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Abstract. We consider S2-valued maps on a domain Ω ⊂ RN minimizing a perturbation of

the Dirichlet energy with vertical penalization in Ω and horizontal penalization on ∂Ω. We first

show the global minimality of universal constant configurations in a specific range of the physical

parameters using a Poincaré-type inequality. Then, we prove that any energy minimizer takes

its values into a fixed great circle S1 ⊂ S2, and deduce uniqueness under Dirichlet boundary

conditions. Finally, we show radial symmetry and monotonicity of minimizers in a ball. Our

results can be applied to the Oseen–Frank energy for nematic liquid crystals and micromagnetic

energy in a thin-film regime.

1. Introduction

The field of thin structures is a branch of material science that is experiencing rapid growth. The
interest relies on their applications in miniaturization and integration of electronic devices, but even
more on their capability to support the emergence of new physics [12, 18]. Indeed, atomically thin
materials can be employed to achieve physical properties that are hardly visible in bulk materials.
Moreover, combining several atomically thin layers to create new heterostructures allows for the
design of novel materials with prescribed properties [28].

In the last twenty years, the role of thin-structures in micromagnetics and nematic liquid crystals
has been an area of active research in both applied mathematics and condensed matter physics
(see, e.g., [2,3,6,7, 14–16, 19,22,27,30]). Recent advances in manufacturing thin films and curved
layers provide a possibility to design new materials composed of several magnetic monolayers of
atomic thickness [12, 31]. These new materials exhibit some unconventional properties, including
perpendicular magnetocrystalline anisotropy [4] and Dzyaloshinskii–Moriya interaction (DMI) (or
antisymmetric exchange) [10,25] and require a new set of reduced theoretical models to predict the
magnetization behavior in ferromagnetic samples. This new physics is often dominated by surface
and edge effects, and leads to a surprising behavior near the material boundaries, giving rise to
novel magnetization structures [18,24,32].

In this paper, we are interested in studying the ground states of a simplified two-dimensional
model (cf. eq. (2)), concentrating on their reduced symmetry properties. The model we investi-
gate is closely related to a reduced model for ferromagnetic thin films with strong perpendicular
anisotropy in the regime when magnetocrystalline and shape anisotropies are of the same order of
magnitude, leading to the preference for in-plane magnetization inside the sample and out-of-plane
magnetization behavior on the boundary [8,22]. Since the energy functionals governing micromag-
netic interactions and defects in nematic liquid crystals are mathematically related, our analysis
also applies to the analysis of ground states in the thin-film limit Oseen–Frank theory of nematic
liquid crystals under weak anchoring conditions.

1.1. Our model. Let Ω ⊂ RN , N ∈ N∗, be a bounded domain and let S2 ⊂ R3 be the two-
dimensional unit sphere. We consider the energy of a configuration m ∈ H1(Ω,S2), defined by

Eκ(m) =
∫

Ω

|∇m|2 + κ2

∫
Ω

(m · e3)2, (1)
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where |∇m|2 =
∑N
i=1 |∂im|

2, e3=(0,0,1), and κ ∈ [0,+∞) is some fixed (material-dependent)
parameter which takes into account in-plane anisotropic effects. Under natural boundary conditions
(which is the typical case in micromagnetics), the only minimizers of Eκ are the constant in-plane
configurations. In this note, we are interested in the problem of minimizing the energy Eκ under an
additional penalization term on the boundary of Ω that makes the problem non-trivial: for every
γ > 0 we consider the energy functional defined for every m ∈ H1(Ω,S2) by

Eκ,γ(m) =
∫

Ω

|∇m|2 + κ2

∫
Ω

(m · e3)2 + 1
γ2

∫
∂Ω

|m× e3|2, (2)

where γ ∈ (0,+∞) fixes the intensity of the perpendicular anisotropy on ∂Ω. The energy in this
form naturally appears in the Oseen-Frank model of liquid crystals [11] and as a thin film limit of
micromagnetic energy for ferromagnetic materials with strong perpendicular anisotropy [8].

