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This talk is based on the paper of the same name [14].
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Quantum information theory: basic setup

e Systems: f.d. C*-algebras A, B, ... with chosen trace.

® Channels f,g,---: A— B: completely positive
trace-preserving (CPTP) linear maps A — B.

Definition

A linear map f : A — B is positive if x > 0= f(x) > 0.

It is completely positive if id @ f : B(CY) ® A — B(CY) @ B is
positive for all d > 1.

[e]e]
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Stinespring’s theorem

Theorem
Let H, K be f.d. Hilbert spaces. Then for any CP map
f: B(H) — B(K) there exists:

® a Hilbert space E (the environment)

® 2 linear map 7 : H — K ® E (the dilation)
such that f(x) = Trg(rx7T) (here Trg : B(K ® E) — B(E) is the
partial trace over the environment).
The CP map f is trace preserving iff the dilation T is an isometry.
Different dilations 71 : H — K ® E1,  : H — K ® E5 are related
by a partial isometry o : E; — Ep.
This reduces the study of CPTP maps between matrix algebras to
the study of isometries (even unitaries) between Hilbert spaces.
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Choi's theorem

® There is an isomorphism of vector spaces
L(B(H), B(K)) = L(H® H*, K ® K*) = B(K* @ H).

Theorem
A linear map f : B(H) — B(K) is completely positive iff the
corresponding element f € B(K* @ H) is positive.

® Allows one to apply e.g. spectral decomposition to CP maps,
move to the quantum relation underlying a CP map, consider
CP supermaps [3], etc.
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Question: covariant Stinespring and Choi's theorems

e Can we extend these theorems to covariant CP maps/channels
between finite-dimensional G-C*-algebras (a.k.a C*-dynamical
systems) for a compact quantum group G?
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Overview

e Qur starting point is a formulation of systems and channels in
a rigid C*-tensor category.

® These results are due to a number of authors,
e.g. [4, 8, 12,9, 10, 15].
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Frobenius algebras: |

e We define a Frobenius algebra in a rigid C*-tensor category T
to be an object A with multiplication and unit morphisms
m:A®A— Aand u: 1 — A satisfying the following
equations (where we draw m, m', u, u’ with white vertices):

A4

associativity unitality

ALK N

Frobenius
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Systems

® We say that a Frobenius algebra is special if it satisfies the
following equation:
mom' =idga
® We say that a Frobenius algebra in a rigid C*-tensor category
T is standard if, for any morphism f € End(A), the following
scalars are equal:

(This definition generalises straightforwardly to C*-multitensor
categories.)

Definition

We define a system in a rigid C*-tensor category 7 to be a special
standard Frobenius algebra in 7.
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Channels

Definition
Let A, B be systems in T .
® We say that a morphism f : A — B is a CP morphism if the
element (1) of End(A ® B) is positive.
® We say that it is additionally a channel if it preserves the
counit (equation (2)).

¢ Obtain categories Chan(7) C CP(T).
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Systems generalise f.d. G-C*-algebras

® Let F: T — Hilb be a fibre functor.

® By Tannaka-Krein-Woronowicz duality, F is associated with a
compact quantum group G.

e System Ain 7 = f.d. G-C*-algebra F(A), equipped with
canonical G-invariant functional.l

® CP morphism f : A— B = covariant CP linear map
F(A) — F(B), preserving canonical functional iff f is a
channel.

® |nduces equivalences

CP(T) = CP(G) Chan(7) = Chan(G)

LIf the G-C*-algebra F(A) admits an invariant trace (i.e. if
dim(F(A)) = d(A), guaranteed if G is of Kac type), this functional is tracial.
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Summary

® In a rigid C*-tensor category 7T
® Systems are special standard Frobenius algebras.
® Channels are counit preserving CP morphisms.
® This generalises G-C*-algebras and covariant channels for a
CQG G (the case where T = Rep(G)).

