Restrictions on endomorphism algebras of hyperelliptic
jacobians

Pip Goodman

Pip Goodman Restrictions on endomorphism algebras 1/17



Jacobians

|
Given a (smooth, irreducible, projective) curve C, we may associate to it an abelian
variety, Jac(C) called the jacobian of C.

|
This association is functorial, in particular a map C — C’, induces a map
Jac(C) — Jac(C”).
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Jacobians

Given a (smooth, irreducible, projective) curve C, we may associate to it an abelian
variety, Jac(C) called the jacobian of C.

This association is functorial, in particular a map C — C’, induces a map
Jac(C) — Jac(C").

Let K be a number field and f € K|[z] be a polynomial of degree 2g + 2 or 2g + 1
without multiple roots. Then the equation y? = f(z) determines a curve of genus g.
We call curves of this form hyperelliptic.

I'll write J to denote the jacobian of such a curve.
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Notation
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Endomorphism algebras

The I-torsion of a jacobian J¢[I] is a 2g-dimensional vector space over IF; with an
action of Gk = Gal(K/K).
We have K (Jf[2]) = K(f) the splitting field of f.
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Endomorphism algebras

The I-torsion of a jacobian J¢[I] is a 2g-dimensional vector space over IF; with an
action of Gk = Gal(K/K).
We have K (Jf[2]) = K(f) the splitting field of f.

How does End(Jy) relate to the fields K (J[l]) ?

|
In general, K (J¢[2]) = K(f) doesn’t tell us much about End(Jy). For example :

f(z) = (z +1)(z* + 23 + 2% + = + 1), has End(Jy) 2 Z.
f(z) = z(z* + 23 + 22 + = + 1), has End(Jf) = Z x Z.
f(2) = (z — 1)(z* + 2® + 22 + z + 1), has End(Jf) = Z[(5).
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Inverse Galois Theory

Theorem (Serre '72)
Let E/K be an elliptic curve with End(E) = Z.
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Inverse Galois Theory

Theorem (Serre '72)

Let E/K be an elliptic curve with End(E) = Z. Then for all but finitely many primes [,
we have Gal(K (E|[l])/K) = GLa(F)).
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Inverse Galois Theory

Theorem (Serre '72)

Let E/K be an elliptic curve with End(E) = Z. Then for all but finitely many primes [,
we have Gal(K (E[l])/K) = GLa(F;).

Theorem (Hall '08)

LetCy : y? = f(z), where deg(f) = 2g + 1. Let J; = Jac(C). Suppose
End(Jy) = Z, and f has a double root modulo some prime p. Then for all but finitely
many primes I, we have Gal(K (J¢[l])/ K) = GSpa, (F;).
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Inverse Galois Theory

Theorem (Serre '72)

Let E/K be an elliptic curve with End(E) = Z. Then for all but finitely many primes [,
we have Gal(K (E[l])/K) = GLa(F;).

Theorem (Hall '08)

LetCy : y? = f(z), where deg(f) = 2g + 1. Let J; = Jac(C). Suppose
End(Jy) = Z, and f has a double root modulo some prime p. Then for all but finitely
many primes I, we have Gal(K (J¢[l])/ K) = GSpa, (F;).

Theorem (Zarhin '00)

Let f € K|[z] be a polynomial of degree n > 5 with Galois group containing A,. Then
Jy has trivial endomorphism ring.

REINETS
To prove this result, it suffices to prove it for A,.
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Sketch proof

Theorem (Zarhin '00)

Let f € K|[z] be a polynomial of degree n > 5 with Galois group containing A,. Then
Jy has trivial endomorphism ring.
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What can we say for smaller Galois groups ?

|
Zarhin has done a lot of work on this for large insoluble Galois groups. The “smallest”
he considers is the following :

Theorem (Elkin, Zarhin '06,08)

Supposen = q + 1, where q > 5 is a prime power congruent to +3 or 7 modulo 8.
Suppose that f(x) is irreducible and Gal(f) = PSL2(F,). Then one of the following
holds :

End®(Jy) = Q or a quadratic field.

¢ =3,7 mod 8 and J; is isogenous over K to a self-product of an elliptic curve
with CM by Q(v/—q).
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A result of Lombardo

Theorem (Lombardo '19)

Let f € K|[x] be an irreducible degree 5 polynomial. Then End®(J;) is a division
algebra.
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Can we improve Lombardo’s result ?

Jacobians with trivial endomorphism rings are easy to find, so let's see some non trivial

examples.
Gal(f)  End(Jy) f@)
Fs Z[1tY5] @ + 1023 4 20z + 5
Fy Z[¢s) zb —2
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Can we improve Lombardo’s result ?

Jacobians with trivial endomorphism rings are easy to find, so let's see some non trivial

examples.
Gal(f) End(Jy) f(x)
Fs Z[1tY5] @ + 1023 4 20z + 5
Fy Z[¢s) zb —2
D5 Z[MYI8] g5 _ 1924 + 10723 + 9522 4 88z — 16
Fs R 522° 4+ 104z* + 10423 + 5222 + 122 + 1

where R is the maximal order of the CM number field with defining polynomial
x* + 23 + 222 — 4z + 3. We note that this field is cyclic, ramified only at 13, and 2
generates a maximal ideal.
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Can we improve Lombardo’s result ?

