Superelliptic curves with large Galois images

Pip Goodman

Mod ℓ representations

Let ℓ be a prime. Let A be a principally polarised abelian variety of dimension g over a number field K.

The ℓ -torsion subgroup of $A(\overline{K})$, that is, $A[\ell] := \{P \in A(\overline{K}) | \ell P = 0\}$ has the structure of 2g dimensional vector space over \mathbb{F}_{ℓ} :

$$A[\ell] \cong \mathbb{F}_{\ell}^{2g}.$$

The absolute Galois group G_K acts linearly on this space, giving a representation

$$\rho_{\ell} \colon G_K \to \mathrm{GL}_{2g}(\ell).$$

Furthermore, the Weil pairing (which is a non-degenerate symplectic pairing) $A[\ell] \times A[\ell] \to \mathbb{F}_{\ell}^*$, is preserved up to similitude by G_K .

Together with the above, this means our representation lands in the subgroup

$$\rho_{\ell} \colon G_K \to \mathrm{GSp}_{2g}(\ell).$$

1

Serre's Open Image Theorem

Let E/K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes ℓ , we have $\operatorname{Gal}(K(E[\ell])/K) = \operatorname{GL}_2(\ell)$.

Theorem (Hall '08)

Let $C: y^2 = f(x)$, where $f \in K[x]$ has degree 2g + 1. Let J = Jac(C). Suppose $\text{End}(J) \cong \mathbb{Z}$, and f has a double root modulo some prime p. Then for all but finitely many primes ℓ , we have $\text{Gal}(K(J[\ell])/K) = \text{GSp}_{2g}(\ell)$.

Theorem (Anni, V. Dokchitser '20)

Let *g* be a positive integer so that 2g + 2 satisfies "double Goldbach + ε ". Then one may find an explicit hyperelliptic curve defined over \mathbb{Q} of genus *g* such that the associated mod ℓ images are maximal for all primes ℓ .

What about "natural" subgroups of $\operatorname{GSp}_{2g}(\ell)$?

The rough intuition for the image ρ_{ℓ} is that it should be as big as possible. In other words, it should be $\mathrm{GSp}_{2g}(\ell)$ unless there is a good reason.

What's a good reason? Endomorphisms!

Natural source of endomorphisms?

Let r be an odd prime, $f \in \mathbb{Q}(\zeta_r)[x]$ without repeated roots.

Let C be the smooth projective curve defined by the affine model

$$y^r = f(x).$$

There is a natural automorphism on C coming from $y \mapsto \zeta_r y$. This induces an automorphism

$$[\zeta_r] \colon J \to J$$

on the jacobian J of C.

 $[\zeta_r]$ gives rise to an automorphism on $J[\ell]$ for each $\ell \neq r$.

This automorphism preserves our the Weil pairing.

Hence the image of

 $G_{\mathbb{Q}(\zeta_r)} \to \mathrm{GSp}_{2g}(\ell)$

lies in the centraliser of $[\zeta_r] \in \mathrm{GSp}_{2g}(\ell)$.

What does the centraliser of $[\zeta_r]$ look like?

How does one show $\rho_{\ell}(G_K)$ is "as big as possible"?

A group theory checklist

Theorem (Arias-de-Reyna, Dieulefait, Wiese '16) Let $G \leq GSp_{2g}(\ell)$ be a subgroup containing a transvection, $\ell \geq 5$ prime. If G does not contain $Sp_{2g}(\ell)$, then one of the following holds:

- *G* is a reducible subgroup;
- *G* is an imprimitive subgroup.

Theorem (G.'20)

Let $G \leq \operatorname{GL}_n(\ell^i)$ be a subgroup containing a transvection, $\ell \geq 5$ prime. If G does not contain $\operatorname{SL}_n(\ell^i)$, then one of the following holds:

- *G* is a reducible subgroup;
- *G* is an imprimitive subgroup;
- G is contained in $\operatorname{GL}_n(\ell^j)$ with j < i;
- G is contained in $\operatorname{GSp}_n(\ell^i)$ or $\operatorname{GU}_n(\ell^{i/2})$.

A similar result holds for $\operatorname{GU}_n(\ell^{i/2})$.

Let \mathfrak{p} be a prime of $\mathbb{Q}(\zeta_r)$ dividing the rational prime p.

Theorem (T. Dokchitser '18)

Let C be a curve defined by f(x, y) = 0 with $f \in \mathbb{Q}(\zeta_r)[x, y]$, satisfying some additional hypothesis.

