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1. ASEP: Interacting particles

Bernoulli(p) distribution

Particles try to jump

to the right with rate p,
to the left with rate g =1 — p < p.

The jump is suppressed if the destination site
IS occupied by another particle.
The Bernoulli(p) distribution is time-stationary

for any ( ).
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Let 7" and X be some large-scale time and
space parameters.

~ Set initially o = o(T"'= 0, X) to be the den-
sity at position £ = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time t = T' /e at position * = X/e. It
satisfies, with a :=p — q,

8% + 8%@[ (1 —p0)] =0 (inviscid Burgers)
8% + al[l — 20] - 8% = 0 (while smooth)
o dX(T) o0 d
_ . = —o(7T, X(1T)) =20
oT + dI’T 90X dT (7, X (1)

~» The characteristic speed C(p) : = a[l — 20].
(o is constant along X(T) = C(p).)
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2. ASEP: Surface growth

hi
314

20

Bernoulli(p) distribution

hz(t) = height of the surface above .

hy(t) —hz(0) = net number of particles passed
above .

hy+(t) = net number of particles passed thro-
ugh the moving window at V¢t (Vv eR).
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3. Growth fluctuations
h,t

hyi

Ferrari - Fontes 1994:
Var(hy+(t
im (hy+(1))

t—o0 t
~ Initial fluctuations are transported along the
characteristics.
~ How about V = C(p)~?

= const - |V — C(o)]

Conjecture:
: Var(hC(g)t(t)) L
tlrgo 273 = [sg. non trivial].
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3. Growth fluctuations
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+2/3

< limsup
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Limit distributions (not yet controlling the second mo-
ment) in terms of the Tracy-Widom distribution were
found by Baik, Deift and Johansson 1999, Johansson
2000, and Ferrari and Spohn 2006 for the totally asym-
metric exclusion (TASEP: p =1, ¢ = 0).

Method was: Last passage percolation, heavy combina-

torics and asymptotic analysis.

~~ We needed to get rid of these tools. Premises:
Cator and Groeneboom 2006 (Hammersley's process),
B., Cator and Seppaldinen 2006 (TASEP, last passage).
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Bernoulli(p) distribution except for O

Coupling: A single discrepancy is always con-
served = the second class particle. Its location
at time t is Q(1).

T heorem:

E(Q(1)) = C(o)t
( ), and
Var(hy(t)) = const - E|Vt — Q(t)].

The proof is based on ideas of Balint, he said these ideas

were standard.
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P{Q(t) is too large}
< P{too many 1's have crossed C(o)t}

< P{hc(g)t(t) — hC(g)t(t) is too large}.

Optimize “too large” in A\, use a Chebyshev
and relate Var(he(,)(t)) to Var(hgy)(t)).

P{Q(t) is too large} <[...] oVar(hC(g)t(t))
= [...]-E|C(o)t — Q(1)].

Conclude the result for E|C (o)t — Q(t)].
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6. The lower bound
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6. The lower bound

. and this:

0

—\_\_ﬁ .

\_\L\_

T

Price to pay: A change of initial measure fac-
tor.

In return: hC(g)t(t) behaves like hC(g)t(t)'

These have different expectations.

~» Enough deviation to prove the lower bound
if o— A ~t=1/3 q ~ 2/3,
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Thank you.
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