Restrictions on endomorphism algebras of hyperelliptic jacobians

Pip Goodman

Given a (smooth, irreducible, projective) curve C, we may associate to it an abelian variety, ${\rm Jac}(C)$ called the jacobian of C.

This association is functorial, in particular a map $C \to C'$, induces a map $Jac(C) \to Jac(C')$.

Given a (smooth, irreducible, projective) curve C, we may associate to it an abelian variety, ${\rm Jac}(C)$ called the jacobian of C.

This association is functorial, in particular a map $C\to C',$ induces a map ${\rm Jac}(C)\to {\rm Jac}(C').$

Let K be a number field and $f \in K[x]$ be a polynomial of degree 2g + 2 or 2g + 1 without multiple roots. Then the equation $y^2 = f(x)$ determines a curve of genus g. We call curves of this form *hyperelliptic*.

Notation

I'll write J_f to denote the jacobian of such a curve.

Notation

l-torsion

The *l*-torsion of a jacobian $J_f[l]$ is a 2g-dimensional vector space over \mathbb{F}_l with an action of $G_K := \operatorname{Gal}(\bar{K}/K)$. We have $K(J_f[2]) = K(f)$ the splitting field of f.

l-torsion

The *l*-torsion of a jacobian $J_f[l]$ is a 2g-dimensional vector space over \mathbb{F}_l with an action of $G_K := \operatorname{Gal}(\bar{K}/K)$. We have $K(J_f[2]) = K(f)$ the splitting field of f.

Question

How does $\operatorname{End}(J_f)$ relate to the fields $K(J_f[l])$?

In general, $K(J_f[2]) = K(f)$ doesn't tell us much about $End(J_f)$. For example : **1** $f(x) = (x+1)(x^4 + x^3 + x^2 + x + 1)$, has $End(J_f) \cong \mathbb{Z}$. **2** $f(x) = x(x^4 + x^3 + x^2 + x + 1)$, has $End(J_f) \cong \mathbb{Z} \times \mathbb{Z}$. **3** $f(x) = (x-1)(x^4 + x^3 + x^2 + x + 1)$, has $End(J_f) \cong \mathbb{Z}[\zeta_5]$.

Inverse Galois Theory

Theorem (Serre '72)

Let E/K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$.

Theorem (Serre '72)

Let E/K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes l, we have $\operatorname{Gal}(K(E[l])/K) = \operatorname{GL}_2(\mathbb{F}_l)$.

Theorem (Serre '72)

Let E/K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes l, we have $\operatorname{Gal}(K(E[l])/K) = \operatorname{GL}_2(\mathbb{F}_l)$.

Theorem (Hall '08)

Let $C_f : y^2 = f(x)$, where $\deg(f) = 2g + 1$. Let $J_f = \operatorname{Jac}(C_f)$. Suppose $\operatorname{End}(J_f) \cong \mathbb{Z}$, and f has a double root modulo some prime p. Then for all but finitely many primes l, we have $\operatorname{Gal}(K(J_f[l])/K) = \operatorname{GSp}_{2g}(\mathbb{F}_l)$.

Theorem (Serre '72)

Let E/K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes l, we have $\operatorname{Gal}(K(E[l])/K) = \operatorname{GL}_2(\mathbb{F}_l)$.

Theorem (Hall '08)

Let $C_f : y^2 = f(x)$, where $\deg(f) = 2g + 1$. Let $J_f = \operatorname{Jac}(C_f)$. Suppose $\operatorname{End}(J_f) \cong \mathbb{Z}$, and f has a double root modulo some prime p. Then for all but finitely many primes l, we have $\operatorname{Gal}(K(J_f[l])/K) = \operatorname{GSp}_{2g}(\mathbb{F}_l)$.

Theorem (Zarhin '00)

Let $f \in K[x]$ be a polynomial of degree $n \ge 5$ with Galois group containing A_n . Then J_f has trivial endomorphism ring.

Remark

To prove this result, it suffices to prove it for A_n .

Theorem (Zarhin '00)

Let $f \in K[x]$ be a polynomial of degree $n \ge 5$ with Galois group containing A_n . Then J_f has trivial endomorphism ring.

Zarhin has done a lot of work on this for large insoluble Galois groups. The "smallest" he considers is the following :

Theorem (Elkin, Zarhin '06,'08)

Suppose n = q + 1, where $q \ge 5$ is a prime power congruent to ± 3 or 7 modulo 8. Suppose that f(x) is irreducible and $\operatorname{Gal}(f) \cong \operatorname{PSL}_2(\mathbb{F}_q)$. Then one of the following holds :

- 1 End⁰(J_f) = \mathbb{Q} or a quadratic field.
- **2** $q \equiv 3,7 \mod 8$ and J_f is isogenous over \bar{K} to a self-product of an elliptic curve with CM by $\mathbb{Q}(\sqrt{-q})$.

