MATH11400

Statistics 1

2010-11

Homepage http://www.stats.bris.ac.uk/%7Emapjg/Teach/Stats1/

Hypothesis Tests, continued

8.7 Example of 1-sample t-test

To investigate the accuracy of D-I-Y radon detectors, researchers bought 12 such detectors and exposed them to exactly 105 picocuries per litre of radon. The 12 detector readings were: 91.9, 97.8, 111.4, 122.3, 105.4, 95.0, 103.8, 99.6, 96.6, 119.3, 104.8, 101.7.

This gives summary statistics $\sum_{i} x_{i} = 1249.7$, $\overline{x} = 104.1417$, n = 12, $\sum_{i} x_{i}^{2} = 131096.44$, $S^{2} = 86.4181$.

Our question: does the mean for such detectors seem to differ from 105?

1. Model assumptions: these 12 observations are a random sample from $N(\mu, \sigma^2)$ where both μ and σ^2 are unknown.

2. Hypotheses: H_0 : $\mu = 105$ vs. H_1 : $\mu \neq 105$ (i.e. 2-sided alternative).

3. Test statistic:

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$
 when H_0 is true

We have n = 12 and $\mu_0 = 105$, so the observed value of T is $t_{obs} = \sqrt{12}(104.142 - 105)/\sqrt{86.4181} = -0.32$ and $|t_{obs}| = 0.32$.

4a. p-value approach. The p-value is P(|T| > 0.32) when $T \sim t_{n-1} = t_{11}$. Using **R**, we find pt (0.32, 11) = 0.6225 so P(|T| > 0.32) = 2(1 - 0.6225) = 0.755. This is not a small probability!

4b. Critical region approach. For an α level test we use the critical region $C = \{|T| \ge t_{11;\alpha/2}\}$. Let us take the significance level $\alpha = 0.05$. Then $t_{11;0.025} = \text{qt}(0.975, 11) = 2.201$. The value of t_{obs} is not within $C = \{|T| \ge 2.201\}$, so there is no reason to reject H_0 at the 5% level.

Conclusion. Taking either the p-value or critical region approach, there is no reason to reject the null hypothesis that the detectors are accurate.