# Restrictions on endomorphism algebras of hyperelliptic jacobians 

Pip Goodman

## Jacobians

Given a (smooth, irreducible, projective) curve $C$, we may associate to it an abelian variety, $\operatorname{Jac}(C)$ called the jacobian of $C$.

This association is functorial, in particular a map $C \rightarrow C^{\prime}$, induces a map
$\mathrm{Jac}(C) \rightarrow \mathrm{Jac}\left(C^{\prime}\right)$.

## Jacobians

Given a (smooth, irreducible, projective) curve $C$, we may associate to it an abelian variety, $\operatorname{Jac}(C)$ called the jacobian of $C$.

This association is functorial, in particular a map $C \rightarrow C^{\prime}$, induces a map
$\mathrm{Jac}(C) \rightarrow \mathrm{Jac}\left(C^{\prime}\right)$.

Let $K$ be a number field and $f \in K[x]$ be a polynomial of degree $2 g+2$ or $2 g+1$ without multiple roots. Then the equation $y^{2}=f(x)$ determines a curve of genus $g$. We call curves of this form hyperelliptic.

## Notation

I'll write $J_{f}$ to denote the jacobian of such a curve.

Notation

## Endomorphism algebras

$l$-torsion
The $l$-torsion of a jacobian $J_{f}[l]$ is a $2 g$-dimensional vector space over $\mathbb{F}_{l}$ with an action of $G_{K}:=\operatorname{Gal}(\bar{K} / K)$.
We have $K\left(J_{f}[2]\right)=K(f)$ the splitting field of $f$.

## Endomorphism algebras

## $l$-torsion

The $l$-torsion of a jacobian $J_{f}[l]$ is a $2 g$-dimensional vector space over $\mathbb{F}_{l}$ with an action of $G_{K}:=\operatorname{Gal}(\bar{K} / K)$.
We have $K\left(J_{f}[2]\right)=K(f)$ the splitting field of $f$.

## Question

How does $\operatorname{End}\left(J_{f}\right)$ relate to the fields $K\left(J_{f}[l]\right)$ ?

In general, $K\left(J_{f}[2]\right)=K(f)$ doesn't tell us much about $\operatorname{End}\left(J_{f}\right)$. For example :
$1 f(x)=(x+1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$, has $\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}$.
2. $f(x)=x\left(x^{4}+x^{3}+x^{2}+x+1\right)$, has $\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z} \times \mathbb{Z}$.

з $f(x)=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$, has $\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}\left[\zeta_{5}\right]$.

## Inverse Galois Theory

```
Theorem (Serre '72)
Let \(E / K\) be an elliptic curve with \(\operatorname{End}(E) \cong \mathbb{Z}\).
```


## Inverse Galois Theory

## Theorem (Serre '72)

Let $E / K$ be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes $l$, we have $\operatorname{Gal}(K(E[l]) / K)=\mathrm{GL}_{2}\left(\mathbb{F}_{l}\right)$.

## Inverse Galois Theory

## Theorem (Serre '72)

Let $E / K$ be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes $l$, we have $\operatorname{Gal}(K(E[l]) / K)=\mathrm{GL}_{2}\left(\mathbb{F}_{l}\right)$.

## Theorem (Hall '08)

Let $C_{f}: y^{2}=f(x)$, where $\operatorname{deg}(f)=2 g+1$. Let $J_{f}=\operatorname{Jac}\left(C_{f}\right)$. Suppose
$\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}$, and $f$ has a double root modulo some prime $p$. Then for all but finitely many primes $l$, we have $\operatorname{Gal}\left(K\left(J_{f}[l]\right) / K\right)=\operatorname{GSp}_{2 g}\left(\mathbb{F}_{l}\right)$.

## Inverse Galois Theory

## Theorem (Serre '72)

Let $E / K$ be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes $l$, we have $\operatorname{Gal}(K(E[l]) / K)=\mathrm{GL}_{2}\left(\mathbb{F}_{l}\right)$.

## Theorem (Hall '08)

Let $C_{f}: y^{2}=f(x)$, where $\operatorname{deg}(f)=2 g+1$. Let $J_{f}=\operatorname{Jac}\left(C_{f}\right)$. Suppose
$\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}$, and $f$ has a double root modulo some prime $p$. Then for all but finitely many primes $l$, we have $\operatorname{Gal}\left(K\left(J_{f}[l]\right) / K\right)=\operatorname{GSp}_{2 g}\left(\mathbb{F}_{l}\right)$.

