Superelliptic curves with large Galois images

Pip Goodman

Mod ℓ representations

Let ℓ be a prime. Let A be a principally polarised abelian variety of dimension g over a number field K.
The ℓ-torsion subgroup of $A(\bar{K})$, that is, $A[\ell]:=\{P \in A(\bar{K}) \mid \ell P=0\}$ has the structure of $2 g$ dimensional vector space over \mathbb{F}_{ℓ} :

$$
A[\ell] \cong \mathbb{F}_{\ell}^{2 g}
$$

The absolute Galois group G_{K} acts linearly on this space, giving a representation

$$
\rho_{\ell}: G_{K} \rightarrow \mathrm{GL}_{2 g}(\ell) .
$$

Furthermore, the Weil pairing (which is a non-degenerate symplectic pairing) $A[\ell] \times A[\ell] \rightarrow \mathbb{F}_{\ell}^{*}$, is preserved up to similitude by G_{K}.

Together with the above, this means our representation lands in the subgroup

$$
\rho_{\ell}: G_{K} \rightarrow \operatorname{GSp}_{2 g}(\ell)
$$

Images of $\bmod \ell$ representations

Serre's Open Image Theorem

Let E / K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes ℓ, we have $\operatorname{Gal}(K(E[\ell]) / K)=\mathrm{GL}_{2}(\ell)$.

Theorem (Hall '08)
Let $C: y^{2}=f(x)$, where $f \in K[x]$ has degree $2 g+1$. Let $J=\operatorname{Jac}(C)$.
Suppose $\operatorname{End}(J) \cong \mathbb{Z}$, and f has a double root modulo some prime p.
Then for all but finitely many primes ℓ, we have
$\operatorname{Gal}(K(J[\ell]) / K)=\operatorname{GSp}_{2 g}(\ell)$.
Theorem (Anni, V. Dokchitser '20)
Let g be a positive integer so that $2 g+2$ satisfies "double Goldbach + ε ". Then one may find an explicit hyperelliptic curve defined over \mathbb{Q} of genus g such that the associated mod ℓ images are maximal for all primes ℓ.

What about "natural" subgroups of $\operatorname{GSp}_{2 g}(\ell)$?

The rough intuition for the image ρ_{ℓ} is that it should be as big as possible. In other words, it should be $\mathrm{GSp}_{2 g}(\ell)$ unless there is a good reason.

What's a good reason? Endomorphisms!

Natural source of endomorphisms?

Let r be an odd prime, $f \in \mathbb{Q}\left(\zeta_{r}\right)[x]$ without repeated roots.
Let C be the smooth projective curve defined by the affine model

$$
y^{r}=f(x) .
$$

There is a natural automorphism on C coming from $y \mapsto \zeta_{r} y$.
This induces an automorphism

$$
\left[\zeta_{r}\right]: J \rightarrow J
$$

on the jacobian J of C.
$\left[\zeta_{r}\right]$ gives rise to an automorphism on $J[\ell]$ for each $\ell \neq r$.
This automorphism preserves our the Weil pairing.
Hence the image of

$$
G_{\mathbb{Q}\left(\zeta_{r}\right)} \rightarrow \operatorname{GSp}_{2 g}(\ell)
$$

lies in the centraliser of $\left[\zeta_{r}\right] \in \operatorname{GSp}_{2 g}(\ell)$.

What does the centraliser of $\left[\zeta_{r}\right]$ look like?

How does one show $\rho_{\ell}\left(G_{K}\right)$ is "as big as possible"?

A group theory checklist

Theorem (Arias-de-Reyna, Dieulefait, Wiese '16)
Let $G \leq \operatorname{GSp}_{2 g}(\ell)$ be a subgroup containing a transvection, $\ell \geq 5$ prime. If G does not contain $\operatorname{Sp}_{2 g}(\ell)$, then one of the following holds:

- G is a reducible subgroup;
- G is an imprimitive subgroup.