A straightforward application of the Direct method of the Calculus of Variations assures that
for every κ ∈ [0,+∞) and γ ∈ (0,+∞), there exists a global minimizer of the energy Eκ,γ .
Global minimizers satisfy the following Euler-Lagrange equation in the weak sense, i.e., for every
ϕ ∈ H1 (Ω,R3) such that m(x) + ϕ(x) ∈ S2 for a.e} x ∈ Ω,∫

Ω

∇m : ∇ϕ + κ2 (m · e3) (ϕ · e3) =
∫

Ω

(|∇m|2 + κ2 (m · e3)2)m ·ϕ

+ 1
γ2

∫
∂Ω

[
(m · e3) e3 − (m · e3)2

m
]
·ϕ. (3)

If a global minimizer m is C2(Ω,S2), this means that m solves

−∆m + κ2 (m · e3) e3 = (|∇m|2 + κ2 (m · e3)2)m in Ω (4)
together with the nonlinear Robin boundary condition:

∂nm = 1
γ2

[
(m · e3) e3 − (m · e3)2

m
]

on ∂Ω. (5)

In the limiting case γ → 0+, we have a non-trivial Dirichlet boundary value problem since Eκ,γ
tends to the energy Eκ,0 defined for every m ∈ H1(Ω,S2) as

Eκ,0(m) :=

Eκ(m) if m± e3 ∈ H1
0 (Ω,R3),

+∞ otherwise .
(6)

Note that, we shall write Eκ,γ for both the boundary penalization problem, corresponding to
(2) when γ > 0, and the boundary value problem (with boundary value ±e3), corresponding to
(6) when γ = 0. This is more convenient since many of our results apply to both problems. As for
γ > 0, the existence of global minimizers of Eκ,0 follows from the Direct method in the Calculus of
Variations.

1.2. Contributions of the present work. The aim of the paper is to show the symmetry
properties of minimizers of Eκ,γ . In particular, we prove that any minimizer of Eκ,γ has values in
some meridian of the sphere. As a consequence, restricting domain Ω to a ball we also show that
any minimizer is radially symmetric and monotone.

In what follows, we describe the results in more detail. Our first result concerns the minimality of
universal configurations, i.e., vector fields m ∈ H1 (Ω,S2) which solve the Euler-Lagrange equations
(3) regardless of the value of the boundary penalization constant γ > 0. Given the dependence of
the boundary term in (3) on γ, such configurations must satisfy

(m · e3)(e3 − (m · e3)m) = 0 a.e on ∂Ω. (7)
It is easy to check that the constant vector fields ±e3, as well as any constant in-plane vector field
e⊥ ∈ S2, e⊥ · e3 = 0, are universal configurations. Concerning these configurations, we prove the
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following result, which clarifies how to tune the parameters κ and γ so that these configurations
emerge as ground states.

Theorem 1. Let Ω ⊆ RN be a bounded Lipschitz domain. The following assertions hold:

i) For any γ ∈ [0,+∞), there exists κγ > 0, depending only on γ and Ω, such that for any

κ ∈ [0, κγ) the constant out-of-plane vector field ±e3 are the unique global minimizers of Eκ,γ .
In particular, ±e3 are the unique solutions of the Dirichlet boundary value problem min Eκ,0
if κ ∈ [0, κ0).

ii) For any κ ∈ (0,+∞), there exists γκ > 0, depending only on κ and Ω, such that for any

γ ∈ (γκ,+∞) the constant in-plane vector fields e⊥ ∈ S2, e⊥ · e3 = 0, are the unique global

minimizers of Eκ,γ .

The statements in Theorem 1 characterize the energy landscape under restrictions on the control
parameters κ and γ. Our second result retrieves information on the properties of minimizers under
no additional assumptions on the system parameters κ and γ. Exploiting the symmetries of the
system, we prove that minimizers of Eκ,γ have values in a quadrant of S1.

In what follows, we denote by
O(3, e3) := {σ ∈ O(3) : σ (e3) = e3 or σ (e3) = −e3}

the group of isometries preserving the e3-axis.

Theorem 2. Let N ∈ N∗ and Ω ⊂ RN be a smooth domain and let κ, γ ∈ [0,+∞). If m ∈ H1(Ω,S2)
is a global minimizer of Eκ,γ , then m ∈ C∞(Ω), there exists σ ∈ O(3, e3) and a lifting map

ϕ ∈ H1(Ω) such that 0 6 ϕ 6 π
2
a.e., and

m = σ ◦ (sinϕ, 0, cosϕ) a.e. in Ω.
Moreover, either ϕ ≡ 0 in Ω so that m is constant out-of-plane (i.e., m ≡ ±e3), or ϕ ≡ π

2
in Ω

so that m is constant in-plane (i.e., m · e3 ≡ 0), or 0 < ϕ < π
2
a.e. in Ω. In any case,

ϕ ∈ argmin
ψ∈H1(Ω)

{∫
Ω

|∇ψ|2 + κ2

∫
Ω

cos2 ψ + 1
γ2

∫
∂Ω

sin2 ψ

}
, if γ > 0, (8)

ϕ ∈ argmin
ψ∈H1

0 (Ω)

{∫
Ω

|∇ψ|2 + κ2

∫
Ω

cos2 ψ

}
, if γ = 0. (9)

