This is a simple example $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ document, demonstrating plain text, mathematical notation (both inline and displayed), definition and use of a 'newcommand', a figure, a table and some displayed program text.

Integrating out w, we find

$$
\begin{equation*}
p(z \mid k, \delta)=\frac{\Gamma(k \delta)}{\{\Gamma(\delta)\}^{k}} \frac{\prod_{j=1}^{k} \Gamma\left(\delta+n_{j}\right)}{\Gamma(k \delta+n)}=\frac{\Gamma(k \delta)}{\Gamma(k \delta+n)\{\Gamma(\delta)\}^{d}} \prod_{j: n_{j}>0} \Gamma\left(\delta+n_{j}\right) \tag{1}
\end{equation*}
$$

where $n_{j}=\#\left\{i: z_{i}=j\right\}$.
For comparison with the DP model, it is helpful to express the distribution (1) as a distribution over partitions.

Figure 1: This is the graph of a function.
Figure 1 was produced using the following Splus code:

```
> postscript('demopic.ps',height=5,width=7)
> x_seq(0,2*pi,len=200)
> plot(x,exp(-0.3*x)*cos(x),type='1')
```

and Splus was also used to make Table 1.

Table 1: This is a simple table.

x	$\exp (-0.3 x) \cos (x)$
0	1.0000
2	-0.2284
4	-0.1969
6	0.1587