Theorem (G.'20)
Let $G \leq \mathrm{GL}_{n}\left(\ell^{i}\right)$ be a subgroup containing a transvection, $\ell \geq 5$ prime. If G does not contain $\mathrm{SL}_{n}\left(\ell^{i}\right)$, then one of the following holds:

- G is a reducible subgroup;
- G is an imprimitive subgroup;
- G is contained in $\mathrm{GL}_{n}\left(\ell^{j}\right)$ with $j<i$;
- G is contained in $\mathrm{GSp}_{n}\left(\ell^{i}\right)$ or $\mathrm{GU}_{n}\left(\ell^{i / 2}\right)$.

A similar result holds for $\mathrm{GU}_{n}\left(\ell^{i / 2}\right)$.

Control of inertia subgroups

Let \mathfrak{p} be a prime of $\mathbb{Q}\left(\zeta_{r}\right)$ dividing the rational prime p.
Theorem (T. Dokchitser '18)
Let C be a curve defined by $f(x, y)=0$ with $f \in \mathbb{Q}\left(\zeta_{r}\right)[x, y]$, satisfying some additional hypothesis.

Then the action of the inertia group $I_{\mathfrak{p}}$ on $V_{\ell}(\operatorname{Jac}(C)), p \neq \ell$, can be deduced from the \mathfrak{p}-adic valuations of the coefficients of f.

Furthermore, Tim's results give a regular model of the curve with strict normal crossings. This is important for producing transvections.

So far...

Theorem (G.'20)
Let $d \geq 12$ be a natural number divisible by $2 r$ which is also the sum of two distinct primes $q_{1}<q_{2}$.

Suppose there exists a prime $q_{2}<q_{3}<d$. If $r>23$ assume the class number of $\mathbb{Q}\left(\zeta_{r}\right)$ is odd and $d=q_{3}+1$.

Then given a polynomial $f \in \mathbb{Q}\left(\zeta_{r}\right)[x]$ of degree d whose coefficients satisfy certain congruence conditions, the image of the representation $\rho_{\ell}: G_{\mathbb{Q}\left(\zeta_{r}\right)} \rightarrow \operatorname{Aut}(J[\ell])$ contains the products

- $\mathrm{SL}_{n}\left(\ell^{i}\right)^{\frac{r-1}{2 i}}$ if i the inertia degree of ℓ in $\mathbb{Q}\left(\zeta_{r}\right)$ is odd; and
- $\mathrm{SU}_{n}\left(\ell^{i / 2}\right)^{\frac{r-1}{i}}$ if i the inertia degree of ℓ in $\mathbb{Q}\left(\zeta_{r}\right)$ is even for all ℓ outside of a small finite explicit set.

The last mile

When looking at $y^{3}=f(x)$ of genus g, and primes $p \equiv 1 \bmod 3$, । found:

g	3	4	6	7
$\operatorname{det} \circ \rho_{\lambda}\left(\right.$ Frob $\left._{\mathfrak{p}}\right)$	$p \mathfrak{p}$	$p \mathfrak{p}^{2}$	$p^{2} \mathfrak{p}^{2}$	$p^{2} \mathfrak{p}^{3}$

CM theory

Let A / K be a g dimensional abelian variety such that $\operatorname{End}^{0}(A)$ is a field of dimension $2 g$ over \mathbb{Q}. Such abelian varieties are said to have complex multiplication.

The endomorphism algebra allows us to view the λ-adic representations as being one dimensional, i.e., characters.

The Main Theorem of Complex Multiplication tells us there exists an algebraic Hecke character $\Omega: \mathbb{A}_{K}^{*} \rightarrow \mathbb{C}$ and each of the λ-adic representations can be obtained from Ω.
Furthermore, the infinity type of Ω is determined by the Shimura-Taniyama formula.
In our situation, we also get an algebraic Hecke character giving rise to the $\operatorname{det} \circ \rho_{\lambda}$.

