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Jacobians

Given a (smooth, irreducible, projective) curve C, we may associate to it an abelian
variety, Jac(C) called the jacobian of C.

This association is functorial, in particular a map C → C′, induces a map
Jac(C)→ Jac(C′).

Let K be a number field and f ∈ K[x] be a polynomial of degree 2g + 2 or 2g + 1
without multiple roots. Then the equation y2 = f(x) determines a curve of genus g.
We call curves of this form hyperelliptic.

Notation
I’ll write Jf to denote the jacobian of such a curve.
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Endomorphism algebras

l-torsion
The l-torsion of a jacobian Jf [l] is a 2g-dimensional vector space over Fl with an
action of GK := Gal(K̄/K).
We have K(Jf [2]) = K(f) the splitting field of f .

Question

How does End(Jf ) relate to the fields K(Jf [l])?

In general, K(Jf [2]) = K(f) doesn’t tell us much about End(Jf ). For example :

1 f(x) = (x+ 1)(x4 + x3 + x2 + x+ 1), has End(Jf ) ∼= Z.

2 f(x) = x(x4 + x3 + x2 + x+ 1), has End(Jf ) ∼= Z× Z.

3 f(x) = (x− 1)(x4 + x3 + x2 + x+ 1), has End(Jf ) ∼= Z[ζ5].
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Inverse Galois Theory

Theorem (Serre ’72)

Let E/K be an elliptic curve with End(E) ∼= Z.

Then for all but finitely many primes l,
we have Gal(K(E[l])/K) = GL2(Fl).

Theorem (Hall ’08)

Let Cf : y2 = f(x), where deg(f) = 2g + 1. Let Jf = Jac(Cf ). Suppose
End(Jf ) ∼= Z, and f has a double root modulo some prime p. Then for all but finitely
many primes l, we have Gal(K(Jf [l])/K) = GSp2g(Fl).

Theorem (Zarhin ’00)

Let f ∈ K[x] be a polynomial of degree n ≥ 5 with Galois group containing An. Then
Jf has trivial endomorphism ring.

Remark
To prove this result, it suffices to prove it for An.
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Sketch proof

Theorem (Zarhin ’00)

Let f ∈ K[x] be a polynomial of degree n ≥ 5 with Galois group containing An. Then
Jf has trivial endomorphism ring.

Pip Goodman Restrictions on endomorphism algebras 6 / 17



What can we say for smaller Galois groups?

Zarhin has done a lot of work on this for large insoluble Galois groups. The “smallest”
he considers is the following :

Theorem (Elkin, Zarhin ’06,’08)

Suppose n = q + 1, where q ≥ 5 is a prime power congruent to ±3 or 7 modulo 8.
Suppose that f(x) is irreducible and Gal(f) ∼= PSL2(Fq). Then one of the following
holds :

1 End0(Jf ) = Q or a quadratic field.

2 q ≡ 3, 7 mod 8 and Jf is isogenous over K̄ to a self-product of an elliptic curve
with CM by Q(

√
−q).
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A result of Lombardo

Theorem (Lombardo ’19)

Let f ∈ K[x] be an irreducible degree 5 polynomial. Then End0(Jf ) is a division
algebra.
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Can we improve Lombardo’s result ?

Example

Jacobians with trivial endomorphism rings are easy to find, so let’s see some non trivial
examples.

Gal(f) End(Jf ) f(x)

F5 Z[ 1+
√
5

2
] x5 + 10x3 + 20x+ 5

F5 Z[ζ5] x5 − 2

D5 Z[ 1+
√

13
2

] x5 − 19x4 + 107x3 + 95x2 + 88x− 16
F5 R 52x5 + 104x4 + 104x3 + 52x2 + 12x+ 1

where R is the maximal order of the CM number field with defining polynomial
x4 + x3 + 2x2 − 4x+ 3. We note that this field is cyclic, ramified only at 13, and 2
generates a maximal ideal.

