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GINZBURG-LANDAU RELAXATION FOR HARMONIC MAPS ON PLANAR DOMAINS
INTO A GENERAL COMPACT VACUUM MANIFOLD
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ABSTRACT. We study the asymptotic behaviour, as a small parameter ¢ tends to zero, of minimisers
of a Ginzburg-Landau type energy with a nonlinear penalisation potential vanishing on a compact
submanifold N and with a given N -valued Dirichlet boundary data. We show that minimisers
converge up to a subsequence to a singular A/~valued harmonic map, which is smooth outside a finite
number of points around which the energy concentrates and whose singularities’ location minimises
a renormalised energy, generalising known results by Bethuel, Brezis and Hélein for the circle S*.
We also obtain I'-convergence results and uniform Marcinkiewicz weak L? or Lorentz L? estimates
on the derivatives. We prove that solutions to the corresponding Euler-Lagrange equation converge
uniformly to the constraint and converge to harmonic maps away from singularities.
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1. INTRODUCTION

Given a smooth compact connected manifold A/ which can be assumed, thanks to Nash’s em-
bedding theorem [44], to be isometrically embedded into R” for some v € N,, given a bounded
domain Q C R? with Lipschitz boundary and given g € W/22(9Q, N'), a minimising harmonic
map u is a map u : 0 — N which minimises the Dirichlet energy

(1.1) /Q |D2“|2

on the nonlinear subspace
(1.2) W;’Q(Q,N) = {u € WH?(Q,R”) : u € N almost everywhere in  and trpq u = g}

of the Sobolev space W12(Q2, R¥) of functions having a square-summable weak derivative. It is
known since Morrey’s work that, when the domain (2 is two-dimensional, any minimising harmonic
map is smooth [42].

Because of topological obstructions, the set W; 2 (Q, N) can happen to be empty; if g € C(9Q, N),
this will be the case if and only if the map g cannot be extended to a continuous map from 2 to A/
(see [50]). This occurs for example when the domain (2 is simply connected while the manifold N
is not simply-connected and the map ¢ is not homotopic to a constant map.
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The Ginzburg-Landau relaxation strategy consists in replacing the constraint that v € N almost
everywhere in ) by an additional penalisation term to the Dirichlet energy (1.1). Fixing a nonneg-
ative function F' € C(RY, [0, 4+0oc)) such that F~({0}) = N, one defines for every ¢ € (0, +00),
the Ginzburg—Landau energy as

Dul? F(u
(13) £5.(u) :/Q% + %

In the present work, we will require F' to satisfy the following non-degeneracy condition:

there exist dp, mp, Mp € (0,+00) such that for every z € R” with dist(z, N') < dp,

1.4
(14) =F dist(z, )2 < F(2) < ? dist(z,\)*.

The existence of minimisers of £ under the Dirichlet boundary condition trpn u = g follows
from a classical result in the direct method of calculus of variations (see for example [23, Corollary
3.24]). When ¢ — 0, one expects the function u,. to eventually take its value into A except in some
small singular regions; the limiting map can then play a role of generalised solution of the Dirichlet
problem for harmonic maps into N.

Our first result (Theorem 7.3) describes this asymptotic behaviour of minimisers of the Ginzburg-
Landau energy when e — 0: if for each e > 0, u. is a minimiser of the Ginzburg-Landau energy £%
under the boundary condition trgo u. = g, then there exists a sequence (&, )N converging to 0, a

finite set ofpolir;ts_{al, ...,ak} C Qand amap u, € VVli’CQ(Q \ {ai1,...,ar}) such that u., — u,
strongly in W, 7(Q\ {a1,...,ar}), us is an N'-valued harmonic map in Q \ {a1,...,a;} and the
configuration of points {ay,...,a;} minimizes a renormalised energy. This renormalised energy

is defined as the sum of a renormalised energy for harmonic maps that we have defined in [39]
and that we present in §3, and a term defined in §4 depending on the singularities and on the
penalisation nonlinearity F'.

When A = S! € R%and F(z) = (1 — |2|?)%, we recover the seminal results of Bethuel, Brezis
& Hélein [9], for the original Ginzburg-Landau functional used to model the behaviour of type II
superconductors for a star-shaped domain (2; the results were later extended to simply-connected
domains in [52]; here we do not assume that §2 is simply connected in our work and provide thus
new results for the original Ginzburg-Landau functional in the multiply connected case. In the
case of a general target manifold N, the leading-order asymptotics and the topological charges of
singularities in our results (Theorem 7.3 (ii) and (vi) at the o(log 1/¢) level) are due to Canevari
[15].

Functionals of the form (1.3) appear in various other physical models besides the Ginzburg-
Landau model in superconductivity. The Landau—de Gennes theory describes the state of a nematic
liquid crystal via a field of symmetric traceless 3 X 3 matrix which minimises an energy of the
form (1.3) with A/ ~ RP?; the study of such minimisers has been the object of many works [4,
5,15,30]. Energies of the form (1.3) also appear in physics in Chern-Simon-Higgs theory [5] with
N = S! x {0} ~ S! and other phase transitions problems like biaxial molecules in nematic phase
(N =~ SU(2)/Q, where Q is the quaternion group), superfluid *He in dipole-free phase with N ~
SU(2) x SU(2)/H where H is a subgroup of SU(2) x SU(2) isomorphic to four copies of S! and
superfluid *He in dipole-locked phase with N ~ RIP3 [37].

Minimisation of Ginzburg-Landau type energies has also appeared as a strategy in meshing
algorithms for numerical analysis and computer graphics: in order to generate a quadrangular
meshing of a surface or a hexahedral meshing of a three-dimensional domain, one constructs first
a guiding cross-field or frame-field which is mathematically a map taking its value into SO(2)/C}y
and SO(3)/0, where C} is the cyclic group of order 4 of direct symmetries of a square, and O
is the octahedral group of direct symmetries of the cube [6, 18,31, 36, 53]. Mathematically, in the
latter case 71 (SO(3)/O) = 20 is the nonabelian binary octahedral group. Since one would like
these cross-fields or frame-fields to minimise a Dirichlet energy and since one can face topological
obstructions as described earlier in this introduction, the strategy consists in constructing these
fields using a Ginzburg-Landau relaxation. The cross-fields and frame-fields will necessarily have
singularities and one expect to place these singularities in an optimal way using this procedure.

The asymptotics that we obtain imply in particular that when the domain 2 is a disk and the
boundary data g is an atomic minimising geodesic in AV (see §3.2), then the asymptotic profile is of
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the form u,(x) = g(x/|z|) (Theorem 8.1). This generalises the answer of Bethuel, Brezis & Hélein
to Matano’s original problem on the Ginzburg-Landau equation [25].

As another consequence of our results, the stress-energy tensor of the limit u, has vanishing flux
around the singularities — equivalently, the residue of the Hopf differential of u, vanishes at each
singularity.

The results presented above are not confined to minimisers of the Ginzburg-Landau energy, and
imply in particular I'-convergence results at first and second order similar to the classical case, see
[32,35,48] for I'-convergence results at first order and [1] for I'-convergence results at second order.
All the results also come with Marcinkiewicz weak L? estimates — or equivalently estimates in the
endpoint Lorentz space L>> — on the gradient as for the original Ginzburg-Landau functional
[51].

We consider next the improvements in the asymptotics that can be obtained when u, is a weak
solution to

(1.5) Au, = L(Us) in 2,

22

We refer to (1.5) as the generalised Ginzburg-Landau equation. Minimisers of the Ginzburg-Landau
energy &y, satisfy the corresponding Euler-Lagrange equation, i.e., (1.5) is satisfied under reason-
able assumptions (see §9.1). We prove in Theorem 9.3 that under a boundedness assumption on
V F(u), the distance to the manifold dist(u., , ') converges uniformly to 0 up to the boundary
and away from singularities for any boundary data g € W/ 22(9€, N') — which is not continuous
in general. We next prove in Theorem 9.6 that weakly converging solutions of (1.5) converge to
harmonic maps. Finally, we obtain higher-order convergence up to the boundary under a higher
regularity assumption on the boundary data (Theorem 9.10).

Another strategy to study phase-transition problems where one deals with manifold-valued
order-parameters has been implemented in [16, 17] by constructing a substitute to the Jacobian de-
terminant used in the classical S'-valued Ginzburg-Landau theory to obtain first order I'-convergence
results; this substitute is obtained by using flat chains in the setting of manifolds with abelian funda-
mental groups. Other types of topological obstructions have been analysed via a Ginzburg-Landau
relaxation in the case of two-dimensional Riemannian manifolds [33, 34]; the authors prove the
convergence of vector fields minimising some Ginzburg-Landau type energy to a canonical unit-
length harmonic tangent field with a finite number of singularities; the singularities arise form
a non-vanishing Euler-Poincaré characteristic, their number is determined by the Poincaré—Hopf
index theorem and their position is governed by a renormalised energy.

We continue the present work with a preliminary section on the projection onto the manifold
and on non-degeneracy conditions on F' (§2). We next recall in §3 the definitions and properties
of singular energy, geometric renormalised energy, renormalisable singular mappings and synhar-
mony from [39]. In §4, we introduce a quantity measuring the energy of a vortex with a given
boundary condition at infinity. We combine then the different tools to obtain an upper bound on
the energy of minimisers in §5.

In §6, we obtain by Sandier’s vortex-ball method [48] a first lower-bound on the energy and then
following Jerrard’s strategy [35] we obtain localised estimates. We apply then these estimates to
energy convergence results, implying convergence of minimisers and ['-convergence results (§7).
We also explain how our results locate singularities on a disk with an atomic minimising geodesic
as boundary data (§8).

In the last section §9 we give sufficient conditions for minimisers to be solutions of the Ginzburg-
Landau equation. Then we study solutions to this equation and we prove uniform convergence of
these solutions to the constraint manifold /, weak convergence to harmonic maps and higher-order
convergence away from singularities.

2. RETRACTION ON THE MANIFOLD AND NON-DEGENERACY OF THE RELAXATION POTENTIAL

2.1. Embedding and nearest point retraction. The Ginzburg-Landau relaxation procedure re-
quires an isometric embedding of the vacuum manifold NV into R”. The classical Nash embedding
theorem [44] provides such an embedding. When ' = G/H where G is a Lie group and H C G
is a closed subgroup, it can be relevant to use an equivariant isometric embedding due to Moore
[40] (see also [41]): there exists an isometric embedding ¥ : G/H — RY and a representation
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R : G — Lin(R") such that for every g € G andy € G/H, ¥(gy) = R(9)(¥(y)); in contrast
with Nash’s embedding theorem, the dimension v of the target space R” depends on the metric on
G and on the choice of the subgroup H, and the compactness of G/ H is essential (there is no such
embedding if G/ H is the hyperbolic plane H? ~ SO(1,2)/ x SO(2)).