The endomorphism character

Theorem (Fité '20)
Let A / K be an abelian variety with endomorphism algebra
$E=\operatorname{End}_{K}(A) \otimes \mathbb{Q}$ a field. Suppose $K \supseteq E$ and E / \mathbb{Q} are Galois. Then exists an algebraic Hecke character $\Omega: \mathbb{A}_{E}^{*} \rightarrow \mathbb{C}$ whose λ-adic avatars agree with det o ρ_{λ} for

$$
\rho_{\lambda}: G_{K} \rightarrow \operatorname{Aut}\left(T_{\lambda}(A)\right)
$$

and has infinity type determined by the action of $\operatorname{End}(A)$ on $\Omega^{0}(A)$.

Images

Putting this all together, we can construct genus g curves $y^{r}=f(x) \in \mathbb{Q}\left(\zeta_{r}\right)[x]$ whose jacobians J satisfy the following:
Theorem (G.'20)
For all but a finite explicit list of primes ℓ, the image of

$$
\rho_{\ell}: G_{\mathbb{Q}\left(\zeta_{3}\right)} \rightarrow \operatorname{Aut}(J[\ell])
$$

is for i odd:

$$
\rho_{\ell}\left(G_{\mathbb{Q}\left(\zeta_{3}\right)}\right)=\mathrm{GL}_{g}(\ell)^{\left\lceil\frac{g}{3}\right\rceil, 6} \rtimes\langle\chi \ell\rangle
$$

and for i even:

$$
\rho_{\ell}\left(G_{\mathbb{Q}\left(\zeta_{3}\right)}\right)=\mathrm{GU}_{g}(\ell)^{\left\lceil\frac{g}{3}\right\rceil, 6} \cdot\langle\chi \ell\rangle .
$$

Theorem (G.'20)
Let $\ell \equiv 1 \bmod r$. Then for all but a finite explicit list of primes ℓ, we have

$$
\bar{\rho}_{\lambda}\left(G_{\mathbb{Q}\left(\zeta_{r}\right)}\right)=\mathrm{GL}_{n}(\ell)
$$

where $n=\frac{2 g}{r-1}$.

A few examples

For $d \in\{12,18,24\}$ the curves

$$
y^{3}-\zeta_{3}^{2} \pi y^{2}-\zeta_{3}^{2} y=x^{d}+x^{d-1}+7 x^{3}+14 x^{2}+45 \zeta_{3} \pi
$$

where $\pi=1-\zeta_{3}$ have maximal image at all but a finite explicit list of primes.

In particular, outside this list, they satisfy

$$
\bar{\rho}_{\lambda}\left(G_{\mathbb{Q}\left(\zeta_{3}\right)}\right)=\mathrm{GL}_{d-2}(\ell) \text { for } \ell \equiv 1 \bmod 3 ;
$$

and

$$
\bar{\rho}_{\lambda}\left(G_{\mathbb{Q}\left(\zeta_{3}\right)}\right)=\Delta \mathrm{U}_{d-2}(\ell) \text { for } \ell \equiv 5,29 \bmod 36 .
$$

In fact, if $d=12,24$ this holds for $\ell \equiv 5 \bmod 12$.

And another one

For $\ell \neq 2,3,7,41,701,1039501386253916593179$, or
439258487404987531911163270843844304591936466390597312579686975888086620510735 1354930470916194229999769267625792575400330624106332584372975559484695436136367 the 118772361796350659366993443881953314038538101272367583
the superelliptic curve

$$
y^{7}=x^{14}+\pi x^{13}+2 \pi^{7} x^{7}+6 \pi^{12} x^{2}+246 \pi^{7}
$$

where $\pi=1-\zeta_{7}$, has maximal image at ℓ.
If $\lambda \mid \ell$ with $\ell \equiv 1 \bmod 7$, we have

$$
\bar{\rho}_{\lambda}\left(G_{\mathbb{Q}\left(\zeta_{7}\right)}\right)=\mathrm{GL}_{12}(\ell)
$$

and for $\ell \equiv 13 \bmod 28$

$$
\bar{\rho}_{\lambda}\left(G_{\mathbb{Q}\left(\zeta_{7}\right)}\right)=\Delta \mathrm{U}_{12}(\ell) .
$$

You might also like...