## Theorem (Zarhin '00)

Let $f \in K[x]$ be a polynomial of degree $n \geq 5$ with Galois group containing $A_{n}$. Then $J_{f}$ has trivial endomorphism ring.

## Remark

To prove this result, it suffices to prove it for $A_{n}$.

## Sketch proof

## Theorem (Zarhin '00)

Let $f \in K[x]$ be a polynomial of degree $n \geq 5$ with Galois group containing $A_{n}$. Then $J_{f}$ has trivial endomorphism ring.

## What can we say for smaller Galois groups?

Zarhin has done a lot of work on this for large insoluble Galois groups. The "smallest" he considers is the following :

## Theorem (Elkin, Zarhin '06,08)

Suppose $n=q+1$, where $q \geq 5$ is a prime power congruent to $\pm 3$ or 7 modulo 8 . Suppose that $f(x)$ is irreducible and $\operatorname{Gal}(f) \cong \operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right)$. Then one of the following holds :
$1 \operatorname{End}^{0}\left(J_{f}\right)=\mathbb{Q}$ or a quadratic field.
2 $q \equiv 3,7 \bmod 8$ and $J_{f}$ is isogenous over $\bar{K}$ to a self-product of an elliptic curve with $C M$ by $\mathbb{Q}(\sqrt{-q})$.

## A result of Lombardo

Theorem (Lombardo '19)
Let $f \in K[x]$ be an irreducible degree 5 polynomial. Then $\operatorname{End}^{0}\left(J_{f}\right)$ is a division algebra.

## Can we improve Lombardo's result?

## Example

Jacobians with trivial endomorphism rings are easy to find, so let's see some non trivial examples.

| $\operatorname{Gal}(f)$ | $\operatorname{End}\left(J_{f}\right)$ | $f(x)$ |
| :---: | :---: | :---: |
| $F_{5}$ | $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ | $x^{5}+10 x^{3}+20 x+5$ |
| $F_{5}$ | $\mathbb{Z}\left[\zeta_{5}\right]$ | $x^{5}-2$ |

## Can we improve Lombardo's result?

## Example

Jacobians with trivial endomorphism rings are easy to find, so let's see some non trivial examples.

| $\operatorname{Gal}(f)$ | $\operatorname{End}\left(J_{f}\right)$ | $f(x)$ |
| :---: | :---: | :---: |
| $F_{5}$ | $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ | $x^{5}+10 x^{3}+20 x+5$ |
| $F_{5}$ | $\mathbb{Z}\left[\zeta_{5}\right]$ | $x^{5}-2$ |
| $D_{5}$ | $\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$ | $x^{5}-19 x^{4}+107 x^{3}+95 x^{2}+88 x-16$ |
| $F_{5}$ | $R$ | $52 x^{5}+104 x^{4}+104 x^{3}+52 x^{2}+12 x+1$ |

where $R$ is the maximal order of the CM number field with defining polynomial $x^{4}+x^{3}+2 x^{2}-4 x+3$. We note that this field is cyclic, ramified only at 13 , and 2 generates a maximal ideal.

## Can we improve Lombardo's result?

## Example

Jacobians with trivial endomorphism rings are easy to find, so let's see some non trivial examples.

| $\operatorname{Gal}(f)$ | $\operatorname{End}\left(J_{f}\right)$ | $f(x)$ |
| :---: | :---: | :---: |
| $F_{5}$ | $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ | $x^{5}+10 x^{3}+20 x+5$ |
| $F_{5}$ | $\mathbb{Z}\left[\zeta_{5}\right]$ | $x^{5}-2$ |
| $D_{5}$ | $\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$ | $x^{5}-19 x^{4}+107 x^{3}+95 x^{2}+88 x-16$ |
| $F_{5}$ | $R$ | $52 x^{5}+104 x^{4}+104 x^{3}+52 x^{2}+12 x+1$ |

where $R$ is the maximal order of the CM number field with defining polynomial $x^{4}+x^{3}+2 x^{2}-4 x+3$. We note that this field is cyclic, ramified only at 13 , and 2 generates a maximal ideal.

Note also, when $\operatorname{Gal}(f) \cong F_{5}$ and $J_{f}$ is of CM type, $\operatorname{End}^{0}\left(J_{f}\right)$ is isomorphic to the unique degree 4 extension of $\mathbb{Q}$ contained in $\mathbb{Q}(f)$.