In particular, the Dirichlet problem (9) has a unique solution such that Im(ϕ) ⊂ (0, π
2

] thanks
to classical results about sublinear elliptic equations using that y 7→ sin y

y is decreasing on (0, π]
(see Appendix II in [1]). However, this argument does not exclude a priori the possibility of having
coexistence of a solution ϕ such that Im(ϕ) ⊂ (0, π

2
] and the constant solution ϕ ≡ 0, corresponding

to m ≡ ±e3. This is not possible by our next result:

Theorem 3. Let Ω ⊂ RN , N ∈ N∗ be a smooth bounded domain and let κ ∈ [0,+∞). If m and m̄
are two minimizers of the problem min Eκ,0, then there exists σ ∈ O(3, e3) such that m̄ = σ ◦m.

The statements in Theorems 1 to 3 hold without any assumption on the geometry of the domain
Ω. Our last result focuses on spherical domains and proves that if Ω is a ball, then any global
minimizer of Eκ,γ is radially symmetric, i.e. m = m(|x|) and by Theorem 2 has values in a
quadrant of S1 (a particular case is illustrated in Figure 1).

Theorem 4. Let κ, γ ∈ [0,+∞). Let Ω = BR be a ball of radius R > 0 centered at the origin

in RN , then any global minimizer m of Eκ,γ is radially symmetric. More precisely, there exists

σ ∈ O(3, e3) such that

σ ◦m(x) =
(

sin
(u(|x|)

2

)
, 0, cos

(u(|x|)
2

))
in Ω
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Figure 1. On the left, a minimizer of Eκ,γ , with κ2 = 5, γ = 0.1, in the unit
disk of R2. On the right, we isolated a ray in order to visualize the profile of the
minimizer better.

for some non-increasing function u : [0, R]→ [0, π] which solves

u′′(r) + N − 1
r

u′ + κ2 sin u = 0 in (0, R), (10)

with u′(0) = 0 and either a Dirichlet condition or a nonlinear Robin condition at r = R, namely{
u(R) = 0 if γ = 0,
u′(R) + 1

γ2 sin u(R) = 0 if γ > 0.
(11)

By Theorem 3,the global minimizer u when γ = 0 is unique. It is either the steady state u ≡ 0
or an increasing function into (0, π).

1.3. Outline. The paper is organized as follows. In Section 2, we prove the minimality of universal
configurations (Theorem 1). For that, we need a Poincaré-type inequality with a remainder, which
is proved in Proposition 1. Section 3 is devoted to the analysis of symmetries of the minimizers
and their range. There we prove Theorem 2. In Section 4, we show the uniqueness of minimizers
under Dirichlet boundary conditions (Theorem 3). Finally, in Section 5, we focus on the case when
domain is a ball, and we prove radial symmetry of energy minimizers (Theorem 4).

2. Minimality of universal configurations: Proof of Theorem 1

To investigate the minimality of the constant out-of-plane configurations ±e3 we need the fol-
lowing Poincaré-type inequality, which can be of some interest on its own.

Proposition 1 (Poincaré-type inequality). Let Ω ⊆ RN be a bounded smooth domain. Then, there

exists cΩ > 0 such that for every u ∈ H1 (Ω) and every δ > 0, we have

δ (cΩ − δ)
∫

Ω

u2(x)dx 6
∫

Ω

|∇u(x)|2 dx+ δ

∫
∂Ω

u2(x)dHN−1(x). (12)

Moreover, in the previous relation, the constant cΩ can be taken cΩ = N
diam(Ω)

.

Proof. We argue along the lines in [5]. Without loss of generality, we can assume that 0 ∈ Ω. Also,
by density, it is sufficient to prove (12) for every u ∈ C∞

(
Ω
)
. By the divergence theorem we have∫

Ω

(
2u(x)∇u(x) · x+Nu2(x)

)
dx =

∫
Ω

div[u2(x)x]dx =
∫
∂Ω

u2(x)n(x) · x dHN−1(x),

where, for a.e. x ∈ ∂Ω, we denoted by n(x) the unitary normal vector field at ξ ∈ ∂Ω. By Young’s
inequality, it follows that for every δ > 0, one has

N

∫
Ω

u2(x)dx 6 sup
x∈∂Ω

|x|
∫
∂Ω

u2(x)dHN−1(x) + sup
x∈Ω

|x|
∫

Ω

[1
δ
|∇u(x)|2 + δu2(x)

]
dx.
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Since supx∈∂Ω |x| 6 diam (Ω) and supx∈Ω |x| 6 diam (Ω), we have

(N − δ diam (Ω))
∫

Ω

u2(x)dx 6 diam (Ω)
δ

∫
Ω

|∇u(x)|2 dx+ diam (Ω)
∫
∂Ω

u2(x)dHN−1(x).