We define the function disty : R” — [0, +00) by setting for each y € R,

distar(y) := dist(y, V) :=inf {|y — 2| : z € N'}.
We define the set
Ny ={y eR” : dist(y,N) < é}.
The next lemma describes the nearest point retraction of a neighbourhood of A/ on V.

Lemma 2.1. There exists 0 > O such that the nearest point retraction I1zr : N, — N characterized
by

ly — Ty (y)| = dist(y, V)
is well-defined and smooth. Moreover, if the mappings P\, : N' — Lin(R",R”) and Pj; : N' —
Lin(RY,RY) are defined for each y € N by setting P/\T/(y) and PAlf(y) as the orthogonal projections
on TyN and (Ty./\/)l, identified as linear subspaces of R”, then for every y € Nj,. andv € R”,

(2.1) |D dista(y)[v]]* < [Par(Tln(y))[v]]”
and
e (1= ) ny )P < 1P )P < CIom

for some constant C' € (0,400) depending on N and v only.

In the particular case of the sphere N’ = S, one has Il\/(y) = y/|y| if y € R**1\ {0},
DIy (y)[v] = (vly]* = y(y - v))/|y>, and thus [DILy(y)[v]]> = [v]*/|y]* — (y - v)*/|y|* for
v € R"1. Moreover dists» (y) = ||y| — 1| and | D distg (y)[v]| = |v - y|/|y| for y € R*T1\ {0}
and v € R"*L. Besides, if z € S” and v € R™"!: P& (2)[v] = 2(2 - v) and Py, (2)[v] = v — 2(z - v),
so that in this case Lemma 2.1 is a consequence of the formulae

D distgn (4)[o]l” = | P (Hen )] and [yl DILy(y)[e]|> = [P (Tsn ()] 2,

for y € R*1\ {0} and v € R**L,

The smoothness of the nearest point retraction is classical [27]. For related computations on
the distance function to embedded manifolds, we refer the reader to [3,26]. For every y € ./\/5N
and v € R”, we have by orthogonality | Pi:(ILy(y))[v]|*> + |Py-(ILx(y))[v]]* = |v|? and thus by
Lemma 2.1

distar(y)
oN
In the proof of Lemma 2.1 and throughout this work we will use the following facts about the
nearest point projection:

(23) D disty ()] + (1 )Py ()] < [of?.

(2.4) forally € N5, vy —In(y) € (T mN)*,

(2.5) forally € N, DIIx(y) is the orthogonal projection onto T, N i.e., DITx(y) = Pyr(y),

(2.6) forally e N, —D?Ty(y): T,N @ TN — (T,N)*
is the second fundamental form of ' C R at y.

Point (2.4) follows from the characterization of the Ilxs. For (2.5) we refer to [43, Lemma 3.1]. We
denote by B, : T,N @ TuN — (T,N)* the second fundamental form of A" at z € N and we
refer to [20, definition 6.2.2] for the definition. We observe that, for y € N, D?TI N NeT,N =

DP(y) i1, NoT,A” and we refer to [43, Lemma 3.2] for (2.6).
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Proof of Lemma 2.1. It is well-known that when ¢ > 0 is small enough, the nearest point retraction
I1 is well-defined on Ns. For every y € N, by using (2.4) we find

Py (y))[Tn (y) — y] = 0.

Differentiating this identity with respect to y by using the chain rule and the Leibniz rule, we find
for every y € Nsandv € R,

Prr(Ty () [ DIy (y) [0] — v] + (D P (T () [Py (y) [v]]) [Tnr () — 9] = 0.

Noting that DIIx(y)[v] € Ty, ()N, that for every z € N, Py(z) + Pi(z) = id so that
DP;(z)[w] = —DPjs(2)[w] whenever w € T, N, we infer

(2.7) P (T (y)) [DIn(y) [v] — v] — (D Pre(Tnr () [DIn () [v]]) [T (y) — ] = 0.

We observe that for every w € R”, 2 € N — Pi:(2)[w] € T;*N is a smooth map, and therefore
we have [20, proposition 6.2.3] if z € N, w, z € T,N and u € (T,N)*,

2 (DPy(@)[w])u] = —u- By(z,w),

where u - B, is the second fundamental form of the submanifold N along the normal vector u
[20, definition 6.2.2]. Moreover, since for every y € N5, v € RY, DIIx(y)[v] € T, ()N, we have

DXLy (y)[v] - Byr(Ty (y)) [Py () [v] = ] = [ DIy (y)[v][* — DI (y)[0] - PAr(Tar () [v]-
Therefore, we have, by testing (2.7) against the vector DIy (y)[v],

|DILy (y)[0]|* + (I (y) — ¥) - Briy () [T (y) 0], DIy (y) [v]
= Py (Tx(y))[v] - DIInr(y)[v].

Hence, if 6z € (0, 0) satisfies ﬁ > sup{|By(z,w)| : yeN,z,w e T,N,|z| <1, |w| <1},
we have for every y € Nj,, and v € R”,

(2.8)

(29) (1= 5T = o) | DIyl < [P )l

which is the first inequality in (2.2). In particular, ker Py(ILy/(y)) C ker DIIy/(y) and moreover
ker DIy (y) = ker Py (Il (y)) since DILy(y) and Py, (ILy(y)) are onto from R to T ()N
This yields the second inequality in (2.2).

The first estimate, (2.1) follows from the fact that for every y € Nj,, \ N and v € R”

_ vy —Tn) _ PyIy@)] - (y— n(y)

D distar(y)[v] = e ly — v ()] :

2.2. Non-degeneracy of the penalising potential. We first show that if F' satisfies the following
first order non-degeneracy condition,

F € CY(R",[0,400)) and there exist §r € (0,d5) and mp, Mg € (0, 4+00),
(210) mp dist(z, N)? < DF(2)[z — TIx(2)] < Mpdist(z, N)? for every z € N,
then it satisfies our zero order non-degeneracy assumption (1.4). This fact will be useful in Sec-
tion 9.4.
Lemma 2.2. If F € CY(R”, [0, 4+00)) with F = 0 on N and if (2.10) holds, then (1.4) holds.
Proof. By (2.10), we have for every z € N, and t € [0, 1],
mp tdist(z, N)? < DF((1 — t)IIy(2) + t2)[z — I (2)] < Mptdist(z, N)?

and the conclusion follows by integration over [0, 1] since ' = 0 on N. O

A more explicit condition on F' that implies (2.10) is given by the second order condition:

(2.11)  F € C*(R¥,[0,+00)) and for every y € N and v € (T,N)* \ {0}, D?F(y)[v,v] > 0.
Lemma 2.3. If F € C?(R”, [0, +00)) with ' = 0 on N and if (2.11) holds, then (2.10) holds.
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Proof. By compactness of A, by continuity of D?F and by (2.11), there exist §p € (0,5,) and
mp, Mp € (0,+00) such that for every z € Ny, and v € (Tjy,, ()N,
mp|v|? < D?F(2)[v,v] < Mp|v|?.
In particular, since z — IIxr(z) € (Tjy,(-)N')*, we have for every ¢ € [0, 1],
mp dist(z, N')? < D?*F((1 — t)lIx(2) + t2)[z — Tar(2), 2 — Hnr(2)] < Mp dist(z, N)?,
and the conclusion follows by integration over [0, 1] since DF' = 0. g

Remark 2.4. Many potentials F'satisfy the condition (2.11), the most canonical being F(z) =
dist(z,.V)? in an neighbourhood of N: we have for every z € N, and v € R”,

DF(z)[v] = 2(z =TIy (2)) - v,
and for every vy, v € RY,
D?F(2)[vy,v9] = 2(v1 — DIpr(2)[v1]) - v,
so that, in particular, D2F(2)[v,v] = 2|v|? if 2 € N and v € (T,N')=, since then DIIx(2) is the
orthogonal projection on T, .

Remark 2.5. In the previous example of the squared distance function, we have |VF|? = 4F. In
general, if ' € C3(R?, [0, +-00)) vanishes on A" and satisfies (2.11), then the function G, defined by
G(y) = |VF(y)|?, vanishes on A and satisfies (2.11). Indeed, for every y € A and v € T,N'*\ {0},
we have D?G(y)[v,v] = 2|D?F(y)[v]|? > 0.

3. RENORMALISED ENERGIES AND RENORMALISABLE HARMONIC MAPS

3.1. Topological resolution of the boundary datum. Following our previous work[39], we de-
scribe here the resolution of obstructions of the boundary data that are responsible for asymptotical
singularities for Ginzburg-Landau type functionals.

Given an open set Q C R?, an integer k¥ € N and a family of distinct points a1, ..., a) € §, we
define

B.1) plas,...,ax)
=sup{p >0 : By(a;) N By(a;) = 0 foreachi,j € {1,...,k} such thati # j
and B,(a;) C Qforeachi € {1,...,k}}.

Definition 3.1. Given 2 C R? a domain with a Lipschitz boundary, k& € N, k maps y1,...,7 €
VMO(S', ) and ¢ € VMO(09Q,N), we say that (v1,...,7:) is a topological resolution of g
whenever there exist points ay,...,a; € €, aradius p € (0,p(ay,...,ax)), and a continuous
map u € C(Q\ U, B,(a;), ) such that u|sq is homotopic to g in VMO(9Q, ') and for each
i€ {1,...,k}, u(a; + p-)|s is homotopic to v; in VMO(S!, V).

Definition 3.1 is invariant under changes of the positions of points and of the radius, andunder
homotopies of g in VMO(9€, N) and of 1, ...,y in VMO(S', V). If g,y1, . . . , % are continu-
ous, then we can assume in the definition that g = u|sq and u(a; + p-)|s1 = ; everywhere [13,14].
Topological resolutions can be characterized algebraically in the fundamental group 71 (N') by con-
jugacy classes [39].

3.2. Singular energy. The minimal length in the homotopy class of v € VMO(S!, V) is defined
as

2
(3.2) inf{/ 1712 © 4 €CcH(S', V) and 7 are homotopic} = A) ,
st 2w
and equality is achieved if 7 is a minimising geodesic. The quantity \(7) is invariant by homotopy;
if the elements of a subset A C VMO(S!, N) are all homotopic to each other - for instance, if A is
the homotopy class of a given curve — we will denote by A(A) the common value of the quantities
A(y) withy € A.
The systole of the manifold N is the length of the shortest closed non-trivial geodesic on N:

(3.3) sys(N) = inf{A(7) : v € C'(S', V) is not homotopic to a constant }.
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In particular, for every v € VMO(S!, ), we have A\(y) € {0} U [sys(N), +o0). When N is
compact, sys(N') > 0.

Proposition 3.2. If N is compact, then the set {\(y) : v € VMO(S!, N')} is discrete.

