + ε) = z | F(t)) · |z| − P(s(t) = z | F(t)) · |z|
ε

.

We know that uniform random permutation on the indices present at site S
happens at each jump of second class particles from i at time t. The basic idea
is that this permutation makes the probabilities p (y, t) = P(s(t) = y | F(t))
equalized between y = mi−1(t) + 1 . . . mi(t). This jump happens with rate ci(t)
defined in (58), hence for a site i with at least one second class particle and for
mi−1(t) + 1 ≤ z ≤ mi(t),

P(s(t + ε) = z | F(t)) = (1 − ε ci(t))P(s(t) = z | F(t))+

+ ε ci(t)

mi(t)∑

y=mi−1(t)+1

P(s(t) = y | F(t))

mi(t) − mi−1(t)
+ o(ε).

Then we obtain

d

dt
E(|s(t)|) = E′

∞∑

i=−∞

ci(t)

mi(t)∑

z=mi−1(t)+1

( mi(t)∑

y=mi−1(t)+1

p (y, t)

mi(t) − mi−1(t)
|z|−

− p (z, t) · |z|
)

.
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There exists a πi permutation of the numbers {mi−1(t)+1 . . . mi(t)}, for which

mi(t)∑

z=mi−1(t)+1

mi(t)∑

y=mi−1(t)+1

p (y, t)

mi(t) − mi−1(t)
|z| ≤

mi(t)∑

z=mi−1(t)+1

p (z, t) · |πi(z)|

holds (by permuting higher values of |z| on higher weights), and hence

d

dt
E(|s(t)|) ≤ E′

∞∑

i=−∞

ci(t)

mi(t)∑

z=mi−1(t)+1

p (z, t) · (|πi(z)| − |z|) =

= E′
∞∑

i=−∞

ci(t)

mi(t)∑

z=mi−1(t)+1

(
p (z, t) − min

mi−1(t)<y≤mi(t)
p (y, t)

)
· (|πi(z)| − |z|) ≤

≤ E′
∞∑

i=−∞

ci(t)

mi(t)∑

z=mi−1(t)+1

(
max

mi−1(t)<y≤mi(t)
p (y, t)−

− min
mi−1(t)<y≤mi(t)

p (y, t)
)
· (mi(t) − mi−1(t)) =

= E′
∑

i : mi(t)>mi−1(t)+1

ci(t)
(

max
mi−1(t)<y≤mi(t)

p (y, t)−

− min
mi−1(t)<y≤mi(t)

p (y, t)
)
· (mi(t) − mi−1(t))

2 = E′
∞∑

i=−∞

Ai(t)Ci(t)

with definitions (61). Finally, we use Schwartz and Cauchy’s inequality (for
simplicity we do not denote time-dependence of the quantities below):

d

dt
E(|s(t)|) ≤ E′

∞∑

i=−∞

Ai Ci = E′
∞∑

i=−∞

√
Ai

√
Ai Ci ≤

≤ E′




√√√√
∞∑

i=−∞

Ai ·

√√√√
∞∑

j=−∞

Aj C2
j


 ≤

√√√√E′

∞∑

i=−∞

Ai ·

√√√√E′

∞∑

j=−∞

Aj C2
j .

Lemma 18.4. The expression

√√√√E′

∞∑

j=−∞

Aj(t)C2
j (t),

which is the second factor on the right-hand side of (62), is a bounded function
of time.

Proof. Due to definitions (61), Ai can be bounded from above by

Ai(t) ≤ max
mi−1(t)<y≤mi(t)

p (y, t) ≤
mi(t)∑

y=mi−1(t)+1

p (y, t) = P(S(t) = i | F(t)),
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the probability that our S-particle is at site i. Hence

√√√√E′

∞∑

j=−∞

Aj(t)C2
j (t) ≤

√√√√E′

∞∑

j=−∞

P(S(t) = j | F(t)) · C2
j (t) =

=

√
E′

[
E

(
C2

S(t)(t) | F(t)
)]

=

√
E

(
C2

S(t)(t)
)
.

The expectation in the last term is bounded in time by lemma 18.1 with n =
2, k = 4, since

Ci = (mi − mi−1)
2 · ci = ci · (ζi − ηi)

2
.

As we know, for any site i, the probabilities p (y, t) can only change by
equalizing between y = mi−1(t) + 1 . . . mi(t), and the initial distribution is
concentrated on {s(t = 0) = 0}. Therefore, at every moment t, the function
y → p (y, t) is unimodal. This is clearly the initial situation, and it stays true
after each change of this function. By the equalizing property of the (p (y, t))y∈Z

process at a jump of second class particle from site i,

max
mi−1(t)<z≤mi(t)

p (z, t)

can never increase. Hence the global maximum maxz∈Z p (z, t) is also a non-
increasing function of t, and it is bounded as well. Thus its limit exists, which
we denote by P . It is believed that P = 0 but we cannot prove this, and this is
not necessary for our arguments.

Lemma 18.5. Assume P > 0. Then the set

{x ∈ Z : p (x, t) ≥ P}

is always contained in the interval [−1/P, 1/P ].

Proof. The statement clearly holds initially. For a discrete interval [x, y] (with
possibly x = y as well), we introduce the block-average

B[x, y](t) :=
1

y − x + 1

y∑

z=x

p (z, t),

and we say that [x, y] is a good block, if B[x, y](t) ≤ minz∈[x, y] 1/|z| (for site
z = 0, we can write 1 instead of 1/|z|). Any interval is a good block initially.
We show this for any time t as well. More precisely, fix x ≤ y, and assume that
at a moment t, an equalization in the interval [u, v] happens:

p(z, t + 0) = B[u, v](t)

for each z ∈ [u, v]. If each finite interval is a good block at t, then we show that
[x, y] is also a good block after this step, at t + 0. There are four cases.

(i) If [u, v] and [x, y] are disjoint or [u, v] ⊂ [x, y], then the block-average of
[x, y] does not change by this step, hence it keeps on being a good block.

62



(ii) If [x, y] ⊂ [u, v], then B[x, y](t + 0) = B[u, v](t + 0) = B[u, v](t), and [u, v]
was a good block at time t, hence [x, y] is also a good block after this step.

(iii) In case [x, y] \ [u, v] 6= ∅, [u, v] \ [x, y] 6= ∅ and B[u, v](t) ≥ B[x, y]\[u, v](t)
before the step, then

B[u, v](t + 0) = B[u, v](t) ≥ B[x, y]\[u, v](t) = B[x, y]\[u, v](t + 0),

hence B[x, y](t + 0) ≤ B[x, y]∪[u, v](t + 0). The latter does not change by
the step, thus [x, y]∪ [u, v] keeps on being a good block, which shows that
[x, y] is also a good block after the step.

(iv) In case [x, y] \ [u, v] 6= ∅, [u, v] \ [x, y] 6= ∅ and B[u, v](t) < B[x, y]\[u, v](t)
before the step, then by unimodality, B[u, v](t) ≤ B[u, v]∩[x, y](t), since the
function z → p (z, t) has no local minimum. This means that B[u, v]∩[x, y]

does not increase:

B[u, v]∩[x, y](t + 0) = B[u, v](t + 0) = B[u, v](t) ≤ B[u, v]∩[x, y](t).

Since B[x, y]\[u, v] does not change, B[x, y] can not increase either, and [x, y]
was a good block before the step, thus it keeps on being a good block.

Applying this result shows the interval containing any single point z to be a good
block, i.e. p (z, t) < 1/P for z /∈ [−1/P, 1/P ], which completes the proof.

Lemma 18.6. Assume limt→∞ maxz∈Z p (z, t) = P > 0. Then there are z, y
neighboring sites in the interval [−1/P − 1, 1/P + 1] and a time T > 0, such
that the second class particles indexed by z and y cannot be at the same site
after T : U (z)(t) 6= U (y)(t) (∀t > T ).

Proof. Let

A : =

{
z ∈ Z : lim sup

t→∞
p (z, t) = P

}
6= ∅.