## Improvements in genus 2

## Theorem (G. '19)

Let $f(x) \in K[x]$ be a polynomial of degree 5 or 6 , with $\operatorname{Gal}(f)$ containing an element of order 5. Then one of the following holds :
$1 \operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}$.
〔 $\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}\left[\frac{1+r \sqrt{D}}{2}\right]$, where $D \equiv 5 \bmod 8, D>0$ and $2 \nmid r$.
$3 \operatorname{End}\left(J_{f}\right) \cong R$, where $R$ is a 2-maximal order in a degree 4 CM field, which is totally inert at 2.

## Remark

Specifying $\operatorname{Gal}(f)$, we can give more information on $\operatorname{End}\left(J_{f}\right)$.

## Higher genus

## Theorem (G.'19)

Let $f(x) \in K[x]$ be a polynomial of degree $2 g+1$ or $2 g+2$, with Gal $(f)$ containing an element of prime order $p=2 g+1$, and $g$ satisfying some additional conditions.
Then one of the following holds :
$1 \operatorname{End}^{0}\left(J_{f}\right)$ is a number field, with restrictions on the primes above 2;
$2 J_{f}$ is isogenous over $\bar{K}$ to the self product of an absolutely simple abelian variety with CM by a proper subfield of $\mathbb{Q}\left(\zeta_{p}\right)$.

Satisfied by $g=1,2,3,5,6,9,11,14,18,23,26,29,30,33,35,39,41, \ldots$

## Sketch proof

Let's consider the case $\operatorname{Gal}(f)$ acts irreducibly on $J[2]$. We may assume $|\operatorname{Gal}(f)|=p$.

## Sketch proof

Let's consider the case $\operatorname{Gal}(f)$ acts irreducibly on $J[2]$. We may assume $|\operatorname{Gal}(f)|=p$. Our first goal is to show $\operatorname{End}_{K}^{0}\left(J_{f}\right)$ is a field.

## Restrictions on the endomorphism field

Let $A / K$ be an abelian variety of dimension $g$. Denote by $L / K$ the minimal extension over which all endomorphisms of $A$ are defined.
E.g. $E: y^{2}=x^{3}-2$ has $g=1$ and $L=\mathbb{Q}\left(\zeta_{3}\right)$.

## Theorem (G.'19)

Suppose $p=2 g+1$ is a prime divisor of $[L: K]$. Then $A$ is isogenous over $\bar{K}$ to the self product of an absolutely simple abelian variety with complex multiplication by a proper subfield of $\mathbb{Q}\left(\zeta_{p}\right)$.

## Sketch of the proof

## Proof sketch

1 First prove $A \sim B^{n}$ over $\bar{K}$ for some absolutely simple abelian variety $B$ and integer $n>1$.

## Sketch of the proof

## Proof sketch

1 First prove $A \sim B^{n}$ over $\bar{K}$ for some absolutely simple abelian variety $B$ and integer $n>1$.
2. Then observe that $\operatorname{Gal}(L / K)$ acts faithfully on $\operatorname{End}^{0}\left(B^{n}\right) \cong M_{n}(D)$ by automorphisms, where $D=\operatorname{End}^{0}(B)$ is a finite dimensional divison algebra satisfying $[D: \mathbb{Q}] n \leq 2 g=p-1$.
3 The Skolem-Noether Theorem then tells us we have a faithful representation

$$
\rho: \operatorname{Gal}(L / K) \rightarrow \mathrm{PGL}_{n}(D)
$$

4 This restricts $D$ to be a subfield of $\mathbb{Q}\left(\zeta_{p}\right)$ and $[D: \mathbb{Q}] n=p-1$. Which in turn implies $B$ has CM by a proper subfield of $\mathbb{Q}\left(\zeta_{p}\right)$.

## Frobenius groups

## Theorem (G. '19)

Let $q$ be an odd prime power. Let $f \in K[x]$ be a polynomial of degree $q$ with Galois group $\mathbb{F}_{q} \rtimes \mathbb{F}_{q}^{\times} \cong \operatorname{AGL}(1, q)$. Suppose $E=\operatorname{End}^{0}\left(J_{f}\right)$ is a number field.
Then $E / Q$ is cyclic Galois, and $L / K$ is the unique extension of degree $[E: Q]$
contained in $K(f)$ :
Furthermore, if $[E: Q]=q-1$, then $L=E K$.

## Frobenius groups

## Theorem (G. '19)

Let $q$ be an odd prime power. Let $f \in K[x]$ be a polynomial of degree $q$ with Galois group $\mathbb{F}_{q} \rtimes \mathbb{F}_{q}^{\times} \cong \operatorname{AGL}(1, q)$. Suppose $E=\operatorname{End}^{0}\left(J_{f}\right)$ is a number field.
Then $E / \mathbb{Q}$ is cyclic Galois, and $L / K$ is the unique extension of degree $[E: \mathbb{Q}]$
contained in $K(f)$.
Furthermore, if $[E: \mathbb{Q}]=q-1$, then $L=E K$.