Proof. By homotopy invariance of A(7) and thanks to the existence of geodesics in each homotopy
class, we can assume that the maps ~ are taken to be minimising geodesics. We consider thus a
sequence (7, )nen in C*(S!, V) of minimising closed geodesics such that the sequence of numbers
(A(vn))nen converges. In view of (3.2) and the Ascoli-Arzela compactness criterion, there is a
subsequence of (7, )nen that converges uniformly and hence up to a further subsequence all the
maps in the sequence (7, )nen are homotopic and thus (A(7,,))nen is constant, which implies that

the set {\(y) : v € VMO(S!, )} is discrete. O

The first key quantity in the asymptotics for Ginzburg-Landau type functional is the following.

Definition 3.3. If O C R? is a Lipschitz bounded domain and g € VMO(9, ), we define its
singular energy to be

32
E%(g) = inf{z A(Z;r) : k€N, and (v1,...,7) is a topological resolution ofg}.
i=1

The singular energy £ is invariant under homotopies. For every v € VMO(S!, \), we have

E%(y) < %1)2 (where in the definition of £%(7), the circle S! is thought as the boundary of
) = By) and for everyg € VMO(9Q, N),

svs(AN)?
(3.4) £%(g) € {0} U [M,ﬁo).
4
We say that (y1,...,7) is a minimal topological resolution of g whenever it is a topological
2
resolution of ¢ such that £%(g) = Z?:l % and for every i € {1,...,k}, A(v;) > 0. For

example, if g € VMO(92, S') and deg(g) = d € Z then £%(g) = 7|d|, and a minimal topological
resolution is given by |d| maps of degree 1 if d > 0, and |d| maps of degree —1 if d < 0. However,
in general, minimal topological resolutions are not necessarily unique.

A closed curve v € C(S*, V) is said to be atomic whenever 7 is a minimal topological resolution
of 7. In particular, if \() = sys(N), then ~ is atomic. Atomicity does not exclude the existence of
an alternative minimal topological resolution into several maps, this is the case for the manifold N/
arising as quotient of SU(2) x SU(2) in models of superfluid *He [39, section 9.3.5].

3.3. Synharmony between geodesics. The notion of synharmony between geodesics which quan-
tifies how homotopic mappings can be connected through a harmonic map [39].

Definition 3.4. The synharmonicity between two given maps v, § € W1/22 (SY, \V), is defined as

Dul? L
Aoyt (7, B) = int { / DUl Ly L e (0,400),u € WH2(S! x [0, L], \),
S1x0,L] 2 47

trgiyqoyu = v and trgi,ryu= ﬁonSl}.

The synharmonicity is an extended pseudo-distance which is continuous with respect to the
strong topology in W1/22(S!, /). Bounded sets in W1/22(S', A") which contain only homotopic
maps have bounded synharmonicity [39].

Two maps 7, 3 € W1/22(SY, \) are synharmonic whenever dsyn, (7, 3) = 0. The synharmony
between minimising geodesics is an equivalence relation, partitioning each homotopy class of min-
imising geodesics into synharmony classes. If v, 5 € W1/22(S!, /) and dsynn (7, 6) = 0, then
either v = /3 almost everywhere in S! or both 3 and 7 are minimising geodesics. Minimising
geodesics that are homotopic through minimising geodesics are synharmonic; this covers in par-
ticular v o R and 7 where R € SO(2). Although homotopic minimising closed geodesics on a
manifold are not synharmonic in general, this is the case on examples that motivate in physics and
geometry the use of Ginzburg-Landau type energies.
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3.4. Renormalised energies of configurations of points. Given a bounded open set 2 C R?
with Lipschitz boundary 9, a map g € W/22(9Q,N) € VMO(9Q,N), k € N, and k closed
minimizing geodesics 1, ...,y € WY 22(S!, V) that form a topological resolution of g, we con-
sider the geometrical renormalised energy defined on the configuration space of €2,

Confy, Q= {(a1,...,a;) € Q" : a; # a;ifi # j},
by setting for every (a1, ...,ax) € Confy Q,

. m Avi)?E, 1
g (ar,. . ag) = lim £S5 (al,...,ak)—z (%) log —

9L pr0 I LTk i P
(3.5) =
: A()? 1
= inf EEOMP  (ay, ..., ay) — log —,
pe(0,p(at,....ax)) g1 2 ; ar %)
where for a radius p € (0, p(ay, ..., ax)), we have set

eom, . |Du|2 1,2 k D
(3.6) gggm,..f“/k(ah s ay) = mf{/ﬂ\u’?_pr(ai) o U € WH(Q\ Uiz Bplai),N),

trogou = g on 9 and trg1 u(a; + p-) = ’Yz}-

The function Ef .., : Confy, Q — R is locally Lipschitz-continuous. If (1, ..., 7x) is a min-
imal topological resolution of g, then the function Eggﬁfoff,% is bounded from below on Confy, €);
moreover if limsup,,_, . E5ro v (@l ..., al) < +oo, then the singularities af, ..., a} always

stay away from the boundary and from each other unless their recombination yields another mini-
mal topological resolution of the boundary data g. (In our motivating examples this does not hap-
pen, but occurs for instance for the torus S! x S' which exhibits a decoupling of the renormalised

energy.)

The quantity 55+, (a1, ..., ax) depends on the curves ; only up to synharmonicity: if for
each i, the curves ~; and ; are synharmonic, then
_ cgeom )
(3.7) ggg,e,yolr?“ﬁk (al, coo,ag) = 597717___7% (a,... ,a,]g)7
if 7; stands for the synharmony class of v;, we will write
ggg,ci';’);l:..,’yk (al, N ,ak) = gggﬁyolr?“p{k (al, PN ,ak).

For the proofs of the above-mentioned facts we refer to [39, section 3 and section 4].

3.5. Renormalised energy of renormalisable maps. A last notion from [39] that we will be
using is the notion of renormalisable singular mapping and their renormalised energy.

Definition 3.5. Let @ C R? be a bounded Lipschitz domain. A mapping u : Q — N is renor-
malisable whenever there exists a finite set {a1,...,a;} C € such thatif p > 0 is small enough,

u € Wh2(Q\ Ule B,(a;),N') and its renormalised energy is finite:

E™(u) := lim inf

p—0 /Q\Uf—l Bp(ai) 2 i=1 4m

Dul? koA(tr NE 1
| Dyl oy (trop,eyw” 1
P

The set of renormalisable mappings is denoted by Wika (2, \V). For every u € Wrse (€2, N) one
has

Dul? koAt K 1
gren(u) — lim ’ U,‘ _ Z ( 9By (ai) ) log —
4 p

P=0 Jo\UE, Bp(ai) 2 i1

Dul? ko A(tr K 1
— / 7 ﬂ_zwm_.
pe(Op(ar,mar)) JNUL, Bp(a) 2 o dm p

(3.8)

The structure of renormalisable mappings is described in the following:

Proposition 3.6. Let Q C R2 be a bounded Lipschitz domain. If u € Wiga(Q, N), then either one
has u € WH2(Q, N) or there exist k € N,, (ay,...,a;) € Confy Q and v1,...,v € CHSH,N)
such that



GINZBURG-LANDAU RELAXATION FOR HARMONIC MAPS INTO A GENERAL MANIFOLD 9

(i) (71,-..,7%k) is a topological resolution of tryq u,
(ii) foreachi € {1,...,k},~; is a non-trivial minimising closed geodesic,
(iii) foreachi € {1,...,k}, there exists a sequence (p¢)¢en converging to 0 such that the sequence

(trgr u(a; + pe-))een converges strongly to~y; in WH2(S, N,
(iv) foreachi € {1,... k}, lim, o dsynn (trst u(a; + p-),v) = 0,

() £ () > EE0M (ar, .. an).

In this case, we denote the set of singularities by sing(u) = {(a1,71),---, (ag,Yx)}, where ~; =
{y ¢ dsynn(7,7:) = O} is the synharmony class of ;; in the case where u € WH2(Q, N), we set
sing(u) = 0.

Given u € W}eﬁ(Q,N ), a € Q and a synharmony class of minimising geodesics vy, we have
that (a,~y) € sing(u) if and only if Du is not square-integrable near a and if each y € ~y satisfies
lim, 0 dsynh (trst w(a; + p-),y) = 0. In particular, the set sing(u) is well-defined.

4. MINIMAL ENERGY ON BALLS WITH BOUNDARY CONDITIONS

We recall that F’ denotes the Ginzburg-Landau penalisation which satisfies F' € C(R”, [0, +00))
and F~1({0}) = N. For every every radius R € (0,+00) and every curve vy € W/22(S! RY),
we set

D 2
@1  Qf = inf{/ | 2“’ + F(u) : ue WH(Bg,R") st. traBRu:*y(R-)},
Br

where Br C R? is the disk of radius R centred at the origin 0 € R2. By scaling, we have for every
g, R € (0,+00)

. Dul? F(u R
(4.2) 1nf{/B | 5 | + ;2) . u € WH(Bg,RY) and trop, u = 7(R.)} — QF{j.
R
Proposition 4.1. Ify € C1(S', ) is a minimising geodesic, then the map
A(v)?
R
R S (0, +OO) — QF,'Y — ? IOgR
is non-increasing.

By Proposition 4.1, for every minimising closed geodesic v € C*(S', N), we can define

(4.3) Qr~ = lim QR —)\(7)2 log R ) € [—00,+00).
Y R—+00 By 47 ’

When N = S!, Proposition 4.1 is due to Bethuel, Brezis and Hélein [9, Lemma IIL.1].

Remark 4.2. We shall see in Section 6 that Qf, > —oo if 7 is an atomic minimising geodesic, i.e.
E%(y) = %1)2 (see Corollary 6.8).

Proof of Proposition 4.1. Given 0 < R < S < +00, we consider a map u € W12(Bg, R”) such that
trgt u(R-) = 7 on S! and we define the map v € W1?(Bg,R") for z € By by

( u(z) ifx € Bp,
v(x) =
7(%) ifz € Bs\ Bg.

Since 7 is by assumption a minimising geodesic, we have

D 2 D 2 /12 S d
Bg 2 Br 2 St 2 R T

:/B (% +F(u)> + AEJT)Q log%.

By minimising over u and by definition (4.3) of Q& > We get

A(v)? A(y)?
S R
QFW—?IOgSS QFﬁ—?lOgR. O
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Proposition 4.3. Ify,5 € W/22(S!, N, then for every R € (0, 400), we have

. A(%)? A(y)? -
S R
é%%(QFﬁ - eS| < Qpy — == log R+ dayan(7:9)-

In particular, if v and 4 are minimising geodesics, then Qr 5 < QF . + dsynn (7, 7). If moreover
the maps <y and 7 are synharmonic, then Qr, = Qp5; if v is the synharmony class of some
minimising geodesic 7, we will denote by

(4.9) QF~ the common value of QF, for vy € ~.