By the previous lemma, A ⊂ [−1/P, 1/P ], and any index zmax(t), for which
p (zmax(t), t) is maximal (and hence larger than or equals to P ), is also contained
in [−1/P, 1/P ] for any t. With fixed P1 < P large enough, there exists a
moment T , such that p (x, t) < P1 for any x /∈ A and for all t > T . Hence
by p (zmax(t), t) ≥ P , all indices zmax(t) ∈ A for all t > T . Let us fix z ∈ A
and y /∈ A neighbors, and y′ /∈ A the other neighbor of A. Then infinitely
often for t > T, p (z, t) ≥ P > P1 > p (y, t) and P1 > p (y′, t) happens.
In this situation, assume that p (z, t) decreases due to equalization with its
neighbors in A. Would the result of this step be p (z, t) < P , all indices zmax(t)
would be included in this step by unimodality, hence p (zmax(t + 0), t + 0) <
P would follow, a contradiction. Thus we see that p (z, t) ≥ P can only be
violated by an equalization including y or y′. If this equalization also includes
all indices zmax(t), then the result must be p (y, t) ≥ P or p (y′, t) ≥ P by
p (zmax(t + 0), t + 0) ≥ P , pulling out at least P − P1 probability from the set
A. If this step does not include all zmax indices, then it includes indices all
with probability at least P , hence pulling out at least (P − P1)/2 probability
from the set A. Since t > T, zmax(t) ∈ A, and hence by unimodality, the
joint probability of the set A can only decrease. We conclude that assuming
equalizing of probabilities between z ∈ A and y or y′ /∈ A infinitely often results
in decreasing the joint probability of the finite set A infinitely often by a positive
constant, which contradicts P ≤ p (zmax(t), t) and zmax(t) ∈ A.
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Now we can prove law of large numbers for the index s(t) of the second class
particles carrying our S-particle:

Proposition 18.7.

(∀δ > 0) lim
t→∞

P

(∣∣∣∣
s(t)

t

∣∣∣∣ > δ

)
= 0.

Proof. By the previous lemma, we see that for P > 0 there exists a neighboring
pair (z, y) ∈ [−1/P − 1, 1/P + 1] of second class particles which will never
meet after some T . After T , the process s(t) can not cross such a pair (z, y).
By translation invariance, it follows a.s. that such pairs appear with positive
density on Z in this case, thus s(t) is bounded a.s. and the statement is true.
Hence we assume P = 0 for the rest of the proof. By unimodality,

(63)

∞∑

i=−∞

Ai(t) =
∑

i : mi(t)>mi−1(t)+1

(
max

mi−1(t)<y≤mi(t)
p (y, t)−

− min
mi−1(t)<y≤mi(t)

p (y, t)
)
≤ 2 max

z∈Z

p (z, t).

Indirectly let’s assume

(∃δ > 0) (∃K > 0) (∀T > 0) (∃t > T ) : P

(∣∣∣∣
s(t)

t

∣∣∣∣ > δ

)
> K.

Then it follows that

(64) E(|s(t)|) > K δ t

for infinitely many and arbitrarily large t > 0. By (63) and P = 0,

∞∑

i=−∞

Ai(t) → 0,

thus by dominated convergence theorem
√√√√E′

∞∑

i=−∞

Ai(t) → 0.

Hence by lemma 18.3

d

dt
E(|s(t)|) ≤

√√√√E′

∞∑

i=−∞

Ai(t) ·

√√√√E′

∞∑

j=−∞

Aj(t)C2
j (t) → 0

when t → ∞, as √√√√E′

∞∑

j=−∞

Aj(t)C2
j (t)

is bounded by lemma 18.4. That means that

d

dt
E(|s(t)|)

tends to zero as t → ∞, which contradicts (64).
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Now we show the law of large numbers for S(t), the random walk on the
background process η with parameter θ1 and ζ with parameter θ2.

Proposition 18.8. Let

(65) c(θ1, θ2) := 2
cosh(θ2) − cosh(θ1)

Eθ2
(ζ0) − Eθ1

(η0)

for BL models, and

(66) c(θ1, θ2) :=
eθ2 − eθ1

Eθ2
(ζ0) − Eθ1

(η0)

for the ZR process. Then for every δ > 0

(67) lim
t→∞

P

(∣∣∣∣
S(t)

t
− c(θ1, θ2)

∣∣∣∣ > δ

)
= 0.

Proof. We show the proposition for BL models, the modification for the ZR
process is straightforward. By the coupling rules, if a second class particle
jumps from i to i+1 then the column gi of ζ between sites i and i+1 increases
by one. If one jumps from i + 1 to i then the column hi of η increases by

one. Hence for the current J
(2nd)
i of second class particles defined earlier in this

subsection,

J
(2nd)
i (t) = (gi(t) − gi(0)) − (hi(t) − hi(0)),

i.e. it is the difference between the growth of columns i of ζ and of η until time
t. Due to separate ergodicity of each ζ and η, we have law of large numbers
for gi(t) − gi(0) and for hi(t) − hi(0), since each of these models is distributed
according to its ergodic stationary measure. Hence with the expectation of the
column growth rates, we have

(68) lim
t→∞

J
(2nd)
i (t)

t
= Eθ2

(f(ζ0) + f(−ζ0)) − Eθ1
(f(η0) + f(−η0)) =

= 2 (cosh(θ2) − cosh(θ1)) a.s.

We extend definition (56) for x ∈ R:

mx(t) := mbxc(t) = max{m : U (m)(t) ≤ x}

Obviously, mx(t) = mx(0) − J2nd

bxc (t). If K ∈ R then

lim
v→∞

m(Kv)(0)

K v
= E(ζ0) − E(η0) = : p a.s.

since at t = 0, the starting distribution of the number of second class particles
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at different sites is a product measure.

(69) lim
t→∞

P

(∣∣∣∣
m(Kt)(t)

t
+ (c(θ1, θ2) − K)p

∣∣∣∣ > ε

)
=

= lim
t→∞

P

(∣∣∣∣
m(Kt)(t)

t
− Kp + 2 cosh(θ2) − 2 cosh(θ1)

∣∣∣∣ > ε

)
=

= lim
t→∞

P




∣∣∣∣∣∣

m(Kt)(0) − J
(2nd)
bKtc (t)

t
− Kp + 2 cosh(θ2) − 2 cosh(θ1)

∣∣∣∣∣∣
> ε


 =

= lim
t→∞

P




∣∣∣∣∣∣
−

J
(2nd)
bKtc (t)

t
+ 2 cosh(θ2) − 2 cosh(θ1)

∣∣∣∣∣∣
> ε


 =

= lim
t→∞

P

(∣∣∣∣∣−
J

(2nd)
0 (t)

t
+ 2 cosh(θ2) − 2 cosh(θ1)

∣∣∣∣∣ > ε

)
= 0

by translation-invariance and by (68), for any ε > 0. Recall that S(t) is the
position of the zeroth S-particle, i.e. the position of the s(t)-th second class
particle: S(t) = U (s(t))(t). Hence

(70) P

(∣∣∣∣
S(t)

t
− c(θ1, θ2)

∣∣∣∣ > δ

)
= P

(∣∣∣∣
U (s(t))(t)

t
− c(θ1, θ2)

∣∣∣∣ > δ

)
=

= P
(
U (s(t))(t) > c(θ1, θ2) t + δ t

)
+ P

(
U (s(t))(t) < c(θ1, θ2) t − δ t

)
.

In case
U (s(t))(t) > c(θ1, θ2) t + δ t

it follows by definitions of mx(t) and of p that

s(t) > m(c(θ1, θ2) t+δ t)(t) , hence

P
(
U (s(t))(t) > c(θ1, θ2) t + δ t

)
≤ P

(
s(t)

t
>

m(c(θ1, θ2) t+δ t)(t)

t

)
≤

≤ P

(
s(t)

t
>

δ

2
p

)
+ P

(
m(c(θ1, θ2) t+δ t)(t)

t
<

δ

2
p

)
.

As time goes on, the first term goes to zero due to proposition 18.7, and so does
the second term by (69) (with K = c(θ1, θ2) + δ).
In case

U (s(t))(t) < c(θ1, θ2) t − δ t

it follows that

s(t) ≤ m(c(θ1, θ2) t−δ t)(t) , hence

P
(
U (s(t))(t) < c(θ1, θ2) t − δ t

)
≤ P

(
s(t)

t
≤ m(c(θ1, θ2) t−δ t)(t)

t

)
≤

P

(
s(t)

t
≤ −δ

2
p

)
+ P

(
m(c(θ1, θ2) t−δ t)(t)

t
> −δ

2
p

)
.

The first term again goes to zero due to proposition 18.7, and so does the second
term by (69) (with K = c(θ1, θ2) − δ). Thus we see that both terms on the
right-hand side of (70) tend to zero as t → ∞.
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18.3 Coupling the defect tracer to the S-particles

We fix the model ω in stationary distribution µ
θ

with the defect tracer Q(t)
started from the origin. We prove theorem 14.6 for BL and (totally asymmetric)
ZR models. A natural idea would be to couple the defect tracer Q to the second
class particles, present at the same site Q. The problem is that, either to the
left or to the right, the rate for any jump of second class particles form the site
Q may be higher than the rate for Q to jump. On the other hand, one second
class particle always stays at site i after one jump from i, in case more than one
of them were present at i. The solution is to couple the defect tracer to the S-
particle, for which the desired conditions are already proven by propositions 18.2
and 18.8. For simplicity reasons, in case of the ZR process we let f(−z) := 0
for z > 0, and hence µ(−z) of ZR is also zero in these cases.

