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Abstract

Integral models of volcanic plumes allow predictions of plume dynamics to
be made and the rapid estimation of volcanic source conditions from observa-
tions of the plume height by model inversion. Here we introduce PlumeRise,
an integral model of volcanic plumes that incorporates a description of the
state of the atmosphere, includes the effects of wind and the phase change
of water, and has been developed as a freely available web-based tool. The
model can be used to estimate the height of a volcanic plume when the
source conditions are specified, or to infer the strength of the source from
an observed plume height through a model inversion. The predictions of the
volcanic plume dynamics produced by the model are analysed in four case
studies in which the atmospheric conditions and the strength of the source
are varied. A global sensitivity analysis of the model to a selection of model
inputs is performed and the results are analysed using parallel coordinate
plots for visualisation and variance-based sensitivity indices to quantify the
sensitivity of model outputs. We find that if the atmospheric conditions do
not vary widely then there is a small set of model inputs that strongly in-
fluence the model predictions. When estimating the height of the plume,
the source mass flux has a controlling influence on the model prediction,
while variations in the plume height strongly effect the inferred value of the
source mass flux when performing inversion studies. The values taken for the
entrainment coefficients have a particularly important effect on the quanti-
tative predictions. The dependencies of the model outputs to variations in
the inputs are discussed and compared to simple algebraic expressions that
relate source conditions to the height of the plume.
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1. Introduction

Volcanic tephra produced during explosive volcanic eruptions is hazardous
to populations and infrastructure. Tephra transported in the atmosphere
is damaging to aircraft, causing widespread disruption to international air
transport, while tephra deposited on the ground has impacts on human health
and can cause structural damage to buildings (Jenkins et al., 2015). The
largest eruptions can inject large volumes of tephra at stratospheric levels,
causing global temperature changes and tephra deposition over thousands of
square kilometres (Self, 2006). However, even relatively small eruptions have
regional impacts, as fine ash is transported far from the volcanic source by
atmospheric winds and buoyancy forces.

The mitigation of the hazard presented by volcanic ash relies on effective
forecasting of ash transport in the atmosphere, which requires estimates of
source conditions, particularly the maximum height in the atmosphere to
which ash transported (subsequently referred to as the plume height) and
the rate at which ash is delivered from the vent (the source mass flux).
These quantities are fundamentally related by the dynamics of the volcanic
plume. By developing models of volcanic plumes, we can gain insight into
the physical processes that control the plume rise and may infer unobserved
quantities such as the source mass flux by matching model predictions to
observations.

Volcanic plumes are mixtures of solid pyroclasts, produced by the frag-
mentation of magma in the volcano conduit, with gases exsolved from the
magma and entrained from the environment. On ejection from the vent, the
mixture is usually hotter and more dense than the surrounding atmosphere
and is initially carried upwards by inertia as a jet (Woods, 1988; Sparks
et al., 1997). Typically the flow is turbulent on exit from the vent or be-
comes turbulent close to the vent (Sparks et al., 1997). The turbulent flow
field results in a mixing of ambient air with the erupted material, with a
transfer of heat and momentum to the entrained air. The expansion of the
gaseous phases causes a reduction in the bulk density of the mixture, which
may become buoyant before the initial momentum is lost if the entrainment
and heat transfer are sufficiently efficient, and the jet transitions into a buoy-
ant plume which can ascend to high altitudes. If insufficient mixing occurs
then the mixture does not become buoyant before the vertical momentum is

2



lost, and the jet collapses (Sparks et al., 1997; Degruyter and Bonadonna,
2013).

In addition to the volcanic source controls on the plume dynamics, the at-
mosphere also strongly influences the rise of the plume (Woods, 1988; Sparks
et al., 1997; Glaze and Baloga, 1996; Bursik, 2001; Woodhouse et al., 2013).
A large proportion of the erupted gaseous phase is water vapour derived
from magma, and additional water vapour is entrained from the moist tro-
posphere. The plume transports this moisture to higher levels where it can
condense to liquid water and ice (Woods, 1993; Glaze et al., 1997; Mastin,
2007). The phase change results in the release of latent heat to the plume
and this source of energy can, in some atmospheric and volcanological condi-
tions, promote significant additional rise of the plume (Woods, 1993; Glaze
et al., 1997). In contrast, atmospheric winds enhance the mixing of ambient
air into the plume, thus more rapidly reducing the density contrast between
the plume mixture and the ambient atmosphere, resulting in a reduction in
the rise height of the plume (Bursik, 2001; Degruyter and Bonadonna, 2012;
Woodhouse et al., 2013), while the additional entrainment due to the wind
can lead to plumes that would collapse in a quiescent atmosphere becoming
buoyant (Degruyter and Bonadonna, 2013; de’ Michieli Vitturi et al., This
issue).

The turbulent and multiphase character of volcanic plumes and the large
range of scales on which physical processes operate means that simulating all
aspects of the motion is computationally demanding. For rapid hazard as-
sessment during a volcanic crisis, simplified models with low computational
requirements are valuable tools for producing estimates of the important
properties of the volcanic source and the plume. Here we present PlumeRise,
an integral model of volcanic plumes that includes descriptions of atmo-
spheric wind and phase changes of water. In addition to use in research, a
version of PlumeRise has been developed as a web-tool (figure 1) that can be
freely accessed at www.plumerise.bris.ac.uk and can be used to examine the
source and atmospheric controls on the plume motion and perform model
inversions to estimate the source conditions required for the plume to attain
a specified height.

The PlumeRise model has 12 dimensional parameters, four boundary
conditions that must be specified, and requires profiles of the atmospheric
pressure, temperature, wind speed and direction, and the relative humid-
ity. These dimensional model inputs can be formed into 17 dimensionless
groups. This high dimensional space of model inputs and the non-linearity
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Figure 1: The main settings and results page of the PlumeRise web-tool. Up to five sets of
source conditions and atmospheric profiles can be specified in the settings box, and results
are displayed in the plots panel. In this example two different atmospheric profiles are
used (passed through the “Atmospheric data” tab), and two plume heights are specified
using the “Infer source flux from observed rise height” option. An inversion calculation
adjusts the source velocity to match the centreline height to the height specified. The plots
show a plan-view and cross-section of the plumes, and the temperatures in the plumes and
atmospheres, the vertical velocities, and the densities in the plumes and atmospheres as
functions of the elevation above sea level. Other plots are available and can be selected in
the “Plot settings” tab.
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of the system of equations means that it is difficult to anticipate all of the
dependencies of the model outputs to the values taken for the input parame-
ters and boundary conditions. Note, in the PlumeRise web-tool some of the
parameters are fixed at characteristic values, while the research version that
is examined here allows all model inputs to be varied. Small changes in pa-
rameter values, and in combinations of parameters, can result in substantial
changes to the model output. A crucial question in the application of models
to interpret observations is to what extent and accuracy must parameters in
the model be calibrated and boundary conditions chosen in order to draw
meaningful inferences about the volcanic system? In this study we conduct a
global sensitivity analysis of the PlumeRise model to examine the variability
of the model predictions when parameter values, boundary conditions, and
atmospheric inputs are changed.

This contribution is structured as follows. We present first the system
of equations that are solved in the PlumeRise model, and the modelling as-
sumptions on which these are based. We then introduce the methods used
for the global sensitivity analysis. The results of the sensitivity analysis per-
formed in four case studies are presented. We then discuss the interpretation
of these results, in particular examining how the results compare to the al-
gebraic expressions that relate the plume rise height to the conditions at the
volcanic source.

2. The PlumeRise model of moist, wind-blown volcanic plumes

PlumeRise is an integral model of a steady volcanic eruption column in
a wind field. Atmospheric conditions are included through profiles of the
pressure, temperature, wind speed and direction, and the relative humidity,
which can be taken from direct measurement (e.g. radiosonde soundings),
numerical weather prediction tools, or constructed to represent typical con-
ditions (e.g. standard atmospheres). The model is derived by combining an
integral model of pure plumes in a horizontal wind (Hewett et al., 1971) with
an integral model of volcanic eruption columns in a quiescent atmosphere
(Woods, 1988). Details of the model development are presented in Wood-
house et al. (2013). Here we present the governing equations and the main
assumptions on which the model is based.

A steady model of plumes is appropriate if the time scale of variations
in source and atmospheric conditions are much longer than the time of rise
of fluid parcels through the atmosphere, the latter time scale given by 1/N
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where N is the buoyancy frequency of the atmosphere, with a typical value
of N = 0.01 s−1 (Gill, 1982). The plume can then be considered to be in a
statistically steady state, and the transient turbulent motions are removed
by averaging on a time scale that is longer than the eddy turn-over time
(Woods, 2010). The turbulent mixing of the ambient fluid into the plume
is then represented by a flow into the plume, referred to as entrainment
(Morton et al., 1956). The turbulence within the body of the plume ensures
the material remains well mixed, and properties of the eruption column can
be described by time-averaged bulk quantities. We assume that the radial
profiles of the bulk density, axial velocity and temperature in the plume are
modelled by top-hat profiles (i.e. these quantities have constant values within
the plume and vanish outside the plume boundary) and that cross-sections
of the plume normal to the axis are circular with radius L. The assumption
of top-hat profiles is a mathematical convenience; other profiles, for example
Gaussian distributions, could be adopted. However, adopting such profiles
has little effect on the predictions of plume models in quiescent environments
if the value of the no-wind entrainment coefficient is appropriately adjusted
(Kaye, 2008). The bulk density of the plume, denoted by ρ, varies due to the
entrainment, mixing and expansion of atmospheric air, which has density ρA.
The bulk temperature of the column is denoted by T , while the atmospheric
temperature is TA. The plume is composed of gases, derived from the magma
and entrained from the environment, solids pyroclasts and liquid water (if
conditions allow for the condensed water phase). The mass fraction of gas in
the plume is denoted by n.

While PlumeRise models the transport of solid pyroclasts in the plume,
the fallout of pyroclasts is not modelled. Models of the fallout of pyroclasts
from the rising plume have been proposed for plumes in quiescent environ-
ments (Ernst et al., 1996; Woods and Bursik, 1991; Sparks et al., 1997), and
have shown that the loss of mass associated with fallout has only a small
effect on the rise height attained by buoyant plumes unless fallout occurs be-
fore pyroclasts have reached thermal equilibrium with the gases in the plume
(Woods and Bursik, 1991; Sparks et al., 1997). Thermal equilibrium occurs
rapidly for small grain sizes, within 1 km of the vent for pyroclasts of di-
ameter up to approximately 0.4 cm ejected at 100ms−1 (Woods and Bursik,
1991; Sparks et al., 1997). Therefore the fallout of pyroclasts has little effect
on fine-grained eruption columns. However, fallout may be an important
process for eruptions that produce larger pyroclasts for which the relaxation
time to thermal equilibrium is longer and so pyroclasts may fall out before
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thermal equilibrium is reached, reducing the supply of heat (and therefore
buoyancy) to the eruption column (Woods and Bursik, 1991; Sparks et al.,
1997). It is not currently known how the interaction with the wind modi-
fies the empirical settling models (Ernst et al., 1996; Bursik, 2001) that are
used to describe sedimentation of particles from plumes rising in quiescent
environments, but we expect fine-grained pyroclasts to rapidly reach thermal
equilibrium with the gases in a wind-blown plume, and therefore to have only
a secondary effect on the rise height attained by the plume.

The moisture content of an eruption column is included by accounting for
phase changes of the water within the column and the effect of phase changes
on the energy budget (Morton, 1957; Woods, 1993; Koyaguchi and Woods,
1996; Mastin, 2007). For simplicity, we neglect the phase changes of water
vapour and liquid water to ice, as the latent heat of freezing is about a factor
of 10 smaller than the latent heat of vaporisation (Sparks et al., 1997) so a
description of condensation alone is likely to be sufficient in the majority of
settings, and the complexities of ice formation in volcanic plumes is not fully
understood.

Our model assumes that the pressure in the plume is equal to the at-
mospheric pressure throughout the ascent. This assumption is appropriate
for slender plumes (Morton et al., 1956; Woods, 1988; Linden, 2000), where
the length scale of radial variations is much smaller than the length scale
for vertical variations. The assumption may not be appropriate very near
to the vent, where the erupted material can have a substantial over-pressure
(Woods and Bower, 1995; Ogden et al., 2008b; Saffaraval et al., 2012). This
alters the flow dynamics (Woods and Bower, 1995; Ogden et al., 2008b,a),
in particular the turbulent mixing processes, such that a different parame-
terization of entrainment is required (Saffaraval et al., 2012). However, the
pressure in the near vent jet rapidly adjusts to atmospheric pressure (Saf-
faraval et al., 2012) and therefore we expect the model results to be little
affected by the simplified description (Saffaraval et al., 2012).