Generalised symmetric Chabauty

Question (Zureick-Brown)
Is it possible to determine the cubic points (that is, cubic over \mathbb{Q}) on $X_{0}(65)$, despite its infinitely many quadratic points?

Theorem (Box, Gajović, G. '21)
Let $N \in\{53,57,61,65,67,73\}$. Then the cubic points on $X_{0}(N)$ are known. Moreover the isolated quartic points on $X_{0}(65)$ are known.

To prove this, we extended Siksek's "symmetric Chabauty" and implemented our methods in Magma.
Theorem (Box '21)
Elliptic curves over totally real quartic fields not containing $\sqrt{5}$ are modular.

Theorem (Banwait, Derickx)
Assume GRH. Then for p prime:

$$
Y_{0}(p)\left(\mathbb{Q}\left(\zeta_{7}\right)^{+}\right) \neq \emptyset \Longleftrightarrow Y_{0}(p)(\mathbb{Q}) \neq \emptyset .
$$

Endomorphism algebras

Notation

- K a number field
- $f \in K[x]$ a polynomial without repeated roots
- C_{f} hyperelliptic curve associated to f
- J_{f} the jacobian of C_{f}

Theorem (Zarhin '00)
Let $f \in K[x]$ have degree $n \geq 5$ and Galois group S_{n} or A_{n}. Then
$\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}$.
Theorem (Elkin, Zarhin '06,'08)
Suppose $n=q+1$, where $q \geq 5$ is a prime power congruent to ± 3 or 7 modulo 8. Suppose that $f(x)$ is irreducible and $\operatorname{Gal}(f) \cong \operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right)$.
Then either

1. $\operatorname{End}^{0}\left(J_{f}\right)=\mathbb{Q}$ or a quadratic field; or
2. $q \equiv 3,7 \bmod 8$ and $\operatorname{End}^{0}\left(J_{f}\right) \cong M_{g}(\mathbb{Q}(\sqrt{-q}))$.

Let A / K be an abelian variety of dimension g.
Theorem (G.'19)
Suppose ℓ and $p=2 g+1$ are primes satisfying $\langle\ell\rangle=(\mathbb{Z} / p \mathbb{Z})^{*}$.
Suppose $\operatorname{Gal}(K(A[\ell]) / K)$ contains an element of order p. Then either

1. $\operatorname{End}^{0}(A)$ is a number field totally inert at ℓ; or
2. $\operatorname{End}^{0}(A) \cong M_{a}(F)$ where $F \subsetneq \mathbb{Q}\left(\zeta_{p}\right)$ is a CM field and $a=\frac{2 g}{[F: \mathbb{Q}]}$.

Corollary (G.'19)
Suppose $g=2$, and $\operatorname{Gal}(K(A[2]) / K)$ contains an element of order 5 . Then $\operatorname{End}^{0}(A)$ is a number field totally inert at 2.

The result below is key in establishing the previous theorem.
The endomophism field
Let A / K be an abelian variety of dimension g. Denote by L / K the minimal extension over which all endomorphisms of A are defined.
E.g. $E: y^{2}=x^{3}-2$ has $g=1$ and $L=\mathbb{Q}\left(\zeta_{3}\right)$.

Theorem (G.'19)
Suppose $p=2 g+1$ is a prime divisor of $[L: K]$. Then
$\operatorname{End}^{0}(A) \cong M_{a}(F)$ where $F \subsetneq \mathbb{Q}\left(\zeta_{p}\right)$ is a CM field and $a=\frac{2 g}{[F: \mathbb{Q}]}$.