The upper bound for Q.

First, we identify η distributed according to µ
θ1

with ω possessing the defect

tracer Q, therefore we set θ1 : = θ < θ2. We have then ωi(t) ≤ ζi(t) for all
t according to the basic coupling, and recall that Q(0) = 0 ≤ S(0). In what
follows, we are going to couple the random permutations of the S-particles, thus
the random walk S(t) of the zeroth S-particle, with the defect tracer Q(t). We
only couple them in case Q(t) = S(t). The basic observation we use is that
the rates (57) for the jump of the S-particle can be compared to the rates for
the jump of the defect tracer Q(t). As we have seen at the introduction of
BL models, it is enough to consider the “effect of bricklayers” standing at each
position i. That is to say, we are allowed to consider the ωi-dependent parts of
r(ωi−1, ωi) and r(ωi, ωi+1) only, since the ωi-dependent parts are added to the
ωi−1-dependent or to the ωi+1-dependent parts in these rates. In the rest of the
paper, we describe couplings by giving rates of bricklayers standing at each site
i. This observation also holds for the zero range process (by saying rate for a
particle to jump instead of saying rate for bricklayers to lay bricks).

In tables 4 and 3, hi ↑ means that the column of the model ω between i and
i + 1 has increased by one, gi ↑ means that this column of ζ has increased by
one, y means the jump to the right from i, x means the jump to the left from
i.

with rate hi ↑ gi ↑ Q y S y a second class particle

ζi−ωi−1
ζi−ωi

×
× [f(ζi) − f(ωi)]

• y

f(ζi)−f(ωi)
ζi−ωi

−
− [f(ωi + 1) − f(ωi)]

• • y

f(ωi + 1) − f(ωi) • • • y

f(ωi) • •

Table 3: Rates for Q and S to step right and for bricklayers at site i = S = Q
to lay brick on their right
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with rate hi−1 ↑ gi−1 ↑ Q x S x a second class particle

f(−ωi − 1) − f(−ζi) • x

[f(−ωi) − f(−ωi − 1)]−
− f(−ωi)−f(−ζi)

ζi−ωi

• • x

f(−ωi)−f(−ζi)
ζi−ωi

• • • x

f(−ζi) • •

Table 4: Rates for Q and S to step left and for bricklayers at site i = S = Q to
lay brick on their left

Note that by i = S = Q, ζi ≥ ωi + 1. The rates are non negative due to
monotonicity of f and convexity condition 14.5. By summing the rates corre-
sponding to any column of the tables, one can verify that each ω and ζ evolves
according its original rates, Q has the jump rates according to the basic coupling
described in table 2, and S also has the appropriate rates (57). We see that
once being at position S, the defect tracer Q can’t move right without moving
S with it and S can’t move left without moving Q with it. Hence our rules
preserve the condition Q ≤ S.

We have so far the upper bound Q(t) ≤ S(t), and we have the law of large
numbers (67) with speed c(θ, θ2) defined in either (65) or in (66) for any θ2 > θ,
and the n-th moment condition (59) for this S(t) process.

The lower bound for Q.

Now we show a similar coupling which results in a lower bound for Q. The
natural idea would be to identify ζ with ω, and couple Q to the S-particle. The
rates for Q and S to jump with would allow Q(t) ≥ S(t). However, this coupling
can not be realized in a similar way that the coupling described above: there is
no way for Q and S to step together, since only one brick can be laid at a time
to a column.

Therefore, we need to modify the initial distribution of the models as follows.
Let µ(x, y) be, as before, a two dimensional distribution giving probability zero
to x > y, and having marginals µθ1

and µθ2
, respectively. Fix the pair (η, ζ),

as before, with the product of µ(x, y) for different sites as initial distribution.
Define

(71) µ′(y, x) := µ(x, y) · µθ2
(y − 1)

µθ2
(y)

.

Fix the pair (η′, ζ ′), with the product of µ(x, y) for each site i 6= 0 and of
µ′(x, y) for the site i = 0 as initial distribution. Then η′

i(0) ≤ ζ ′i(0) holds a.s.
for each site i, hence the basic coupling is applicable for this pair of models. We
have second class particles between η′ and ζ ′, and we introduce the S′-particles
as well, starting S′

0 from the first site on the left-hand side of the origin:

S′(0) = S′
0(0) := max{i ≤ 0 : ζ ′i(0) > η′

i(0)}.
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Assume now that the S-particle of (η, ζ) is also started from the first site on
the left-hand side of the origin, instead of starting it from the right-hand side
of the origin:

S(0) = S0(0) := max{i ≤ 0 : ζi(0) > ηi(0)}.
Then it is clear, that propositions 18.2 and 18.8 also hold for this S-particle.
Now we derive these statements for S′ as well. Since initially (η′, ζ ′) only differs
from (η, ζ) by the distribution at the origin, the conditional expectations

(72) E (S′(t) | η′
0(0) = x, ζ ′0(0) = y)) = E (S(t) | η0(0) = x, ζ0(0) = y))

agree. This is the basic idea of the following

Lemma 18.9. The moment condition (59) and the law of large numbers (67)
hold for S′ as well.

Proof. By the use of (72) and Cauchy’s inequality in a similar way than in the
proof of lemma 18.1,

E

( |S′(t)|n
tn

)
=

∑

x≤y

E

( |S′(t)|n
tn

∣∣∣ η′
0(0) = x, ζ ′0(0) = y

)
· µ′(x, y) =

=
∑

x≤y

E

( |S(t)|n
tn

∣∣∣ η0(0) = x, ζ0(0) = y

)
·
√

µ(x, y) · µ′(x, y)√
µ(x, y)

≤

≤




∑

x≤y

(
E

( |S(t)|n
tn

∣∣∣ η0(0) = x, ζ0(0) = y

))2

· µ(x, y)




1
2

×

×




∑

x≤y

µ′(x, y)

µ(x, y)
· µ′(x, y)




1
2

≤
[
E

(
S(t)2n

t2n

)] 1
2

·




∑

x≤y

µ′(x, y)

µ(x, y)
· µ′(x, y)




1
2

.

The first factor of the display is bounded by proposition 18.2. For the second
factor, by (71) and (23) we write

∑

x≤y

µ′(x, y)

µ(x, y)
· µ′(x, y) =

∑

x≤y

µθ2
(y − 1)

µθ2
(y)

· µ′(x, y) =

=
∑

y∈Z

µθ2
(y − 1)

µθ2
(y)

·µθ2
(y−1) =

∑

y∈Z

f(y)

eθ2
· eθ2(y−1)

f(y − 1)!
· 1

Z(θ2)
=

1

e2θ2
Eθ2

(f(y)2),

which is again finite. Hence (59) holds for S′ as well.
For the law of large numbers, we know that for any δ > 0,

0 = lim
t→∞

P

(∣∣∣∣
S(t)

t
− c(θ1, θ2)

∣∣∣∣ > δ

)
=

= lim
t→∞

∑

x≤y

P

(∣∣∣∣
S(t)

t
− c(θ1, θ2)

∣∣∣∣ > δ
∣∣∣ η0(0) = x, ζ0(0) = y

)
· µ(x, y) =

= lim
t→∞

∑

x≤y

P

(∣∣∣∣
S′(t)

t
− c(θ1, θ2)

∣∣∣∣ > δ
∣∣∣ η′

0(0) = x, ζ ′0(0) = y

)
· µ(x, y),

hence (67) follows for S′ as well by absolute continuity of µ′ w.r.t. µ.
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In order to obtain lower bound for Q of ω distributed according to µ
θ
, set

θ2 = θ > θ1. The marginal distribution of ζ0(0) is the second marginal of µ′,
namely, µθ2

(y−1) = µθ(y−1). Hence it is possible to fix the pair (η′, ζ ′) defined
above with

ζ ′(t) = ω(t) + δQ(t), Q(0) = 0,

i.e. ω is coupled to ζ ′ with the defect tracer Q between them. Note that S′(0) ≤
0 = Q(0). We show the coupling that preserves S′(t) ≤ Q(t) for all later times.
We only couple Q to the random permutations acting on S′ in case Q = S′

for a site i. For tables 6 and 5, h′
i ↑ means that the column of the model η′

between i and i + 1 has increased by one, g′i ↑ means that this column of ζ ′ has
increased by one. Note that by i = S′ = Q, ζ ′i ≥ η′

i + 1. As at the coupling
for the upper bound, the rates are non negative due to monotonicity of f and
convexity condition 14.5. By summing the rates corresponding to any column of
the tables, one can verify that each η′ and ζ ′ evolves according its original rates,
Q has the jump rates according to the basic coupling described in table 2 (hence
ω also evolves according its original rates), and S′ also has the appropriate rates
(57). We see that once being at position S′, the defect tracer Q can’t move left
without moving S′ with it and S′ can’t move right without moving Q with it.
Hence our rules preserve the condition Q ≥ S′.