The entrainment of ambient air into the body of the plume through the
action of turbulent eddies is parameterized by an entrainment velocity that
is directed normal to the local plume axis (figure 2). In a windy environment
we adopt the parameterization of Hewett et al. (1971),

Ue = ks |U − V cos θ|+ kw |V sin θ| , (1)

where U is the axial centreline velocity of the plume, V is the horizontal
velocity of the wind, θ is the local angle on the plume axis to the horizontal,
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ks is the entrainment coefficient due to the motion of the plume relative to
the environment, and kw is the entrainment coefficient due to the alignment
of the wind field with the local normal to the plume axis. In the absence
of atmospheric wind, V ≡ 0, the entrainment velocity (1) reduces to Ue =
ksU , and therefore ks is the entrainment coefficient for plumes rising in a
quiescent environment (Morton et al., 1956; Woods, 1988). We therefore refer
to ks as the no-wind entrainment coefficient, and kw as the wind entrainment
coefficient. (Note ks is given the symbol α and kw the symbol β in Costa
et al. 2016.)

It is often assumed that the entrainment coefficients take constant val-
ues, and experiments on plumes in a quiescent ambient show that this is
appropriate when the radial profiles of plume properties reach a self-similar
form (Papanicolaou and List, 1988; Ezzamel et al., 2015). However, close
to the source there is a deviation from the self-similar plume profile as the
flow is momentum-driven as it exists the vent (Kaminski et al., 2005; Pa-
panicolaou and List, 1988; Ezzamel et al., 2015). Non-constant forms for the
no-wind entrainment coefficient have been proposed (Wang and Law, 2002;
Kaminski et al., 2005; Carazzo et al., 2006; Folch et al., 2015) for quies-
cent settings, but there has been no investigation of the detailed influence
of the wind on the variation of the entrainment coefficients. In PlumeRise
we adopt a simple model (Woods, 1988) of the variation of the entrain-
ment coefficient as the eruption column develops from a momentum-driven
jet near the vent to a buoyant plume, with the eruption column separated
into a near-source jet-like region (also referred to as the gas-thrust region)
and a buoyant plume-like region. In the near-source region the density of
the erupted mixture is much greater than that of the atmosphere, and the
entrainment coefficient is a taken to be a function of the density contrast
(Woods, 1988) with ks =

√

ρ/ρA/16, where ρ is the bulk density of the erup-
tion column and ρA is the density of the atmosphere. If the eruption column
become buoyant, we take the entrainment coefficient to be constant with
ks = 0.09 in the buoyant region. It is not known how the wind-entrainment
coefficient varies in the transition from jet-like to plume-like behaviour, so
we take a constant entrainment coefficient kw = 0.9 determined from a series
of laboratory experiments (Hewett et al., 1971).

A mathematical description of the variation of the steady eruption col-
umn with distance from the volcanic source is formulated in a plume-centred
coordinate system within a Cartesian frame of reference (figure 2). We let
z denote the height of the plume, x and y denote the Cartesian coordinates
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Figure 2: The coordinate system for the PlumeRise model. A Cartesian coordinate system
is fixed with x denoting the East-West (longitudinal) coordinate, y denoting the North-
South (latitudinal) coordinate and z denoting the vertical coordinate (altitude). Equations
describing the plume dynamics are derived in a plume-centred coordinate system, with s
denoting the curvilinear distance (arclength) from the vent along the plume axis, θ(s)
denoting the angle of the centreline with respect to the horizontal, and ψ the angle of the
trajectory in the xy-plane. A cross-section of the plume normal to the centreline is circular
with radius L(s). The centreline speed of the plume is denoted by U(s). The wind speed
is denoted by V (z), with the angle ψa denoting the angle to which the wind blows.

orthogonal to z, and s denote the curvilinear distance from the vent along
the centreline of the plume. Therefore x, y and z are related to s through

dx

ds
= cos θ cosψ,

dy

ds
= cos θ sinψ,

dz

ds
= sin θ. (2)

Equations describing the variation of the plume density ρ(s), radius L(s),
centreline velocity U(s), and temperature T (s) are derived by considering
conservation of mass, momentum and energy in cross-sections normal to the
plume axis (Woodhouse et al., 2013). The mass of the column increases due
to the entrainment of atmospheric air, so that from conservation of mass we
have

d

ds

(

ρUL2
)

= 2ρAUeL, (3)

noting that the fallout of solid pyroclasts is neglected. The mass flux through
a cross section normal to the plume centreline is given by

Q = πρUL2. (4)

An equation for the conservation of vertical momentum can be written using
Newton’s second law, with the change in vertical momentum balancing the
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buoyancy force,
d

ds

(

ρU2L2 sin θ
)

= (ρA − ρ) gL2. (5)

Here it is assumed that non-hydrostatic pressure gradients and stresses are
negligible, assumptions which are justified based on the relative slenderness
of the plume. The horizontal momentum of the column changes only due
to the entrainment of fluid from the windy environment, so conservation of
momentum in the x and y directions can be written as

d

ds

(

ρU2L2 cos θ cosψ
)

= 2ρAUeLV cosψA, (6)

d

ds

(

ρU2L2 cos θ sinψ
)

= 2ρAUeLV sinψA, (7)

respectively, where ψA is the angle of the wind vector from the axis x = 0.
The conservation of energy in the plume equates the change in total

energy (given by the sum of the bulk enthalpy, kinetic energy and potential
energy) in the plume to the total energy of the fluid entrained from the
atmosphere and the energy released when water changes phase in the plume.
This is expressed symbolically as

d

ds

(

ρUL2

(

CpT +
U2

2
+ gz

)

)

= 2ρALUe

(

CATA +
U2
e

2
+ gz

)

+Lc0
d

ds

(

ρL2U (φ− φv)
)

, (8)

where Cp and CA are the specific heat capacities at constant pressure of the
bulk plume and the atmospheric air, respectively, φ is the mass fraction of
liquid water and water vapour in the column, and φv is mass fraction of
water vapour in the column. Note, in (8) turbulent dissipation is neglected.
In modelling the condensation of water vapour in equation (8), the latent
heat of condensation, Lc(T ) (measured in J kg−1), is approximated by

Lc(T ) = Lc0 + (Cv − Cw) (T − 273) , (9)

for temperature, T , measured in Kelvin, where Lc0 = 2.5 × 106 J kg−1 is the
latent heat of vaporisation at 273K (Rogers and Yau, 1989), and Cv and
Cw are the specific heat capacities at constant pressure of water vapour and
liquid water, respectively, measured in JK−1 kg−1.
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We assume that the gas released at the vent is composed entirely of water
vapour released from magma in the conduit and water vapour from the evap-
oration of ground water. Water vapour is entrained into the eruption column
from the moist atmosphere and is advected with the bulk flow. Therefore
conservation of water in the column can be written as

d

ds

(

φρUL2
)

= 2ρAUeLφA, (10)

where φA is the mass fraction of water vapour in the atmosphere (i.e. the
specific humidity of the atmosphere).

Condensation is assumed to occur rapidly once the eruption column has
become saturated with respect to water vapour, such that the column remains
saturated. Thus, once saturated, the mass fraction of gas in the column which
is composed of water vapour, denoted by w, remains at a value such that
the partial pressure of water vapour, Pv, is equal to the saturation vapour
pressure in the column, es(T ), so Pv = es(T ) (Koyaguchi and Woods, 1996).
Note, φv = nw where n is the mass fraction of gas (dry air and water vapour)
in the column. Assuming the gas phase is a mixture of water vapour and dry
air, and each component can be considered an ideal gas, the partial pressure
of water vapour is given by

Pv = w
ρg
ρv
PA =

wRv

wRv + (1− w)Ra
Pa, (11)

where ρg is the density of the gas phase, ρv is the density of water vapour,
Rv and Ra are the specific gas constants of water vapour and dry air, respec-
tively, and PA is the pressure in the column which is assumed to adjust in-
stantaneously to the local atmospheric pressure. Here we adopt an empirical
approximation for the saturation vapour pressure (Alduchov and Eskridge,
1996):

es(T ) = 610.94 exp

(

17.625 (T − 273.15)

T − 30.01

)

, (12)

for temperature, T , measured in Kelvin.
The bulk density of the column is given by

1

ρ
=

n

ρg
+
φw

ρw
+

1− n− φw

σ
, (13)

where ρw is the density of liquid water (assumed constant in the atmosphere)
and φw = φ−φv is the mass fraction of liquid water in the plume. The density
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of the gas phase is given by

ρg =
Pa

RgT
, (14)

where the bulk gas constant of the column is given by

Rg = wRv + (1− w)Ra. (15)

The bulk specific heat capacity at constant pressure is

Cp = nCg + φwCw + (1− n− φw)Cs, (16)

where Cs is the specific heat capacity at constant pressure of the solid pyro-
clasts, and Cg = wCv + (1 − w)Ca is the specific heat capacity at constant
pressure of the gas phase, with CA denoting the specific heat capacity at
constant pressure of dry air.

The system of equations is augmented by boundary conditions that pre-
scribe conditions at the volcanic vent. PlumeRise requires the specification
of two of the source mass flux Q0, the source momentum flux M0, the radius
of the vent L0 and the exit velocity U0. Additionally, the magmatic temper-
ature at the vent T0, the mass fraction of gas at the vent n0 and the altitude
of the vent z0 are required.

The system of equations are solved numerically using a fourth-order Cash-
Karp Runge-Kutta scheme with automated step-size adjustment for error
control (Press et al., 2007). The algebraic equations are differentiated to
produce a coupled system of fourteen ordinary differential equations that
can be efficiently integrated numerically.

Typically the atmospheric profiles have a much coarser vertical resolution
than the steps taken in the numerical integration. The atmospheric profiles
are therefore interpolated, with linear interpolation for all fields except the
atmospheric pressure for which an exponential form is used to reproduce the
expected hydrostatic pressure profile in the atmosphere (Gill, 1982). There
are occasions where the atmospheric data do not extend to the height reached
by the plume. In this case the atmospheric fields are extrapolated using
spatially constant values, with the exception of the pressure field for which
an exponential function is used. The extrapolation of the atmospheric data
introduces significant uncertainty into the model predictions if the plume
rises to altitudes above levels at which atmospheric data is given.

The integral plume model has short execution times, with ‘forward’ model
evaluations (i.e. an integration from specified initial conditions to the point
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of maximum rise) taking less than 0.5 s on a desktop computer. The model is
therefore well suited for use in rapid hazard assessment, and to facilitate this
use of the model during volcanic crises, we have developed the PlumeRise
web-tool. The web-tool is freely available at www.plumerise.bris.ac.uk. A
screen-shot of the main page of the web-tool is shown in figure 1.

The ‘inverse’ problem of determining the source mass flux by matching
the plume height to a specified value can be solved by iteratively adjusting the
source conditions and performing forward model runs. We note that there is
not necessarily a unique solution of the inverse problem, as variations in one of
the source conditions can be compensated by changes in another. Woodhouse
et al. (2013) and Woodhouse and Behnke (2014) used a simple inversion
strategy, in which a single source boundary value was adjusted, to estimate
the source mass flux from observations of the plume height. However, these
studies did not carefully consider uncertainty in the observations and the
model formulation. Woodhouse et al. (2015) demonstrated that uncertainty
in observations and model parameters strongly constrains the inferences that
can be made from inversion studies.

The possibility of column collapse, where there is insufficient mixing of
ambient air to allow the initially dense jet to become buoyant before the
vertical momentum of the material ejected at the vent is expended, means
that there is not always a solution of the inverse problem. In the PlumeRise
web-tool we implement an inversion scheme, adjusting the exit velocity for
a specified vent radius to vary the source mass flux. In this study, the exit
velocity is specified so the vent radius is adjusted in the inversion calculation.
To assess the possibility of column collapse, we first perform forward model
evaluations on a coarse sample of points across a wide range of the exit
velocity, which indicates whether a solution is possible, and then use bisection
to refine the source estimate. The rapid forward evaluations means that the
inversion calculation typically completes in a few seconds.

