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Assumptions:

e r(z) is strictly increasing,

~» the process (to be constructed) is attractive:
higher neighbors = faster growth.

O for ZR,

Vz € Z,
1 for BL

e 7(2) -r(1l—2)= {

~> w;'s being iid. p?-distributed
is (formally) an equilibrium of the process.
Parameter 6 sets the average of wj,

i.e. the slope of the wall.
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e [ he process is constructed if

r(z4+1)—r(z) <K

Andjel 1982, Booth and Quant 2002.

e B. 2001 and 2004 finds nice distributions
related to shocks in the exponential BL
pProcess:

r(z) = A-eb?.

Unfortunately, the process is not constructed at
that time.

e Goal: construct the dynamics if
r(z) < e’

only (8 > 0), + the previous assumptions for
attractivity and the up?-equilibrium.

Estimates used by Andjel do not work.
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2. Construction materials
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s (£, t, 0)-process

D I

~ ('s, i ={...t, being iid. u’-distributed
is the equilibrium of the process.
Parameter 6 sets the average of (;,
i.e. the slope of the wall.
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~s This process is far from equilibrium!
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~» Coupling 1: The height of a column of the mono-
tone process is monotone in 4, .
= We have a limit of the monotone processes. Is
the limit finite?
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~» Coupling 2: In this case, the height of a column of
w is bounded by the height of that column of ¢.
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Fix a state w(0) € Q. Start a monotone process.

Coupling 1: The height of a column of the mono-
tone process is monotone in ¢, «.

Start the ¢ (¥4, ¢, 61)-process in distribution u? on
the left, uf on the right.
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Coupling 2: In this case, the height of a column of
w is bounded by the height of that column of ¢.

59



N

~

Fix a state w(0) € Q. Start a monotone process.

Coupling 1: The height of a column of the mono-
tone process is monotone in 4, .

= We have a limit of the monotone processes. Is
the limit finite? Yes, it is.

Start the ¢ (¥4, ¢, 61)-process in distribution u? on
the left, uf on the right. = \With positive probabil-
ity, each column ofg IS higher than that column of
w.

Coupling 2: In this case, the height of a column of
w is bounded by the height of that column of ¢.
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3. Transferring the estimates
Uniformly in £, «:

¢ is almost in equilibrium = nice
many non-growing columns in ¢

bounds on ¢'s column growth

Conditional
| Coupling

bounds on w's column growth

w; S are nice

many non-growing columns in w

bounds on disturbance propagation in w
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4. Results

~ T he state space

)
1 o)

limsup — ) |wj| < oo

—~ 1——00 |Z|j:7;_|_1

Q={w : 4 . }

1 1
limsup = ) |wj| < oo

71— 00 (2 ]:1

IS preserved.

~» The measure HG is stationary for w(t).

Q is p’-measure one.

~ We have an S(t) semigroup on bounded
measurable functions.
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S()p(w) = p(w) + / S(s) Lip(w) ds
0

for ¢ bounded Lipschitz-functions.

t
S()p(w) = p(w) + / LS(s)p(w) ds
0

for o bounded Lipschitz-functions, up to a
time T'=T(w) > 0.

S5Wew)| _ = Le(w)

for ¢ bounded Lipschitz-functions.
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~+ The process w(t) in its p’-equilibrium is er-
godic.

An equivalent statement: Any time-invariant
function ¢ is p’-a.s. constant.

Start ¢ with one extra brick compared to w:

¢(t) =w(?)

¢(0) with positive
w(0) probability

1 1+ 1 1 1+ 1

Thus ¥(w(0)) = y(w(t)) =¥ (C(t)) = (¢(0)).
~» 1) IS invariant for an extra brick
~» 1) is finite permutation-invariant

~ 1 is pP-a.s. constant (Hewitt-Savage 1-0 Law).
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