Proof of Proposition 4.3. We can assume that the maps v and 7 are homotopic and, in particular, that
A(y) = A(¥) since otherwise dgynp (7,7) = +00.

We take R € (0,+0), u € WH2(Bg,RY) such that tropp,u = v(R), L > 0Oand H €
Wh2(St x [0, L], N) such that H(-,0) = v, H(-, L) = 7. We define v € W12(B,Lp, R") by

u(x) if x € Bk,
() = x B
H(m,log§> ifx € B,y \ Br.
By taking the infimum with respect to w in the energy of v we obtain,

p M) A()? DHP L
Qpif ~ T tonte ) < of, ~ SRy [ P o)

and thus by definition of synharmonicity (Definition 3.4),

A()

2
A 10g R+ dsynh(rya 5/) U

~\2
inf <Q§ﬁ _ 26 log 5> < Qf., —

S>R 47

Letu € W2 (Q\ {a1,...,ax}, N), let sing(u) =: {(a1,71),- ., (ax,~v&)} be given by Proposi-
tion 3.6. We define

k
(4.5) Qp(u) = Z Q>
i=1

where Qp ~ is defined in (4.4). Finally if v does not takes its value in A but is still close to it, the
difference between Q? . and Q? Ty () CAN be estimated as follows.

Proposition 4.4. IfF € C(RY, [0, +00)) satisfies F~1({0}) = N and (1.4), and ify € WH2(St RY)
satisfies distor(Y(+)) < dnr/2 on N, then for every R > 2,

QR QR <C ’7/‘2 RF
QF, = Qfnyorl <€ | (T +RF).

Proof. Given u € WH2(Bg,R¥) such that trgp, (u) = v(R-), we define v : Bg — R by setting
for each x € Bp,

o(z) = u(%x) iflzx| <R-1,
(R = lzD)y(5) + (2] = (R=1)y((p) ifR—-1<[z| <R

|z]

We compute that Dv(z) = RLDU(%CU) iflrgl] <R—1landif R—1<|z| <R

In view of (1.4) we estimate

Ty (r () = ()| = distr(57). M) < G ()
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and

F (1)) + (= ) (v(2) = T () )
< @dm(ﬂW( >> +(R~lal) (v(7) Ty (ﬁ))) s.N)
< G| (v(i5)) = ()| < CaF (v (%))
By smoothness and compactness the derivatives of ITs are bounded in Ny, /2 and we have
(R - ’x‘)'yl(\_ﬁ\) — (lz| = (R = 1)) DTy (v (m) ['Y/(\x\)” <Cl ( )‘2

by using a change of variables and integration in polar coordinates we arrive at

/12
/ ]Dv]2+F(v)§/ yDu\2+F(u)+C5< ] +/ RF07>.
Br Br st R st

It follows thus that

QR _ QR < C ’7/‘2 (,7)2
Fy Fllpoy = VY5 gt R .

The proof of the converse inequality is similar. g

5. UPPER BOUND ON THE ENERGY OF MINIMIZERS

Thanks to the singular and renormalised energies presented in §3 and the minimal energy on ball
developed in §4, we establish an upper bound on the Ginzburg-Landau energy £%.(u), defined in
(1.3). In this section 2 is a Lipschitz bounded domain and ' € C(RY, [0, +0c0)) satisfies F~1({0}) =
N and (1.4).

We first give an upper bound on the infimum of the energy with given Dirichlet boundary data
in terms of the infimum of the geometric renormalised energy.

Proposition 5.1. Let g € W1/2’2(BQ,N), k € N, ay,...,ax be distinct points in 2, and let
(71, -.,7k) be a minimal topological resolution of g, then, as e — 0,

inf{€%(u) : v e WH(Q,R") and troqu = g}

k
1
< E%(g)log - + EF o (a1, ak) + 3 Qg+ 0(1).

When N = S!, Proposition 5.1 is due to Bethuel, Brezis and Hélein [9, Lemma VIII.1].
Proof of Proposition 5.1. For every p € (0,p(ay,...,ax)), we consider a map u, € W12(Q\
U§:1 B,(a;),N') such tropg u, = g and trgi u.(a; + p-) = ; for every i € {1,...,k} and maps
ug, ..., ur € WH2(B,,R”) such that trg: u;(p-) = ;. We then set

u(zx) = {u*(m) ifz e\ Uf:l Bp(a;),

ui(x —a;) ifx € By(a;) forsome i € {1,...,k},

and we have, since F'(u.) = 0in Q \ Ule By(ai),

Dul? F Du, |2 D 12 ;
\u!+(§):/ !u\ Z/ \u! (2;).
Q 2 € UL, By (a:) Bp(a;) €

By taking the infimum over w,, u1, ..., ug, we obtain by (3.6) and (4.2),

inf {€5(u) : ue WH2(Q,RY) and trpqu = g} < EEOP (ay,... ay) + Z ol
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By choosing now p = /¢, we obtain

2
1
inf{E%(u) : v € WH(Q,R”) and trgqu = g} — Z ) log -
k k k
Av)*, 1 G Aw)?, 1
eom \f v il Ve kd el
<& lan,. . Zzl Ar 108;\/5%-;93% ZZ1 = log 7
and the conclusion follows by letting ¢ — 0 from the definition (3.5) of €55, . (a1, ..., ax) and
the definition (4.3) of Q.. O

We also have an upper bound around singularities for renormalisable maps.

Proposition 5.2. For every u € Wree (0, N), if sing(u) = {(a1,v1), - ., (ag,Ys)}. then for every
p € (0,p(a1,...,ar)), ase — 0,

inf{E5(v) : ve WH(Q,RY) andv = u in Q \ Uf B (ai) }

Z

log + EM(u) + Qp(u) + o(1).

The quantity Qr(u) has been defined in (4.5).

Proof of Proposition 5.2. For every uy,...,u; € WH23(B,,R") such that trgi u;(p-) = u(a; + p-)
on St for eachi € {1,...,k}, if we define the function v : 2 — RY for z € Q by

o(a) = {u(x) if € O\ ULy Bp(a),

ui(x —a;) ifforsomei € {1,...,k}, x € By(a;),

then we have

k
|Duf? / |Dus[* | F(u;)

E5(v :/ +> + ,

P UL, Boai) 2 2 3

and thus by taking the infimum over w1, .. ., u, we obtain by (4.2),

i=1 7 Bo(ay)

k 2
inf{%(v) : v € WH(Q,R") and v = uin Q\ Ule By(ai) } — Z A() logl

k

2
< / \Du’ Z
Q\U?:l Bp(ai)

p/e )‘(’Yi)z P
log + Z< Fitrg u( al—l—p) A log g .

We conclude by the definition (3.8) of £'"(u), by the definitions (4.3) and (4.5) of the quantities
QF ., (u) and Qp(u), and by Proposition 4.3 and (iv) in Proposition 3.6. O

6. LOWER BOUNDS ON THE ENERGY

We derive a lower bound for the Ginzburg-Landau energy £5.(u), defined in (1.3), of maps u
in W12(Q2,R¥) with given boundary datum trpgu = g that matches the upper bound of Propo-
sition 5.2. We first prove in Section 6.1 a lower bound of the form £%(g) log % — C for maps in
WH2(€,RY) and for the Ginzburg-Landau energy. This lower bound along with a localisation
of the energy argument allows us to prove boundedness of sequences which have their energies
bounded by £%8(g) log % + C in Section 6.2. We have seen in the previous section that such a bound
is satisfied by minimisers of (1.3). With the help of the compactness of minimisers we are able to
improve the lower bound and obtain the desired result in Section 7.1.

In this section {2 is a Lipschitz bounded domain and F' € C(R”, [0, +-cc)) satisfies F~1({0}) =
N and (1.4).
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6.1. Global lower bound. The global lower bound depends on the tubular neighbourhood exten-
sion energy.

Definition 6.1. Let @ C R? be a bounded Lipschitz domain and g € W/22(9Q, V). We define
the tubular neighbourhood extension energy of g to be

2
gext(g) — lnf{/89 [0 1} |D’U| .
>< b

s v e WhH2(09 x [0,1], M) and tronxfo} V = g}.
Proposition 6.2. There exists a constant C' € (0, +00), depending only on Q2 and F, such that for
every e > 0 and every u € W12(Q,RY) with g == traq u satisfying g € N almost everywhere on
01}, we have

1
5 ext sg 1
Er(u) + CE™(g) — E%%(g) log Ceg ()

1 (|D(disty ouw)]?  F(u) 2 2 -1
1 D
—c( 2 T T (Du ( vec)) )

where the last term on the right-hand side is understood to vanish when £%(g) = 0.

When N = S', Proposition 6.2, without the weak estimate on the gradient, is due to Sandier
[48, Theorem 2], the corresponding weak estimate being due to Serfaty and Tice [51, Theorem 2].
In the general case, the fact that the right-hand side is non-negative is due to Canevari [15].

Proposition 6.2 will follow from a slightly refined result for smooth maps, see Lemma 6.7 ,
together with an approximation argument. The proof of Lemma 6.7 follows Sandier’s strategy
[48, Proof of Theorem 2] by an application of the coarea formula and the lower estimates for
the Dirichlet energy outside a compact set of maps into a manifold, which depends on the one-
dimensional Hausdorff content, whose definition and properties we recall now.

Definition 6.3. The one-dimensional Hausdorff content of a compact set K C R? is defined as

HL(K) = inf{ Z diam(B) : K C U B and B is a finite collection of closed balls}.
BeB BeB

The one-dimensional Hausdorff content is an outer measure and is bounded from above by the
Hausdorff measure:

(6.1) ML (K) < HY(K).

We also recall the following lemma which will be used repeatedly to transform a covering of
some set by balls into a covering by closed balls with disjoint closure (see Lemma 4.1 in [49]).
Lemma 6.4. For every finite set B of balls of R?, there exists a finite set B’ of disjoint non-empty closed
balls of R? such that

B= |J{BeB: BCBY},
B/eB/

Z diam(B') = Z diam(B).

B'eB’ BeB

and

We finally rely on the equality between the one-dimensional Hausdorff content of a compact set
and of its boundary.

Lemma 6.5. If K C R? is compact, then H! (K) = H. (OK).

Lemma 6.5 does not hold for the Haudorff measure; the proof of Lemma 6.5 can be seen to work
when K C R" is compact and n > 2; the equality fails whenn = 1 and K = [0,1] C R.

Proof of Lemma 6.5. By monotonicity of the Hausdorff content, we have H. (K) > H. (OK). 1t
remains thus to establish the converse inequality.