Note also, when Gal(f) ∼= F5 and Jf is of CM type, End0(Jf ) is isomorphic to the
unique degree 4 extension of Q contained in Q(f).
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Improvements in genus 2

Theorem (G. ’19)

Let f(x) ∈ K[x] be a polynomial of degree 5 or 6, with Gal(f) containing an element
of order 5. Then one of the following holds :

1 End(Jf ) ∼= Z.

2 End(Jf ) ∼= Z
[
1+r
√
D

2

]
, where D ≡ 5 mod 8, D > 0 and 2 - r.

3 End(Jf ) ∼= R, where R is a 2-maximal order in a degree 4 CM field, which is
totally inert at 2.

Remark
Specifying Gal(f), we can give more information on End(Jf ).
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Higher genus

Theorem (G.’19)

Let f(x) ∈ K[x] be a polynomial of degree 2g + 1 or 2g + 2, with Gal(f) containing an
element of prime order p = 2g + 1, and g satisfying some additional conditions.
Then one of the following holds :

1 End0(Jf ) is a number field, with restrictions on the primes above 2 ;

2 Jf is isogenous over K to the self product of an absolutely simple abelian variety
with CM by a proper subfield of Q(ζp).

Satisfied by g = 1, 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, . . .
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Sketch proof

Let’s consider the case Gal(f) acts irreducibly on J [2]. We may assume |Gal(f)| = p.

Our first goal is to show End0
K(Jf ) is a field.
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Restrictions on the endomorphism field

Let A/K be an abelian variety of dimension g. Denote by L/K the minimal extension
over which all endomorphisms of A are defined.
E.g. E : y2 = x3 − 2 has g = 1 and L = Q(ζ3).

Theorem (G.’19)

Suppose p = 2g + 1 is a prime divisor of [L : K]. Then A is isogenous over K̄ to the
self product of an absolutely simple abelian variety with complex multiplication by a
proper subfield of Q(ζp).
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Sketch of the proof

Proof sketch

1 First prove A ∼ Bn over K̄ for some absolutely simple abelian variety B and
integer n > 1.

2 Then observe that Gal(L/K) acts faithfully on End0(Bn) ∼= Mn(D) by
automorphisms, where D = End0(B) is a finite dimensional divison algebra
satisfying [D : Q]n ≤ 2g = p− 1.

3 The Skolem-Noether Theorem then tells us we have a faithful representation

ρ : Gal(L/K)→ PGLn(D)

4 This restricts D to be a subfield of Q(ζp) and [D : Q]n = p− 1. Which in turn
implies B has CM by a proper subfield of Q(ζp).
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Frobenius groups

Theorem (G. ’19)

Let q be an odd prime power. Let f ∈ K[x] be a polynomial of degree q with Galois
group Fq o F×q ∼= AGL(1, q). Suppose E = End0(Jf ) is a number field.
Then E/Q is cyclic Galois, and L/K is the unique extension of degree [E : Q]
contained in K(f).
Furthermore, if [E : Q] = q − 1, then L = EK.
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Sketch proof

Lower bound

Use permutation groups and representation theory to show
dimQ End0

F ′ (Jf ) ≤ [F ′ ∩K(f) : K].

This allows us to show L, the minimal field of definition for the endomorphisms,
contains some field K ⊆ F ⊆ K(f) with [F : K] = dimQ End0(Jf ).

This gives us a “lower bound” on L, so now we want to find an “upper bound”.

Upper bound

Gal(K̄/K) acts on E := End0(Jf ). This action factors through Gal(L/K).

Moreover, as abstract groups, Gal(L/K) ↪→ Aut(E).

As E is number field, we have |Aut(E)| ≤ [E : Q] = dimQ End0(Jf ).
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Conclusion

We have shown [E : Q] = [F : K] ≤ [L : K] ≤ |Aut(E)| ≤ [E : Q].

Hence we have equality, and so E/Q is Galois with
Gal(E/Q) ∼= Gal(L/K) = Gal(F/K).

Thus we’ve shown that if Gal(f) ∼= Fq o F×q and E = End0(Jf ) is a field, then E/Q is
cyclic Galois and L/K is the unique extension of degree [E : Q] in K(f).
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