with rate h′
i ↑ g′i ↑ Q y S′

y a second class particle

f(ζ ′i − 1) − f(η′
i) • y

[f(ζ ′i) − f(ζ ′i − 1)]−
− f(ζ′

i)−f(η′

i)
ζ′

i
−η′

i

• • y

f(ζ′

i)−f(η′

i)
ζ′

i
−η′

i

• • • y

f(η′
i) • •

Table 5: Rates for Q and S′ to step right and for bricklayers at site i = S′ = Q
to lay brick on their right

with rate h′
i−1 ↑ g′i−1 ↑ Q x S′

x a second class particle

ζ′

i−η′

i−1
ζ′

i
−η′

i

×
×[f(−η′

i) − f(−ζ ′i)]
• x

f(−η′

i)−f(−ζ′

i)
ζ′

i
−η′

i

−
−[f(−ζ ′i + 1) − f(−ζ ′i)]

• • x

f(−ζ ′i + 1) − f(−ζ ′i) • • • x

f(−ζ ′i) • •

Table 6: Rates for Q and S′ to step left and for bricklayers at site i = S′ = Q
to lay brick on their left
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Proof of theorem 14.6. By the upper bound and the lower bound above, we have

S(t) ≥ Q(t) ≥ S′(t)

and for any θ2 > θ > θ1, we have weak law of large numbers for S with c(θ, θ2),
and for S′ with c(θ1, θ), respectively. Hence taking the limits θ1 ↗ θ and θ2 ↘ θ
completes the proof of the law of large numbers (27) by computing

lim
θ1↗θ

c(θ1, θ) = lim
θ2↘θ

c(θ, θ2) = C(θ)

both for BL and ZR models. Moreover, for any n ∈ Z
+, we have n-th moment

condition (59) for both S and S′, hence not only (28), but the n-th moment
condition follows as well for Q. This also shows Ln-convergence of Q(t)/t for
any n ∈ Z

+.

18.4 Strict monotonicity of C(θ)

As a consequence of the type of coupling methods shown above, we are able
to show strict convexity of the function H(%) of (25). First we refer to the
coupling which shows (non strict) convexity, and then we complete the proof of
strict convexity by some analytic arguments.

Remark 18.10. Let ω, ω′ be two copies of a model (either BL or ZR model)
possessing condition 14.5, with the defect tracers Q(t) and Q′(t), respectively.
Assume that for each site i and for time t = 0

ωi(0) ≤ ω′
i(0) and Q(0) ≤ Q′(0).

Then it is possible to couple such way that for all t ≥ 0 and any i ∈ Z,

ωi(t) ≤ ω′
i(t) and Q(t) ≤ Q′(t) a.s.

is satisfied.

This coupling is very similar to the ones shown in this subsection, we do not
give the details here. The pair (ω, ω′) is coupled according to the basic coupling,
and we can apply this proposition for the case when their joint distribution has
marginals µ

θ
and µ

θ′
, respectively. Then we simply see that the motion of the

defect tracer of a model has a monotonicity in the parameter θ of the model’s
stationary distribution. In the introduction we saw that this implies convexity
of the function H(%). We prove now strict convexity of this function:

Proof of proposition 14.7. First note that by the form (23) of the measure µθ,
we have

%(θ) = Eθ(ω) = d
dθ log (Z(θ)) ,

Eθ

(
ω̃2

)
= d

dθEθ (ω) > 0,

Eθ

(
ω̃3

)
= d

dθEθ

(
ω̃2

)
= d

dθ (Varθ(ω)) ,

where tilde stands for the centered variable. For the BL model, we need to show
strict convexity of the function

H(%) = Eθ(%)(r) = eθ(%) + e−θ(%).
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We compute its derivative

d

d%
H(%) =

d
dθ

(
eθ + e−θ

)

d%
dθ

=

(
eθ − e−θ

)

Eθ (ω̃2)
,

and, similarly, the second derivative

d2

d%2
H(%) =

1

[Eθ (ω̃2)]
3

[(
eθ + e−θ

)
Eθ

(
ω̃2

)
−

(
eθ − e−θ

)
Eθ

(
ω̃3

)]
.

Hence (strict) positivity of

(73)
[(

eθ + e−θ
)

Eθ

(
ω̃2

)
−

(
eθ − e−θ

)
Eθ

(
ω̃3

)]

on an interval of θ is equivalent to (strict) convexity of H(%) on the corresponding
interval of %(θ). (73) contains derivatives of log (Z (θ)), which is by definition
analytic, hence (73) is also an analytic function of θ. Moreover, by the previous
remark, we know convexity of H(%), hence non-negativity of (73). Since this
function is strictly positive at θ = 0 by symmetry properties of µθ, there are
at most countably many isolated points at which this analytic function is not
strictly positive, hence we have at most countably many isolated points at which
the second derivative of H(%) is not strictly positive. This completes the proof
for the BL models.

As for the ZR process, similar computation leads to
[
eθ Eθ

(
ω̃2

)
− eθ Eθ

(
ω̃3

)]

in place of (73). As we know non-negativity of this function by convexity of
H(%), we only need to show Eθ

(
ω̃2

)
6= Eθ

(
ω̃3

)
for some θ, then the previous

analytic argument leads to strict convexity.
Indirectly, assume

(74) Eθ

(
ω̃2

)
= Eθ

(
ω̃3

)

for all θ < θ̄. Since the right-hand side is the derivative of the left-hand side, it
follows that

Eθ

(
ω̃2

)
= A · eθ

for some A > 0. Integrating this we have

Eθ(ω) = A · eθ

(the additive constant is zero as can be seen by taking the limit θ → −∞).
Integrating again we have

log (Z(θ)) = A · eθ + K, i.e.

Z(θ) = K ′ · eA·eθ

, i.e.
∞∑

z=0

eθz

f(z)!
= K ′ ·

∞∑

z=0

Az · eθz

z!

for all θ < θ̄, which leads to f(z)! = z!/Az, f(z) = z/A. Hence we see that if
at least for one z ≥ 1 value we have f(z + 1) − f(z) > f(z) − f(z − 1), then
(74) is not true for some θ, and then strict convexity of H(%) holds. We also see
linearity of H(%) when f is linear.
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Part IV

Existence of the zero range

process and a deposition model

with superlinear growth rates

19 Introduction

In [2], Balázs introduces the bricklayers’ process, which is a kind of stochastic
deposition models. It can be represented by neighboring columns of bricks, each
growing with a rate which depends on the neighboring columns’ relative heights.
There are other representations, showing close connection to interacting particle
systems; the details will be given later. He finds a shock-like product (time-
) stationary measure in this model, provided the dependence of the growth
rates on the relative heights is exponential. As the model is not rigorously
constructed, the natural question of existence of dynamics arises here.

In the area of interacting particle systems, there are two main situations
where construction methods are available. One of them applies when the rate
with which the configuration changes at a site is bounded. As described in
Liggett [15], the construction can be carried out in this case via functional anal-
ysis properties of the infinitesimal generator and via the Hille-Yosida theorem.
This is the way how existence of dynamics is usually proved for stochastic Ising
models, the voter model, contact processes, simple- and K-exclusion processes.

The other situation is when the growth rates are unbounded, but satisfy
a sublinear growth condition. This means that the growth rates are bounded
from above by a linear function of the local state space. The famous example
is the zero range process, where there is a nonnegative number ωi of particles
at each site i, and with rate r(ωi) depending on the number of these particles,
one of them jumps to another site. The sublinear condition mentioned above
is formulated here by |r(k + 1) − r(k)| ≤ K for any k ≥ 0 and some K > 0.
Under this condition, it is possible to compare the model to the so-called multi-
type branching process, or to consider some differential equation arguments,
and hence give stochastic bounds on the states realized by the process. This
is the way Andjel [1] constructs the process, generalizing the earlier work of
Liggett [13]. The method can be extended to more complicated systems, but
sublinearity is still an essential condition in the proof of existence.

None of these methods fit to the bricklayers’ process with exponential rates
in [2]. Although a sublinear growth condition would make it possible to use
the arguments mentioned above (see Booth [4] or Quant [21]), e.g. [2] sets up
a claim to a proof of existence for models with superlinear growth rates. Not
superlinearity, but convexity considerations also play an important role in hy-
drodynamical and second class particle-related arguments, see e.g. Balázs [3] or
Rezakhanlou [23], and convexity of the growth rates in some cases may imply
superlinearity of them.

In the present paper we consider the bricklayers’ process, where the jump
rates are unbounded, and we do not require sublinear growth conditions. We
will use attractivity of the system instead (see below) to construct it. The con-
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struction is carried out via coupling considerations, and makes use of auxiliary
systems. All our arguments are also valid for the zero range process, hence this
model is also constructed for any monotone increasing rate function.