3. Methods for the analysis of sensitivity of the PlumeRise model

For nonlinear mathematical models with numerous inputs it is often diffi-
cult to anticipate the response of the model output to changes in the inputs.
Complicated interactions of physical processes mean that varying one input
parameter at a time does not adequately characterise the range of model out-
puts that are possible, although the one-at-a-time analysis may be valuable
as a preliminary screening exercise. A comprehensive sensitivity analyses
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must examine the response of the model to changes in all parameters across
their range of values; this is known as global sensitivity analysis (Saltelli
et al., 2008).

The PlumeRise model can be considered as a function that maps a set of
input values onto a set of outputs, written symbolically as

y = f (x; θ) , (17)

where y is a vector of model outputs, x is a vector of model inputs, θ is
a vector of model parameter values, and f is a vector function represent-
ing the PlumeRise model. The model inputs, x, in the PlumeRise model
are the boundary conditions for the system of ordinary differential equations
that represent the conditions at the volcanic vent. In addition, the model
requires the specification of a number of parameter values that characterise
the physical properties and processes that occur in the volcanic plume. For
examples, parameters are required to characterise the turbulent mixing and
the thermodynamic properties of the constituent phases in the plume. Fur-
thermore, there are additional inputs into the model that determine the
solutions. In particular in the PlumeRise model, profiles representing the
state of the atmosphere are required. In Woodhouse et al. (2015) we refer to
the atmospheric profiles as the ‘model forcing’ as these inputs are typically
fixed, as is the uncertainty they introduce into the model predictions. Here,
in our abstraction of the model, we include the model forcing as a member
of the set of model parameters.

As part of the eruption column model inter-comparison exercise (Costa
et al., 2016), we have performed a sensitivity analysis of the PlumeRise model
to a subset of the model inputs as specified by the exercise facilitators. The
exercise required the assessment of the sensitivity of the model outputs to a
range of model inputs and parameters. Some of these inputs can take values
on a continuous interval, while others are discrete ‘switches’ that determine
whether some physical processes are included in the model. For convenience,
we reclassify the inputs to the model as described in equation (17); the
model inputs x will henceforth refer to the set of boundary conditions and
parameters that are varied in the sensitivity analysis, while the inputs θ will
denote the set of parameter values and atmospheric profiles that held fixed
in the analysis. Table 1 gives the model inputs that are examined in this
study.

To examine the sensitivity of the model to changes in the wind speed, a
wind speed scale factor (denoted by λ) is introduced. The wind speed input
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Table 1: Model inputs varied in the sensitivity analyses. For inputs that can vary contin-
uously, the range of parameter values for the weak and strong plume cases are given.
Parameter (symbol) Range of values

Weak eruption Strong eruption
No-wind entrainment coefficient (ks) 0.05–0.15 0.05–0.15
Wind entrainment coefficient (kw) 0.1–1.0 0.1–1.0
Source mass flux (Q0) 3× 105–7.5× 106 kg/s 3× 108–7.5× 109 kg/s
Plume height (Htop) 6–9 km 30.8–46.2 km
Exit velocity (U0) 94.5–175.5m/s 192.5–357.5m/s
Source temperature (T0) 1173–1373K 953–1153K
Source gas mass fraction (n0) 0.01–0.05 0.03–0.07
Wind scale factor (λ) 0.8–1.2 0.8–1.2
Phase change of water ‘on’ or ‘off’ ‘on’ or ‘off’
Atmospheric moisture ‘on’ or ‘off’ ‘on’ or ‘off’

into the model is then taken as λV (z) where V (z) is the measured wind
speed. We also consider cases where the wind is removed from the model
inputs (i.e. we fix λ = 0). When λ = 0 the wind entrainment coefficient kw
and the wind speed scale factor λ do not influence the model results, and
can therefore be removed from the analysis.

In the sensitivity study reported in the inter-comparison exercise, the
model output was a scalar quantity, and we denote this output by y in
the abstraction of the model. However, two modes of application of the
model were required: (i) ‘forward modelling’ where the source mass flux
(mass eruption rate) at the vent was specified and the primary model output
was the plume height, taken to be the maximum height of the centreline
of the plume, at which point the vertical component of the velocity at the
plume centreline vanishes; (ii) ‘inverse modelling’ where the plume height
was specified and a model inversion was required to determine the source
mass flux.

We note that, as there are inputs to the model that are not varied in
this analysis, this study should be considered as partial sensitivity analysis.
In particular, the parameters that specify the physical and thermodynamic
properties of the constituent phases of the plume are not varied from speci-
fied values. However, these parameters are uncertain in applications, and in
Woodhouse et al. (2015) we demonstrated that variations in the thermody-
namic parameters can strongly influence the model output, with the changes
in the specific heat capacity of solid pyroclasts effecting the variance of the
model outputs to a similar extent as the entrainment coefficients. Further-

15



Figure 3: Meteorological conditions for the weak (blue) and strong (red) eruption cases,
with a pressure, b temperature, c specific humidity and d wind speed as functions of the
height above sea level.

more, there are boundary conditions that are fixed in the analysis, and the
profiles of the atmospheric conditions are not varied (with the exception of
a scaling of the wind speed). To examine the effect of these constraints, two
case studies were considered, representing an eruption with a relatively low
source mass flux (referred to as a ‘Weak eruption’) and an eruption with a
relatively high source mass flux (referred to as a ‘Strong eruption’), with dif-
ferent atmospheric conditions for each case (figure 3). We note in particular
that the atmospheric profile used in the weak eruption has much higher wind
speeds than the profile for the strong eruption, but that the water vapour
loading of the atmosphere is substantially greater for the strong eruption.
Details of these case studies and their meteorological conditions are given in
Costa et al. (2016).

A challenge in global sensitivity analysis is to provide summaries of the
variation in the model outputs as the input parameters are varied. Here we
take two approaches. We display graphically the dependencies of the model
outputs on the input parameters using parallel coordinates plots (Wegman,
1990), a useful visualisation method for multidimensional data. To quan-
tify the sensitivity of the outputs of the model to variations in the input
parameters we use variance-based sensitivity indices that provide summary
statistics.
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3.1. Parallel coordinates plots

Visualising a function of many variables is challenging. For a function
of a single variable, plotting the independent and dependent variables on
orthogonal Cartesian coordinate axes is ubiquitous, and the interpretation
of the resulting plot is usually straight-forward. The use of Cartesian coor-
dinate axis is also possible for functions of two variables, although we often
must carefully select appropriate projections of the three-dimensional space
onto the two dimensions of the page. For functions with more than two
independent variables, the use of orthogonal Cartesian coordinates is more
problematic. In some cases we can identify variables that allow us to reduce
the dimension of the visualisation (for example, using contours to represent a
three-dimensional surface on a two-dimensional plane), but as the number of
variables increases the difficulties in using orthogonal coordinate axes grows.

An alternative approach is to arrange the coordinate axis in parallel,
known as parallel coordinate plots (Wegman, 1990). By connecting points
on the parallel coordinates with line segments, a trajectory through the coor-
dinates axes demonstrates the relationship between the variables, and plot-
ting a sequence of trajectories allows the dependencies in the model to be
examined. It can be shown that no information is lost when a parallel coor-
dinates plot is used in place of orthogonal Cartesian coordinates (Wegman,
1990). Furthermore, the parallel coordinates plots allow multiple dependent
variables to be examined together. Examples of parallel coordinates plots
are given in Appendix A.

Parallel coordinate plots are useful for visualisation in global sensitivity
analyses, as the dependencies of several model outputs on multiple simulta-
neously varying inputs can be examined. Wegman (1990) gives a detailed
introduction to the interpretation of parallel coordinate plots. When inspect-
ing parallel coordinate plots, the eye is often drawn to connections between
neighbouring axes. This gives prominence to first-order (and, to a lesser ex-
tent, second-order) interactions. As an abstract example, if we denote the
three inputs to a model by x1, x2 and x3 and the output by y, and make
a parallel coordinates plot with the axes in this order, then it is easy to in-
fer the dependence of y on x3 (i.e. the first-order interaction of x3 and y),
while we must make more effort to trace trajectories through the coordinate
axes to examine the dependence of y on x1. By permuting the ordering of
the axes so that each of the model input axes is a neighbour of the output
axis, we can more easily recognise the first-order dependence of the model
output to variations of the inputs. Here we use the permutation algorithm of
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Wegman (1990). In addition, colouring the line segments assists in the visu-
alisation. Examples of parallel coordinate plots, with coloured line segments
and permuted ordering of the axes are shown in figures 5–8, 10, 11, 13 and
14.

3.2. Variance-based sensitivity indices

The difficulty in visually representing the sensitivity for models with large
numbers of inputs motivates the construction of summary statistics. Numer-
ous methods have been proposed to summarise the results of global sensitivity
analyses (Saltelli et al., 2008; Pianosi et al., 2015) and here we adopt variance-
based sensitivity indices (Sobol’, 2001; Saltelli et al., 2010) as these have been
widely used and are relatively easy to compute. In this approach, the vari-
ance in the model output is decomposed into contributions from changes in
individual input parameters, pair-wise interactions (i.e. two input parame-
ters varying simultaneously) and the sets of higher-order interactions (Sobol’,
2001). Normalised measures, called sensitivity indices, are calculated. While
the sensitivity indices are often useful summary statistics, the characterisa-
tion of the sensitivity of the model through the variance of the model output
can be misleading if the distribution of model outputs is highly skewed or
multi-modal (Pianosi et al., 2015).

The first-order sensitivity index, denoted by Si for model input xi where
the index i = 1 . . . N with N denoting the number of elements of the vector
x (i.e. the number of inputs to the model that are varied in the sensitivity
analysis), is given (in the notation of Saltelli et al. 2010) by

Si = Vxi
(Ex

∼i
(y|xi)) /V (y), (18)

where x
∼i denotes the set of all model inputs excluding xi, Ex

∼i
(y|xi) rep-

resents the expected value of y taken over all possible values of x
∼i with

xi fixed, Vxi
denotes the variance taken over all values of the input xi, and

V (y) is the variance in the model output when all inputs are varied (Saltelli
et al., 2010). Si is a normalised measure (i.e. 0 ≤ Si ≤ 1) of the effect
of the variation of the input xi marginalising the effect of other inputs on
the model output (Saltelli et al., 2010), which we subsequently refer to as a
first-order dependence. Equivalently, Si quantifies the expected reduction in
variance in the model output that would achieved if the input xi were fixed
(Saltelli et al., 2010). Second-order sensitivity indices are normalised mea-
sures of the contribution to the variance in model output due to variations in
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a pair of parameters; higher order sensitivity indices are similarly constructed
(Sobol’, 2001). As the number of sensitivity indices grows exponentially with
the number of model parameters, rather than compute the sensitivity indices
of second-order and higher, it is typical to compute instead the total effects
indices (Saltelli et al., 2010).

The total effects index of model input xi, denoted by ST i, is given by
(Saltelli et al., 2008, 2010)

ST i = Ex
∼i
(Vxi

(y|x
∼i)) /V (y) = 1− Vx

∼i
(Exi

(y|x
∼i)) /V (y), (19)

where Vxi
(y|x

∼i) and Exi
(y|x

∼i) are the variance and expectation, respec-
tively, of the model output taken over all values of the input xi with the
other inputs fixed, and Ex

∼i
and Vx

∼i
are the expectation and variance, re-

spectively, taken over all inputs except xi (Saltelli et al., 2010). ST i is a
normalised measure (0 ≤ ST i ≤ 1) of the total contribution from variation in
xi (first-order and higher-order effects) to the variance in the model output
(Saltelli et al., 2010). Equivalently, ST i measures the expected variance in
model outputs that would remain if all inputs other than xi are fixed (Saltelli
et al., 2010). The variance-based sensitivity indices allow the variation in the
model output to be apportioned to the model inputs, but additional analy-
sis and visualization must be performed to understand the distribution and
overall uncertainty of the model outputs.

The calculation of the sensitivity indices requires the evaluation of multi-
dimensional integrals over the model input space, and is therefore computa-
tionally expensive for a model with a large number of inputs. Saltelli et al.
(2010) gives estimators of the integrals required to compute the sensitivity
indices that can be obtained from a random, space-filling sampling of the
parameter space. Here we use a Latin hypercube design with a maximin
criteria, iteratively adjusting the placement of sampling points in the Latin
hypercube to maximize the minimum distance between points (Morris and
Mitchell, 1995). The model inputs in each sample are drawn from uniform
distributions defined on the intervals given in table 1. Confidence intervals on
the first-order and total effect sensitivity indices are estimated by a bootstrap
of the Latin hypercube samples (Archer et al., 1997; Yang, 2011).