From the previous estimate, we get that for every δ > 0 there holds

δ (cΩ − δ)
∫

Ω

u2(x)dx 6
∫

Ω

|∇u(x)|2 dx+ δ

∫
∂Ω

u2(x)dHN−1(x),

with cΩ := N
diam(Ω)

. This concludes the proof. �

Proof of Theorem 1, item i. We first consider the case where γ > 0. Without loss of generality,
we can focus on the configuration m = +e3. We observe that for any v ∈ H1(Ω,R3) such that
|v + e3| = 1 or, equivalently, such that |v|2 = −2 (v · e3), we have

Eκ,γ(e3 + v)− Eκ,γ(e3) =
∫

Ω

|∇v|2 + κ2

∫
Ω

(v · e3)2 + 2 (v · e3) + 1
γ2

∫
∂Ω

|v × e3|2

=
∫

Ω

|∇v|2 − κ2

∫
Ω

|v⊥|2 + 1
γ2

∫
∂Ω

|v⊥|2, (13)

with v⊥ = v − (v · e3) e3. Estimating the energy increment Eκ,γ(e3 + v) − Eκ,γ(e3) through the
Poincaré inequality (12) we get for every δ > 0,

Eκ,γ(e3 + v)− Eκ,γ(e3) > δ (cΩ − δ)
∫

Ω

|v⊥|2 − δ
∫
∂Ω

|v⊥|2 − κ2

∫
Ω

|v⊥|2 + 1
γ2

∫
∂Ω

|v⊥|2

>
(
δ (cΩ − δ)− κ2

) ∫
Ω

|v⊥|2 +
(

1
γ2
− δ
)∫

∂Ω

|v⊥|2. (14)

If we set δγ := min{ cΩ
2
, 1
γ2 } and κγ := (δγ(cΩ − δγ))1/2 > 0, then for every κ ∈ [0, κγ) there exists

δ ∈ (0, δγ) such that δ (cΩ − δ) > κ2 and 1
γ2 > δ. Hence, by (14), e3 (and so −e3) is a minimum

point of Eκ,γ , and any other minimum point m can only be obtained by perturbations in the e3

direction. This means that the constant out-of-plane vector fields ±e3 are the only minimizers of
Eκ,γ .

A simpler argument gives a similar result for Eκ,0. Indeed, in this case, v ∈ H1
0 (Ω,R3) and (13)

reads as

Eκ,0(e3 + v)− Eκ,0(e3) =
∫

Ω

|∇v|2 − κ2

∫
Ω

|v⊥|2.

But then the result follows from classical Poincaré inequality in H1
0 (Ω,R3), by taking κ0 := cΩ

where cΩ is the Poincaré constant. �

Proof of Theorem 1, item ii. The range of parameters under which the minimality of the constant
in-plane configurations holds depends essentially on γ, and can be easily investigated through the
classical trace inequality:

c∂Ω‖u‖L2(∂Ω) 6 ‖u‖H1(Ω), (15)

for some c∂Ω > 0 and every u ∈ H1 (Ω). Indeed, let e⊥ ∈ S2 such that e⊥ · e3 = 0 and let
v ∈ H1(Ω,R3) such that |v + e⊥| = 1. In particular,

|(v + e⊥)× e3|2 − |e⊥ × e3|2 = |v × e3|2 + 2(v × e3)(e⊥ × e3)
= |v × e3|2 + 2v · e⊥
= |v × e3|2 − |v|2 = −(v · e3)2.
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Hence, we have

Eκ,γ(e⊥ + v)− Eκ,γ(e⊥) =
∫

Ω

|∇v|2 + κ2

∫
Ω

(v · e3)2 − 1
γ2

∫
∂Ω

(v · e3)2

>
∫

Ω

|∇v⊥|2 +
(
c2∂Ω ·min{1, κ2} − 1

γ2

)∫
∂Ω

(v · e3)2
,

where v⊥ = v − (v · e3) e3. Therefore, as soon as

γ > γκ := 1
c∂Ω ·min{1, κ} ,

we obtain that e⊥ is a global minimizer of Eκ,γ . Moreover, if γ > γκ, we have that the constant
in-plane vector fields e⊥ ∈ S2, with e⊥ · e3 = 0, are the only minimizers of Eκ,γ . Indeed, if
Eκ,γ(e⊥ + v) − Eκ,γ(e⊥) = 0 then v⊥ is constant a.e. in Ω and, therefore, so is (v · e3) due to
constraint |e⊥ + v| = 1 imposed on v. Since v · e3 = 0 a.e. on ∂Ω, we conclude that v is constant
and in-plane. This concludes the proof. �

3. Symmetries in the target space and range of minimizers

Thanks to the symmetries, we shall see that the range of any minimizer is contained in a meridian
of S2.