19.1 Formal description of the bricklayers’ process

The state space of our process is Ω = Z
Z, i.e. for each site i ∈ Z there is an

integer ωi ∈ Z. Let r : Z → R+ be a positive function, with the property

(75) r(z) · r(1 − z) = 1

for each z ∈ Z. Given a configuration

ω = {ωi ∈ Z : i ∈ Z} ∈ Ω,

we define ω(i, i+1) by

(
ω(i, i+1)

)

j
=





ωj for j 6= i, i + 1,

ωi − 1 for j = i,

ωi+1 + 1 for j = i + 1.

Conditioned on ω, the jump ω → ω(i, i+1) happens independently for each site
i with rate r(ωi) + r(−ωi+1). We do not assume any growth condition on r,
only monotonicity. The formal infinitesimal generator of the process acts on a
ϕ : Ω → R finite cylinder function (i.e. a function depending only on a finite
number of values of ωi) as

(Lϕ)(ω) =
∑

i∈Z

[r(ωi) + r(−ωi+1)] ·
[
ϕ(ω(i, i+1)) − ϕ(ω)

]
.

The process can be represented by a wall consisting of columns of bricks.
ωi is the “negative discrete gradient” of the wall at site i, i.e. the difference
between the height of the column on the left-hand side and on the right-hand
side of i. The jumps of the process can be considered as growth of a column,
see figure 4. As the growth rate for a fixed column consists of two additive
parts depending on ω of the left-hand side and on ω of the right-hand side,
respectively, the process can also be represented by conditionally independent
bricklayers standing at each site i, laying bricks on their right with rate r(ωi),
and on their left with rate r(−ωi).

We also define the heights of the columns, playing an essential role when
coupling the models later on, as follows. As initial data we fix an integer h0,
and let

(76) hi : =





h0 −
i∑

j=1

ωj for i > 0,

h0 +
0∑

j=i+1

ωj for i < 0.

Whenever the jump ω → ω(i, i+1) happens for some i, we increase hi by one.
Doing so, the quantities hi(t) satisfy (76) for all later times t, and hi(t) represents
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i i+1

}
ωi

}
ωi+1 r(ωi) + r(−ωi+1)−−−−−−−−−−−−−→

i i+1

Figure 4: A possible move

the height of the column between sites i and i + 1. For simplicity we fix the
initial condition h0(0) := 0, i.e. the growth of the column right to the origin
starts from zero height.

Throughout the construction, we will use attractivity of the processes, which
means monotonicity of the function r. In words, this means that the higher
neighbors a column has, the faster it grows.

As in Balázs [2], for n ∈ Z
+ we define

r(0)! : = 1, r(n)! : =
n∏

y=1

r(y).

Let

(77) θ̄ : = log
(
lim inf
n→∞

(r(n)!)
1/n

)
= lim

n→∞
log(r(n)) ,

which is strictly positive by (75) and by monotonicity of r, and can even be
infinite. With a generic real parameter θ ∈

(
−θ̄, θ̄

)
, we define

Z(θ) :=

∞∑

z=−∞

eθz

r(|z|)!

and the measure

(78) µ(θ)(z) :=
1

Z(θ)
· eθz

r(|z|)! .

This measure has the property that

µ(θ)(z + 1)

µ(θ)(z)
=

eθ

r(z + 1)
= eθ · r(−z)

for any z ∈ Z. Based on this equation, formal computations indicate that the
product measure µ(θ) with marginals

µ(θ){ω : ωi = z} : = µ(θ)(z)
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is stationary for the process. For details, see Balázs [2]. Throughout this paper,
by an arbitrary θ, we mean any parameter θ ∈

(
−θ̄, θ̄

)
.

19.2 The zero range process

In fact, bricklayers’ process is in close connection to interacting particle systems.
Considering ωi as the number of particles at site i leads to a nearest neighbor
process with particles (ωi > 0) which jump to the right and antiparticles (ωi < 0)
jumping to the left, and annihilating when particles and antiparticles meet.

The zero range process is very much similar to the bricklayers’ model. In
this process Ω = N

Z, i.e. ωi ≥ 0 for all i ∈ Z. The formal infinitesimal generator
is

(Lϕ)(ω) =
∑

i∈Z

r(ωi) ·
[
ϕ(ω(i, i+1)) − ϕ(ω)

]
.

Instead of (75), we require r(0) = 0, hence ωi ≥ 0 can never be violated.
The measure µ(θ), which is now a product of marginal measures (78) on N, is

(formally) stationary for the process, where θ ∈ (−∞, θ̄) with θ̄ of (77). This
measure also has the property

µ(θ)(z + 1)

µ(θ)(z)
=

eθ

r(z + 1)
(z ≥ 0).

Throughout the paper we show the arguments for the bricklayers’ process. How-
ever, these arguments are word by word valid for the zero range process. For-
mally we obtain the definitions, statements and proofs by simply neglecting all
terms r(−ωi), r(−ζi), r(−ξi), r(−ηi), e−θ, e−θ1 , e−θ2 .

20 The process on a finite number of sites

20.1 The monotone process

First we show that the process on a finite number of sites does exist. Fix n ∈ N,
and define the infinitesimal generator L(n) acting on functions of ω:

(79)
(
L(n)ϕ

)
(ω) =

n−1∑

i=−n

[r(ωi) + r(−ωi+1)] ·
[
ϕ(ω(i, i+1)) − ϕ(ω)

]
.

This is well defined for any ω ∈ Ω. For this finite site-process, the jump ω →
ω(i, i+1) happens with rate r(ωi) + r(−ωi+1), independently for different sites i,
but only for −n ≤ i ≤ n− 1. For columns not in this interval, nothing happens.

Since even this finite site process has an infinite state space, we need to
show that for each initial configuration ω(0), the state ω(t) evolving according
to these rules is stochastically dominated. This is equivalent to showing that
the heights hi(t) defined by (76) are stochastically dominated. We only need
upper bound on them, since these are non-decreasing quantities. Let

H(t) := max
−n≤j≤n−1

hj(t), and J : = {−n ≤ j ≤ n − 1 : hj(t) = H(t)}.

Then we have two possibilities:
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(i) H(t) ≤ h−n−1(0) = h−n−1(t) or H(t) ≤ hn(0) = hn(t) (these are the
heights of the closest columns to the origin which do not grow), or

(ii) for each j ∈ J, ωj ≤ 0 and ωj+1 ≥ 0, since hj(t) is by definition maximal.

In the first case, H(t) is trivially dominated, while in the second case, by
monotonicity of the rates r, for each j ∈ J the column between sites j and
j + 1 has a growth rate dominated by r(0) + r(0). This implies that whenever
H(t) ≥ max(h−n−1(0), hn(0)), it grows according to a continuous time jump
process with rate dominated by 2n·(r(0)+r(0)). Since H(t) is maximal between
the heights of the growing columns, this means that the growth of any column
is dominated by this jump process.

We call this process defined on a finite number of sites the n-monotone
process. Note that this type of bounds can not be used when we want to pass
to the limit n → ∞.

20.2 The stable process

We now define a slightly different model on a finite range of sites. For an integer
n > 0 and a parameter θ, let us consider the generator

(80)
(
G(n, θ)ϕ

)
(ω) =

n−1∑

i=−n

[r(ωi) + r(−ωi+1)] ·
[
ϕ(ω(i, i+1)) − ϕ(ω)

]
+

+[eθ +r(−ω−n)] · [ϕ(ω(−n−1,−n))−ϕ(ω)]+[e−θ +r(ωn)] · [ϕ(ω(n, n+1))−ϕ(ω)].

The difference between this model and the monotone process is that the leftmost
bricklayer also has a (modified) rate for laying bricks on his left, and so has the
rightmost one for laying bricks on his right. Their rates only depend on ω at
their position. What we are doing here is simply replacing the effect of the
−n − 1 th and n + 1 th bricklayers by the µ(θ)-expectations of their rates. We
can repeat the argument shown in section 20.1: the growth of any column is
dominated by either hn−2(0), or hn+1(0), or by a Poisson process growing with
rate 2n · (r(0) + r(0)) + 2r(0) + eθ + e−θ. We call this model the (n, θ)-stable
process. The following proposition gives reason for this name:

Proposition 20.1. The product-measure

(81) µ(n, θ)(ω) :=

n∏

i=−n

µ(θ)(ωi)

is stationary for the (n, θ)-stable process, where the marginals are of the form
(78).