® We will prove Stinespring’s theorem for systems and channels
in a general rigid C*-tensor category.
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Background: rigid C*-2-categories
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Diagrammatic calculus for 2-categories

® We use the standard diagrammatic calculus for 2-categories.
® Objects r,s,... are represented by labelled regions.
® 1-morphisms X, Y,---:r — s are represented by labelled wires
separating an r-region (on the left) from an s-region (on the
right).
® 2-morphisms f, g,---: X — Y are represented by boxes with
labelled input and output wires.

A Y
______ X X
object 1-morphism 2-morphism

® |dentity 1-morphism wires and identity 2-morphisms boxes are
invisible.
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Diagrammatic calculus: vertical composition

® \ertical composition of 2-morphisms is represented by vertical
juxtaposition in the diagram. For example:

® let X,Y,Z:r— s be 1l-morphisms.
® letf: X —=Yand g: Y — Z be 2-morphisms.

Then gof : X — Z is represented as follows:
Z

[2]

r Y s
L[]

X
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Diagrammatic calculus: horizontal composition

® Horizontal composition is represented by horizontal
juxtaposition in the diagram. For example:

® let X, X' :r—sand Y,Y :s—tbe l-morphisms.
® letf: X —= X and g: Y — Y’ be 2-morphisms.

Then the horizontal composite f R g: X @Y = X' @ Y'is

represented as follows:

Xl

Yl

f[r]s[e]t

X

Y
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C*-2-categories

® For any 1-morphisms X, Y : r — s the set Hom(X, Y) is a
Banach space. Vertical and horizontal composition induce
linear maps on 2-morphism spaces.

® Every 2-morphism f : X — Y has a dagger 2-morphism

ft .Y — X. Taking the dagger induces an antilinear map on
Hom-spaces. The dagger satisfies the following properties:

(Mf=Ff (fogl=Ffag |Iffofl=|If|?

The last property implies that, for any 1-morphism X, the
algebra End(X) is a C*-algebra with involution given by the
dagger.

® For any 2-morphism f : X — Y, the 2-morphism ffo f is a
positive element of the C*-algebra End(X).
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Rigid C*-2-categories

® |n a rigid C*-2-category every 1-morphism X : r — s has a
dual 1-morphism X* : s — r.

® |n order to represent duality we orient the 1-morphism wires:
X* is represented by a wire with the opposite orientation to X.

® Duality of X and X™ is characterised by the following
2-morphisms, called cups and caps:

& {3

nx :ids = X* @ X ex: X ®X* = id,

3 U

nlo X @ X = ids el rid, = X @ X*
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Rigid C*-2-categories

These cups and caps obey the snake equations:
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Local semisimplicity

e All our rigid C*-2-categories are locally semisimple (i.e. the
Hom-categories are semisimple). In particular:

® For any pair of 1-morphisms X, Y : r — s there is a
1-morphism X; & Xz : r — s (called the direct sum), with
isometries iy : X1 — X1 D Xo, b : Xo — X1 & X5 such that
hoil +hoil =idxax,-

® There is a zero 1I-morphism 0, 5 : r — s such that End(0) is
zero-dimensional.

® For any 1-morphism X : r — s, every projection f € End(X)
has a splitting, i.e. a 1-morphism V : r — s together with an
isometry ¢ : V — X such that f = o LI.

® The C*-algebra End(X) is finite-dimensional for every
1-morphism X.
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Presemisimplicity

e Qur rigid C*-2-categories are additionally presemisimple, in
the sense that they have additive structure on objects [5]. In
particular:

® For any pair of objects r1, r» there is an object r; H r, (called
the direct sum), with injection and projection 1-morphisms
ti:ri — nHBrand p;: n B rn — r obeying conditions similar
to those for 1-morphisms.

® There is a zero object whose endomorphism category is the
terminal category.

® Every object splits as a finite direct sum of simple objects, i.e.
objects r; such that End(id,,) = C.

® In a presemisimple rigid C*-2-category? we can choose
standard duals for all 1-morphisms (unique up to unitary
isomorphism). From now on we assume that such duals are
chosen.