We fix > 0. By definition of the Hausdorff content, there exist points ay,...,a; € R? and
radii p1,...,pr € (0,400) such that 0K C Ui?:l B,,(a;) and Z?:l 2p; < HL(OK) + n. By
Lemma 6.4, we can assume that B, (a;) N\ B, (a;) = 0ifi,j € {1,..., k} withi # j. We claim that
K C Ule B,,(a;). Indeed, assume by contradiction that there exists a point z € K\ Ule By, (a;).
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Since the balls B,, (a1), . . ., By, (ay) are pairwise disjoint by construction, the set R \U~E, B, (a;)
is path-connected. Since the set K is compact, we have R? \ (K U ¥, B,,(a;)) # 0 and there
exists thus a continuous map v € C([0, 1], R? \ Ule B,,(a;)) such that v(0) = z and (1) € K.
Since the map 7 is continuous, there exists some ¢, € [0, 1] such that v(¢.) € 0K and we would
thus have 0K \ Ule By, (a;) # 0, which is a contradiction. We have thus

k
HL(K) <2 pi <HL(OK) +;
i=1

we conclude by letting n — 0. U
We will use the lower estimate on the Dirichlet energy of maps into a manifold proved in [39].

Theorem 6.6 ([39, Theorem 5.1]). For every Lipschitz bounded domain 0 C R?, every compact set
K C Q such that H. (K) > 0 and every mapv € WH2(Q\ K, N), we have

| Dvl? dist(K, 092)
6.2 — > E%(t log ———F——
62) f e 2 e o S
More precisely, there exists a constant C > 0 such that
Dvl? dist(K, 092)
63) supt’L?({z € Q\ K : |Dv| >t <C</ |——Esgtr v)log ————~
(63) sup ({ \ |Du| > t}) < ox 2 (troq v) log YHL(K)

The left-hand side of (6.3) is the weak-L? quasi-norm of |Du|. Theorem 6.6 has its roots in a
corresponding estimate for maps outside a finite collection of balls [9, Corollary II.1].
We are now ready to state a slightly refined version of Proposition 6.2 in the smooth setting:

Lemma 6.7. There exist constants C' € (0 + 00) and 0 € (0, +00) depending only on Q2 and F, such
that for every ¢ > 0 and every map u € C*(Q,R¥) with g := trpqu satisfying g(0Q) C N and
&% (g) > 0, we have

1
€ ext _ ¢osg
Ep(u) + CE(g) — £%(g) log Ceei(g)

1S ou)l? u
> ([ (P E) s (e e 0 ¢ Dulo)] 2 1)

- C 2 >0
10 (HL(K)s
E%¥(g) = | V| ="~ )d
cew) s v (G ) )
where the function ¥ : (0, +o00) — Ry is defined by U(7) := 7 — 1 — log 7 for each 7 € (0, +00),

and where the sets K are defined for every s € (0, 400) by
Ks:={x e Q : dist(u(z),N) > s}.

Before proving Lemma 6.7 we extend maps in u € W12(Q, R¥) in the following way. In view of
Definition 6.1, there exists dgq > 0 such that if we set

(6.4) sy = {z € R? : dist(z,0Q) < s},

then, we can extend the function u € W12(Q,R¥) to a function u € W1?(Qs,,,R”) in such a
way that u € A almost everywhere in Q5,, \ € and

D 2
(6.5) / [Dul” < C1€%(g),
oo\ 2

for some constant C'; depending only on 0€2. In the rest of the paper we will always assume that
maps u € WH2(Q,RY) are extended to the larger domain (25, as explained above.
Proof of Lemma 6.7. We proceed in several steps:

Step 1. Splitting normal and tangential derivatives. We set for v € Q\ Ks,.,
D'u(z) = Py(y(u(@))[Du(z)]  and  Dru(w) = Py(Ily(u(@)))[Du(@)),
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with the nearest point retraction IIzs and the projections PI/ and PAL/ being defined in Lemma 2.1;
there holds in particular, within the set Q \ Kj,;,

dist
(66) (1= ) b 0 ) < ID7ul < ColD(y o w)P
and
(6.7) |D(distar ou)|? < | D ul.

We also let 0 € (0, dpr) be a constant as in Lemma 2.3 so that for all y € N,,, we have
mpg ..
(6.8) F(y) > = disty(y)”

By orthogonality between PAL/ and PA—;, we have for every § € (0, dr]

£5.(u) _/ <|DLu|2 n F o u> +/ |DTul? +/ <|Du|2 N Fo u)
(6.9) ! SIV AN ¢? oK, 2 Ks\ 2 e
= (I) + (IT) + (III).

Step 2. Estimate of (I) from below. Since u € C?(£2,R¥), by Sard’s lemma and by the implicit
function theorem, for almost every s € (0, +00), the set K C § has a C2 boundary and

OKs =Yg = {r e Q : dist(u(z),N) = s}.

Hence, using successively (6.7), Young’s inequality, (6.8) and the coarea formula, we obtain

& _/ <|Dlu|2 N F o u> >/ <|D(distN ou)|? N F o u)
O\Kj 2 52 - O\K; 2 52

1
> [ Lip(isty owlvEF o u

O\K; €

1
> /mp —|D(distpr ow)|(distpr ou)
O\Ks €

0 941
0

But, by Lemma 6.5 and (6.1), we have for almost every s > 0, H. (Ks) = HL (Z5) < HY(Zs);
hence

) 1 S
(I)zwm—F/O Halle)s g

Moreover, by Chebychev’s inequality, we have also

| D uf? t? 1
(I) 2/ >sup =L ({z € Q\ K5 : [Du(z)| > t/2}).
O\K; >0 8

We have thus proved that there exists a constant C's > 0 such that

§ a1 - 2
6.10) (I)> i</ Hio(Ks) s s +/ | D(distyr ou) N F (; u
03 0 3 O\K; 2 £

+iggt2£2({x € Q\ K; : |Dlu(z)| > t/2})>

Step 3. Estimate of (IT) from below. By (6.6) and Fubini’s theorem, we have

an :/ |DTul? S / (1 _ disty ou) |D(ITyr o u)|?
ok, 2 Joks on 2

el D(TT 2

(6.11) :/ (—/ ds> [D(Ly ° W
9AV:¢] d distar ou 2

S5 () o
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Then, by (6.5), we have for every s € (0, ),

D11 2 D11 2
/ ‘ ( N © u)‘ Z/ ‘ ( N © u)‘ —ClgeXt(g),
O\K, 2 Q5,0 \Ks 2

while by the lower estimate on the Dirichlet energy of mappings Theorem 6.6, since IIns o u €
Wh2(Qs,,, \ Ks,N), for every t > 0,

[D(Ty o w)? o0
7 > £8 g log S L I
/Q(SBQ\KS ; D108 301, ()

1
+ ?tQEQ({:U € Q\ K, : |[D(Ily o u)| >t}),
4

for some constant Cy > 0. Since by (6.6), we have | D "u| < /C3|D(ITyy o u)|, we have also

L2{z e Q\ K, : | DIy o w)| >t}) > L2{z € Q\ K, : |DTu| > /Cat}).

We thus arrive at

|ID(Ty o u)|? 080 "
Ll A ST B S ] 1 — = CHE
/Q\Ks T R

+ thﬁz({x €O\ K, : |[D"u|>/Cyt}).
4

By integration with respect to s over (0, ), we obtain in view of (6.11),
(I1) > £°%( )1/51 58 ds — C1E%(g)
Z og — 2 qs—

1
—t2 / L2{z e Q\ K, : |D"u| >+/Cyt})d

By Fubini’s theorem, we compute

1 [0 .
5[ etrea K, DT = Vs = [ (1 daren)
oo {z€Q\K; : |[DTu|>V/Ca t} o

> %EQ({x €O\ Ky - D ul > V/Cat))

and by the change of variable s = 2,/C> t,

2
s
igthEQ ({z € Q\ Ksyp |IDTu| > /Oy t}) > Sl>118 4—02E2 ({z € )\ Ksyp |DTu| > s/2}).

Hence, we have proved

1 0 53Q
_ > £58(0)1 _ 999 ext
(6.12) (II) > €& (9)5 /0 log SHL (K.) ds — C1E%(g)

supt’L2({z € O\ K, D u| > t/2)).
80204 t>I(]) ({ \ 6/2 ’ ‘— /})

Step 4. Estimate of (III) from below. By (6.7) and Chebychev’s inequality, we have

2 ‘a 2 9
(6.13) (III) :/ <|D“| L F ° “) > 1(/ <|D(d15t/\f cu) ° u> +/ |Du )
K(S 2 e 2 K5 2 g Ké 2

: 2
> 1(/ <‘D(dlsw oWl [ F - “) +supt2L2({z € K5 © |Du(z)] > t})).
8 Ks 2 3 t>0

Step 5. Putting things together. We first observe that for every ¢ > 0,
L2 ({x € KsUQ\ Ky : |Du()| > t}) < ?L*({x € Ks : |Du(x)] > t})
+2L2({x € Q\ Ksjo : |Dhu(z)| > t/2})
+12L%({z € Q\ Kypp = D u(e)| 2 t/2}),
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which in view of (6.9), by adding (6.10), (6.12) and (6.13), gives the existence of a constant C5 > 0
such that

dHL 060
(6.14) Ep(u) 2 E%(g )5/ <g§,66€3g()) +log 2%18( ))d - GE™a)
1 D(distyr ou)]2 F ou
L ([ [t o 7 e

+supt?L?({z € KsUQ\ Ksp ¢ |Du(z)| > t})>.

t>0
Applying the identity 7 = 1 + log 7 + ¢ (7) to 7 = %, we obtain
SHL (Ks) s da0 0daq s SHL (Ks) s
== 1 =l+log——F——+ V| 22—+
Coeea(g) | PUHL(K) | BaCseee(g) |\ CetR(g) )

and we compute that

1 00905 62589
2 (14108 20025 ) qg_og 0000
6/0 ( s 2cgegsg(g)> T8 90eE%(g)

Hence, there exists a constant C' > 0 such that

1

(6.15) Ex(u) + CE™*(g) — £%(g) log CeE(g)

. 2
_l</ IDUistyr o) " Fou P2 (fe e KsUQ\ Ky + |Dula)] > 1))
Q

2 g2 t>0
10 (HL(K)s
E%(qg)= Ul == _""_)ds].
e [ (T ) )
Since we have

L2({z € Q : |Du(x)| > t}) <L2({z € K5, UQ\ K, )0 ¢ [Du(z)| > t})
+ EQ({x € Ks,.2UQ \ Kspya |Du(z)| > t}),
the desired estimate follows by taking the average of (6.15) for 6 € {Jp, %F} 0

Proof of Proposition 6.2. If the Ginzburg-Landau functional is continuous with respect to the W12
strong convergence, the conclusion follows from Lemma 6.7 and an approximation argument.