The convergence of the sensitivity indices (particularly the first-order in-
dices) corresponding to model inputs with little influence (i.e. when Si ≪ 1
and ST ≪ 1) can be extremely slow. As these inputs are of little further
interest we are content to leave unconverged values of the sensitivity indices
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where they do not prevent the identification of the model inputs that strongly
influence the model. The forward model applications (case i) are computa-
tionally cheap and therefore large sample sizes (in excess of 100000 points
in the Latin hypercube) are used. In contrast, the model inversion calcula-
tions (case ii) require several forward model evaluations (typically around 20
evaluations), and therefore the computational cost increases. We therefore
take smaller samples of 10000 points in the Latin hypercube for case (ii) but
assess the convergence of the estimators of the sensitivity indices.

4. Results

4.1. Weak eruption with wind

We consider first the weak eruption scenario with the atmospheric wind
included in the atmospheric profiles. The PlumeRise model results using
the specified ‘reference’ model inputs are shown in figure 4. For case (i) the
source mass flux is fixed at Q0 = 1.5× 106 kg/s and the plume top height is
found to be H = 3.27 km above the vent which is 1.5 kmasl. For case (ii) the
plume top height is fixed at H = 6 km above the vent and the source mass
flux is found to be Q0 = 1.08× 107 kg/s using the reference values for model
inputs.

The influence of variations in the model inputs on the plume top height
when the source mass flux Q0 is specified is visualised in a parallel coordinates
plots in figure 5. A relatively small sample of 50 inputs sets is drawn using
a Latin hypercube design, as taking larger samples results in plots that are
more difficult to display. However, the dependencies displayed are consistent
with those found when larger samples are used. Each trajectory corresponds
to one set of inputs (the entrainment coefficients ks and kw, exit velocity U0,
magmatic temperature T0, volatile mass fraction n0, wind speed scale factor
λ, and the source mass flux Q0) from the sample, and the corresponding
model outputs which in this case are the plume top height H and additionally
the height at which condensation occurs in the plume (denoted by Hc, with
Hc = 0 if no condensation of water vapour occurs). The trajectories are
coloured using the value for the source mass flux.

Figure 5 demonstrates a strong dependence of the model prediction of
the plume height H on the value taken for the source mass flux Q0, with
larger values of H when Q0 has values at the upper end of the specified
range. Indeed, the colour scale on the H-axis is almost reproduced on the
Q0 axis. Therefore there is a strong first-order dependence of H on Q0.
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Figure 4: Solutions of the PlumeRise model with the reference input values for the weak
eruption scenario. The vent is specified to be at an altitude of 1.5 kmasl. In a–d the source
mass flux is set at Q0 = 1.5× 106 kg/s (case i). In e–h the plume height is specified to be
H = 7.5 kmasl (case ii). a and e illustrate the plume trajectory and radius. The vertical
velocity (b and f), plume temperature (c and g), and the density difference between the
plume and atmosphere (d and h) as functions of the elevation above sea level are shown.
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Figure 5: Parallel coordinates plots for the weak eruption case with wind included and
the source mass flux specified. The entrainment coefficients ks and kw, exit velocity U0

(measured in m/s), magmatic temperature T0 (K), volatile mass fraction n0, wind speed
scale factor λ, and the source mass flux Q0 (kg/s) are varied using a Latin hypercube
design with 50 sampling points. The plume height H (km) is calculated. Note Q0 is
plotted on a logarithmic scale. The height at which condensation occurs in the plume,
Hc (km), is also plotted, with Hc = 0 if no condensation occurs. Trajectories through the
coordinate axis represent individual model evaluations, and these are coloured using the
plume height H . In each row, the same numerical output is plotted but the ordering of
the axes are permuted to aide with the visual interpretation of the sensitivity to input
values.
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Similarly, there is a strong first-order dependence of H on the value of the
wind entrainment coefficient kw, with larger values of H predicted when kw
takes values at the lower end of the range. The line segments connecting the
kw and H axes form an ”X” and the colour scale on the H-axis is inverted
on the kw-axis. Indeed, this relationship appears to be stronger than that
between Q0 and H .

No other prominent first-order interactions of model inputs with H are
apparent, but there is evidence in figure 5 of second-order interactions. While
there is no strong first-order dependence of H on the no-wind entrainment
coefficient ks, variation in ks does have an influence on H through an interac-
tion with kw. In particular, the highest values of H are achieved when both
kw and ks take values at the lower end of their ranges. Increasing ks while
leaving kw (approximately) fixed results in smaller values of H .

By including the height at which condensation occurs as a coordinate axis,
we are able to examine the control of the model inputs on the phase change
of water vapour in the plume and the influence of this on the plume height.
Figure 5 shows that there is a threshold on the plume height of approximately
8.2 km below which condensation does not occur for any of the sampled
inputs. However, the strong first-order dependence of the plume height on
both of the source mass flux Q0 and the wind entrainment coefficient kw
means that there is no clear criteria for the source conditions that results in
condensation.

It is notable in figure 5 that there are fewer trajectories passing through
the upper half of the plume height axis than pass through the lower half
of this axis. This indicates a skewed distribution of plume heights (with a
relatively long upper tail) even though all model inputs are sampled from
uniform distributions. Furthermore, as the relatively high rising plumes are
more likely to encounter conditions for which condensation of water vapour
can occur, there is evidence that the long upper tail is due to the effects of
moisture on the plume dynamics.

In table 2 we report the first-order and total effects sensitivity indices for
case (i) where the source mass flux is specified and plume height is calculated.
The values of the sensitivity indices confirm the inferences that were drawn
from the parallel coordinates visualisation (figure 5), although much larger
sampling designs are constructed to compute converged values of the sensitiv-
ity indices. The variance in the distribution of plume heights is dominantly
due to variation in the wind entrainment coefficient kw (i.e. the magnitude
of the sensitivity indices corresponding to kw are the largest within this set

23



Table 2: First-order (upper panel) and total effects (lower panel) sensitivity indices for
the weak eruption with wind and specified source mass flux. A 95% confidence interval is
estimated by a bootstrap of the sampled values.
Parameter (symbol) First-order sensitivity index 95% Confidence interval
Entrainment coefficient due to wind (kw) 5.9× 10−1 [5.7× 10−1, 5.9× 10−1]
Source mass flux (Q0) 3.5× 10−1 [3.5× 10−1, 3.6× 10−1]
Wind speed scale factor (λ) 1.8× 10−2 [1.4× 10−2, 1.8× 10−2]
Entrainment coefficient in absence of wind (ks) 1.6× 10−2 [1.6× 10−2, 2.0× 10−2]
Magmatic temperature (T0) 4.5× 10−3 [3.9× 10−3, 5.5× 10−3]
Mass fraction of gas (n0) 2.0× 10−4 [−5.8× 10−5, 2.9× 10−4]
Exit velocity (U0) 6.2× 10−5 [−1.5× 10−4, 4.7× 10−5]

Total effects sensitivity index 95% Confidence interval
Entrainment coefficient due to wind (kw) 6.1× 10−1 [6.1× 10−1, 6.1× 10−1]
Source mass flux (Q0) 3.7× 10−1 [3.7× 10−1, 3.7× 10−1]
Entrainment coefficient in absence of wind (ks) 2.5× 10−2 [2.5× 10−2, 2.5× 10−2]
Wind speed scale factor (λ) 1.9× 10−2 [1.9× 10−2, 1.9× 10−2]
Magmatic temperature (T0) 4.7× 10−3 [4.7× 10−3, 4.8× 10−3]
Mass fraction of gas (n0) 2.2× 10−4 [2.1× 10−4, 2.2× 10−4]
Exit velocity (U0) 7.2× 10−5 [7.1× 10−5, 7.2× 10−5]

of model inputs) and, furthermore, this is predominately a first-order de-
pendence since the total effects index does not differ substantially from the
first-order index. Therefore, if the wind entrainment coefficient was held
fixed, then the variation in the plume height would be greatly reduced. Ad-
ditionally, we note that the variation of the plume height also has a strong
first-order influence on the variance of the source mass flux. The no-wind
entrainment coefficient ks and the wind-scale factor λ have a smaller influ-
ence on the variance of the plume height, and we note that the total effects
index corresponding to ks is larger than the corresponding first-order index.
Therefore, the no-wind entrainment coefficient acts in combination with other
model inputs to result in variations in the predicted plume height. The sen-
sitivity indices for the remaining model inputs are of much small magnitude,
indicating that variations in these inputs make only a small contribution to
the variance in the prediction of the plume height. The skewness of the dis-
tribution of the model prediction of the plume heights is not revealed in the
sensitivity indices, highlighting the importance of visualisation alongside the
calculation of the summary statistics.

In figure 6 we show the parallel coordinates plot when the plume top
height is specified and the source mass flux is inferred through an inverse
calculation. We observe a strong first-order dependence of the source mass
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flux Q0 on the wind entrainment coefficient kw, with relatively high values of
the source mass flux when kw takes relatively large values (demonstrated by
line segments that connected these variable axes that are almost orthogonal
to the axes). While the source mass flux is related to the plume height, with
typically high plumes resulting in high values of the source mass flux, it is
notable that the highest plume height in this sample does not lead to the
largest source mass flux as the greatest Q0 value occurs when of kw ≈ 1.0
(i.e. the greatest value of kw in the sample).

Figure 6 also identifies a threshold on the plume height of approximately
8.2 km below which condensation does not occur for any of the sampled in-
puts. However, exceeding this height does not always result in condensation,
as there are two trajectories that exceed the threshold height yet have no
condensation (i.e. Hc = 0). Tracing these trajectories we find that both
have relatively low values for both the volatile mass fraction n0 and the mag-
matic temperature T0. The height at which condensation occurs does not
appear to be strongly related to the predicted value of the source mass flux
Q0.

The sensitivity indices for case (ii) where the plume height is specified and
the source mass flux is determined by inverse modelling are reported in table
3. The magnitude of the indices are similar to those found when the source
mass flux is specified (table 2), and therefore the ranking of the model inputs
by their influence on the variance of the model output is similar. Note the
negative value of the first-order sensitivity index for the exit velocity indicates
incomplete convergence of the sampling estimator for this quantity. This slow
convergence indicates the low first-order influence of the exit velocity on the
inferred source mass flux.

4.2. Weak eruption without wind

When the wind is removed from the inputs to the weak eruption case
study, the plume rises vertically and the entrainment is reduced. Therefore,
for specified source conditions, the plume reaches higher altitudes than are
found in the windy environment. For case (i) the source mass flux is fixed at
Q0 = 1.5 × 106 kg/s and the plume top height is found to be H = 9.16 km
above the vent, which is a factor of three greater than the height attained
when the wind is included. For case (ii) when the plume top height is fixed
at H = 6 km above the vent the source mass flux is found to be Q0 =
1.9×105 kg/s using the reference values for model inputs, a value two orders
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Figure 6: Parallel coordinates plots for the weak eruption case with wind included and
the plume height specified. The entrainment coefficients ks and kw, exit velocity U0

(measured in m/s), magmatic temperature T0 (K), volatile mass fraction n0, wind speed
scale factor λ, and the plume top height H (km) are varied using a Latin hypercube
design with 50 sampling points. The source mass flux Q0 (kg/s) is determined through
an inversion calculation. Note Q0 is plotted on a logarithmic scale. The height at which
condensation occurs in the plume, Hc (km), is also plotted, with Hc = 0 if no condensation
occurs. Trajectories through the coordinate axis represent individual model evaluations,
and these are coloured using the inferred source mass flux Q0. In each row, the same
numerical output is plotted but the ordering of the axes are permuted to aide with the
visual interpretation of the sensitivity to input values.
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Table 3: First-order (upper panel) and total effects (lower panel) sensitivity indices for
the weak eruption with wind and specified plume height. A 95% confidence interval is
estimated by a bootstrap of the sampled values.
Parameter (symbol) First-order sensitivity index 95% Confidence interval
Entrainment coefficient due to wind (kw) 7.0× 10−1 [6.3× 10−1, 9.6× 10−1]
Plume top height (H) 2.6× 10−1 [1.7× 10−1, 3.7× 10−1]
Wind speed scale factor (λ) 1.1× 10−2 [−1.7× 10−2, 4.3× 10−2]
Magmatic temperature (T0) 6.4× 10−3 [−1.4× 10−2, 1.5× 10−2]
Entrainment coefficient in absence of wind (ks) 4.3× 10−3 [−2.4× 10−2, 3.4× 10−2]
Mass fraction of gas (n0) 1.3× 10−4 [−1.9× 10−3, 3.5× 10−3]
Exit velocity (U0) −1.6× 10−4 [−2.4× 10−4, 1.3× 10−3]

Total effects sensitivity index 95% Confidence interval
Entrainment coefficient due to wind (kw) 7.0× 10−1 [6.9× 10−1, 7.1× 10−1]
Plume top height (H) 2.5× 10−1 [2.5× 10−1, 2.5× 10−1]
Wind speed scale factor (λ) 2.4× 10−2 [2.3× 10−2, 2.4× 10−2]
Entrainment coefficient in absence of wind (ks) 2.1× 10−2 [2.1× 10−1, 2.2× 10−2]
Magmatic temperature (T0) 5.6× 10−3 [5.5× 10−3, 5.6× 10−3]
Mass fraction of gas (n0) 1.9× 10−4 [1.9× 10−4, 1.9× 10−4]
Exit velocity (U0) 8.8× 10−5 [8.6× 10−5, 8.9× 10−5]

of magnitude smaller than the source mass flux predicted by the model when
the wind is included.

