Problem Sheet 9

Remember: when online, you can access the Statistics 1 data sets from an \mathbf{R} console by typing load(url("http://www.stats.bris.ac.uk/\~mapjg/Teach/Stats1/stats1.RData"))
*1. For the data about fuel consumption on Problem Sheet 8, question 4, find a 90% confidence interval for the variance of fuel consumption per 100km for the population of cars of this type.
*2. Consider again the following failure-time data for the batch of 25 lamps (introduced on Problem Sheet 3), which you may assume is a simple random sample from an Exponential distribution with unknown parameter θ. The data is contained in the Statistics 1 data set lamp.

5.5	3.8	8.0	7.8	9.3	4.7	4.0	0.3	4.6	0.6	7.9	1.8	4.0
0.7	4.0	1.6	2.6	0.7	0.2	3.1	1.0	3.4	3.7	10.8	1.2	

(a) Use the method in $\S 7.9$ of your notes to find an equal-tailed 95% confidence interval for the unknown parameter θ based on this set of 25 observations.
(b) Let X_{1}, \ldots, X_{n} be a simple random sample of size n from the $\operatorname{Exp}(\theta)$ distribution. You may assume that $\mathrm{E}\left(1 / \sum_{i=1}^{n} X_{i}\right)=\theta /(n-1)$ (for a derivation of this result, see the Solutions to question 4 from Problem Sheet 7). Use this result to find the average length of a 95% confidence interval for θ based on a random sample of size $n=25$, expressing your answer as a multiple of the unknown parameter θ.
3. Consider again the opinion poll example, question 5 on Problem Sheet 6. Assume that a random sample of 1000 electors are interviewed and that 370 of those interviewed say that they support the govenment. Find a 99% confidence interval for the proportion of electors that support the govenment.
4. For the data about spatial-temporal reasoning of pre-school children on Sheet 8 , question 5 , under the assumption that the data are a simple random sample from a Normal distribution, construct a 95% confidence interval for the variance of the improvement in reasoning scores in the population.
*5. Assume the 25 observations below are a random sample from the $\operatorname{Unif}(0, \theta)$ distribution.

1.41	0.11	0.61	4.06	2.81	4.23	2.68	4.43	2.98	4.15	0.10	4.04	5.57
2.04	4.44	5.48	1.53	0.10	4.82	5.99	2.35	0.07	3.24	5.83	1.57	

For the $\operatorname{Unif}(0, \theta)$ distribution we saw earlier that the method of moments estimate $\hat{\theta}_{\text {mom }}$ and the maximum likelihood estimate $\hat{\theta}_{\text {mle }}$ were given by $\hat{\theta}_{\text {mom }}=2 \bar{X}$, where \bar{X} is the sample mean, and $\hat{\theta}_{\text {mle }}=X_{(n)}$, where $X_{(n)}=\max \left(X_{1}, \ldots, X_{n}\right)$ is the sample maximum.
(a) Use the fact, that for a random sample of size n from the $\operatorname{Unif}(0, \theta)$ distribution, $P\left(X_{(n)} / \theta \leq v\right)=v^{n}$ for $0<v<1$, to find values v_{1} and v_{2} such that $P\left(X_{(25)} / \theta<\right.$ $\left.v_{1}\right)=0.025$ and $P\left(X_{(25)} / \theta>v_{2}\right)=0.025$. Hence, following the general idea seen in construction of other confidence intervals, but with different details, find an equal-tailed 95% confidence intervals for θ based on $\hat{\theta}_{\text {mle }}$.
(b) Find an equal-tailed 95% confidence intervals for θ based on $\hat{\theta}_{\text {mom }}$. [Hint: Use the Normal approximation to the distribution of \bar{X} based on the Central Limit Theorem.] Comment on whether the interval you get is compatible with the data.
*6. A certain manufacturer produces packets of biscuits with a nominal weight of 200 g . You may assume that it is known from experience that the standard deviation of the weight of the packets is $4 g$. To carry out a control check on the actual weight of the packets produced, an employee weighs 25 packets selected at random from a day's production and finds that the average weight of the sample is $\bar{x}=202.275 \mathrm{~g}$.
Let μ denote actual the mean weight of $200 g$ packets produced by the manufacturer. Test the null hypothesis $H_{0}: \mu=200$ against the alternative $H_{1}: \mu \neq 200$, using a test procedure with significance level $\alpha=0.01$. For what range of significance levels would you reject H_{0} in favour of H_{1} ?
[Your answer should include a statement of any model assumptions, a brief description of your working at each stage of the test procedure including the p-value and the critical region for the test, and a summary of your conclusions.]
7. A random variable X is known to have a Normal distribution with mean μ and variance 25 . To test the hypotheses

$$
H_{0}: \mu=100 \quad \text { versus } \quad H_{1}: \mu>100
$$

a test procedure is proposed which would take a simple random sample of size n from the population distribution of X and reject H_{0} in favour of H_{1} if the sample mean $\bar{x}>102$, and otherwise accept H_{0}.
Find an expression in terms of the sample size n for the significance level α of this test procedure. Hence find the smallest sample size for which the significance level would be less than 0.05.