If the Ginzburg-Landau functional is not continuous, we consider a non-decreasing sequence
(F%)4en of bounded and continuous functions coinciding with F in a neighbourhood of A and
converging to F" a.e. The theorem holds for each of these functions, since £, is continuous for
the W12 strong convergence by Lebesgue’s dominated convergence. The conclusion then holds by
Lebesgue’s monotone convergence theorem. g

As a consequence of Proposition 6.2, we obtain the finiteness of the quantity Qr . defined in
(4.3), when 7 is an atomic minimizing geodesic, i.e. when £% () = \(v)?/(4n).

Corollary 6.8. Let F € C(R”, [0, +00)). FF~1({0}) = N, if F satisfies (1.4) and ify € C1(S', )
is an atomic minimising geodesic, then Q. > —o0.

Proof. By Proposition 6.2 applied to 2 = By, the unit ball with center 0 in R?, there exists a constant
C} € (0,+00) such that for every ¢ > 0 and every u € W2(B;, R”) we have

|Duf? | F(u) ! .
> E%(t log ————— — C1E(¢ .
Jo T 2 i on s G

By taking the infimum over u such that trgp, u = v, we obtain, in view of (4.2), with p = %

Qp, — E®(7)log p = £%() — C1E€™ ().

1
%8 CrE%8(v)
§

A2
4

The claim follows from (4.3) since, by assumption, £% () =
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6.2. Localised lower bound on the energy. The next proposition provides some information on
the localisation of the energy of mapping satisfying a logarithmic bound.

Proposition 6.9. There exists C € (0,+00) such that for every k € (0,400),n € (0,1/C), v €
(0,1), € € (0,400) and g € W/22(9Q, N) such that £%(g) > 0,

CeC7%(E%8(g)e) ™7 < An, CE™*®(g)e < m, Cer <1 and E(g) < K,

ifu € WhH2(Q, RY) satisfies troq u = g and

2

and if we still denote by u the extension to {1s,, satisfying (6.5), then there exists a collection of balls
B in R? with
(i) for every B € B, diam(B) < 2 and B C $Qs,,,,
(ii) for every B € B, distyr o trgpu < dps, the map IInr o trap u is not homotopic to a constant
and the maps (ILyr o tryp u)pep are a topological resolution of g = tryq u,
(iii) for every subset B’ C B,

+ K,

Dul?
[ BT Y e o tmonu)los g~ Clio+ £%(0)
QQUBGB’B Bep’ !

(iv) one has

(log % + Ce)E%(g) + (14 Ce)r

SYS
yi )#B<:§:9gHNothuy<9%) —
BeB 08 TezE(y)

In the previous statement, sys(\') denotes the systole of the manifold N defined in (3.3) as the
shortest length of a closed geodesic which is not homotopic to a constant.

Proposition 6.9 has its roots in lower bounds for minimisers of the Ginzburg-Landau energy for
N = S! [9, Theorem V.2]; localised lower bounds Proposition 6.9 for N' = S! are originally due to
Sandier [48, Theorem 3’] and Jerrard [35, Theorem 1.2].

We follow in our proof the Jerrard’s strategy [35] (see also the recent work by Ignat and Jerrard
[33]). As a first tool to prove Proposition 6.9, we have a Sobolev type embedding theorem with
dependence on ¢ for maps defined on S} := 9B, the circle of radius r centered at the origin in R?
(see also [35, Lemma 2.3]).

Lemma 6.10. There exists a constant C' > 0 such that for every v > 0, every h € WH2(SL R) and
everye € (0,7],

1
2 2 2
1A 1) < C/S}s\h 2+ -h.
Proof. By Morrey—Sobolev embedding , the function h is continuous on S!. By the mean value

theorem, there exists a € S! such that h?(a) = QW fSl h?. By the fundamental theorem of calculus
we can write

h@fzh@Y+Z%«how%Ht

where 7 is a smooth path on S} such that ¥(¢,) = a and y(t;) = . Thus, for any C > 0, by using
2
Young’s inequality 2|h'h| < Ce|h|? + % and by recalling that ¢ < r we find

1 h?
. <_ 2y 2y < o2 .
iy < e [ 02+ [ 102015 [ o (g0 )

The conclusion follows by taking C' = 1+VI+16m= V}JW which solves C' = % + % O

The next tool for the proof of Proposition 6.9, is a lower bound on the Ginzburg-Landau energy
on circles at scales larger than . (When A = S, see [35, Proof of Proposition 3.1, Claim 1.]).
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Lemma 6.11. There exists a constant ¢c; > 0, such that for every r > 0, for every u € WH2(SL RY)
such that dist(u, N') < &, almost everywhere in S. and for every & < r, one has
12 F 1
WP, F)

2 — & 4nr :
St 2 € c1 +>\(HNou)2

We remark that the right-hand side in the inequality of Lemma 6.11 is an increasing function of
c1. The proof of Lemma 6.11 relies on the following elementary inequality.

Lemma 6.12. Forevery z € [0, 1] and o € (0, +00), one has

1-=2 n 1
22 P
Proof. If a > % then the left-hand side in the desired inequality is minimal for z = % € [0,1]
and we thus obtain that for every z € [0, 1], 1_Z + 22 > é — ﬁ > a+1’ ifa < % we have
=2 4 22 > 21— 2) + 22 >1+(1—z)>1>a+1 O

Proof of Lemma 6.11. Since by assumption dist(u, N') < §n almost everywhere on S} and since
the function F satisfies the non-degeneracy assumption (1.4), we have by Lemma 2.1 and by (2.3),

|u’|2 N F(u) > (1o distyr o\ |(IIy o u)'|? N |(distar ou)|?
2 22 N 2 2

almost everywhere on S!. If we set 6 := ||distys o ul zoo(sy) € [0,x7], we have on the one hand,

by definition of 6 and by the characterisation of A\(ILys o u) (see (3.2)),

(617) / <1 _ distw “> Ly o u)f? <1 _ i) Allly © w)?

mpg ., .. 2
+ ?(dlst/\/ ou)?,

ON 2 - ON 4mr
and on the other hand, by Lemma 6.10,
|(distyr ou) > mp .. 62
s 7 4+ = (dist > =
Sqln 2 252 ( SV Ou) Cle’:‘

for some constant C; > 0. It follows thus from (6.17) and (6.18) that if ¢; < 5j2\/ /C1, by applying
Lemma 6.12 with 2 = 51, since 0 < pr

112 2 2
|u| +F€(;L)><1_i>)\(ﬂj\/ou) n 0

(6.18)

st 2 N 47y C—le
2 2
5 a (1_i>M+(i)
€ N 4dmre; N
C1 1
S dEma ) £ dm -
A(IIn o w)2e c1 A pr o u)?

A last tool is the following lower bound on the energy inside the ball B, of radius r centered at
the origin, with non-trivial boundary conditions.

Lemma 6.13. There exists a constant cz > 0, such that ifr > 0, ifu € WY2(B,,RY) satisfies
[dist(trap, u(-), )|l @B,) < on andi 2 < ¢y, then the map Il o trpp, u is homotopic
to a constant map.

Proof. We have by the trace theorem
Iy o trom, ullyryzagos,) < Cilltros, ullieaps,) < Coll Dull s,

On the other hand, if ||[ILy o trs ul/ji1 /2.2(s1) is small enough, then Il o trg; u is homotopic in
VMO(0B,, N) to a constant map see [13, Lemma A.19]. O

Proof of Proposition 6.9. We first consider the case where u € C?(Q) with trgpou = g. We recall
that, in view of Definition 6.1, we have assumed that the function u is extended to a function
u € WH2(Qy5,,, RY) in such a way that u € A almost everywhere in Qs,, \ 2 and

D 2
/ | u| S Clgext(g).
Qsp0 \©2 2




20 ANTONIN MONTEIL, REMY RODIAC, AND JEAN VAN SCHAFTINGEN

By Lemma 6.7, there exist constants C and 6 € (0, d,r), depending on F' and € only, such that

e} [ (ZAUSY iy 000y e

Since for every 7 € (0,+00), one has ¥(7) = 7 — 1 —log 7 > 7 — log 2, we deduce that
SHL(K,)s

0 2028

and then, by monotonicity of the Hausdorff content, that

(6.19) ds < Co(k + E%%8(g)) + £%8(g)log 2 < (C +log 2)(k + £%8(g))

(6.20) HL(Ks) < / HL (K,)sds < Cse(k + £8(g)).

Since the set K5 C (15,,, is compact, by definition of the Hausdorff content (Definition 6.3) and by
Lemma 6.4, there exists a family of disks By with disjoint closures such that K5 C Up, (4)e5, Bo(a),
and

(6.21) > 2p < 2ML (Ks) < 2Cse(k + £%(g)).
B,(a)eBo

In particular, if we assume that
(6.22) 2C3e(k + E%(g)) < doa/2,

and if, without loss of generality, all the disks of By intersect Kj, then the disks of By are all
contained in {25, /. We define

5= Sup{s € [0, +00) : s <5Sg(9)

Cy do0
I < =
g +5) \ @ C&=(ge CW) 4 }

where ¢y = min{¢y, co} with ¢1, ¢ defined in Lemma 6.11, Lemma 6.13,
1

(6.23) C, = e2C30 and Cs = — +2C5.
Co

We claim that for every s € [0, 5), there exists a collection of disks B(s) such that

(a) the closure of the disks in B(s) are disjoint and contained in Qs,,,,

(b) if ¢ € [0, ), then Up, )epr) Bo(0) € Up, ()en(s) Bel@);
(c) for every B,(a) € B(s), disty o trpp, (o) u < dx and

ES g
p> 55 &(traB, (a) 1),
(d) for every B,(a) € B(s),

|Dul>  F(u) _ co( log(1l+ s)
> (== .
/Bp(a) 2 * e T ¢ P S Z ?

Bo(b)eBy
Bg (b)CByp(a)

In order to construct this collection of balls B(s) for s € [0, §) we first set B(0) := By. We have
showed that (a) holds for s = 0 provided (6.22) holds; the assertion (b) hold trivially when s = 0
and (c) holds since every connected components of K is contained in a unique ball of By. Finally
for (d), we observe that when s — 0 the limit of the right-hand side vanishes. By continuity, we
can take B(s) = B(0) for s > 0 close enough from 0. We assume now that the assertions (a), (b),
(c) and (d) are satisfied for some s, € (0, §). We define then the set of disks

B, :={B,(a) € B(s,) : equality holds in (c)}.

These disks are referred to as minimising disks.
The first step consists in an expansion phase: we let the radii of the minimising disks grow in
the following way. We define, for s > s,

B(s) = {Bps/s.(a) : Bpla) € B« U (B(s) \ Bx)
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and the number

s* = sup{o € [s4,5] : foreachs € [s,,0) (a) holds,
strict inequality holds in (c) for each B,(a) € B(s) \ B«
and ¢ & (p, 5p/s.) for each B,(a) € B(s)}.