Proof. Since the growth rates only depend on ωi for n ≤ i ≤ n, it is sufficient
to show that with the expectation w.r.t. µ(n, θ) of (81),

E(n, θ)
(
(G(n, θ)ϕ)(ω)

)
= 0

holds for any function ϕ depending on ω−n, ω−n+1, . . . , ωn. We begin the com-
putation of the left-hand side by changing variables in the (product-)expectation
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in order to obtain only ϕ(ω):

E(n, θ)
(
(G(n, θ)ϕ)(ω)

)
=

= E(n, θ)

{ n−1∑

i=−n

[r(ωi) + r(−ωi+1)] ·
[
ϕ(ω(i, i+1)) − ϕ(ω)

]
+

+[eθ+r(−ω−n)]·[ϕ(ω−n+1, . . . )−ϕ(ω)]+[e−θ+r(ωn)]·[ϕ(. . . , ωn−1)−ϕ(ω)]

}
=

= E(n, θ)

{[ n−1∑

i=−n

(
[r(ωi + 1) + r(−ωi+1 + 1)] · µ(θ)(ωi + 1) · µ(θ)(ωi+1 − 1)

µ(θ)(ωi) · µ(θ)(ωi+1)
−

− r(ωi) − r(−ωi+1)
)
+

+ [eθ + r(−ω−n + 1)] · µ(θ)(ω−n − 1)

µ(θ)(ω−n)
− [eθ + r(−ω−n)]+

+ [e−θ + r(ωn + 1)] · µ(θ)(ωn + 1)

µ(θ)(ωn)
− [e−θ + r(ωn)]

]
·ϕ(ω)

}
.

We can continue by using properties (78) of µ(θ) and then (75) of r:

E(n, θ)
(
(G(n, θ)ϕ)(ω)

)
=

= E(n, θ)

{[ n−1∑

i=−n

(
[r(ωi + 1) + r(−ωi+1 + 1)] · r(ωi+1)

r(ωi + 1)
− r(ωi) − r(−ωi+1)

)
+

+ [eθ + r(−ω−n + 1)] · r(ω−n)

eθ
− [eθ + r(−ω−n)]+

+ [e−θ + r(ωn + 1)] · eθ

r(ωn + 1)
− [e−θ + r(ωn)]

]
·ϕ(ω)

}
=

= E(n, θ)

{[ n−1∑

i=−n

(
r(ωi+1) + r(−ωi) − r(ωi) − r(−ωi+1)

)
+

r(ω−n) + e−θ − eθ − r(−ω−n) + r(−ωn) + eθ − e−θ − r(ωn)

]
·ϕ(ω)

}
= 0,

which completes the proof.

20.3 Coupling the processes

By attractivity of the processes, we are able to couple them, as described below.
Let n > m, and fix arbitrary initial configurations ζ(0), ω(0) ∈ Ω. The process ζ

evolves either according to the infinitesimal generator L(n) (79), or G(n, θ) (80).
The other one, ω evolves according to L(m). We give the coupling between them
via the following tables, rather than writing the complicated generator for the
coupled process. In these tables, we assume generator L(n) for ζ, rather then

G(n, θ); the modification needed for G(n, θ) is indicated before lemma 20.2.
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As remarked in the introduction, it is enough to describe the possible moves
and the associated rates for the bricklayers standing at a site i. Given a configu-
ration ζ and ω, the move of laying a brick to the left is independent of laying one
to the right for each bricklayer, hence we give separate tables for these steps.
We also distinguish between sites where both ζ and ω grow, and sites where
only columns of ζ grow. We denote the height of the column between i and
i + 1 by gi(t) (or hi(t)) for the ζ process (or the ω process, respectively). We
fix g0(0) = h0(0) = 0. We introduce the notation di : = ζi − ωi. As we are
essentially interested in this quantity, we give separate columns in the tables
as well to describe its behavior. Finally, let ↑ (↓) mean that the corresponding
quantity has increased (decreased, respectively) by one, e.g. hi ↑ represents the
move ω → ω(i, i+1).

with rate hi gi di di+1

r(ζi) ↑ ↓ ↑

Table 7: Rate for bricklayers at sites −n ≤ i < −m or m ≤ i < n to lay brick
on their right

with rate hi−1 gi−1 di−1 di

r(−ζi) ↑ ↓ ↑

Table 8: Rate for bricklayers at sites −n < i ≤ −m or m < i ≤ n to lay brick
on their left

with rate hi gi di di+1

[r(ζi) − r(ωi)]
+ ↑ ↓ ↑

[r(ωi) − r(ζi)]
+ ↑ ↑ ↓

min[r(ζi), r(ωi)] ↑ ↑

Table 9: Rates for bricklayers at sites −m ≤ i < m to lay brick on their right

Note that considering the processes ζ and ω separately, each of them evolves

according to its generator (L(n) and L(m), respectively). We say that di number
of (second class) particles are present at site i if di > 0, and −di (second class)
antiparticles are present at site i if di < 0.

In case ζ evolves according to G(n, θ), then table 7 is also valid for i = n, but

with rate r(ζn) + e−θ, and table 8 is valid for i = −n with rate r(−ζn) + eθ.

Lemma 20.2. For n > m and for the coupled n-monotone or (n, θ)-stable
process ζ and m-monotone process ω, started from initial configurations for
which

hi(0) ≤ gi(0)

holds initially for each i ∈ Z, coupled as described above, hi(t) ≤ gi(t) remains
satisfied for any i ∈ Z and any t ≥ 0.
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with rate hi−1 gi−1 di−1 di

[r(−ωi) − r(−ζi)]
+ ↑ ↑ ↓

[r(−ζi) − r(−ωi)]
+ ↑ ↓ ↑

min[r(−ωi), r(−ζi)] ↑ ↑

Table 10: Rates for bricklayers at sites −m < i ≤ m to lay brick on their left

Proof. Observe that by monotonicity of r, r(ζi) > r(ωi) implies ζi > ωi, and
r(ζi) < r(ωi) implies ζi < ωi. Hence the move given by the first line of table
9 can only happen for ζi > ωi i.e. di > 0. But this step reduces the number
of particles at site i. It also increases the number of particles or reduces the
number of antiparticles at site i+1. Thus this step describes either the jump of
a particle from i to i + 1 (in case di+1 ≥ 0), or the annihilation of a particle at
i with an antiparticle at i + 1 (in case di+1 < 0). The same holds for the move
according to the first line of table 10 with i − 1 instead of i + 1.

The step described in the second line of table 9 can only happen when
ζi < ωi, i.e. di < 0. As this step increases di by one and decreases di+1 by one,
it either describes the jump of an antiparticle from i to i + 1, or annihilation of
an antiparticle at i with a particle at i + 1. The same holds for the second line
of table 10 with i−1 instead of i+1. Hence we see that in the region [−m. . . m]
where both processes grow, particles or antiparticles are not created.

Now let us define
Hi(t) := gi(t) − hi(t),

which has the property Hi(0) ≥ 0 initially for each i. Since for columns −n−1 ≤
i < −m and m ≤ i ≤ n only columns g of ζ can grow, Hi(t) ≥ 0 holds for these
indices. Consider now

min
−m≤i<m

Hi(t)

the minimum of Hi in the region where both processes grow. At t = 0, this
minimum is clearly non-negative. Assume that at some time t this minimum is
zero. For any site −m ≤ imin < m, where Himin

= 0 is achieved, we have

Himin−1 ≥ Himin
≤ Himin+1, i.e. dimin

≥ 0 ≥ dimin+1.

Decrease of the minimum below zero would mean

Himin
→ Himin

− 1; dimin
→ dimin

+ 1, dimin+1 → dimin+1 − 1

for a site imin. Hence this would be a step by which a particle is created at site
imin, and an antiparticle is created at site imin + 1. As particle creation is not
included in the coupling described in tables 9 and 10, and this pair is neither
created according to tables 7 and 8, this step is simply not realized by the
coupling rules. Hence min

i
Hi(t) ≥ 0 is never violated, which shows gi(t) ≥ hi(t)

for all i.

21 The infinite volume limit

In this section we make connection between the monotone process and the stable
process. While we have monotonicity described in lemma 20.2 for the monotone
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process, we have stationarity for the stable process, which gives us stochastic
bounds for its growth. Since these bounds are independent of the size n of the
stable process, our goal is now to construct and then to dominate the limit of
the monotone processes by these bounds.

21.1 Starting from good distributions

First we consider the stable process, started from an appropriate initial distri-
bution. We say that a measure π on Ω is a good measure with parameters θ1

and θ2, if there exist −θ̄ < θ1 < θ2 < θ̄ such that the measure µ(θ2) dominates

π and π dominates µ(θ1) stochastically. This is equivalent to saying that η dis-

tributed according to the product measure µ(θ1), ζ distributed according to π

and ξ distributed according to µ(θ2) can be coupled in such a way that

ηi ≤ ζi ≤ ξi

holds for all i ∈ Z. Note that if π is a product of marginals πi on Z, then this
is equivalent to the corresponding stochastic dominations for the marginals at
each site i.