3.1. Symmetries of the energy functional in the target space. First, it is clear that the
energy is invariant under the group of isometries that preserve the vertical coordinate axis Re3,
i.e.,

O(3, e3) := {σ ∈ O(3) : σ (e3) = e3 or σ (e3) = −e3} ;
this group is generated by the isotropy group {σ ∈ O(3) : σ(e3) = e3} and the reflection σe3

through the plane orthogonal to e3.

Proposition 2. For every κ, γ ∈ [0,+∞), σ ∈ O(3, e3) and m ∈ H1(Ω,S2), Eκ,γ(m) = Eκ,γ(σ◦m).

Proposition 2 applies in particular to the reflection σ = σv, defined by σv(w) = w− 2(v ·w)v,
through the plane orthogonal to a vector v ∈ S2 which is either equal to e3 or orthogonal to e3.
Using the fact that the H1 seminorm is preserved by taking the positive or negative parts, we also
have the following result.

Proposition 3. Let κ ∈ [0,+∞), v ∈ S2 and m ∈ H1(Ω,S2). If either v = e3 or v · e3 = 0, then
Eκ,γ(m) = Eκ,γ(σ+

v ◦m), where

σ+
v (w) :=

w if w · v > 0,

w − 2(v ·w)v if w · v < 0.
(16)

This applies for instance to
(
σ+

e1
◦m

)
= (|m1|,m2,m3),

(
σ+

e2
◦m

)
= (m1, |m2|,m3) and(

σ+
e3
◦m

)
= (m1,m2, |m3|).

3.2. Regularity of minimizers. For Ω a two-dimensional domain, the regularity of minimizers
follows from the classical regularity theory of Schoen-Uhlenbeck [29]. However the regularity in
dimension N > 3 is not trivially guaranteed in our problem, as there may exist singular homoge-
neous harmonic maps into S2 such as x 7→ x

|x| in R3. Here, we can prove regularity by using the
symmetries. We start with an easy lemma.

Lemma 1. Let u ∈ W 1,p(Ω) be a Sobolev function defined on an open set Ω ⊂ RN , p > 1. If |u|
is continuous, then u is continuous.
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Proof. If u(x) = 0, then u is continuous at x. If u(x) 6= 0, then, as |u| is continuous, there
exists a non empty ball Br(x) ⊂ Ω where |u| > α > 0. Let v ∈ W 1,p(Br(x)) be defined by
v(x) := max{min{ 1

α u(x), 1},−1}. We have that v(x) ∈ {−1, 1} everywhere in Br(x), which for a
Sobolev function means that v is equal to a constant a.e. in Br(x). This means that the sign of
u does not change on Br(x), i.e. that u = |u| a.e. in Br(x) or u = −|u| a.e. in Br(x). Thus, u is
continuous. �

Proposition 4. Let κ, γ ∈ [0,+∞) and let m ∈ H1(Ω,S2) be a global minimizer of Eκ,γ . Then

m ∈ C∞(Ω,S2).

Proof. By Proposition 3, |m| := (|m1|, |m2|, |m3|) is still a global minimizer of Eκ,γ . In particular,
|m| is a global minimizer of Eκ under its own boundary condition. Since |m| is valued into a
strictly convex subset of the sphere S2 and since Eκ is nothing but a perturbation of the Dirichlet
energy by a lower order term (namely, the zero-order term of energy density κ2(m·e3)2), we deduce
from [29, Theorem IV and its corollary] that |m| is continuous in Ω1. Hence m is continuous by
Lemma 1. But it is then standard to prove that m is smooth (see [29] for instance). �

3.3. Range of minimizers. We start with the following consequence of the maximum principle.

Lemma 2. Let κ, γ ∈ [0,+∞) and v ∈ S2 such that either v · e3 = 0 or v ∈ {−e3, e3}. If m is a

global minimizer of Eκ,γ , then either m · v ≡ 0 in Ω or m · v never vanishes in Ω.

Proof. By Proposition 3, σ+
v ◦m is still a minimizer of Eκ,γ . By Proposition 4, σ+

v ◦m is smooth.
In particular, σ+

v ◦m (and not only m) solves the Euler-Lagrange equation (4); projecting this
equation on v, we obtain that (σ+

v ◦m) · v = |m · v| solves the elliptic equation

∆ |m · v|+ c(x) |m · v| = 0 in Ω,

with

c(x) =

 |∇ (σ+
v ◦m)|2 + κ2m2

3 if v · e3 = 0,

|∇ (σ+
v ◦m)|2 + κ2(m2

3 − 1) if v = e3.