We check that for s, < s < 5 the families of balls B(s) satisfy (a), (b) , (c), (d). By construction,
the assertions (a) and (c) hold for every s € [s,, s*). Property (b) is also satisfied. We now prove
(d). If By(a) € B(s«) \ Bs, (d) is true by assumption. If B,(a) € B,, we first consider the case
where ps* /s, < e. Then since equality holds in (c) and since maps homotopic to a constant have
zero singular energy £°8, the map tryp,(4) Il © v is not homotopic to a constant. Hence for every
S € [s4, s*], the map trop,, ., () 1Ly © wis not homotopic to a constant and satisfies by Lemma 6.13,

since ps/s. < g,

F log(1
/ |Du|2+# > / IDuf > g > 22 > @<ﬁw_ 3 U)
Bpsys. (@) € ) €s € \ 84 S e,

Bo(b)CBsp/s, (@)

In the last inequality we have used that log(1 + s)/s < 1. If B,(a) € B, and ps*/s, > € we
have, from the definition of s*, that p > e. Then, if Bp(a) € B,, we apply Lemma 6.11, since
distyr ou < 0 on B, (a) \ Bpla) C Qspq \ K and since E¥(Ily o trop,q)u) = £ for
tept)

2 PS/ S«
/ Du” | Fl) / _ L dt
Bpajo(@\By(a) 2 € I (| ATy
(6.24) _ “p / ol 1 dt = P jog 118
s« J, L+t 54 1+ s
S, op log(1+s) log(1l+s.)
T € S Sk ’
We use that from (d), for any B,(a) € B(s«) we have
log(1 X Dul> F
(625) Joslts) o g J+£</ ﬂ+@>
Sy B, (D)eBo Co B, (a) 2 €
By (b)CBp(a)

and therefore by (6.24) and (6.25)

|Dul?>  F(u) _ co( log(1+ s)
=2 2N O e ) .
/JBps/w) AR 27

B, (b)eBo
By (b)CBy(a)

Moreover, we deduce from (d), from our assumption (6.16) and from (6.21) that

S ot G5 Y o)

(6.26) B, (a)eB(s) 0 Bo (b)€Bo

s (&%g) . Cy
< |
= Toa(l +5>6< 0 8 B () +C5“>’

in view of the definition of Cy and Cj5 in (6.23). Thus we find a collection the desired collection of
disks B(s) for 0 < s < s*. In order to define B(s*), we set

B* = {B,s/s,(a) : By(a) € Bi} UB(s4) \ Bs.

We first note that by (6.26), since s < 5, we have UBp(a)EB* By(a) C Qs,, /2. We also note that the
family B* satisfies all the desired properties except that some disks can have intersect boundaries.
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If this is the case we perform then a disk merging procedure by Lemma 6.4 and we define B(s*) to
be the resulting disk collection. By (c), for every B,(a) € B(s*), we have

es* g
p= Z o> Z —&E®(trap, p) v) >

*

S
E*®(trap, 1) V)

€0 €o
B, (b)eB* B, (b)eB*
By (b)CBy(a) By (b)CBy(a)
so that assertion (c) still holds for the modified collection of disks. We also have, since B* satisfies
(d),
[Duf? | Fu) [Dul® | F(u)
— Tt = 5 T2
Bp(a) € EB* B (b) €
Bs (b)CBp (a)
co [ log(l+s)
> B et =2 L A
> > (el >
B, (b)eB* B (c)eBy
Bo (b)CBy(a) Br(c)CBo(b)
_co( log(l+s)
s (,O S B Z T)
BT(C)EBO
Br(c)CBp(a)

and hence assertion (d) also holds for the modified collection of disks. We can then continue alter-
natively with expansion phases and merging steps. Since at each step either the number of disks
decreases or the number of disks with equality in (c) increases, we fill the full announced interval
of [0, 5) in a finite number of steps.

In order to conclude if

(6.27) n > 2eE%(g)/(vco),
we set
~ con
= —-1>1
T e
so that,

_ s
i 8(5 (g)l Cy +C5/£>

log(1+3) \ o BEe(g)e
cony | sg lo Cye%s5
=£5(g) £%(g) Cy > & &5y
< JE— log + Csk ) < p—2219 )
log 222 ( o CEE(ge ") = Mog gt =
provided
(6.28) (C4e")(E8(g)e)' ™ < com.
It follows that if n < d5q /4, § € [0, 5]. Moreover, we have by (6.26),
(6.29) > p<n

Bp(a)eB(3)

We now define the collection B := {B,(a) € B(3) : £%(Ily o tryp, (o) u) > 0}. We then have
for every B,(a) € B, by (c) and by (d),

) Flu) . Con E
[T s et o tran, ) o <essg<g>> ) )
By(a) Bl
Bo(b)gBP(a)

Hence, for every subcollection of disks B’ C B, by summing and by (6.21), we obtain

(6.30) /U [Duf? + Flu)

2
Bp(a)eB’ Bp(a) 2 €

S 0077/] S
> i (Z)EB/E 8(Ily o trop,(a) u) log (M) — 2C5(E%5(g) + K)e.
o(a
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y (3.4), our assumption (6.16) and by (6.30), we deduce that

sys(N s
yiﬂ_ ) #B < Z E g(H/\/ o tr@BP(a) u)
(631) s (2C 1 )E%8(g) + (2C 1)
. 3¢ + log S 36 + 1k
S & g(g) + “/77 coYn

log ez ()

The proposition is proved when u € C?((2), with (i) following from (6.29), with a constant C in
the conditions coming from the conditions (6.22), (6.27) and (6.28); the conclusion (iii) follows from
(6.30) and (iv) from (6.31).

In the general case where u € W12(2,R¥), we first consider the case where the function F is
bounded and continuous, so that the Ginzburg-Landau functional is continuous for the strong
convergence in W12, We consider a sequence (uy)nen in C2(2) converging strongly to u in
Wh2(Q,RY). We apply the proposition to u,, and let B, be the associated disks. By (iv), up to
a subsequence, (Ilyr © tr9p,(a) Un)B,(a)cB, can be chosen to remain in the same homotopy class
and #B,, can be chosen to be constant.

If F' is not bounded, then we apply the proposition to a sequence of bounded functions F €
C(R¥, [0, +00)) such that F; < F, Fj converges to F everywhere in R” and ] = F on a neigh-
bourhood of NV. The conclusion follows by Leguesgue’s monotone convergence theorem. 0

7. ENERGY CONVERGENCE

We investigate first in §7.1 the convergence of sequences whose Ginzburg-Landau energy satis-
fies a logarithmic bound. This bound being satisfied for minimisers in view of Proposition 5.1, we
apply this result to minimisers and get additional properties in §7.3.

In this section 2 is a Lipschitz bounded domain and F' € C(RY, [0, +00)) satisfies F'~1({0}) =
N and (1.4).

7.1. Convergence of bounded sequences. The main result about convergence of sequences whose
Ginzburg-Landau energy satisfies a logarithmic bound is

Theorem 7.1. Let g € WY22(9Q, N, (un)nen be a sequence in WhH2(Q,RY) with troq u, = g
and (e, )nen be a sequence in (0, +00) converging to 0 such that

Du,|> F 1
(7.1) Sup/ Dun” (2") — £%(g)log — < +00.
neNJQ 2 &n En
Then up to a subsequence, there exists a map u, € ereﬁ(Q,N), such that if we write sing(u,) =
{(a1, 1), (ar, &)}, we have

(i) the sequence (uy)nen converges to u, weakly in Wllo’CQ(Q \ {a1,...,ar}, R") and almost every-
where in €,

2
(i) £5(g) = Li, 25,

D(dist 2 F(u

(iii) sup/ [D(distyr o) - (2 )+supt2£2(\Dun\ L([t, +00))) < +o0,
neN Ja 2 o t>

(iv) one has, weakly as measures on Q

k
|Dun|* | 3 )\(’)’z‘)25 |

1
— £%(g)log —,

() £ () + Qur() < liminf /
(vi) forevery p € (0, p(aq, ... ,ak)),Q

Du*|? Du,|*> F(u, 1
E™M(uy)+Qp(uy) S/ 1Dl —|—hm1nf/ | D + (2; )—Esg(g)log—.
Q\Uf:1 By(as) 2 oo f:l By (ai) 2 €n En

Theorem 7.1 follows from Proposition 6.9 as in [35, 48].
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Proof of Theorem 7.1. The boundedness assertion (iii) follows immediately from the lower bound
for the Ginzburg-Landau energy of Proposition 6.2. Since g € W/ 22(9Q, N), there exists a map
w e Wl’Q(anQ,N), with €25, defined in (6.4) , such that trpg w = g. For each n € N, we define
the function @,, € WLQ(Q(;aQ,R”) in such a way that @, |q = u, and ﬂn|géaﬂ\g = w.

We let C1 € (0,+00) be a constant as in Proposition 6.9 and we consider a sequence (7,)peN
in (0, 4+00) converging to 0. Since whatever the constants x € (0,400), v € (0,1), and for each
p € N, there exists n, € N such that for every n > n,,

CLe" (£ (g)en) 'Y < yip, CLE%(g)en < Y1p, and Cyren < 1,

we have by Proposition 6.9 a finite collection B, , of disjoint disks of radii less than 7, such that
for every B € B, , we have B C (s,,, and for every B € B, , and every n > n,, we have
distpr o trgg Uy < N,

Du,|>  Fl(un
(7.2) / | Din| + () > ) £y o trop i) log 22 + Oy,
Q £

2 8% n
6aQﬁUB€Bn,p B BeBn,p

and the maps (ILy o trsp y)Bes, , form a topological resolution of g; in particular,

N (M o tropEn) > E%(g).
BeBnp

It follows thus from the boundedness assumption (7.1) that

1
(7.3) Z E¥(Ily o trop tin) log Z—p < E%(g)log . + Cs.
BEB,,, n n

Since the manifold AV is compact, in view of Proposition 3.2, the set {\(7) : v € VMO(S', N)}
is discrete, and thus there exists § > 0 such that if (1, ... ,7,) is a topological resolution of g, and

Zle E%(y;) < E%%8(g) + 9, then Zle E%8(v;) = £%(g). By Proposition 6.9 (iv), and taking n,,
larger if necessary, we can thus assume that
sys(N)?