?|n fact, such duals may be chosen more generally [6].
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Dagger, transpose and conjugate

® |Let C be a presemisimple rigid C*-2-category. For any
2-morphism f : X — Y, we define:
® |ts transpose (a.k.a. mate) f*: Y* — X*:

¢

® |ts conjugate f, : X* — Y*:
foo=(F)T = (F1)*

® To represent these in the diagrammatic calculus we draw
2-morphism boxes with an offset edge:

bbb 4

f:X—=Y Y =X Y XY L X=X
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Pair of pants algebras

We identified systems with special standard Frobenius
algebras in T.

In a presemisimple rigid C*-2-category C, systems in
endomorphism categories arise as pair of pants algebras.

Let r,s be objects of C. Let X : r — s be a 1-morphism such
that the following positive element dim;(X) € End(ids) is

invertible:
X

If this condition is obeyed we call X special and write

nx = +/dimg(X).
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Pair of pants algebras

Proposition

The object X @ X* of End(r) is a system, with multiplication and
unit defined as follows:
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Pair of pants algebras

Ao

Proof.
® Associativity:
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Pair of pants algebras

Proof (cont.)

® Frobenius:

® Special:

® Standardness follows by standardness of the duals in C.
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Splitting algebras and semisimplicity

Definition

Let C be a presemisimple rigid C*-2-category.

We say that a system A in an endomorphism category End(r)
splits if it is isomorphic to a pair of pants algebra.

We say that C is semisimple if all systems in all endomorphism
categories split.

(Refs:[5, 2].)

® Stinespring's theorem characterises channels between pair of
pants algebras.

® \We therefore want to find a semisimple rigid C*-2-category in
which T embeds as an endomorphism category, i.e.
T = End(r) for some object r.
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Candidate 1: Bimod(7)

Definition

Let A, B be two special standard Frobenius algebras in T.

We define an A — B dagger bimodule 4 Xg to be an object X
together with an action morphism A® X ® B — X (drawn as a
white rectangle) satisfying the following equations:

Al A M B B — Al A\ M Bl B M — M

Let oXg, aYs be A — B dagger bimodules. We define a bimodule
homomorphism to be a morphism f : X — Y intertwining the
actions.

The A-B dagger bimodules and bimodule homomorphisms form a
category A-Mod-B.
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Candidate 1: Bimod(7)

Definition (The 2-category Bimod(7))
e Objects: Special standard Frobenius algebras A, B,... in T.
¢ Hom-categories Hom(A, B): A-Mod-B.
Horizontal composition is defined using the usual relative tensor
product of bimodules.
The category T embeds (isomorphically) in Bimod(7) as
End(1) = 1-Mod-1.
® Pros: very concrete.
® Cons: we made several choices in the definition. Not a strict
2-category.
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Candidate 2: Mod(7)
Definition
A semisimple left T-module category is a semisimple C*-category
M together with:
® A unitary linear bifunctor & : 7 x M — M.
e Unitary natural isomorphisms /x : 1&X = X and
my,vx : (U® V)&X =2 UR(V&X) satisfying analogues of
the pentagon and triangle equations.
We say that the module category M is:
e Cofinite (a.k.a. proper) if for any X, Y € M we have
Homp (X, U;@Y) = 0 for all but finitely many i, where {U;}
are representatives of the isomorphism classes of simple
objects in T .
® |ndecomposable if it does not split as a nontrivial direct sum.
® Finitely decomposable if it splits as a finite direct sum of
indecomposables.
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Candidate 2: Mod(7)

Definition (The 2-category Mod(T))
® Objects: Cofinite semisimple finitely decomposable left
T-module categories.
® I-morphisms: Unitary T-module functors.

® 2-morphisms: Natural transformations of 7-module functors.
T embeds in Mod(7") as End7 (7).

® Pros: very natural definition, strict 2-category.

® Cons: we rely on Bimod(7") for our definition of the rigid
structure (see next slide).
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A theorem about unpacking

Theorem
Bimod(7") and Mod(T) are equivalent semisimple rigid
C*-2-categories.