Theorem (Lombardo '19)

Let $f \in K[x]$ be an irreducible degree 5 polynomial. Then $\operatorname{End}^0(J_f)$ is a division algebra.

Example

Jacobians with trivial endomorphism rings are easy to find, so let's see some non trivial examples.

$\operatorname{Gal}(f)$	$\operatorname{End}(J_f)$	f(x)
F_5	$\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$	$x^5 + 10x^3 + 20x + 5$
F_5	$\mathbb{Z}[\overline{\zeta_5}]$	$x^{5}-2$

Example

Jacobians with trivial endomorphism rings are easy to find, so let's see some non trivial examples.

$\operatorname{Gal}(f)$	$\operatorname{End}(J_f)$	f(x)
F_5	$\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$	$x^5 + 10x^3 + 20x + 5$
F_5	$\mathbb{Z}[\overline{\zeta_5}]$	$x^{5}-2$
D_5	$\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$	$x^5 - 19x^4 + 107x^3 + 95x^2 + 88x - 16$
F_5	\bar{R}	$52x^5 + 104x^4 + 104x^3 + 52x^2 + 12x + 1$

where R is the maximal order of the CM number field with defining polynomial $x^4 + x^3 + 2x^2 - 4x + 3$. We note that this field is cyclic, ramified only at 13, and 2 generates a maximal ideal.

Example

Jacobians with trivial endomorphism rings are easy to find, so let's see some non trivial examples.

$\operatorname{Gal}(f)$	$\operatorname{End}(J_f)$	f(x)
F_5	$\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$	$x^5 + 10x^3 + 20x + 5$
F_5	$\mathbb{Z}[\overline{\zeta_5}]$	$x^{5}-2$
D_5	$\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$	$x^5 - 19x^4 + 107x^3 + 95x^2 + 88x - 16$
F_5	\bar{R}	$52x^5 + 104x^4 + 104x^3 + 52x^2 + 12x + 1$

where R is the maximal order of the CM number field with defining polynomial $x^4 + x^3 + 2x^2 - 4x + 3$. We note that this field is cyclic, ramified only at 13, and 2 generates a maximal ideal.

Note also, when $\operatorname{Gal}(f) \cong F_5$ and J_f is of CM type, $\operatorname{End}^0(J_f)$ is isomorphic to the unique degree 4 extension of \mathbb{Q} contained in $\mathbb{Q}(f)$.

Theorem (G. '19)

Let $f(x) \in K[x]$ be a polynomial of degree 5 or 6, with Gal(f) containing an element of order 5. Then one of the following holds :

 $1 \quad \text{End}(J_f) \cong \mathbb{Z}.$

2 End
$$(J_f) \cong \mathbb{Z}\left[\frac{1+r\sqrt{D}}{2}\right]$$
, where $D \equiv 5 \mod 8$, $D > 0$ and $2 \nmid r$.

3 End $(J_f) \cong R$, where R is a 2-maximal order in a degree 4 CM field, which is totally inert at 2.

Remark

Specifying Gal(f), we can give more information on $End(J_f)$.

Theorem (G.'19)

Let $f(x) \in K[x]$ be a polynomial of degree 2g + 1 or 2g + 2, with Gal(f) containing an element of prime order p = 2g + 1, and g satisfying some additional conditions. Then one of the following holds :

- **I** End⁰(J_f) is a number field, with restrictions on the primes above 2;
- **2** J_f is isogenous over \overline{K} to the self product of an absolutely simple abelian variety with CM by a proper subfield of $\mathbb{Q}(\zeta_p)$.

Satisfied by $g = 1, 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, \dots$

Sketch proof

Let's consider the case Gal(f) acts irreducibly on J[2]. We may assume |Gal(f)| = p.

Sketch proof

Let's consider the case $\operatorname{Gal}(f)$ acts irreducibly on J[2]. We may assume $|\operatorname{Gal}(f)| = p$. Our first goal is to show $\operatorname{End}_{K}^{0}(J_{f})$ is a field. Let A/K be an abelian variety of dimension g. Denote by L/K the minimal extension over which all endomorphisms of A are defined. E.g. $E: y^2 = x^3 - 2$ has g = 1 and $L = \mathbb{Q}(\zeta_3)$.