Figures 7 and 8 show parallel coordinates plots indicating the model de-
pendencies for case (i) and case (ii), respectively. When the source mass flux
is specified (figure 7) the predicted plume height is most sensitive the values
taken for the no-wind entrainment coefficient ks and the source mass flux Q0.
Similarly, when the plume height is specified (figure 8) the predicted value
of the source mass flux is strongly controlled by the no-wind entrainment
coefficient ks and the height of the plume H . The remaining source variables
have little influence on the source mass flux determined by the model. The
tabulated values of the sensitivity indices in tables 4 and 5 are in support of
these inferences.

There is no clear relationship between the height at which condensation
occurs in the plume and the plume height when the latter is specified as a
model input (figure 8). In contrast, when the source mass flux is specified
(figure 7), the height at which condensation occurs is strongly coupled to the
plume height (and so the source mass flux), and is also influenced by the
value taken for the entrainment coefficient ks. This demonstrates that the
height at which condensation occurs in the plume is related to the source
conditions and the efficiency of mixing of ambient air. Note that in this case,
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Figure 7: Parallel coordinates plots for the weak eruption case without wind and the source
mass flux specified. The no-wind entrainment coefficient ks, exit velocity U0 (m/s), mag-
matic temperature T0 (K), volatile mass fraction n0, and the source mass flux Q0 (kg/s)
are varied using a Latin hypercube design with 50 sampling points. The plume height
H (km) is calculated. Note Q0 is plotted on a logarithmic scale. The height at which con-
densation occurs in the plume, Hc (km), is also plotted, with Hc = 0 if no condensation
occurs. Trajectories through the coordinate axis represent individual model evaluations,
and these are coloured using the plume height H . In each row, the same numerical output
is plotted but the ordering of the axes are permuted to aide with the visual interpretation
of the sensitivity to input values.
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Figure 8: Parallel coordinates plots for the weak eruption case without wind and the plume
height specified. The no-wind entrainment coefficient ks, exit velocity U0 (m/s), magmatic
temperature T0 (K), volatile mass fraction n0, and the plume top height H (km) are varied
using a Latin hypercube design with 50 sampling points. The source mass flux Q0 (kg/s)
is determined through an inversion calculation. Note Q0 is plotted on a logarithmic scale.
The height at which condensation occurs in the plume, Hc (km), is also plotted, with
Hc = 0 if no condensation occurs. Trajectories through the coordinate axis represent
individual model evaluations, and these are coloured using the inferred source mass flux
Q0. In each row, the same numerical output is plotted but the ordering of the axes are
permuted to aide with the visual interpretation of the sensitivity to input values.

29



Table 4: First-order (upper panel) and total effects (lower panel) sensitivity indices for the
weak eruption without wind and specified source mass flux. A 95% confidence interval is
estimated by a bootstrap of the sampled values.
Parameter (symbol) First-order sensitivity index 95% Confidence interval
Source mass flux (Q0) 5.0× 10−1 [5.0× 10−1, 5.1× 10−1]
Entrainment coefficient in absence of wind (ks) 4.6× 10−1 [4.6× 10−1, 4.6× 100]
Magmatic temperature (T0) 4.8× 10−3 [4.8× 10−3, 5.2× 10−3]
Exit velocity (U0) 7.7× 10−4 [7.1× 10−4, 8.8× 10−4]
Mass fraction of gas (n0) 5.5× 10−4 [4.7× 10−4, 6.4× 10−4]

Total effects sensitivity index 95% Confidence interval
Source mass flux (Q0) 5.3× 10−1 [5.3× 10−1, 5.3× 10−1]
Entrainment coefficient in absence of wind (ks) 5.0× 10−1 [5.0× 10−1, 5.1× 10−1]
Magmatic temperature (T0) 5.4× 10−3 [5.4× 10−3, 5.4× 10−3]
Exit velocity (U0) 8.4× 10−4 [8.4× 10−4, 8.4× 10−4]
Mass fraction of gas (n0) 8.4× 10−4 [8.4× 10−4, 8.4× 10−4]

Table 5: First-order (upper panel) and total effects (lower panel) sensitivity indices for
the weak eruption without wind and specified plume height. A 95% confidence interval is
estimated by a bootstrap of the sampled values.
Parameter (symbol) First-order sensitivity index 95% Confidence interval
Entrainment coefficient in absence of wind (ks) 4.9× 10−1 [2.4× 10−1, 1.1× 100]
Plume top height (H) 4.7× 10−1 [1.7× 10−2, 8.8× 10−1]
Magmatic temperature (T0) 3.8× 10−3 [−2.5× 10−2, 8.1× 10−2]
Mass fraction of gas (n0) 3.6× 10−4 [−7.3× 10−3, 1.7× 10−2]
Exit velocity (U0) −2.8× 10−4 [−5.7× 10−3, 1.8× 10−2]

Total effects sensitivity index 95% Confidence interval
Entrainment coefficient in absence of wind (ks) 5.1× 10−1 [4.9× 10−1, 5.3× 10−1]
Plume top height (H) 4.9× 10−1 [4.7× 10−1, 5.0× 10−1]
Magmatic temperature (T0) 7.7× 10−3 [7.5× 10−3, 8.1× 10−3]
Exit velocity (U0) 4.0× 10−4 [3.8× 10−4, 4.1× 10−4]
Mass fraction of gas (n0) 3.8× 10−4 [3.6× 10−4, 3.9× 10−4]
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condensation is predicted to occur in the plume for all of the conditions in
this sample.

4.3. Strong eruption with wind

We consider next the strong eruption scenario with the atmospheric wind
included in the atmospheric profiles. The PlumeRise model results using
the specified ‘reference’ model inputs are shown in figure 9. For case (i) the
source mass flux is fixed at Q0 = 1.5× 109 kg/s and the plume top height is
found to be H = 35.7 km above the vent which is 1.5 kmasl. For case (ii) the
plume top height is fixed at H = 37 km above the vent and the source mass
flux is found to be Q0 = 1.8 × 109 kg/s using the reference values for model
inputs.

A parallel coordinates plot for a sample of 50 sets of model inputs is
shown in figure 10 for case (i) where the source mass flux is specified. In
contrast to the weak eruption scenarios, we find that the column collapse
can occur in this setting. Model input sets that lead to column collapse are
identified as dashed lines segments in figure 10.

Figure 10 shows that, for those input sets that produce buoyant plumes,
the plume heights are predicted to be high in the stratosphere, and the
value predicted for H is strongly controlled by the source mass flux Q0,
with higher plumes for larger values of the source mass flux, and weakly by
the entrainment coefficients ks and kw, with the highest plumes occurring
when both entrainment parameters take low values. There is evidence that
the source temperature has an influence on the plume height, typically with
higher source temperatures leading to greater plume heights, although the
dependence on T0 is weaker than for Q0, ks and kw as indicated by the input
set with the highest source temperature which produces the lowest buoyant
plume for this sample set. The remaining model inputs do not strongly
influence the calculated values of the plume heights for conditions where the
plume becomes buoyant.

Column collapse is found to occur for relatively high values of the source
mass flux (figure 10). When collapse occurs, the exit velocity U0 (most
strongly), gas mass fraction n0 and magmatic temperature (least strongly)
determine the collapse conditions. This is consistent with the values of the to-
tal sensitivity indices in table 6. However, the occurrence of column collapse
results in a strongly bi-modal distribution of the calculated plume heights
(as seen in figure 10), so the use of variance-based sensitivity indices can be
misleading. Furthermore, convergence of the indices requires substantially

31



Figure 9: Solutions of the PlumeRise model with the reference input values for the strong
eruption scenario. The vent is specified to be at an altitude of 1.5 kmasl. In a–d the source
mass flux is set at Q0 = 1.5× 109 kg/s (case i). In e–h the plume height is specified to be
H = 38.5 kmasl (case ii). a and e illustrate the plume trajectory and radius. The vertical
velocity (b and f), plume temperature (c and g), and the density difference between the
plume and atmosphere (d and h) as functions of the height are shown.

32



Figure 10: Parallel coordinates plots for the strong eruption case with wind included and
the source mass flux specified. The entrainment coefficients ks and kw, exit velocity U0

(measured in m/s), magmatic temperature T0 (K), volatile mass fraction n0, wind speed
scale factor λ, and the source mass flux Q0 (kg/s) are varied using a Latin hypercube
design with 50 sampling points. The plume height H (km) is determined. Note Q0 is
plotted on a logarithmic scale. The height at which condensation occurs in the plume,
Hc (km), is also plotted, with Hc = 0 if no condensation occurs. Trajectories through the
coordinate axis represent individual model evaluations, and these are coloured using the
inferred source mass flux Q0. Dashed line segments indicate a model input set that leads
to column collapse. In each row, the same numerical output is plotted but the ordering
of the axes are permuted to aide with the visual interpretation of the sensitivity to input
values.
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Table 6: First-order (upper panel) and total effects (lower panel) sensitivity indices for
the strong eruption with wind and specified source mass flux. A 95% confidence interval
is estimated by a bootstrap of the sampled values.
Parameter (symbol) First-order sensitivity index 95% Confidence interval
Exit velocity (U0) 2.9× 10−1 [2.9× 10−1, 3.0× 10−1]
Magmatic temperature (T0) 7.5× 10−2 [7.0× 10−2, 8.2× 10−2]
Mass fraction of gas (n0) 5.8× 10−2 [5.3× 10−2, 6.6× 10−2]
Entrainment coefficient in absence of wind (ks) 1.3× 10−2 [1.2× 10−2, 1.5× 10−2]
Wind speed scale factor (λ) −1.1× 10−3 [−3.2× 10−3, 7.9× 10−4]
Source mass flux (Q0) −1.3× 10−3 [−8.0× 10−3, 6.3× 10−3]
Entrainment coefficient due to wind (kw) −5.1× 10−3 [−8.9× 10−3,−2.8× 10−4]

Total effects sensitivity index 95% Confidence interval
Exit velocity (U0) 7.7× 10−1 [7.6× 10−1, 7.7× 10−1]
Source mass flux (Q0) 4.1× 10−1 [4.1× 10−1, 4.1× 10−1]
Mass fraction of gas (n0) 3.6× 10−1 [3.5× 10−1, 3.6× 10−1]
Magmatic temperature (T0) 2.9× 10−1 [2.8× 10−1, 2.9× 10−1]
Entrainment coefficient due to wind (kw) 1.5× 10−1 [1.5× 10−1, 1.6× 10−1]
Wind speed scale factor (λ) 3.4× 10−2 [3.3× 10−2, 3.5× 10−2]
Entrainment coefficient in absence of wind (ks) 2.2× 10−2 [2.2× 10−2, 2.3× 10−2]

larger samples. For example, the indices reported in table 6 are calculated
from a sample of 100000 model input sets and the first-order indices corre-
sponding to kw, Q0 and λ have not yet converged (as negative values are
found). Therefore, the visualisation in figure 10 together with the sensitivity
indices in table 6 is needed to gain insight into the model sensitivities.

A parallel coordinates plot for case (ii) where the plume height is specified
as a model input and the source mass flux is predicted through a model
inversion is shown in figure 11. For the strong eruption case the model
inversion can fail to find solutions due to column collapse, where the erupted
material does not become buoyant. Model input sets that lead to failure
of the inversion calculation are identified as grey dashed lines segments in
figure 11. Note we plot points for the source mass flux in these cases in
order to avoid breaking the line segments on the parallel coordinates plots.
The failure of the inversion calculation means that the sensitivity indices
associated with the determination of the source mass flux from a specified
plume height cannot be calculated in this case. However, the visualisation
allows us to assess the sensitivity to variations in the model inputs.