Then the action of the inertia group $I_{\mathfrak{p}}$ on $V_{\ell}(\operatorname{Jac}(C))$, $p \neq \ell$, can be deduced from the \mathfrak{p} -adic valuations of the coefficients of f.

Furthermore, Tim's results give a regular model of the curve with strict normal crossings. This is important for producing transvections.

Theorem (G.'20)

Let $d \ge 12$ be a natural number divisible by 2r which is also the sum of two distinct primes $q_1 < q_2$.

Suppose there exists a prime $q_2 < q_3 < d$. If r > 23 assume the class number of $\mathbb{Q}(\zeta_r)$ is odd and $d = q_3 + 1$.

Then given a polynomial $f \in \mathbb{Q}(\zeta_r)[x]$ of degree d whose coefficients satisfy certain congruence conditions, the image of the representation $\rho_{\ell} \colon G_{\mathbb{Q}(\zeta_r)} \to \operatorname{Aut}(J[\ell])$ contains the products

- $\operatorname{SL}_n(\ell^i)^{\frac{r-1}{2i}}$ if *i* the inertia degree of ℓ in $\mathbb{Q}(\zeta_r)$ is odd; and
- $\operatorname{SU}_n(\ell^{i/2})^{\frac{r-1}{i}}$ if *i* the inertia degree of ℓ in $\mathbb{Q}(\zeta_r)$ is even

for all ℓ outside of a small finite explicit set.

The last mile

When looking at $y^3 = f(x)$ of genus g, and primes $p \equiv 1 \mod 3$, I found:

g	3	4	6	7
$\det \circ \rho_{\lambda} \left(\operatorname{Frob}_{\mathfrak{p}} \right)$	$p\mathfrak{p}$	$p\mathfrak{p}^2$	$p^2\mathfrak{p}^2$	$p^2\mathfrak{p}^3$

Let A/K be a g dimensional abelian variety such that $\operatorname{End}^0(A)$ is a field of dimension 2g over \mathbb{Q} . Such abelian varieties are said to have complex multiplication.

The endomorphism algebra allows us to view the λ -adic representations as being one dimensional, i.e., characters.

The Main Theorem of Complex Multiplication tells us there exists an algebraic Hecke character $\Omega \colon \mathbb{A}_{K}^{*} \to \mathbb{C}$ and each of the λ -adic representations can be obtained from Ω .

Furthermore, the infinity type of Ω is determined by the Shimura-Taniyama formula.

In our situation, we also get an algebraic Hecke character giving rise to the det $\circ \rho_{\lambda}$.

Theorem (Fité '20)

Let A/K be an abelian variety with endomorphism algebra $E = \operatorname{End}_K(A) \otimes \mathbb{Q}$ a field. Suppose $K \supseteq E$ and E/\mathbb{Q} are Galois. Then exists an algebraic Hecke character $\Omega \colon \mathbb{A}_E^* \to \mathbb{C}$ whose λ -adic avatars agree with det $\circ \rho_{\lambda}$ for

$$\rho_{\lambda} \colon G_K \to \operatorname{Aut}(T_{\lambda}(A))$$

and has infinity type determined by the action of End(A) on $\Omega^0(A)$.

Images

Putting this all together, we can construct genus g curves $y^r = f(x) \in \mathbb{Q}(\zeta_r)[x]$ whose jacobians J satisfy the following: Theorem (G.'20) For all but a finite explicit list of primes ℓ , the image of

$$\rho_{\ell} \colon G_{\mathbb{Q}(\zeta_3)} \to \operatorname{Aut}(J[\ell])$$

is for *i* odd:

$$\rho_{\ell}(G_{\mathbb{Q}(\zeta_{3})}) = \mathrm{GL}_{g}(\ell)^{\left\lceil \frac{g}{3} \right\rceil, 6} \rtimes \langle \chi_{\ell} \rangle$$

and for *i* even:

$$\rho_{\ell}(G_{\mathbb{Q}(\zeta_3)}) = \mathrm{GU}_g(\ell)^{\left\lceil \frac{g}{3} \right\rceil, 6} . \langle \chi_{\ell} \rangle.$$

Theorem (G.'20)

Let $\ell \equiv 1 \mod r$. Then for all but a finite explicit list of primes ℓ , we have

$$\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_r)}) = \mathrm{GL}_n(\ell)$$

where $n = \frac{2g}{r-1}$.

For $d \in \{12, 18, 24\}$ the curves

$$y^{3} - \zeta_{3}^{2}\pi y^{2} - \zeta_{3}^{2}y = x^{d} + x^{d-1} + 7x^{3} + 14x^{2} + 45\zeta_{3}\pi$$

where $\pi = 1 - \zeta_3$ have maximal image at all but a finite explicit list of primes.