Theorem (G.'19)

Suppose p = 2g + 1 is a prime divisor of [L : K]. Then A is isogenous over \overline{K} to the self product of an absolutely simple abelian variety with complex multiplication by a proper subfield of $\mathbb{Q}(\zeta_p)$.

Sketch of the proof

Proof sketch

1 First prove $A \sim B^n$ over \bar{K} for some absolutely simple abelian variety B and integer n > 1.

Proof sketch

- **1** First prove $A \sim B^n$ over \bar{K} for some absolutely simple abelian variety B and integer n > 1.
- **2** Then observe that $\operatorname{Gal}(L/K)$ acts faithfully on $\operatorname{End}^0(B^n) \cong M_n(D)$ by automorphisms, where $D = \operatorname{End}^0(B)$ is a finite dimensional divison algebra satisfying $[D : \mathbb{Q}]n \leq 2g = p 1$.
- 3 The Skolem-Noether Theorem then tells us we have a faithful representation

 $\rho : \operatorname{Gal}(L/K) \to \operatorname{PGL}_n(D)$

I This restricts *D* to be a subfield of $\mathbb{Q}(\zeta_p)$ and $[D:\mathbb{Q}]n = p - 1$. Which in turn implies *B* has CM by a proper subfield of $\mathbb{Q}(\zeta_p)$.

Theorem (G. '19)

Let *q* be an odd prime power. Let $f \in K[x]$ be a polynomial of degree *q* with Galois group $\mathbb{F}_q \rtimes \mathbb{F}_q^{\times} \cong \operatorname{AGL}(1,q)$. Suppose $E = \operatorname{End}^0(J_f)$ is a number field. Then E/\mathbb{Q} is cyclic Galois, and L/K is the unique extension of degree $[E:\mathbb{Q}]$ contained in K(f). Furthermore, if $[E:\mathbb{Q}] = q - 1$, then L = EK.

Theorem (G. '19)

Let q be an odd prime power. Let $f \in K[x]$ be a polynomial of degree q with Galois group $\mathbb{F}_q \rtimes \mathbb{F}_q^{\times} \cong \operatorname{AGL}(1,q)$. Suppose $E = \operatorname{End}^0(J_f)$ is a number field. Then E/\mathbb{Q} is cyclic Galois, and L/K is the unique extension of degree $[E : \mathbb{Q}]$ contained in K(f). Furthermore, if $[E : \mathbb{Q}] = q - 1$, then L = EK.

- Use permutation groups and representation theory to show $\dim_{\mathbb{Q}} \operatorname{End}_{F'}^0(J_f) \leq [F' \cap K(f) : K].$
- This allows us to show L, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F:K] = \dim_{\mathbb{O}} \operatorname{End}^{0}(J_{f})$.
- This gives us a "lower bound" on L, so now we want to find an "upper bound".

- $\operatorname{Gal}(K/K)$ acts on $E := \operatorname{End}^0(J_f)$. This action factors through $\operatorname{Gal}(L/K)$.
- Moreover, as abstract groups, $Gal(L/K) \hookrightarrow Aut(E)$.
- As E is number field, we have $|\operatorname{Aut}(E)| \leq [E : \mathbb{Q}] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.

- Use permutation groups and representation theory to show $\dim_{\mathbb{O}} \operatorname{End}_{F'}^0(J_f) \leq [F' \cap K(f) : K].$
- This allows us to show L, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F:K] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.
- This gives us a "lower bound" on L, so now we want to find an "upper bound".

- $\operatorname{Gal}(K/K)$ acts on $E := \operatorname{End}^0(J_f)$. This action factors through $\operatorname{Gal}(L/K)$.
- Moreover, as abstract groups, $Gal(L/K) \hookrightarrow Aut(E)$.
- As E is number field, we have $|\operatorname{Aut}(E)| \leq [E : \mathbb{Q}] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.

- Use permutation groups and representation theory to show $\dim_{\mathbb{O}} \operatorname{End}_{F'}^0(J_f) \leq [F' \cap K(f) : K].$
- This allows us to show L, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F:K] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.
- This gives us a "lower bound" on L, so now we want to find an "upper bound".

- $\operatorname{Gal}(K/K)$ acts on $E := \operatorname{End}^0(J_f)$. This action factors through $\operatorname{Gal}(L/K)$.
- Moreover, as abstract groups, $Gal(L/K) \hookrightarrow Aut(E)$.
- As E is number field, we have $|\operatorname{Aut}(E)| \leq [E : \mathbb{Q}] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.