We then apply the maximum principle [17, Theorem 2.10] to find that either m · v ≡ 0 or m · v
does not vanish in Ω. �

Proof of Theorem 2. By Proposition 4, m is smooth. For the rest of the proof, we proceed in three
steps,
Step 1. m is valued into a meridian. For v ∈ S1 ×{0}, we denote by S2

+(v) the closed hemisphere
directed by v, i.e., the closed subset of S2 obtained intersecting S2 with the closed half-space
{z ∈ R3 : z · v ≥ 0}. If m ≡ ±e3 in Ω there is nothing to prove. If not, there exists x0 ∈ Ω such
that the projection m⊥(x0) of m(x0) onto the plane orthogonal to e3 is different from zero. We
set v0 := m⊥(x0)/|m⊥(x0)| and we claim that the target space of m is contained in the meridian
passing through v0. By construction, m(x0) · v > 0 for every v ∈ S1 × {0} such that v · v0 > 0.
Therefore, by Lemma 2 and the continuity of m, we get that for every x ∈ Ω there holds

m(x) ∈
⋂

{v∈S1×{0}:v·v0>0}

S2
+(v).

As the intersection on the right-hand side is the meridian passing through v0 we conclude.

1Note that the Shoen-Uhlenbeck regularity theory gives smoothness of m with no restriction on the image of m in

dimension N = 2; in dimension N > 3, the presence of singularities is ruled out thanks to the condition that |m| is
valued into a strictly convex subset of S2.
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Step 2. The image of m is contained in a quarter of meridian. Indeed, let v⊥0 ∈ S2 satisfy
v⊥0 · v0 = v⊥0 · e3 = 0. Applying again Lemma 2 to v = e3 and v = v⊥0 , we obtain that

m · v0 = 0, ±m · v⊥0 > 0, ±m · e3 > 0 a.e. in Ω.

Step 3. Conclusion. Since O(3, e3) acts transitively on the quadrant of meridians, we can express m
in terms of a particular solution valued into the quadrant of meridian {m2 = 0} ∩ {m1,m3 > 0}.
Namely, there exists σ ∈ O(3, e3) such that m = σ ◦ u, where u ∈ H1(Ω,S1) is of the form
u = (u1, 0, u2) with u1, u2 ∈ H1(Ω,R) such that u2

1 + u2
2 = 1 and u1, u2 > 0 a.e. in Ω. We then

lift the map u to R by writing u = (sinϕ, 0, cosϕ) with ϕ ∈ H1(Ω) and 0 6 ϕ 6 π
2
a.e. in Ω. We

conclude by noticing that Lemma 2 also tells us that either ϕ ≡ 0, or ϕ ≡ π
2
, or 0 < ϕ < π

2
a.e. in

Ω. �

4. Uniqueness of minimizers under Dirichlet boundary conditions

Theorem 3 is a direct consequence of the following estimate.

Lemma 3. Let m ∈ H1(Ω,S2) and v ∈ H1
0 (Ω,R3) satisfy m + v ∈ S2 a.e. in Ω. If m satisfies

the Euler-Lagrange equations (3) and if m1 > 0 a.e. in Ω, then m1 is bounded below by positive

constants on compact subsets of Ω and

Eκ(m + v)− Eκ(m) >
∫

Ω

m2
1

∣∣∣∣∇( v

m1

)∣∣∣∣2 + κ2

∫
Ω

(v · e3)2. (17)

Proof of Lemma 3. We follow the ideas of [9, Theorem 4.3] and [20, Theorem 5.1]. We have

Eκ(m + v)− Eκ(m) =
∫

Ω

|∇v|2 + κ2

∫
Ω

(v · e3)2 + 2
∫

Ω

∇m : ∇v + 2κ2

∫
Ω

(m · e3) (v · e3).

Note that since |m| = |m + v| = 1 a.e., we also have |v| 6 2 a.e. in Ω. In particular, v ∈
H1

0 (Ω,R3) ∩ L∞(Ω,R3). Since m satisfies the Euler-Lagrange equations (3), we get

Eκ(m + v)− Eκ(m) =
∫

Ω

|∇v|2 + κ2

∫
Ω

(v · e3)2 + 2
∫

Ω

(|∇m|2 + κ2 (m · e3)2)m · v.