The predicted source mass flux is strongly related to the specified height
of the plume (figure 11), with higher values of Q0 when the plume top height
is large. The no-wind entrainment coefficient ks has relatively more influence
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on the predicted source mass flux than the wind entrainment coefficient kw,
in contrast to the weak eruption case. The source mass flux is predicted
to take large values when ks has values towards the upper end of its range,
but there is evidence of a second-order interaction between ks and kw (e.g.
low values of one of these parameters can be compensated by high values
of the other). There is a weak dependence of the source mass flux on the
value of the source temperature, typically with larger values of Q0 when T0
has relatively low values. There is no clear systematic influence of the other
model inputs on the predicted source mass flux when the plume becomes
buoyant.

From the few model input sets shown in figure 11 that lead to failure of
the inversion calculation, and inspection of similar plots for larger sample
sizes (figure 12), the influence of the source conditions on column collapse
can be examined. Figures 11 and 12 show that the value taken for the exit
velocity U0 strongly determines column collapse, with low values of U0 leading
to eruption columns that do not become buoyant. Relatively high values of
the exit velocity only result in collapse if either or both of the entrainment
coefficients take relatively high values. Furthermore, relatively low values
of both the magmatic temperature T0 and source gas mass fraction n0 are
found for those plumes that collapse. The values of the temperature and exit
velocity are also linked, with relatively high exit velocities only resulting in
collapse if the temperature is low and vice versa.

4.4. Strong eruption without wind

We now consider the strong eruption with the atmospheric wind removed
from the model forcing. A parallel coordinates plot for a sample of 50 model
input sets for case (i), when the source mass flux is specified and the plume
height is calculated is shown in figure 13. The strong dependence of the plume
height H on the source mass flux Q0 is again observed for input sets that
result in buoyant plumes. The no-wind entrainment coefficient ks also has
a strong control, with the plume height predicted to be higher when ks has
relatively low values. There is some evidence in figure 13 that the magmatic
temperature T0 influences the plume height, with higher plumes occurring
when the source is relatively hot. Interestingly, the model predicts that a
substantial proportion of the high rising plumes do not have condensation
during the ascent.

Column collapse is predicted to occur for 14 of the 50 model input sets
(denote by dashed lines in figure 13). These collapsing conditions include a
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Figure 11: Parallel coordinates plot for the strong eruption case with wind included and
the plume height specified. The entrainment coefficients ks and kw, exit velocity U0

(measured in m/s), magmatic temperature T0 (K), volatile mass fraction n0, wind speed
scale factor λ, and the plume top height H (km) are varied using a Latin hypercube
design with 50 sampling points. The source mass flux Q0 (kg/s) is determined through
an inversion calculation. Note Q0 is plotted on a logarithmic scale. The height at which
condensation occurs in the plume, Hc (km), is also plotted, with Hc = 0 if no condensation
occurs. Trajectories through the coordinate axis represent individual model evaluations,
and these are coloured using the inferred source mass flux Q0. Grey dashed line segments
indicate a input set where the inversion calculation failed, so the target height could not
be attained. In each row, the same numerical output is plotted but the ordering of the
axes are permuted to aide with the visual interpretation of the sensitivity to input values.
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Figure 12: A parallel coordinates plot of model inputs leading to column collapse for the
strong eruption case with wind included and the plume height specified. The entrainment
coefficients ks and kw, exit velocity U0 (measured in m/s), magmatic temperature T0 (K),
volatile mass fraction n0, wind speed scale factor λ, and the plume top height H (km) are
varied using a Latin hypercube design with 500 sampling points. In this sample, 54 input
sets result in column collapse and the values of ks, kw, U0, T0, n0 and λ in these input
sets are plotted on parallel coordinate axis and connected by line segments. In each row,
the same numerical output is plotted but the ordering of the axes are permuted to aide
with the visual interpretation of the sensitivity to input values.
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Figure 13: Parallel coordinates plots for the strong eruption case without wind and the
source mass flux specified. The no-wind entrainment coefficient ks, exit velocity U0 (mea-
sured in m/s), magmatic temperature T0 (K), volatile mass fraction n0, and the source
mass flux Q0 (kg/s) are varied using a Latin hypercube design with 50 sampling points.
The plume height H (km) is determined. Note Q0 is plotted on a logarithmic scale. The
height at which condensation occurs in the plume, Hc (km), is also plotted, with Hc = 0
if no condensation occurs. Trajectories through the coordinate axis represent individual
model evaluations, and these are coloured using the calculated plume height H . Dashed
line segments indicate a model input set that leads to column collapse. In each row, the
same numerical output is plotted but the ordering of the axes are permuted to aide with
the visual interpretation of the sensitivity to input values.
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Table 7: First-order (upper panel) and total effects (lower panel) sensitivity indices for the
strong eruption without wind and specified source mass flux. A 95% confidence interval
is estimated by a bootstrap of the sampled values.
Parameter (symbol) First-order sensitivity index 95% Confidence interval
Exit velocity (U0) 4.3× 10−1 [4.3× 10−1, 4.4× 10−1]
Magmatic temperature (T0) 7.3× 10−2 [7.3× 10−2, 7.6× 10−2]
Mass fraction of gas (n0) 6.6× 10−2 [6.5× 10−2, 6.8× 10−2]
Source mass flux (Q0) 2.0× 10−2 [2.0× 10−2, 2.3× 10−2]
Entrainment coefficient in absence of wind (ks) 7.2× 10−3 [7.0× 10−3, 7.7× 10−3]

Total effects sensitivity index 95% Confidence interval
Exit velocity (U0) 8.0× 10−1 [8.0× 10−1, 8.0× 10−1]
Source mass flux (Q0) 3.5× 10−1 [3.5× 10−1, 3.5× 10−1]
Mass fraction of gas (n0) 2.9× 10−1 [2.9× 10−1, 3.0× 10−1]
Magmatic temperature (T0) 2.4× 10−1 [2.4× 10−1, 2.4× 10−1]
Entrainment coefficient in absence of wind (ks) 1.6× 10−2 [1.6× 10−2, 1.6× 10−2]

larger range of the source mass flux Q0 than is found when the atmospheric
wind is included (see figure 10). Column collapse is typically found when the
exit velocity U0 is relatively low.

The sensitivity indices for case (i) of the strong plume example without
wind included are reported in table 7. As the distribution of the predicted
plume height is strongly bi-model, the variance-based sensitivity indices do
not comprehensively reveal the model dependencies for this case, and are
slowly converging; in table 7 the indices are calculated from a sample of one
million model inputs. The sensitivity indices give particular prominence to
the exit velocity, indicating the importance of U0 in determining whether the
column becomes buoyant.

A parallel coordinates plot for case (ii) where the plume height is specified
and the source mass flux determined, is shown in figure 14 and illustrates
the strong relationship between the plume height H and source mass flux
Q0. There is also a strong dependence of the predicted value of the source
mass flux on the no-wind entrainment coefficient ks. In contrast to the strong
eruption with wind included, condensation is predicted to occur for all inputs
sets that result in buoyant plumes. Three of the 50 model input sets lead
to a failure of the inversion calculation, denoted by dashed grey lines on the
figure, and so we do not compute the corresponding sensitivity indices.
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Figure 14: Parallel coordinates plot for the strong eruption case without wind and the
plume height specified. The no-wind entrainment coefficient ks, exit velocity U0 (measured
in m/s), magmatic temperature T0 (K), volatile mass fraction n0, and the plume top
height H (km) are varied using a Latin hypercube design with 50 sampling points. The
source mass flux Q0 (kg/s) is determined through an inversion calculation. Note Q0 is
plotted on a logarithmic scale. The height at which condensation occurs in the plume,
Hc (km), is also plotted, with Hc = 0 if no condensation occurs. Trajectories through the
coordinate axis represent individual model evaluations, and these are coloured using the
inferred source mass flux Q0. Grey dashed line segments indicate a input set where the
inversion calculation failed, so the target height could not be attained. In each row, the
same numerical output is plotted but the ordering of the axes are permuted to aide with
the visual interpretation of the sensitivity to input values.
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5. Discussion

The global sensitivity analysis for each of the scenarios considered demon-
strates the importance of a relatively small set of the inputs to the model
on the predictions. Variations in the source mass flux Q0 and the entrain-
ment coefficients ks and kw have the dominant control on the plume height
when forward model calculations are performed in the considered ranges for
the input parameters. If inverse model calculations are performed, with the
plume height specified, then variations in the plume height H and ks and kw
are dominant in controlling the prediction of the source mass flux. The other
inputs have less influence on the model predictions.

As the PlumeRise model is a coupled nonlinear system of equations, it is
difficult to anticipate these sensitivities directly from the model formulation.
However, for buoyant plumes of a single phase of incompressible fluid that
issues from a point source into a linearly stratified quiescent ambient, dimen-
sional analysis suggests a fundamental relationship between the height of the
plume, denoted by h for this idealised setting, and the source buoyancy flux,
F0, with

h = cN−3/4F
1/4
0 (20)

where N is the buoyancy frequency of the atmosphere defined by

N2 = − g

ρ0

dρA
dz

, (21)

is assumed to be a positive constant, and c is a dimensionless constant (Mor-
ton et al., 1956). This relationship has been used to motivate the formulation
of scaling relationships for volcanic plumes. Sparks et al. (1997) and Mastin
et al. (2009) impose a relationship H = αQβ and use observational data to
calibrate the dimensional prefactor α and the exponent β, and both stud-
ies find β ≈ 0.25. Other studies (see e.g. Wilson et al., 1978; Settle, 1978;
Woods, 1988; Sparks et al., 1997; Degruyter and Bonadonna, 2012) have
incorporated the atmospheric buoyancy frequency and used source and at-
mospheric thermodynamic parameters to express the source buoyancy flux in
terms of the source mass flux. Here we use the expression given in Degruyter
and Bonadonna (2012) and Woodhouse et al. (2013) as an estimate of the
height of a volcanic plume in a quiescent atmosphere, H0, with

H0 ≈
0.0013√

ks

(

g (Cp0T0 − CATA0)

ρA0CATA0

)1/4

N−3/4Q1/4, (22)
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for H0 measured in km. Note that for volcanic plumes, the compressibility
of the atmosphere is important (as plumes typically rise to heights compa-
rable with the scale height of the atmosphere), and therefore the buoyancy
frequency should be calculated using the potential temperature of the atmo-
sphere (Gill, 1982).

For plumes rising in a wind field, the plume height is significantly reduced
compared to an equivalent plume rising in quiescent atmosphere. Degruyter
and Bonadonna (2012) and Woodhouse et al. (2013) have proposed modi-
fications of the algebraic relationship (22) to explicitly account for the at-
mospheric wind. The relationships proposed by Degruyter and Bonadonna
(2012) and Woodhouse et al. (2013) each have the form,

Q0 =
25/2πk2s
z41

[

ρA0CATA0

g ((Cvn0 + Cs (1− n0))T0 − CATA0)

]

N3H4f (W) , (23)

where z1 is a calibration parameter (Morton et al., 1956 give z1 = 2.8 from
numerical solutions of an integral model of pure plumes, i.e. with boundary
conditions corresponding to a point source of buoyancy with no flux of mass
or momentum, while Woodhouse et al. 2013 take z1 = 2.67 from numeri-
cal solutions of an integral model of volcanic plumes in a quiescent Standard
Atmosphere). Note, here we have inverted the expression presented in Wood-
house et al. (2013) to give the source mass flux as a function of the plume
height. The effect of wind is described by the function f(W) which is a
monotonic increasing function of a dimensionless measure of the wind speed
W. The models differ in the specification of the dimensionless wind speed W,
and the form of the function f . Degruyter and Bonadonna (2012) propose

f (W) = 1 +
z41
25/2

.
k2w
6k2s

W, with W =
v̄

N̄H
, (24)

while Woodhouse et al. (2013) suggest

f (W) =

(

1 + bW + cW2

1 + aW

)4

, with W = 1.44
γ̇

N
. (25)

Here v̄ and N̄ are the wind speed and buoyancy frequency averaged over
the plume height (Degruyter and Bonadonna, 2012), γ̇ is representative of
the shear rate of the atmospheric wind, and a = 0.87 + 0.05kw/ks, b =
1.09 + 0.32kw/ks and c = 0.06 + 0.03kw/ks (Woodhouse et al., 2013). The
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functional form (24) is obtained by Degruyter and Bonadonna (2012) from a
linear combination, with equal weights, of the plume rise height relationship
of Morton et al. (1956) for plumes in a quiescent ambient (when W ≡ 0)
and the asymptotic expression of Hewett et al. (1971) for the rise height of a
pure plume in a uniform cross wind that is appropriate for W ≫ 1 (Hewett
et al., 1971). In contrast, the more complex functional form in (25) emerges
as Woodhouse et al. (2013) fit an algebraic expression for the plume height
as a function of the source mass flux (i.e. the inverse of the expression 23)
to numerical solutions of the integral plume model in a standard atmosphere
over a range of values of W < 5 that is typical of wind-blown volcanic plumes
rather than employing a combination of the relationships appropriate in the
asymptotic regimes W ≪ 1 and W ≫ 1. However, the physics captured by
the algebraic relationships of Degruyter and Bonadonna (2012) and Wood-
house et al. (2013) are essentially identical; the rise height of the plume
decreases as the shear rate of the wind increases for a fixed source mass flux,
due to enhanced mixing.