Jacobians with trivial endomorphism rings are easy to find, so let's see some non trivial

examples.
Gal(f) End(Jy) f(x)
Fs Z[1tY5] @ + 1023 4 20z + 5
Fs Z[¢s) zb —2
D5 Z[MYI8] g5 _ 1924 + 10723 + 9522 4 88z — 16
Fs R 522° 4+ 104z* + 10423 + 5222 + 122 + 1

where R is the maximal order of the CM number field with defining polynomial
x* + 23 + 222 — 4z + 3. We note that this field is cyclic, ramified only at 13, and 2
generates a maximal ideal.

I ——
Note also, when Gal(f) = Fs and J; is of CM type, End®(J¢) is isomorphic to the
unique degree 4 extension of Q contained in Q(f).
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Improvements in genus 2

Theorem (G. ’19)

Let f(x) € K|[z] be a polynomial of degree 5 or 6, with Gal(f) containing an element
of order 5. Then one of the following holds :

End(Jy) = Z.
End(J;) 27 [%] where D=5 mod 8, D > 0 and2 1 r.

End(Jy) = R, where R is a 2-maximal order in a degree 4 CM field, which is
totally inert at 2.

Remark
Specifying Gal(f), we can give more information on End(Jy).
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Higher genus

Theorem (G.19)

Let f(x) € K|[z] be a polynomial of degree 2g + 1 or 2g + 2, with Gal(f) containing an
element of prime order p = 2g + 1, and g satisfying some additional conditions.
Then one of the following holds :

End®(Jy) is a number field, with restrictions on the primes above 2;

Jy Is isogenous over K to the self product of an absolutely simple abelian variety
with CM by a proper subfield of Q(¢p).

Satisfied by g = 1,2, 3,5,6,9,11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, . ..

Pip Goodman
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Sketch proof

Let’s consider the case Gal(f) acts irreducibly on J[2]. We may assume |Gal(f)| = p.
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Sketch proof

Let’s consider the case Gal(f) acts irreducibly on J[2]. We may assume |Gal(f)| = p.
Our first goal is to show End% (Jy) is a field.
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Restrictions on the endomorphism field

|
Let A/K be an abelian variety of dimension g. Denote by L/K the minimal extension
over which all endomorphisms of A are defined.
EgQ.E:y?> =23 —-2hasg=1and L = Q((3).

Theorem (G.19)

Suppose p = 2g + 1 is a prime divisor of [L : K]. Then A is isogenous over K to the
self product of an absolutely simple abelian variety with complex multiplication by a
proper subfield of Q(¢p).
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Sketch of the proof

Proof sketch

First prove A ~ B™ over K for some absolutely simple abelian variety B and
integer n > 1.
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Sketch of the proof

Proof sketch

First prove A ~ B™ over K for some absolutely simple abelian variety B and
integer n > 1.

Then observe that Gal(L/K) acts faithfully on End®(B™) = M, (D) by
automorphisms, where D = End®(B) is a finite dimensional divison algebra
satisfying [D : QIn < 2g =p — 1.

The Skolem-Noether Theorem then tells us we have a faithful representation

p: Gal(L/K) — PGLy, (D)

This restricts D to be a subfield of Q(¢,) and [D : Q]n = p — 1. Which in turn
implies B has CM by a proper subfield of Q(¢p).
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Frobenius groups

Theorem (G. '19)

Let g be an odd prime power. Let f € K[x] be a polynomial of degree q with Galois
group Fy x F5 = AGL(1, q). Suppose E = End®(Jy) is a number field.
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Frobenius groups

Theorem (G. '19)

Let g be an odd prime power. Let f € K[x] be a polynomial of degree q with Galois
group Fy x Fi = AGL(1, q). Suppose E = End®(Jy) is a number field.

Then E/Q is cyclic Galois, and L/ K is the unique extension of degree [E : Q]
contained in K(f).

Furthermore, if[E : Q] = q— 1, then L = EK.
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Sketch proof

m Use permutation groups and representation theory to show
dimg EndY, (J5) < [F' N K(f) : K].

Upper bound
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Sketch proof

m Use permutation groups and representation theory to show
dimg EndY, (J5) < [F' N K(f) : K].

= This allows us to show L, the minimal field of definition for the endomorphisms,
contains some field K C F C K(f) with [F : K] = dimg End®(Jy).
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Sketch proof

m Use permutation groups and representation theory to show
dimg EndY, (J5) < [F' N K(f) : K].

= This allows us to show L, the minimal field of definition for the endomorphisms,
contains some field K C F C K(f) with [F : K] = dimg End®(Jy).

m This gives us a “lower bound” on L, so now we want to find an “upper bound”.

Upper bound

m Gal(K/K) actson E := EndO(Jf). This action factors through Gal(L/K).
= Moreover, as abstract groups, Gal(L/K) — Aut(E).
® As E is number field, we have [Aut(E)| < [E : Q] = dimg End®(Jy).
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Conclusion

= We have shown [E: Q] = [F: K| < [L: K| < |Aut(E)| < [E: Q).
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Conclusion

m We have shown [E: Q] = [F : K] < [L: K] < |Aut(E)| < [E : Q].
= Hence we have equality, and so E/Q is Galois with
Gal(E/Q) = Gal(L/K) = Gal(F/K).
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Conclusion

m We have shown [E: Q] = [F : K] < [L: K] < |Aut(E)| < [E : Q].
= Hence we have equality, and so E/Q is Galois with
Gal(E/Q) = Gal(L/K) = Gal(F/K).

|
Thus we've shown that if Gal(f) = F, x Fy and E = End®(Jy) is a field, then E/Q is
cyclic Galois and L/ K is the unique extension of degree [E : Q] in K(f).
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