Proof.
Main steps:

1. We show that Bimod(7") = Mod(7') as a C-linear dagger
2-category.

2. We show that Bimod(7) is a semisimple rigid C*-2-category.
(Thus so is Mod(T).)

e Step 1: The equivalence V : Bimod(7) = Mod(T) is defined
in the usual way:
® Objects: W(A) := 1-Mod-A, where the left action of T is by
tensor product.
® I-morphisms: W(aMp) := — ®a aMp : 1-Mod-A — 1-Mod-B.
® 2-morphisms: V(f) :=id ®a f : W(aMp) — V(aNp).
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A theorem about unpacking (cont.)

Proof.

® Step 1 (cont.): Most of the hard work in proving that W is an
equivalence was done in [12]. It was shown there that W is
essentially surjective on objects and that
Vy 3 :End(1) =7 — End7(7) is an equivalence. The rest
is quite straightforward [14, Thm. 3.41].
® Step 22 The C*-structure on Bimod(7) is inherited directly
from 7. Dual bimodules from [16].3 Direct sum on objects
clear. Semisimplicity proven in two steps:
® \We show constructively that any system in 7 = End(1)
splits [14, Lem. 3.30]). (Actually we show a little more than
this, allowing us to classify systems in 7 [14, Thm. 4.4].)
® We then show (again constructively) that this implies splitting
in the other endomorphism categories too [14, Prop. 3.31]).
[

3We rely on standardness of the Frobenius algebras to show that the dual
bimodule is dagger, although see [7].
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This is the only way to unpack

Definition
A semisimple rigid C*-2-category is connected if the Hom-category
between any pair of nonzero objects is nonzero.

Theorem ([14, Prop. 3.33])

Every connected semisimple rigid C*-2-category C is equivalent to
Mod(End(r)) for any simple object r in C.

Proof.
® An equivalence A : C = Bimod(End(r)) is defined as follows:

® Objects: For every object s € C, pick a special 1-morphism
Ps:r—s. Then A(s) :== Ps ® Py.

® I-morphisms: For every 1-morphism X : s — t, define
A(X) := Ps ® X ® Pf, with the obvious bimodule structure.

® 2-morphisms: For every 2-morphism f : X — Y, define
A(f) = idps ® f ® idpt*.
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Back to physics

® We have found a (strict) semisimple rigid C*-2-category
Mod(7) into which 7 embeds as 7 = End (7).

® Now every system in 7T is of the form X @ X*.

o]e]
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Covariant Stinespring’s theorem
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and channels B igid C™-2-categories

Theorem (Covariant Stinespring's theorem)

Let X : T — My and Y : T — Moy be special 1-morphisms in
Mod(T), let X @ X* and Y ® Y* be the corresponding systems in
T,and let f : X @ X* - Y ® Y* be a CP morphism. Then there
exists a I-morphism E : My — M (the environment) and a
2-morphism T : X — Y ® E (the dilation), such that:

Y| Y¥ Y Y*




Introduction Systems and channels Background: rigid C™-2-categories Semisimplicity Covariant Stinespring's theorem Apy
00000 0000000 0000000000 00000000000000 OOe0000 00

Theorem (Covariant Stinespring's theorem (cont.))

The morphism

is an isometry if and only if f is a channel.

In the other direction, for any 1-morphism E : t — s and
2-morphism 7 : X — Y ® E, the corresponding morphism
F: XX = Y®Y*isa CP morphism with dilation T.
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Theorem (Covariant Stinespring's theorem (cont.))

Different dilations for a CP morphism f : X @ X* = Y ® Y* are
related by a partial isometry on the environment. Specifically, let
1 X—=>YQ®E, m: X —=Y®E be two dilations of f. Then
there exists a partial isometry o : Ey — E, such that

(idy®a)o7'1:7'2 (idy®O¢T)o7'2:T1

In particular, the minimal dilation minimising the quantum
dimension of the environment d(E) is unique up to unitary a.
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Example: matrix G-C*-algebras

Let G be a compact quantum group and let 7 = Rep(G).