The algebraic relationships are simplified descriptions of the dynamics
of eruption columns; they can be considered as surrogates of the nonlinear
system of ordinary differential equations (in Costa et al. 2016 these rela-
tionships are described as 0th-degree models). The use of source parameters
and representative atmospheric parameters means that these algebraic re-
lationship do not capture the complexity of behaviour found when solving
the system of differential equations. For examples, the effects of different
stratification in the troposphere and stratosphere (Woods, 1988; Glaze and
Baloga, 1996), change of phase of water vapour (Woods, 1993; Glaze et al.,
1997; Woodhouse et al., 2013), and local variations in the wind speed with
height (Bursik, 2001; Bursik et al., 2009), cannot be explored with the alge-
braic relationships. Nonetheless, they do provide insight into the sensitivity
of the plume height to variations in source conditions.

It is apparent from equation (23) that, when inferring the source mass
flux using the model, there is a strong dependence on variations in the plume
height. If only the plume height is varied, with all parameters held fixed, then
we find from (23) that the change in the source mass flux, δQ, is given by

δQ =

[

(

1 +
δH

H

)4

− 1

]

Q0, (26)

where Q0 is the source mass flux found when the plume rises to height H ,
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Table 8: The change in the source mass flux Q0 (measured in kg/s) inferred from the
plume height when the specified height H0 (km asl) is changed by ±20% for each of the
eruption scenarios. The other model inputs are held fixed at their reference values.
Eruption scenario H0 Q0 for H = H0 Q0 for H = 0.8H0 Q0 for H = 1.2H0

(% change) (% change)
Weak eruption with wind 7.5 1.08× 107 4.89× 106 (−55%) 2.69× 107 (+149%)
Weak eruption without wind 7.5 1.94× 105 7.00× 104 (−64%) 5.47× 105 (+182%)
Strong eruption with wind 38.5 1.81× 109 6.00× 108 (−67%) 4.93× 109 (+172%)
Strong eruption without wind 38.5 8.71× 108 2.68× 108 (−69%) 2.32× 109 (+166%)

and δH is the change in the plume height. Therefore, when the heights are
increased by 20% the source mass flux would be expected to increase by a
factor of 2, whereas a decrease of the height by 20% would be expected reduce
the source mass flux by a factor 0.4. However, these estimates assume that
the atmospheric conditions, quantified in (23) by the representative values
of the buoyancy frequency N and the wind strength parameter W, do not
change when the height is varied. However, the atmospheric structure may be
such that relatively small changes in the plume height result in substantial
changes to the representative (e.g. column averaged) buoyancy frequency
(e.g. if the change in height takes the plume into the stratosphere) or the
representative shear rate of the atmospheric wind (e.g. if the change in height
results in the plume rising into a region with a locally high wind speed such
as jet streams). Table 8 reports the change in the source mass flux inferred
by inversion when the plume height alone is changed by ±20% for each of
the scenarios studied, and indicates that the algebraic approximation (26)
gives an under-estimate of the change in the source mass flux when there
is a variation in the plume height. This demonstrates the importance of
dynamical processes occurring above the vent that are not explicitly included
in the algebraic relationships.

In a weak wind field (such as that used for the strong eruption case
study), the wind parameter W is small and f (W) ≈ 1, so the predicted
source mass flux depends on the no-wind entrainment coefficient ks, but only
weakly on the wind entrainment coefficient kw. In contrast, in a strong wind
field (such as that used for the weak eruption case study), W > 0, and a
dependence of the source mass flux on the wind entrainment coefficient kw
can be anticipated through the function f (W)

Equation (23) anticipates the weak dependence of the model output (i.e.
either the plume height or the source mass flux) on the magmatic tempera-
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Table 9: The change in the source mass flux Q0 (measured in kg/s) inferred from the
plume height when the specified magmatic temperature T0 (K) is changed by ±100K for
each of the eruption scenarios. The other model inputs are held fixed at their reference
values.
Eruption scenario T0 Q0 for T = T0 Q0 for T = T0 + 100 Q0 for T = T0 − 100

(% change) (% change)
Weak eruption with wind 1273 1.08× 107 9.50× 106 (−12%) 1.23× 107 (+14%)
Weak eruption without wind 1273 1.94× 105 1.72× 105 (−11%) 2.21× 105 (+14%)
Strong eruption with wind 1053 1.81× 109 1.38× 109 (−23%) 2.90× 109 (+60%)
Strong eruption without wind 1053 8.71× 108 6.84× 108 (−21%) 1.28× 109 (+47%)

ture, T0, and the source gas mass fraction, n0. Indeed, equation (23) suggests
that these thermodynamics variables influence the plume properties through
the difference in internal energy between the eruption column and the at-
mosphere relative to the internal energy of the atmosphere. The variations
of the source gas mass fraction n0 (table 1) alone change the bulk heat ca-
pacity at the vent by only ±1%, so do not result in significant changes to
the heat content of the plume at the vent. The variations in T0 alone result
in changes of approximately ±8% to the heat content at the vent. Taken
together, variations in T0 and n0 change the heat content of the plume at the
vent by ±10%. Equation (23) then suggests the source mass flux would vary
by approximately ±10% when the magmatic temperature changes by ±100K
(approximately ±10% of the reference temperature) for a fixed plume height.
While this is consistent with the model solutions for the weak eruption sce-
nario, changes in the source temperature have a greater effect for the strong
eruption (table 9). This suggests that changes in the source temperature
have an important effect on the plume dynamics that is not captured by
equation (23).

Examining profiles of properties of the plume for the strong eruption sce-
nario (figure 15) for different values of the source temperature, we note that
changing the source temperature results in significant changes to the vertical
velocity profile. While all three of the plumes in figure 15 are super-buoyant
(i.e. there is an acceleration phase as the column becomes buoyant above
the vent, Woods 1988), the low source temperature results in a significantly
lower velocity in the lower part of the plume. This reduces the entrainment
of ambient air (as, in this weak wind field, the entrainment is approximately
linearly proportional to vertical velocity) and therefore the temperature in
the plume is reduced less rapidly (figure 15). The plume with low source
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Figure 15: Profiles of the plume temperature, T , vertical velocity, Uz, and mass fraction
of liquid water, φw, as functions of height for the strong eruption with wind included and
a specified plume top height of 38.5 kmasl. Three values of the source temperature are
specified: T0 = 953K (blue), T0 = 1053K (green) and T0 = 1153K (red). The black
dashed line shows the temperature profile of the ambient atmosphere.

temperature can therefore heat entrained air to greater heights, remaining
buoyant when the higher source temperature plumes have becoming nega-
tively buoyant. This behaviour is not found for the weak eruption scenario,
where the plume is not super-buoyant and changes to the source temperature
do not substantially alter the vertical velocity profiles (not shown).

The exit velocity is not included in equation (23). However, models of
pure plumes with a source momentum flux (known as forced plumes) sug-
gest that the evolution in the momentum-driven jet region does not strongly
influence the behaviour beyond a few source radii downstream of the vent.
For plumes that become buoyant, the jet-like region typically represents a
small proportion of the total rise height of the plume (Woods, 1988), and the
exit velocity is therefore not expected to strongly affect the rise height of the
plume. However, the exit velocity is important in determining whether the
eruption column becomes buoyant or collapses (Woods, 1988; Sparks et al.,
1997; Degruyter and Bonadonna, 2013).

Degruyter and Bonadonna (2013) identify two dimensionless parameters
then allow a regime diagram for buoyant and collapsing eruption columns to
be constructed. For plume rising in a quiescent atmosphere, the transition
from buoyant to collapsing plumes is determined by the condition (Degruyter
and Bonadonna, 2013)

Γ1 > Γ1c, where Γ1 = −
(

ρA0 − ρ0
ρA0

)(

Q0

πρ0U0

)1/2
g

ksU2
0

, (27)

and where Γ1c is a threshold whose value depends on the remaining source
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conditions, with typical values of 5–10 (Degruyter and Bonadonna, 2013).
In a windy atmosphere, the parameter Γ2 = kwV/ksU0 is defined, and the
buoyant/collapsing regimes are separated by a curve that is approximated as

Γ1

Γ1c
= 1 +

Γ2

Γ2c
, (28)

with collapsing plumes to the right of this curve in the (Γ1,Γ2)-plane, and
where the value of Γ2c ≈ 0.6 is weakly dependent on the source condition
(Degruyter and Bonadonna, 2013).

From these transition criteria, the occurrence of the collapsing columns
found in the global sensitivity analysis of the strong eruption case can be
understood. When the wind is removed from the atmospheric profiles, the
criterion (27) indicates that collapsing plumes will occur for high source mass
flux, low exit velocity and low values of the no-wind entrainment coefficient,
to give values of Γ1 exceeding the threshold value. These dependencies are
observed in figures 13 and 14.

When the wind is included in the atmospheric profiles, the criterion (28)
suggests additional dependencies on the wind entrainment coefficient kw, the
magmatic temperature T0 and the exsolved gas fraction n0 (which affect
the plume density at the vent) and the wind speed scale factor λ. These
dependencies are observed in figures 10, 11 and 12. Figure 16 illustrates the
buoyant and collapsing plume regimes for a sample 500 source conditions and
parameter values in the strong eruption case, plotted on the Γ1-Γ2 plane. The
criterion (28) with Γ1c = 5 adequately describes the transition in regimes.

For the atmospheric conditions considered in the two scenarios of this
study, the moisture content of the plume does not strongly influence the
dynamics. Indeed, for the strong plume case, some of the highest rising
plumes found in our sampling of the model input space do not have a phase
change of water vapour occurring. When condensation does occur in the
plumes for the strong eruption it is likely that latent heat of condensation
provides only a small proportion of the total energy of the plume. In the
weak eruption case, we observe that the highest plumes in our sampling
have a phase change of water occurring during the ascent. However, the
relative humidity of the atmosphere is less than 35% for this scenario, so little
moisture is entrained from the atmosphere. In other settings, the influence
of moisture can be much greater (Woods, 1993; Glaze et al., 1997; Mastin,
2007; Woodhouse et al., 2013), and modelling the condensation of water
vapour is important to understand other processes that occur in the plume
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Figure 16: Regime diagram for buoyant (red) and collapsing (blue) plumes. Source condi-
tions, parameter values and atmospheric conditions for the strong plume case are adopted.
The curve Γ1 = 5 (1 + Γ2/0.6) well describes the transition between conditions that result
in buoyant plumes and those leading to column collapse.

such as lightning (e.g. Behnke et al., 2014; Woodhouse and Behnke, 2014)
and aggregation of ash (e.g. Brown et al., 2012; Van Eaton et al., 2012, 2015).

5.1. Analyses of sensitivity and uncertainty

The analyses conducted in this study provide insight into the sensitivity
of the model output to variations in the inputs to the model. This is an
important component of an uncertainty analysis. The sensitivity analysis
can be used to identify those inputs whose uncertainty must be included and
propagated through the model when comparing predictions to observations.
However, there are other essential requirements of an uncertainty analysis.

Uncertainties in making measurements of physical processes in the en-
vironment can be significant and these observational uncertainties must be
quantified and included when models are applied to draw inferences from
observations. Furthermore, idealisations in the model introduce uncertain-
ties, known as structural uncertainties, and these must also be quantified and
included in uncertainty analyses (Woodhouse et al., 2015). A crucial com-
ponent of this is quantifying the influence of physical processes that are not
included in the model (Woodhouse et al., 2015). The comparison of the re-
sults of sensitivity analyses applied to models that include different physical
processes is a useful approach to quantifying structural uncertainty.