In particular, outside this list, they satisfy

$$\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_3)}) = \operatorname{GL}_{d-2}(\ell) \text{ for } \ell \equiv 1 \mod 3;$$

and

$$\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_3)}) = \Delta U_{d-2}(\ell) \text{ for } \ell \equiv 5,29 \mod 36.$$

In fact, if d = 12, 24 this holds for $\ell \equiv 5 \mod 12$.

For $\ell \neq 2, 3, 7, 41, 701, 1039501386253916593179,$ or $_{439258487404987531911163270843844304591936466390597312579686975888086620510735}$ $_{1354930470916194229999769267625792575400330624106332584372975559484695436136367}$ $_{118772361796350659366993443881953314038538101272367583}$ the superelliptic curve

$$y^7 = x^{14} + \pi x^{13} + 2\pi^7 x^7 + 6\pi^{12} x^2 + 246\pi^7$$

where $\pi = 1 - \zeta_7$, has maximal image at ℓ .

If $\lambda | \ell$ with $\ell \equiv 1 \mod 7$, we have

$$\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_7)}) = \mathrm{GL}_{12}(\ell)$$

and for $\ell \equiv 13 \mod 28$

 $\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_7)}) = \Delta \mathrm{U}_{12}(\ell).$

You might also like...

Question (Zureick-Brown)

Is it possible to determine the cubic points (that is, cubic over \mathbb{Q}) on $X_0(65)$, despite its infinitely many quadratic points?

Theorem (Box, Gajović, G. '21) Let $N \in \{53, 57, 61, 65, 67, 73\}$. Then the cubic points on $X_0(N)$ are known. Moreover the isolated quartic points on $X_0(65)$ are known.

To prove this, we extended Siksek's "symmetric Chabauty" and implemented our methods in *Magma*.

Theorem (Box '21)

Elliptic curves over totally real quartic fields not containing $\sqrt{5}$ are modular.

Theorem (Banwait, Derickx) Assume GRH. Then for *p* prime:

 $Y_0(p)(\mathbb{Q}(\zeta_7)^+) \neq \emptyset \iff Y_0(p)(\mathbb{Q}) \neq \emptyset.$

Endomorphism algebras

Notation

- *K* a number field
- $f \in K[x]$ a polynomial without repeated roots
- C_f hyperelliptic curve associated to f
- J_f the jacobian of C_f

Theorem (Zarhin '00)

Let $f \in K[x]$ have degree $n \ge 5$ and Galois group S_n or A_n . Then $End(J_f) \cong \mathbb{Z}$.

Theorem (Elkin, Zarhin '06,'08)

Suppose n = q + 1, where $q \ge 5$ is a prime power congruent to ± 3 or 7 modulo 8. Suppose that f(x) is irreducible and $\operatorname{Gal}(f) \cong \operatorname{PSL}_2(\mathbb{F}_q)$. Then either

- 1. End⁰ $(J_f) = \mathbb{Q}$ or a quadratic field; or
- 2. $q \equiv 3,7 \mod 8$ and $\operatorname{End}^0(J_f) \cong M_g(\mathbb{Q}(\sqrt{-q})).$

Let A/K be an abelian variety of dimension g.

Theorem (G.'19)

Suppose ℓ and p = 2g + 1 are primes satisfying $\langle \ell \rangle = (\mathbb{Z}/p\mathbb{Z})^*$. Suppose Gal $(K(A[\ell])/K)$ contains an element of order p. Then either

- 1. $\operatorname{End}^0(A)$ is a number field totally inert at ℓ ; or
- 2. End⁰(A) $\cong M_a(F)$ where $F \subsetneq \mathbb{Q}(\zeta_p)$ is a CM field and $a = \frac{2g}{[F:\mathbb{Q}]}$.

Corollary (G.'19)

Suppose g = 2, and Gal(K(A[2])/K) contains an element of order 5. Then $End^0(A)$ is a number field totally inert at 2. The result below is key in establishing the previous theorem.

The endomophism field

Let A/K be an abelian variety of dimension g. Denote by L/K the minimal extension over which all endomorphisms of A are defined.

E.g.
$$E: y^2 = x^3 - 2$$
 has $g = 1$ and $L = \mathbb{Q}(\zeta_3)$.

Theorem (G.'19) Suppose p = 2g + 1 is a prime divisor of [L : K]. Then $\operatorname{End}^{0}(A) \cong M_{a}(F)$ where $F \subsetneq \mathbb{Q}(\zeta_{p})$ is a CM field and $a = \frac{2g}{[F:\mathbb{O}]}$.