Lemma 21.1. Let ζ(0) be distributed according to the good measure π with
parameter θ1 and θ2, and let it evolve according to the (n, θ1)-stable evolution.
Then the stochastic bounds

ηi(t) ≤ ζi(t) ≤ ξi(t)

hold for some random processes ηi(t) and ξi(t), having distributions µ(θ1) and
µ(θ2), respectively.

Proof. By the coupling assumed in the definition of π, we couple ζ with the

(n, θ2)-stable process ξ started from initial distribution µ(θ2), such that ξi(0) ≥
ζi(0) holds initially for all −n ≤ i ≤ n. We show the coupling which preserves
this inequality for all time t > 0. We denote the height of ζ and ξ by g and f ,
respectively; the number of second class particles is di : = ξi − ζi. We do not
have antiparticles when starting the processes. We rewrite tables 9 and 10 for
inner sites to tables 11 and 12 with the present notations. For sites n and −n,
where we modified the rates, the process is coupled according to tables 13 and
14.

with rate gi fi di di+1

r(ξi) − r(ζi) ↑ ↓ ↑
r(ζi) ↑ ↑

Table 11: Rates for bricklayers at sites −n ≤ i < n to lay brick on their right

These tables are valid while ξi ≥ ζi holds for all −n ≤ i ≤ n. However,
they preserve this condition as no antiparticles are created according to these
tables. Decrease of di can only happen where ξi > ζi, i.e. for sites where there
is particle to jump from.
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with rate gi−1 fi−1 di−1 di

r(−ζi) − r(−ξi) ↑ ↑ ↓
r(−ξi) ↑ ↑

Table 12: Rates for bricklayers at sites −n < i ≤ n to lay brick on their left

with rate gn fn dn

r(ξn) − r(ζn) ↑ ↓
e−θ1 − e−θ2 ↑ ↑
r(ζn) + e−θ2 ↑ ↑

Table 13: Rates for the bricklayer at site n to lay brick on his right

Now, by the same method, we couple ζ and η, where the initial distribution

of η is µ(θ1), and both models evolve according to the (n, θ1)-stable generator.
Writing η instead of ζ, ζ instead of ξ, and θ1 in place of θ2 as well makes
us possible to repeat our arguments and to conclude ζi(t) ≥ ηi(t) for all sites
−n ≤ i ≤ n and t > 0. Hence we see that ηi(t) ≤ ζi(t) ≤ ξi(t), where ηi(t)
and ξi(t) have distributions µ(θ1) and µ(θ2), respectively, as these are processes
started and evolving in their stationary distributions.

Lemma 21.2. Let ζ(0) be distributed according to the good measure π with
parameter θ1 and θ2, and let it evolve according to the (n, θ1)-stable evolution.
Then we have

E [gi(t) − gi(0)] ≤ t ·
(
eθ2 + e−θ1

)

for its column’s growth (−n − 1 ≤ i ≤ n).

Proof. Let

(82) ri(ζ) :=





eθ1 + r(−ζ−n) , for i = −n − 1,

r(ζi) + r(−ζi+1) , for − n ≤ i < n,

e−θ1 + r(ζn) , for i = n

be the growth rate in the (n, θ1)-stable process ζ for column i. For its columns’
growth, consider

(83) Mi(t) := gi(t) − gi(0) −
t∫

0

ri(ζ(s)) ds,

which is a martingale w.r.t. the filtration generated by
(
ζ(s)

)
0≤s≤t

with Mi(0) =

0. By the previous lemma, ζi(t) is bounded by ηi(t) and ξi(t), respectively. Due
to monotonicity or r, this means

(84) ri(ζ) ≤ Ri(η, ξ) :=





eθ1 + r(−η−n) , for i = −n − 1,

r(ξi) + r(−ηi+1) , for − n ≤ i < n,

e−θ1 + r(ξn) , for i = n.
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with rate g−n−1 f−n−1 d−n

r(−ζ−n) − r(−ξ−n) ↑ ↓
eθ2 − eθ1 ↑ ↑

r(−ξ−n) + eθ1 ↑ ↑

Table 14: Rates for the bricklayer at site −n to lay brick on his left

Hence by (83),

Mi(t) ≥ gi(t) − gi(0) −
t∫

0

Ri(η(s), ξ(s)) ds.

As ηi(t) and ξi(t) has (stationary) distributions µ(θ1) and µ(θ2), respectively,
taking expectation value of this inequality leads to

(85) 0 ≥ E [gi(t) − gi(0)] − t ·
(
eθ2 + e−θ1

)

for columns −n − 1 ≤ i ≤ n, where we used

E(θ2)(r(ξi)) = eθ2 , E(θ1)(r(−ηi)) = e−θ1 .

For later use, we prove here a similar bound for the second moment of g. Much
more detailed analysis is available for this quantity in equilibrium in [3].

Lemma 21.3. Let ζ(0) be distributed according to the good measure π with
parameter θ1 and θ2, and let it evolve according to the (n, θ1)-stable evolution.
Then for all t large enough, we have

E
(
[gi(t) − gi(0)]

2
)
≤ 9

4
E

[
R2

i

]
· (t − t0)

2

for its column’s growth (−n − 1 ≤ i ≤ n) for some t0, with Ri defined in (84).

Proof. We introduce
g̃i(t) := gi(t) − gi(0).

With the notations of (82), the quantity

Ni(t) := g̃2
i (t) −

t∫

0

[2g̃i(s) · ri(s) + ri(s)] ds

is a martingale. Hence

E
[
g̃2

i (t)
]

=

t∫

0

(2E[g̃i(s) · ri(s)] + E[ri(s)]) ds ≤

≤
t∫

0

(
2
√

E [g̃2
i (s)] ·

√
E [r2

i (s)] + E[ri(s)]

)
ds.
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Using the bounds given in (84) and stationarity of η and ξ, the second moments
of the rates can be dominated, and we can write

E
[
g̃2

i (t)
]
≤ 2

√
E [R2

i ]

t∫

0

√
E [g̃2

i (s)] ds + t · E[Ri].

The quantity E
[
R2

i

]
contains second moments of the rates w.r.t. µ(θ1) or µ(θ2)

(78). The existence of these moments can easily be shown, but we do not obtain
an explicit formula for them. The left-hand side of the previous equation can
be bounded from above by a solution of

d

dt
x(t) = 2

√
E [R2

i ] ·
√

x(t) + E[Ri].

Whenever the increasing function x(t) reaches value 1, its further evolution is
dominated by a solution of

d

dt
y(t) = 3

√
E [R2

i ] ·
√

y(t), i.e. y(t) =
9

4
E

[
R2

i

]
· (t − t0)

2

for some t0.

Theorem 21.4. Let ω(0) be distributed according to the good distribution π
with parameter θ1, θ2, and let it evolve according to the n-monotone evolution.

The height of column i at time t is denoted by h
(n)
i (t), with the convention

h
(n)
0 (0) = 0. Then for all i ∈ Z, t > 0, the limit

hi(t) := lim
n→∞

h
(n)
i (t)

exists for a.s. each ω(0) ∈ Ω,

E [hi(t) − hi(0)] ≤ t ·
(
eθ2 + e−θ1

)

for all t, and

E
(
[hi(t) − hi(0)]

2
)
≤ 9

4
E

[
R2

i

]
· (t − t0)

2

for all t large enough, with some parameter t0.

Proof. By lemma 20.2, for each starting configuration of the n-monotone process
ω(t), there is a bounding (n, θ1)-stable process ζ(t) with column heights g(n),
for which ζ(0) = ω(0) and

h
(n)
i (0) = g

(n)
i (0), h

(n)
i (t) ≤ g

(n)
i (t)

holds (−n ≤ i < n). As ζ(0) is distributed according to π, lemma 21.2 leads to
the inequality

(86) E
[
h

(n)
i (t) − h

(n)
i (0)

]
≤ E

[
g
(n)
i (t) − g

(n)
i (0)

]
≤ t ·

(
eθ2 + e−θ1

)
.

Similarly, lemma 21.3 yields

(87) E

([
h

(n)
i (t) − h

(n)
i (0)

]2
)

≤ 9

4
E

[
R2

i

]
· (t − t0)

2
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for large t’s. We can also use lemma 20.2 to show that h
(n)
i (t) is monotone in

n. Hence the limit
hi(t) := lim

n→∞
h

(n)
i (t)

exists, and by taking liminf of (86) and (87) leads to similar bounds for hi(t)
via Fatou’s lemma.

Proposition 21.5. Let ω(0) be the common initial state for the n-monotone
processes ω(n), distributed according to the good distribution π with parameter
θ1, θ2. Then the distribution πt of the limit ω(t) of the processes at time t is
again a good measure having parameter θ1, θ2.