Global sensitivity analyses, where model inputs are simultaneously varied
across their domains, are crucial as one-at-a-time sensitivity analyses do not
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fully explore connections between variables (Saltelli et al., 2008). For exam-
ple, this study demonstrates that while variations in the source temperature
alone can have a pronounced effect, when uncertainty in other model inputs
are also considered, the models outputs are less sensitive to the source tem-
perature than the source mass flux and entrainment coefficients. However,
the analysis performed here is a partial sensitivity analysis, with the model
boundary conditions and a subset of the model parameters varied. In par-
ticular, the thermodynamic parameters (heat capacities of the constituent
phases) are not changed from default values, but the values of these parame-
ters are uncertain in volcanic settings. Furthermore, variations in one of the
source temperature, gas mass fraction and heat capacities can be offset by
changes in another of these inputs. Therefore, it is unlikely that an inver-
sion study using uncertain observations of the plume height could be used to
predict the source temperature or volatile content (Woodhouse et al., 2015).

Often uncertainty analyses adopt a Bayesian statistical approach (e.g.
Kennedy and O’Hagan, 2001; Craig et al., 2001), constructing posterior prob-
ability distributions by refining specified prior distributions using observa-
tions (see e.g. Denlinger et al., 2012; Anderson and Segall, 2013; Madankan
et al., 2014). For a model with a large number of inputs, the calculation
of the posterior probability distribution can be computationally demanding.
Woodhouse et al. (2015) demonstrates an alternative approach to uncertainty
analysis, known as history matching, that can be performed in a similar way
to the global sensitivity analysis conducted in this study. The values of un-
certain model inputs are sampled from defined prior distributions using a
space-filling Latin hypercube design to propagate their uncertainty through
the model. The model outputs are then assessed against observations by
defining implausibility measures that incorporate observational, parameter
and structural uncertainties (Vernon et al., 2010; Woodhouse et al., 2015).
In both the Bayesian calibration and history matching uncertainty analyses,
preliminary sensitivity analyses are extremely valuable as non-influential pa-
rameters can be eliminated, even if there is substantial uncertainty in their
values (Woodhouse et al., 2015).

6. Conclusions

We have conducted a global sensitivity analysis of the PlumeRise model
of moist, wind-blown volcanic plumes. The dependence of the model output
to variations in the conditions representing the volcanic source and a subset
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of the model parameters is examined in two eruption scenarios. Our analysis
shows that the model predictions are most sensitive to the values specified for
the source mass flux (in forward model computations) or the plume height
(when a model inversion is performed to estimate the source mass flux) and
to the entrainment coefficients. Variance-based sensitivity indices can be
used to quantify the dependence of the model to its inputs, but these can
be misleading when the distribution of the model output is multi-modal,
as found here for the strong eruption scenario when column collapse can
occur. Visualisation of the model input and output space through parallel
coordinate plots is an effective tool for examining the model sensitivities.

This work has been conducted as part of an inter-comparison of models
of volcanic plumes. By examining the predictions and sensitivity of different
models in this structured exercise, the results can be used to learn about
the sources of structural uncertainty in the models and to quantify these
uncertainties.
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Appendix A. Visualizing multivariable data using parallel coordi-

nates plots

Parallel coordinates plots are a powerful visualization technique for mul-
tivariable data and are widely used in sensitivity analyses (for example, the
SAFE toolbox (Pianosi et al., 2015) for performing and examining sensitiv-
ity analyses in Matlab includes a parallel coordinates plotting routine). The
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mathematical foundations of parallel coordinates is well-established (see In-
selberg, 1985, 2009), and there are numerous papers on the application and
extension of the methodology to a variety of problems in data analysis, data
mining and visualization.

The basic parallel coordinates plot consists of a set of line segments con-
necting vertices that are placed on a sequence of parallel aligned coordinate
axes; such a visualization is easy to construct. However, for large data sets
that are typically required to explore the sensitivity of a model with a large
number of input variables, a simple parallel coordinates plot can appear to
be a complicated web of tangled lines weaving across the coordinate axes.
Examining parallel coordinates plots for simple example functions, where the
dependence of the variables is clear, allows us to identify patterns and so to
make inferences in applications for which the underlying functional form is
not known explicitly. Figure A.17 shows examples of parallel coordinates
plots for eight functions of a single variable, y = f(x). On a parallel coor-

Figure A.17: Parallel coordinate plots for functions of one variable y = f(x), with (a)
f(x) = 2x − 1 for x ∈ [0, 1], (b) f(x) = 1 − 2x for x ∈ [0, 1], (c) f(x) = x2 for x ∈ [0, 1],
(d) f(x) = x1/4 for x ∈ [0, 1], (e) f(x) = 1/x for x ∈ (0, 1], (f) f(x) = ex for x ∈ [0, 1], (g)

f(x) = e−x2

for x ∈ [−3, 3], (h) f(x) = sinx for x ∈ [0, 4π]. Colour is used in (g) and (h)
to highlight the symmetry and periodicity, respectively, of the output y.

dinates plot, a linear function with positive slope is represented by parallel
lines that are orthogonal to the axes when the y-axis is scaled to be the
same length as the x-axis (figure A.17a, Inselberg 1985) which is typical on
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parallel coordinates plots. In contrast, a linear function with negative slope
is represented on a parallel coordinates plot by a sequence of lines that all
cross at a single point (figure A.17b, Inselberg 1985). Power-law functions
y = xr, such as y = x2 (figure A.17c), y = x1/4 (figure A.17d) and y = 1/x
(figure A.17e), are identified on parallel coordinate plots using the separa-
tion between neighbouring line segments; two line segments initiating at x0
and x0 + δx on the x-axis are separated by δy ≈ rxr−1

0 δx on the y-axis. An
exponential function appears similar to a power-law function on a parallel
coordinates plot (figure A.17f), however, for two line segments initiating at
x0 and x0 + δx on the x-axis, the separation on the y-axis is δy ≈ ex0δx.
The exponential function can, of course, be very easily distinguished from
a power-law function by transforming a linear y-axis into a logarithmically
scaled axis.

The use of colour to distinguish lines greatly aides the visualization of
some functions. For example, for a function that is symmetric about some
point on the x-axis, colouring the line segments by the value of y = f(x)
highlights the symmetry (e.g. figure A.17g illustrates a parallel coordinates
plot for a Gaussian function, f(x) = e−x2

). Similarly, the identification of
a periodic function (such as y = sin x, as shown in figure A.17h) is much
easier when line segments are coloured according to the value of y. Colour is
particularly useful when there are several coordinate axis, as close neighbours
on one pair of the axes can be distinguished if they diverge on another of the
axes. When a continuous colour scale that is tied to one of the model inputs
or outputs is used to colour line segments it is possible to reduce by one the
number of coordinate axes. However, in our study we retain the coordinate
axis that is also used to colour the line segments.

Colour can also be usefully applied categorically on parallel coordinates
plots. For example, in our study we might be interested in identifying the
source conditions that result in plumes rising above 10, km, so could highlight
those line segments where the model prediction for the plume height exceeds
10 km in a different colour from the other model results. Further alteration of
the properties of the lines can be used to convey additional information. For
example, transparency of the line segments greatly aides the visualization of
very large data sets. For additional extensions of the parallel coordinates
visualization see e.g. Heinrich and Weiskopf (2013).

A great benefit of parallel coordinates plots is their ability to convey in-
formation on the interconnections between model variables and assess the
combined influence of variations in several inputs on the predictions of a
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model. Furthermore, several model outputs can be examined together (e.g.
in our study we examine the sensitivity of both the plume height and conden-
sation height to variations in the model inputs). The ‘first-order’ sensitivity
of a model output to one of the model inputs is most easily examined when
the axis for the model input of interest is a neighbour of the axis along which
the model output is plotted. This can only be achieved for all of the model
inputs by permuting the axes (Wegman, 1990). ‘Second order’ interactions
(i.e. the influence of combined variations in a pair of model inputs on an
output) can be easily visualized by arranging the axes so that the two inputs
of interest and the model output are grouped together. This also requires
permuting the axes in order to examine all possible second-order interactions.

Parallel coordinates plots are particularly easy to interpret when there
is a monotonic and nearly linear relationship between the model inputs and
the model output. However, we find that nonlinear relationships can also be
identified in parallel coordinate plots. Using the example function

y = f(x1, x2) =
(

x1 − 1
2

)2
+ 0.1x2, (A.1)

with 0 ≤ x1, x2 ≤ 1, (suggested to us by Dr. M. de’ Michieli Vitturi) we
anticipate a strong nonlinear dependence of y on the input x1 and a weaker
linear dependence of y on x2. These dependencies are seen in scatter plots
(figure A.18). The dependencies of the model output y and the sensitivity to

Figure A.18: Scatter plots for the function y =
(

x1 − 1
2

)2
+ 0.1x2 for 0 ≤ x1, x2 ≤ 1, with

a sample of size 1000 from a Latin hypercube design.

variation in the inputs (x1, x2) can also be observed in a parallel coordinates
plot (figure A.19). The non-monotonic dependence of y on x1 can be easily
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Figure A.19: Parallel coordinates plot for the function y =
(

x1 − 1
2

)2
+ 0.1x2 for 0 ≤

x1, x2 ≤ 1, with a sample of size 50 from a Latin hypercube design. Line segments are
coloured by the value of the model output y.

identified, with trajectories for both x1 ≈ 0 and x1 ≈ 1 linking to relatively
large values of y. The dependence of y on x1 is symmetric about the mid-
point value for x1 (i.e. x1 = 1/2) since the colouring of lines on the x1-axis is
symmetric about the mid-point. Thus, with further analysis (e.g. changing
the colour scale from linear to quadratic etc.) one might be able to learn
more about the nonlinear form of the function. The weak dependence of the
output y on x2 (i.e. low sensitivity to x2) can be inferred from the unclear
pattern of trajectories through the x2-axis.

The example function (A.1) is of a particularly simple form; the functional
dependencies on x1 and x2 occur separably. In general, of course, this is not
expected, and to illustrate this point we analyse a different example function
with non-separable dependencies. Identifying interactions between model
inputs is a particular strength of the parallel coordinates visualization. A
second example function, a modification of (A.1) to include an interaction
term, can be used to demonstrate this. We take a function

y = f(x1, x2, x3) =
(

x1 − 1

2

)2
+ 0.1x2 +

1

4
(1− tanh (10x1)) cos (πx3) , (A.2)

with 0 ≤ xi ≤ 1 for i = 1, 2, 3, noting that the interaction term has a form
such that the new input x3 contributes when x1 ≈ 0 and most substantially
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when x3 ≈ 0. The scatter plots for this function are shown in figure A.20.
From the scatter plots we infer (i) that the output y is most sensitive to the

Figure A.20: Scatter plots for the function y =
(

x1 − 1
2

)2
+ 0.1x2 +

1
4
(1− tanh (10x1)) cos (πx3) with 0 ≤ xi ≤ 1 for i = 1, 2, 3, with a sample of size 1000

from a Latin hypercube design.

value of x1 and (ii) that there is similar sensitivity to x2 and x3. However, it
is difficult to determine inter-connections between the inputs, although some
interaction between x1 and x3 can be anticipated for x1 ≈ 0 and x3 ≈ 0. If we
examine a parallel coordinates plot for this function, shown in figure A.21, the
strong nonlinear dependence of y on x1 is apparent, with much less sensitivity
to the other inputs. We can further examine the interactions by tracing
trajectories across the axes. We see, for example, that the three largest values
of y occur for x1 ≈ 0 and x3 taking relatively low values, and, furthermore,
that there is a clear ordering with y increasing as x3 decreases with x1 ≈ 0.
We also note that when x1 ≈ 1 there is no discernible dependence of y on x3.

We note also that the inferences drawn using parallel coordinates plots
can be made with many fewer model evaluations that the scatter plots. For
example, if we examine the scatter plots for the example function (A.2)
using the same 50 sample points as used in the parallel coordinates plot
(figure A.22) then it is difficult to draw firm conclusions. For these example
functions (and for our plume model) the computational cost is small, so that
many evaluations can be made, but for computationally expensive models
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Figure A.21: Parallel coordinates plot for the function y =
(

x1 − 1
2

)2
+ 0.1x2 +

1
4
(1− tanh (10x1)) cos (πx3) with 0 ≤ xi ≤ 1 for i = 1, 2, 3, with a sample of size 50

from a Latin hypercube design. Line segments are coloured by the value of the model
output y.

there is a great advantage in visualizations that allow detailed analyses but
require few evaluations.
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