Now 1-morphisms X, Y : 7 — T in Mod(7) are objects in
End(7) = T in other words, they are f.d. continuous unitary
G-representations.

The corresponding X ® X*, Y ® Y* are the induced matrix
G-C*-algebras B(X), B(Y).
Now the covariant Stinespring theorem may be stated as
follows:
® Let X, Y be f.d. continuous unitary G-representations and let
B(X), B(Y) be the corresponding matrix G-C*-algebras.
® For any completely positive map f : B(X) — B(Y) there
exists an f.d. continuous unitary G-representation E and an
intertwiner V : X — Y ® E such that f(x) = Trg(VxV1).
® The CP map f preserves the canonical invariant functional iff
V is an isometry.
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Remarks on the example

We could have proven this for CP maps between matrix
G-C*-algebras without ever leaving Rep(G).

However, in general there are indecomposable f.d.
G-C*-algebras which are not matrix G-C*-algebras; that is,
they come from 1-morphisms 7" — M in Mod(7), where M
is a simple object inequivalent to 7. (This is precisely to say
that G is not torsion-free in general [1].)

Even in the torsion-free case, the covariant Stinespring
theorem also applies to maps between decomposable
G-C*-algebras (corresponding to 1-morphisms 7 — H;M; in
Mod(T)).

We have to embed 7 in the semisimple 2-category Mod(7)
to dilate CP morphisms between all pairs of G-C*-algebras.
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Choi's theorem

Theorem
Let f : X® X* = Y ® Y* bea CP morphism in T . Then the
following element f End(Y* ® X) is positive:

7w fd

This gives a bijective correspondence (in fact, an isomorphism of
convex cones) between positive elements of End(Y* @ X) and CP
morphisms X @ X* — Y ® Y*.

® Remark: Y* ® X is an object in the C*-category
Homy (M2, My).
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Application 1: Characterising covariant channels

® In classical/quantum information theory, we often want to
find a channel A — B optimising some quantity.

e Often we can assume some kind of symmetry which allows us
to simplify the problem.

Example ([11, § 4.2.2])

® Want to find an optimal measurement on n copies of a quantum
state p € B(CY) that tests whether they have some unitarily
invariant property.

® Translation: optimal covariant channel B(C9)®" — C @ C, where
B(C9)®" has the action of U(d) x S, and C @ C has the trivial
action.

® Can show using covariant Choi theorem that such a channel is
defined by a pair of positive operators Myes, My, in End((C9)®™)
which are intertwiners for the permutation action of S, and the
tensor product action of U(d).

® Such operators are strongly constrained by Schur-Weyl duality.
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Application 1: Characterising covariant channels

® To use such methods in general we need to understand the
category Mod(7) well.

® Even for a finite group G, while we know the objects of
Mod(Rep(G)) [13], we do not have a good description of
many of the Hom-categories (as far as | know).
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Application 2: Quantum relations, constructing covariant

channels
® \We saw that, by the covariant Choi’s theorem, CP morphisms
f X ® X" =Y ® Y* correspond to positive operators
f € End(Y* ® X).
o Iffisa projection, we say that f is a quantum relation.
e Every CP morphism f has an underlying relation R(f) whose
projection ER( ) is s() (least projection p such that pf = f).
¢ The relation PR(f) encodes the zero-error communication
theory of the channel f.

[
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Application 2: Quantum relations, constructing covariant
channels
® We can move from a quantum relation X ® X* - Y ® Y* to
its quantum confusability graph on X ® X*:

=

— = o
® In general, we can define a quantum confusability graph " on
X ® X* to be a projector I' € End(X* ® X) obeying the

following equations:
— - 2
Lemma

Let T be a quantum confusability graph on X ® X*. Then there
exists a system Y @ Y* inT and a channel f : X @ X* - Y ® Y*
such that T = R(fT o f).
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