On the other hand, since |m + v| = 1, we have 2m · v = −|v|2 and, therefore,

Eκ(m + v)− Eκ(m) =
∫

Ω

|∇v|2 + κ2

∫
Ω

(v · e3)2 −
∫

Ω

(|∇m|2 + κ2 (m · e3)2)|v|2. (18)

Hence, (17) will follow once we prove that for all v ∈ H1
0 ∩ L∞ (Ω,R3),∫

Ω

|∇v|2 >
∫

Ω

(|∇m|2 + κ2 (m · e3)2)|v|2 +
∫

Ω

m2
1

∣∣∣∣∇( v

m1

)∣∣∣∣2 . (19)

We first assume that v ∈ C2
c (Ω,R3), the general case will follow by density.

Now, by the Euler-Lagrange equation of m1 in (3) and since m1 is assumed to be positive in
Ω, we have in particular that m1 is a positive weak superharmonic function, i.e. ∆m1 6 0 weakly
in Ω; we deduce from the weak Harnack-Moser inequality (see [21, Theorem 14.1.2.]) that m1 is
bounded from below by a positive constant on the support of v. Hence, we can write v in the form

v = m1u, (20)
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where u = v
m1
∈ H1

0 (Ω,R3) ∩ L∞(Ω,R3). We then compute∫
Ω

|∇v|2 =
N∑
j=1

∫
Ω

|u∂jm1 +m1∂ju|2 (21)

=
∫

Ω

|u|2 |∇m1|2 +m2
1 |∇u|2 +m1∇m1 · ∇|u|2 (22)

=
∫

Ω

m2
1 |∇u|2 +∇m1 · ∇(m1|u|2). (23)

Now, testing the Euler-Lagrange equations (3) against ϕ := m1|u|2e1 ∈ H1
0 (Ω,R3) ∩ L∞(Ω,R3),

we obtain ∫
Ω

∇m1 · ∇(m1|u|2) =
∫

Ω

(|∇m|2 + κ2 (m · e3)2)m2
1|u|2. (24)

Combining the previous two relations, and recalling that v = m1u, we obtain the following identity:∫
Ω

|∇v|2 =
∫

Ω

m2
1 |∇u|2 + (|∇m|2 + κ2 (m · e3)2)|v|2. (25)

This proves (19) in the case where v ∈ C∞c (Ω,R3). In general, we have v ∈ H1
0 (Ω,R3)∩L∞(Ω,R3)

and there thus exists a sequence (vn)n∈N in C∞c (Ω,R3) such that

sup
n∈N
‖vn‖∞ 6 ‖v‖∞ + 1

and
vn → v in H1

0

(
Ω,R3

)
. (26)

By the previous computations in the smooth case, we have for every compact K ⊂ Ω and n ∈ N,∫
Ω

|∇vn|2 >
∫
K

(|∇m|2 + κ2 (m · e3)2)|vn|2 +
∫
K

m2
1

∣∣∣∣∇( vn
m1

)∣∣∣∣2 .
The conclusion follows by passing to the limit n→∞ using the dominated convergence theorem,
and then taking the supremum over compactsK ⊂ Ω using the monotone convergence theorem. �

Proof of Theorem 3. If the constant out-of-plane configurations ±e3 are the only global minimizers
of Eκ,0, we are done. If not, this means by Theorem 2 that Eκ,0 has a global minimizer of the form
m = (sinϕ, 0, cosϕ) with ϕ ∈ H1(Ω) such that 0 < ϕ 6 π

2
a.e. in Ω. If m̄ = m + v is another

minimizer with v ∈ H1
0 (Ω,R3), then we have by Lemma 3 that v = m1v0 for some v0 ∈ R3. But,

in order to satisfy the constraint m+m1v0 ∈ S2, we must have v0 ·(m1v0 +2m) = 0. Restricted to
the boundary ∂Ω, where we have m = e3, this condition yields v0 · e3 = 0. Hence, since m2 ≡ 0,
we arrive at the equation 0 = v0 · (m1v0 + 2m1e1) which means that |v0 + e1|2 = 1. Hence,
v0 = (cos θ − 1, sin θ, 0) for some θ ∈ R, which means that m̄ = (cos θ sinϕ, sin θ sinϕ, cosϕ), i.e.
m is a rotation of m of angle θ around the x3-axis. �

5. Radial symmetry of minimizers in a ball: Proof of Theorem 4

Numerical simulations suggest that when the domain Ω has spherical symmetry, the minimizers
of Eκ,γ are radially symmetric (cf. Figure 1). The aim of this section is to turn this observation
into a quantitative statement.