- Use permutation groups and representation theory to show $\dim_{\mathbb{O}} \operatorname{End}_{F'}^0(J_f) \leq [F' \cap K(f) : K].$
- This allows us to show L, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F:K] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.
- This gives us a "lower bound" on L, so now we want to find an "upper bound".

- $\operatorname{Gal}(\overline{K}/K)$ acts on $E := \operatorname{End}^0(J_f)$. This action factors through $\operatorname{Gal}(L/K)$.
- Moreover, as abstract groups, $Gal(L/K) \hookrightarrow Aut(E)$.
- As E is number field, we have $|\operatorname{Aut}(E)| \leq [E : \mathbb{Q}] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.

- Use permutation groups and representation theory to show $\dim_{\mathbb{O}} \operatorname{End}_{F'}^0(J_f) \leq [F' \cap K(f) : K].$
- This allows us to show L, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F:K] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.
- This gives us a "lower bound" on L, so now we want to find an "upper bound".

- $\operatorname{Gal}(\overline{K}/K)$ acts on $E := \operatorname{End}^0(J_f)$. This action factors through $\operatorname{Gal}(L/K)$.
- Moreover, as abstract groups, $Gal(L/K) \hookrightarrow Aut(E)$.
- As E is number field, we have $|\operatorname{Aut}(E)| \leq [E : \mathbb{Q}] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.

- Use permutation groups and representation theory to show $\dim_{\mathbb{O}} \operatorname{End}_{F'}^0(J_f) \leq [F' \cap K(f) : K].$
- This allows us to show L, the minimal field of definition for the endomorphisms, contains some field $K \subseteq F \subseteq K(f)$ with $[F:K] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.
- This gives us a "lower bound" on L, so now we want to find an "upper bound".

- $\operatorname{Gal}(\overline{K}/K)$ acts on $E := \operatorname{End}^0(J_f)$. This action factors through $\operatorname{Gal}(L/K)$.
- Moreover, as abstract groups, $Gal(L/K) \hookrightarrow Aut(E)$.
- As E is number field, we have $|\operatorname{Aut}(E)| \leq [E : \mathbb{Q}] = \dim_{\mathbb{Q}} \operatorname{End}^{0}(J_{f})$.

Conclusion

• We have shown $[E:\mathbb{Q}] = [F:K] \leq [L:K] \leq |\operatorname{Aut}(E)| \leq [E:\mathbb{Q}].$

Hence we have equality, and so E/\mathbb{Q} is Galois with $\operatorname{Gal}(E/\mathbb{Q}) \cong \operatorname{Gal}(L/K) = \operatorname{Gal}(F/K)$.

Thus we've shown that if $\operatorname{Gal}(f) \cong \mathbb{F}_q \rtimes \mathbb{F}_q^{\times}$ and $E = \operatorname{End}^0(J_f)$ is a field, then E/\mathbb{Q} is cyclic Galois and L/K is the unique extension of degree $[E : \mathbb{Q}]$ in K(f).

Conclusion

• We have shown $[E:\mathbb{Q}] = [F:K] \leq [L:K] \leq |\operatorname{Aut}(E)| \leq [E:\mathbb{Q}].$

Hence we have equality, and so E/\mathbb{Q} is Galois with $\operatorname{Gal}(E/\mathbb{Q}) \cong \operatorname{Gal}(L/K) = \operatorname{Gal}(F/K)$.

Thus we've shown that if $\operatorname{Gal}(f) \cong \mathbb{F}_q \rtimes \mathbb{F}_q^{\times}$ and $E = \operatorname{End}^0(J_f)$ is a field, then E/\mathbb{Q} is cyclic Galois and L/K is the unique extension of degree $[E : \mathbb{Q}]$ in K(f).

Conclusion

• We have shown $[E:\mathbb{Q}] = [F:K] \leq [L:K] \leq |\operatorname{Aut}(E)| \leq [E:\mathbb{Q}].$

Hence we have equality, and so E/\mathbb{Q} is Galois with $\operatorname{Gal}(E/\mathbb{Q}) \cong \operatorname{Gal}(L/K) = \operatorname{Gal}(F/K)$.

Thus we've shown that if $\operatorname{Gal}(f) \cong \mathbb{F}_q \rtimes \mathbb{F}_q^{\times}$ and $E = \operatorname{End}^0(J_f)$ is a field, then E/\mathbb{Q} is cyclic Galois and L/K is the unique extension of degree $[E : \mathbb{Q}]$ in K(f).