## Sketch proof

Lower bound

- Use permutation groups and representation theory to show $\operatorname{dim}_{\mathbb{Q}} \operatorname{End}_{F^{\prime}}^{0}\left(J_{f}\right) \leq\left[F^{\prime} \cap K(f): K\right]$.
This allows us to show $L$, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F: K]=\operatorname{dim}_{Q} \operatorname{End}^{0}\left(J_{f}\right)$
This gives us a "lower bound" on $L$, so now we want to find an "upper bound",

Upper bound
$\operatorname{Gal}(\bar{K} / K)$ acts on $E:=\operatorname{End}^{0}\left(J_{f}\right)$. This action factors through $\operatorname{Gal}(L / K)$.
Moreover, as abstract groups, $\operatorname{Gal}(L / K) \hookrightarrow \operatorname{Aut}(E)$.
As $E$ is number field, we have $|\operatorname{Aut}(E)| \leq[E: \mathbb{Q}]=\operatorname{dim} \operatorname{End}^{0}\left(J_{f}\right)$.

## Sketch proof

Lower bound

- Use permutation groups and representation theory to show $\operatorname{dim}_{\mathbb{Q}} \operatorname{End}_{F^{\prime}}^{0}\left(J_{f}\right) \leq\left[F^{\prime} \cap K(f): K\right]$.
- This allows us to show $L$, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F: K]=\operatorname{dim}_{\mathbb{Q}} \operatorname{End}^{0}\left(J_{f}\right)$.
This gives us a "lower bound" on $L$, so now we want to find an "upper bound".


## Upper bound

$\operatorname{Gal}(\bar{K} / K)$ acts on $E:=\operatorname{End}^{0}\left(J_{f}\right)$. This action factors through $\operatorname{Gal}(L / K)$. Moreover, as abstract groups, $\operatorname{Gal}(L / K) \hookrightarrow \operatorname{Aut}(E)$. As $E$ is number field, we have $|\operatorname{Aut}(E)| \leq[E: \mathbb{Q}]=\operatorname{dim} \operatorname{End}^{0}\left(J_{f}\right)$.

## Sketch proof

## Lower bound

- Use permutation groups and representation theory to show $\operatorname{dim}_{\mathbb{Q}} \operatorname{End}_{F^{\prime}}^{0}\left(J_{f}\right) \leq\left[F^{\prime} \cap K(f): K\right]$.
- This allows us to show $L$, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F: K]=\operatorname{dim}_{\mathbb{Q}} \operatorname{End}^{0}\left(J_{f}\right)$.
- This gives us a "lower bound" on $L$, so now we want to find an "upper bound".


## Upper bound

> $\operatorname{Gal}(\bar{K} / K)$ acts on $E:=\operatorname{End}^{0}\left(J_{f}\right)$. This action factors through $\operatorname{Gal}(L / K)$. Moreover, as abstract groups, $\operatorname{Gal}(L / K) \hookrightarrow \operatorname{Aut}(E)$ As $E$ is number field, we have $|\operatorname{Aut}(E)| \leq[E: \mathbb{Q}]=\operatorname{dim}_{\mathbb{Q}} \operatorname{End}^{0}\left(J_{f}\right)$.

## Sketch proof

## Lower bound

- Use permutation groups and representation theory to show $\operatorname{dim}_{\mathbb{Q}} \operatorname{End}_{F^{\prime}}^{0}\left(J_{f}\right) \leq\left[F^{\prime} \cap K(f): K\right]$.
- This allows us to show $L$, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F: K]=\operatorname{dim}_{\mathbb{Q}} \operatorname{End}^{0}\left(J_{f}\right)$.
- This gives us a "lower bound" on $L$, so now we want to find an "upper bound".


## Upper bound

■ $\operatorname{Gal}(\bar{K} / K)$ acts on $E:=\operatorname{End}^{0}\left(J_{f}\right)$. This action factors through $\operatorname{Gal}(L / K)$.
Moreover, as abstract groups, $\operatorname{Gal}(L / K) \hookrightarrow \operatorname{Aut}(E)$.
As $E$ is number field, we have $|\operatorname{Aut}(E)| \leq[E: \mathbb{Q}]=\operatorname{dim}_{\mathbb{Q}} \operatorname{End}^{0}\left(J_{f}\right)$.