The proof we give below for the radial symmetry of minimizers Eκ,γ also works for the boundary
value problem associated with Eκ,0. However, radiality of the minimizers of Eκ,0 immediately
follows from a celebrated result of Gidas-Ni-Nirenberg [13] about radial symmetry for semilinear
elliptic equations. We give the details below.
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Proposition 5. If Ω is a ball centered at the origin, then any minimizer m of the energy Eκ,0 is

radially symmetric.

More precisely, m is either constant with m · e3 ∈ {0,−1, 1}, or there exist σ ∈ O(3, e3) and a

solution ϕ : R+ → (0, π
2

) in (9) such that

m(x) = σ ◦ (sinϕ(|x|), 0, cosϕ(|x|)) a.e. in Ω.

Proof of Proposition 5. Without loss of generality, one can assume that m is not constant. By The-
orem 2, there exists σ ∈ O(3, e3) and a solution ϕ ∈ H1

0 (Ω) of (9) such that m = σ(sinϕ, 0, cosϕ)
and 0 < ϕ < π

2
a.e. in Ω. In particular, ϕ solves the Euler-Lagrange equation ∆(2ϕ)+κ2 sin(2ϕ) = 0

in the weak sense in Ω. By elliptic regularity, ϕ is smooth and the equation holds in the strong
sense. The radial symmetry of ϕ then follows from Gidas-Ni-Nirenberg [13]. �

In the case of the penalization of the boundary datum, we use a reflection method introduced
in [23] and the unique continuation principle for elliptic equations (see, for instance, [26]). Note
that this method also works for the boundary value problem associated with Eκ,0, and the following
proof also covers Proposition 5.

Proof of Theorem 4. We concentrate on the case γ > 0. (The case γ = 0 is similar, and also
covered by Proposition 5.) Without loss of generality, one can assume that m is not constant.
By Theorem 2, there exists σ ∈ O(3, e3) and a solution ϕ ∈ H1(BR) of (8) such that m =
σ(sinϕ, 0, cosϕ) and 0 < ϕ < π

2
a.e. in BR. As before, we get that ϕ is a solution of

∆(2ϕ) + κ2 sin(2ϕ) = 0 in BR. (27)

Now, let H be a hyperplane passing through the origin and dividing RN into two half-spaces H+

and H−. Up to interchange H+ and H−, one can assume that∫
H−∩BR

|∇ϕ|2 + κ2 cos2 ϕ + 1
γ2

∫
H−∩ ∂BR

sin2 ϕ

6
∫
H+∩BR

|∇ϕ|2 + κ2 cos2 ϕ + 1
γ2

∫
H+∩ ∂BR

sin2 ϕ.

Let ϕ∗ ∈ H1 (BR) be defined by ϕ∗ = ϕ on H− ∩ BR and ϕ∗ = ϕ ◦ σH on H+ ∩ BR where σH
stands for the reflection through H. By the previous inequality, we have that Eκ,γ(ϕ∗) 6 Eκ,γ(ϕ),
i.e., ϕ∗ is also a global minimizer. Hence it also solves (27). However, since ϕ∗ = ϕ on H−∩BR, we
deduce by the unique continuation principle (see Theorem III in [26]) that ϕ∗ = ϕ, i.e., ϕ = ϕ◦σH
in BR. Since the hyperplane H is arbitrary, this means that ϕ is radially symmetric. This means
that we can write ϕ(x) = u(|x|)

2
for every x ∈ BR, for some function u : [0, R]→ [0, π]. Moreover,

since ϕ is smooth, u is smooth.
We now argue that u is nonincreasing. Indeed, define the nonincreasing rearrangement of u

by u∗(r) = sups∈[r,R] u(s). We have that u∗ is Lipschitz with |(u∗)′| 6 |u′| on [0, R] since if
0 6 r1 6 r2 6 R, then u∗(r2) 6 u∗(r1) and

u∗(r1) 6 sup
s∈[r2,R]

u(s) + sup
s∈[r1,r2]

|u(s)− u(r2)| 6 u∗(r2) + (r2 − r1) sup
s∈[r1,r2]

|u′(s)|.

But then, the function ϕ∗ ∈ W 1,2(BR), defined by ϕ∗(x) = u∗(|x|) for every x ∈ BR, satisfies
ϕ = ϕ∗ a.e. on ∂BR, and cosϕ∗ 6 cosϕ and |∇ϕ∗| 6 |∇ϕ| a.e. in BR. Hence, cosϕ∗ = cosϕ a.e.,
and so ϕ = ϕ∗ a.e., since otherwise, ϕ∗ would have strictly less energy than ϕ in (8).

Last of all, as a solution of (8), ϕ(x) = u(|x|)
2

must be a solution of the associated Euler-Lagrange
equation, which means that u solves the system (10)-(11). �
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