Proof. Consider the coupling described in the proof of the previous theorem.
The following inequalities hold:

(88) P{ωi(t) 6= ζ
(n)
i (t)} ≤

≤ P{ωi(t) 6= ω
(n)
i (t)} + P{ω(n)

i 6= ζ
(n)
i } = P{ωi(t) 6= ω

(n)
i (t)}+

+ P{there is second class particle at site i between ω(n)(t) and ζ(n)(t)}.

Since ω
(n)
i (t) → ωi(t) as n → ∞, the first term tends to zero. As ζ(n) and

ω(n) are started from the same initial state and their growth rates agree in
[−n, n − 1] ⊂ Z, second class particles only come from the two ends of this
interval. Uniformly positive probability of their arrival at site i as n grows would
imply larger and larger jump rates for them, as they travel longer and longer
distances by time t. But this would contradict the stochastic bounds obtained
before for ζ(n) and ω(n), which were independent of n. Thus we see that the

left hand-side of (88) tends to zero as n → ∞. Hence ζ
(n)
i (t) also converges a.s.

to ωi(t). Now, by lemma 21.1 we know that ζ(n) is sandwiched by the n-stable

processes η(n) and ξ(n) having marginals µ(θ1) and µ(θ2), respectively, which
shows that ωi(t) can be coupled to some random variables having the desired
distributions.

21.2 Starting from a fixed configuration

So far we are able to construct the bricklayers’ process starting from good
distributions. In this part, we refine the results in order to make the con-
struction when the process starts from a deterministically given initial state
ω(0) ∈ Ω = Z

Z. Of course, we shall not allow all elements of this set. For ω
fixed, we define the set

A(ω) :=
{
(ζ, g0(0)) ∈ Ω × N : gi(0) ≥ hi(0) for all i ∈ Z

}

with columns

hi : =





h0 −
i∑

j=1

ωj for i > 0,

h0 +

0∑

j=i+1

ωj for i < 0
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of ω and

gi : =





g0 −
i∑

j=1

ζj for i > 0,

g0 +

0∑

j=i+1

ζj for i < 0

of another configuration ζ. We assume h0(0) = 0 initially. Imagining the wall
of bricks, a typical ζ has larger negative gradient on the left-hand side than on
the right-hand side of the origin.

For a measure Π on Ω×N we call the first marginal π on Ω, while the second
marginal ν on N. We define

Ω̃ := {ω ∈ Ω : there exists Π for which π is a good measure,

ν has finite second moment and Π {A(ω)} > 0}.

Note that one has many choice for Π, it is not unique. Ω̃ is going to be the
set of initial configurations for which we shall construct the process. Later we
shall show that this set is large enough to include many configurations we are
interested in. In particular, µ(θ){Ω̃} = 1 for any θ < θ < θ̄.

Theorem 21.6. Let us fix ω(0) ∈ Ω̃ with Π, of which the first marginal π is
a good measure having parameters θ1 and θ2. Let ω evolve according to the n-

monotone evolution; the height of column i at time t is denoted by h
(n)
i (t), with

the convention h
(n)
0 (0) = 0. Then for all i ∈ Z, t > 0, the limit

hi(t) := lim
n→∞

h
(n)
i (t)

exists, and

E [hi(t)] ≤
3 ·

√
E [R2

i ] · (t − t0)

2 ·
√

π{A}
+

√√√√E
(
[gi(0)]

2
)

Π{A}

for all large t and for some t0, where gi(0) is the height of column i for ζ(0)
distributed according to π, with g0(0) having distribution ν.

Proof. Given ω(0), we drop ζ(0) according to the good measure π, and g0(0)
according to ν. This determines gi(0) for all i, and leads either to the event A or

Ā. As ω(0) ∈ Ω̃, the (Π-)probability of A is strictly larger than zero. Since ω(0)
is fixed and A only depends on the initial distribution of ζ and g0, the evolution
of ω does not depend on this event. Conditioned on A, we can use the coupling
described in lemma 20.2 for the n-monotone process ω and the (n, θ1)-stable
process ζ for their columns h(n) and g(n), respectively:

E
(
h

(n)
i (t)

)
= E

(
h

(n)
i (t)

∣∣∣ A
)
≤ E

(
g
(n)
i (t) |A

)
=

= E
(
g
(n)
i (t) − gi(0) |A

)
+ E (gi(0) |A) .

87



We continue by Cauchy’s inequality:

E
(
g
(n)
i (t) − gi(0) |A

)
+ E (gi(0) |A) =

=
E

([
g
(n)
i (t) − gi(0)

]
· 1{A}

)

Π{A} +
E ([gi(0)] · 1{A})

Π{A} ≤

≤

√
E

([
g
(n)
i (t) − gi(0)

]2
)
· Π{A}

Π{A} +

√
E

(
[gi(0)]

2
)
· Π{A}

Π{A} =

=

√√√√√E

([
g
(n)
i (t) − gi(0)

]2
)

Π{A} +

√√√√E
(
[gi(0)]

2
)

Π{A} .

As gi(0) can be written as the sum of finitely many elements in L2 (including
the random variable g0(0)), the second term is clearly finite. For the first term
we can apply lemma 21.3 and finally write

E
(
h

(n)
i (t)

)
≤

3
2

√
E [R2

i ] · (t − t0)√
π{A}

+

√√√√E
(
[gi(0)]

2
)

Π{A} .

Note that the right-hand side does not depend on n if n > |i|. As in theorem

21.4, we can finish the proof by monotonicity of h
(n)
i in n and by Fatou’s lemma.

Proposition 21.7. Assume ω(0) ∈ Ω̃ with Π, of which the first marginal is a
good measure π0 having parameters θ1 < θ2, and the second marginal is ν. Then
letting ω evolve according to the n-monotone rules and then taking the limit as
n → ∞, we have ω(t) ∈ Ω̃ with Πt, of which the first marginal is a good measure
πt having the same parameters θ1 < θ2, and the second marginal is νt having
finite second moment. Moreover, we have Πt {A(ω(t))} ≥ Π0 {A(ω(0))}.
Proof. Given ω(0) and Π0, we choose ζ(0) and g0(0) according to Π0, and we

let ζ(n) evolve by the n-monotone evolution, while ω(m) evolves according to the
m-monotone rules. Due to the coupling shown in lemma 20.2 and the definition

of A(ω), (ζ(0), g0(0)) ∈ A(ω(0)) implies (ζ(n)(t), g
(n)
0 (t)) ∈ A(ω(m)(t)) for the

coupled pair (ζ(n), ω(m)) if n > m. By passing to the limit n → ∞, we obtain the
process ζ, which is by proposition 21.5 in a πt good distribution, and for which
g0(t) has finite second moment by theorem 21.4. As this process is the monotone

limit of ζ(n), (ζ(0), g0(0)) ∈ A(ω(0)) implies (ζ(t), g0(t)) ∈ A(ω(m)(t)) for all m.
But this also shows that (ζ(t), g0(t)) ∈ A(ω(t)) after taking m to infinity, which

completes the proof with Πt generated by (ζ(t), go(t)).

Proposition 21.8. Fix −θ̄ < θ1 < θ2 < θ̄ and E(θ1)(z) < K1 < K2 < E(θ2)(z).
Then

{
ω : K2 > lim sup

n→−∞

1

|n|

0∑

i=n+1

ωi , lim inf
n→∞

1

n

n∑

i=1

ωi > K1

}
⊂ Ω̃.
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Proof. Let π be the product of marginals

πi(z) =

{
µ(θ2) , for i ≤ 0,

µ(θ1) , for i ≥ 1,

and g0(0) = 0. With a fixed ω from the set described above, let ζ have distri-
bution π. By the assumption on ω, there is a number N > 0 such that





K2 >
1

|n|

0∑

i=n+1

ωi =
hn

|n| for n < −N,

K1 <
1

n

n∑

i=1

ωi = −hn

n
for n > N.

It is clear that with positive probability, gn ≥ hn happens for all −N ≤ n ≤ N .
We show that, with positive probability, this also happens for n < −N and
n > N . This implies positive probability of the event A w.r.t. the measure
π × δ0, hence the inclusion of ω in Ω̃. For positive n’s, due to the previous
inequalities, it is enough to show that with positive probability, gn + K1 · n ≥ 0
for all n > N . But the latter is a drifted random walk, of which the increments
−ζi + K1 are i.i.d. random variables having positive expectation by the the
assumption on K1. Moreover, by properties of µθ1 (78), the expectation

Eθ1

(
eλ·(−ζi+K)

)

is finite for small λ’s. Hence large deviation arguments and Borel-Cantelli is
applicable to show that this random walk only hits zero finitely times a.s. thus
has positive probability of never returning to zero. Similar argument works for
n < −N as well.

Remark 21.9. By the same arguments, for any θ < θ < θ̄, one can find
parameters θ1, θ2 such that the set in the previous proposition has µ(θ) measure

one, hence µ(θ)
{

Ω̃
}

= 1 holds.
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