## Sketch proof

## Lower bound

- Use permutation groups and representation theory to show $\operatorname{dim}_{\mathbb{Q}} \operatorname{End}_{F^{\prime}}^{0}\left(J_{f}\right) \leq\left[F^{\prime} \cap K(f): K\right]$.
- This allows us to show $L$, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F: K]=\operatorname{dim}_{\mathbb{Q}} \operatorname{End}^{0}\left(J_{f}\right)$.
- This gives us a "lower bound" on $L$, so now we want to find an "upper bound".


## Upper bound

- $\operatorname{Gal}(\bar{K} / K)$ acts on $E:=\operatorname{End}^{0}\left(J_{f}\right)$. This action factors through $\operatorname{Gal}(L / K)$.

■ Moreover, as abstract groups, $\operatorname{Gal}(L / K) \hookrightarrow \operatorname{Aut}(E)$.

## Sketch proof

## Lower bound

- Use permutation groups and representation theory to show $\operatorname{dim}_{\mathbb{Q}} \operatorname{End}_{F^{\prime}}^{0}\left(J_{f}\right) \leq\left[F^{\prime} \cap K(f): K\right]$.
- This allows us to show $L$, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F: K]=\operatorname{dim}_{\mathbb{Q}} \operatorname{End}^{0}\left(J_{f}\right)$.
- This gives us a "lower bound" on $L$, so now we want to find an "upper bound".


## Upper bound

- $\operatorname{Gal}(\bar{K} / K)$ acts on $E:=\operatorname{End}^{0}\left(J_{f}\right)$. This action factors through $\operatorname{Gal}(L / K)$.

■ Moreover, as abstract groups, $\operatorname{Gal}(L / K) \hookrightarrow \operatorname{Aut}(E)$.
$\square$ As $E$ is number field, we have $|\operatorname{Aut}(E)| \leq[E: \mathbb{Q}]=\operatorname{dim}_{\mathbb{Q}} \operatorname{End}^{0}\left(J_{f}\right)$.

## Conclusion

■ We have shown $[E: \mathbb{Q}]=[F: K] \leq[L: K] \leq|\operatorname{Aut}(E)| \leq[E: \mathbb{Q}]$.
Hence we have equality, and so $E / \mathbb{Q}$ is Galois with $\operatorname{Gal}(E / \mathbb{Q}) \cong \operatorname{Gal}(L / K)=\operatorname{Gal}(F / K)$.

Thus we've shown that if $\operatorname{Gal}(f) \cong \mathbb{F}_{q} \rtimes \mathbb{F}_{q}^{\times}$and $E=\operatorname{End}^{0}\left(J_{f}\right)$ is a field, then $E / \mathbb{Q}$ is cyclic Galois and $L / K$ is the unique extension of degree $[E: \mathbb{Q}]$ in $K(f)$.

## Conclusion

- We have shown $[E: \mathbb{Q}]=[F: K] \leq[L: K] \leq|\operatorname{Aut}(E)| \leq[E: \mathbb{Q}]$.
- Hence we have equality, and so $E / \mathbb{Q}$ is Galois with $\operatorname{Gal}(E / \mathbb{Q}) \cong \operatorname{Gal}(L / K)=\operatorname{Gal}(F / K)$.

Thus we've shown that if $\operatorname{Gal}(f) \cong \mathbb{F}_{q} \rtimes \mathbb{F}_{q}^{\times}$and $E=\operatorname{End}^{0}\left(J_{f}\right)$ is a field, then $E / \mathbb{Q}$ is cyclic Galois and $L / K$ is the unique extension of degree $[E: \mathbb{Q}]$ in $K(f)$.

## Conclusion

- We have shown $[E: \mathbb{Q}]=[F: K] \leq[L: K] \leq|\operatorname{Aut}(E)| \leq[E: \mathbb{Q}]$.
- Hence we have equality, and so $E / \mathbb{Q}$ is Galois with $\operatorname{Gal}(E / \mathbb{Q}) \cong \operatorname{Gal}(L / K)=\operatorname{Gal}(F / K)$.

Thus we've shown that if $\operatorname{Gal}(f) \cong \mathbb{F}_{q} \rtimes \mathbb{F}_{q}^{\times}$and $E=\operatorname{End}^{0}\left(J_{f}\right)$ is a field, then $E / \mathbb{Q}$ is cyclic Galois and $L / K$ is the unique extension of degree $[E: \mathbb{Q}]$ in $K(f)$.