#Bn.p 47

IN

D EB(ILy o tropun) < £%(g),
BeBn,p

so that (ITy o trpp an)BeBW is a minimal topological resolution of traq u, = g. By (7.3) and our
assumption (7.1), we have

Du,|?  F(u 1
/ | Dt + () < E%(g)log — + Cy.
Q

(7.4)
2 e2 Tp

So0\UBeBn,p B

Let C,, , denote the set of centres of the disks in B, ;,. Up to a subsequence in n and by a diagonal
argument, we can assume that for each p € N, the sequence (Cy, ,)nen converges in Hausdorff
distance to a finite set C,, in 2 of cardinality at most 47E%8(g)/ sys(N)?. Taking a subsequence, we
can assume further that (C,),en converges in Hausdorff distance to a finite setC = {a1,...,a;} C
Q, with k < 47E%8(g)/ sys(N)2. (The sets Cp ., C, and C being possibly empty, we understand that
a sequence converges to the empty set in Hausdorff distance whenever it is eventually a constant
sequence of empty sets.)

For each n € N, by the bound (7.4), we have if disty(Cy, ,C) < 1,

Du,|?> F(a 1
/ Do, (Zn) < E%(g)log — + Cs,
Q €n 27717

(7.5)

so\UF_; Bany (a;)
with C5 := Cy+E%(g) log 2. By weak compactness, Rellich’s compactness theorem and a diagonal
argument, the sequence (i, )nen converges almost everywhere to some u, : Qs,, — R” and
weakly to @, in W12 (Qg,, \ Ule B,(a;),R) for every p > 0. We have @, = w on  \ Qs,,. We
define u, = 1u4|q. Since by Fatou’s lemma,

F(uy
F(uy) < lim €2 (ttn)

:0,
/Q\uf_len,xan n—»00 /ﬂ\uf_lenpmi) &
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we have u, € N almost everywhere in 2. Moreover, for every p € N, we have by (7.5) and by
lower semicontinuity

D, |? Du,|?> F(u
o0 k
(7.6) Q‘SBQ\UZ 1 Banyp (a4) " Q50 \Uiz1 By (ai) cn

1
< £%(g) log 2, + Cs.
p

By [39, Lemma 6.2], for p large enough so that
np < p:=sup{r >0 : foreachi € {1,... k}, By(a;) C Qs,,
and for each j € {1,...,k} \ {i}, Br(a;) N Br(a;) = 0},

we have
(7.7) 2
/ T 2 Zk: tTaanp (a;) U )2 1 P (1 < 21 CE™ (troq ) 1/2>
og — - 2 b > 9
Y590 \UL Bay, () = A, (ai) 2np Atrop,,, u)*log 5,

where

1
Vp,on, (@) = / ——dr <1.
p:hp 2 log (@)\Ban, (a))Ns,, |z —al?

Since (try Ban, (a:) ﬂ*)1gz’§ Lisa topologlcal resolutlon of tron 5o0 U4, and thus of g, we have

k M(tr a.ﬂ*z k Mtr a.ﬁ*z
Z ( 0Bany, (ai) ) >Z ( 0Bany, (ai) ) ng'g(g)-

pat 4TV 09, (a;) 47

=1
It thus follows by (7.6) and (7.7) that lim;, o /5,29, (a;) = 1 which implies that a; € Q (since £ has
Lipschitz boundary). It also follows that (try Bay, (ai) Us)1<i<k is a minimal topological resolution
of g. Hence, in view of Definition 3.5 and (7.6), the map wu, is renormalisable. Thus, if we let
sing(ux) = {(a1,71), ..., (ak,vx)} we obtain (i) and (ii).

We now prove (iv). By (i) we deduce that, up to a subsequence,

k
Duy,|?
(7.8) M - Z @04, in the sense of measures
2[log en|
for some constants oy, ..., o, € R. Thanks to the upper bound (7.1), up to a subsequence, we can
assume

Du,|>? F 1
Q 2 €n €n neN

converges. Using this and and the fact that, by (iii), |10g€n| fQ Un) _y () we obtain that

82

k

(7.9) Z o =

i=1
Now we use (iii) in Proposition 6.9, to obtain that for every p € N and for every 0 <+¢ < k

Du,|*  F(a 2

(7.10) / | Dt + (Z”) > EB(Iy o trop,, (ai)dn)logﬂ + Cy.
Bapy, (a;) 2 €n P €n

By a Fubini type argument we can assume that @, — @, in W?(dBy,, (a;), R”). By Sobolev em-

bedding and Arzela-Ascoli criterion, we obtain that for n large enough try Ban, (a;) Un andtryp, ) Use

are homotopic. This implies that for n and p large enough

p (ai

A(yi)?

4
since (71, .. .,7k) is a minimal topological resolution of ¢g. By using (7.10) and (7.11) we obtain that
o > )‘(%) for 1 <14 < k. By (7.8) and (7.9) we obtain (iv).

(7.11) ER(Iy o trop,, (a;) Un) = E¥(trop,, (a;) Ux) = (1) =
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The rest of the proof is devoted to assertions (v) and (vi). By (7.5), for almost every r € (0, p),
we have for eachi € {1,...,k},

D n 2 n
liminf/ | Dun| + (u ) < +o0.
OBr(a;)

n—00 2 n

Moreover, for almost every r € (0, p), foreachi € {1,... ,k}andn € N, trpp, (4,) Un = UnlaB, (a;)-
Hence if we define 7; , : S! — R” by Yin(2) = un(a; +7rz), we have by Fatou’s lemma, for almost
every r € (0,p)

T \/|2 2
(7.12) ot [ 10T Z—QF(%T,”) < +00

n—oo [q1 2 s

There exists thus a subsequence (ny)ren (depending on r) such that

(S

(7.13) sup/ —— + —F(¥],,) < +oo.

keN Jst 2 2.
By using (7.13), Sobolev embeddings and Arzela-Ascoli’s theorem we have that, up to a subsequence,
Vi n,, converges uniformly when £ tends to infinity. On the other hand we also obtain from (7.13)
that F'(v],,, ) — Oa.e. up to a subsequence. Hence, by using Lemma 2.3 we have disty 0v],, — 0
a.e. and by uniform convergence of 7;,, , if k is large enough then distyr v/, < . Thus, by
Proposition 4.4, we have

(0f)

r/enk T/eny, Mk r —
019l QG ~ Qe | S Jim Coo | TG e FOl,) =0
so that
Ay)?, r/e )
7.15 lim inf T/ef’“ — = Jog — = liminf k. = ———log —.
(.15)  lminf Qo — =7 log —— = liminf Ot~ = los

On the other hand, by (7.12) and Sobolev embeddings, the sequence ('Y@T e )keN converges strongly to
s (a;47-) in W1/22(ST RY), and thus (I o Vi n,, )keN converges to u, (a; +7-) in W1/22(StN).
Hence, by [39, Proposition 3.3], limj_;o dsynn (IIx © Vir,ny us(a; + 7)) = 0. Thus by (7.15) and
Proposition 4.3

i r/en A(yi)? T r/en A(7:)? T
(7.16) lllgrgngF77£ik_ = log% hmlanFu*kalJrr)_ yo log%.

Finally by Proposition 4.3 again, we have in view of (7.16)

. n A(7i)? r
hkn_lggf Q;{iﬁk — (Z;) log - > Qrpy; — dsynn(us(a; +7-),7%).
? k

It follows thus that

2
lim / D “”k' (“"’“) — E%(g) log L

k—o0 Eny,

Du,, > F
> lim inf/ | Dtin | + (zn) + lim inf/ +—
k—o0 Q\Uf:l Br(a;) 2 €n i1 k—o0 Br(a;) 2 €nk

_ gsg(g) 10g L

Nk
k
Du,|? 1 )2
> / ﬂ — E%(g)log — + Zlim inf QTF/f/’;k — M log o
Q\Uf:1 By (a;) 2 T =1 k—o0 " ling, 41 gnk
Du 2 1 k
=z / x | 2*| —E%(g )108; + Qp(us) stynh us (@i +1),7%),
Q\Uz 1 BT(G'Z) i=1

We reach the conclusion (v) by letting » — 0.
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The proof of (vi) proceeds as the proof of (v) in order to reach

k
) |Duy|?>  F(un,) 1
lim kL £%8(g) log —
im ) /BP w2 +—5 E%(g)log

n—00 P Ens Eny,
Du,|? 1
> Z/ [Du. " 5 ®_ E%(g )log + Or(uy) stynh s (a; + 1), %),
By (ai)\Br(a;) =1
the conclusion follows then by letting p — 0 and additivity of integrals. U

Remark 7.2 (I'-convergence). For each g € W1/%2(9Q, N) and ¢ € (0, +00), we define EZ on set
of measurable functions by setting

Dul*> F 1
/Q(% + %) — E%(g)log - if u € W12(Q,R¥) and trgou = g on 95,

+00 otherwise,

E9(u) =

£

and we define the limit functional E on the set of measurable functions by setting

(7.17) E(u) = {gren(u) + OQp(u) ifue Ay(QN),

400 otherwise,

where A, (9, NV) is the set of maps u € Wyan (2, ) such that traou = g and (y1,...,7%) is a
minimal topological resolution of g, where sing(u) = {(a1,71),- - -, (ag,¥x)}-

The family of functionals (E?).~o I'-converges as ¢ — 0 to Eg in LP(2,R”) endowed with
the strong topology for every p € [1,+00), and in W1P(Q, RY) endowed with the weak or strong
topology for every p € [1,2). The upper bound follows from the upper bound Proposition 5.2
and the lower bound from Theorem 7.1. For N' = S! and for the strong convergence in W,
a I'-convergence result at leading order, i.e. the I'-convergence of £%./log %, is due to Jerrard
and Soner [32, Theorem 4.1]. For N’ = S!, a I'-convergence type result at next order can be
found in [1]: if Ju = det Vu denotes the Jacobian of w, the authors show the I'-convergence
of the energy infy, . j,—73 EF(u) — £%%(g)log % in the Jacobian variable J € C%!(Q)’ endowed
with the convergence in the flat norm. Our framework allows us to state the I'-convergence of
E5(u) — £%8(g) log % in the variable u; this in particular requires to introduce the renormalised
energy £" of renormalised maps; to our knowledge, such a I'-convergence result is new.

7.2. Convergence of minimisers. We are now ready to fully state and prove our result about the
convergence of minimisers:

Theorem 7.3. Let g € W'/22(9Q, N), let (e, )nen be a sequence in (0, +00) converging to 0 and
for eachn € N let u, € Wh2(Q,R¥) be a minimiser of the Ginzburg-Landau energy E% under
the Dirichlet boundary condition traq u, = g. Then, up to a subsequence, there exists a map u, €
Wik (Q, N) such that if we write sing(us) = {(a1,71), - - ., (ax,v&)}, we have

(i) the sequence (un )nen converges almost everywhere to u, and strongly in Wllo’CQ(Q\{al, ceyagt)
and F(u.,)/e2 — 02in LL (Q\ {a1,...,ar}),
(i) 5(9) = 1Ly 23,
D(dist n F
)y [ 10 Sl )

neNJQ 2 52
(iv) one has, weakly as measures on Q

+supt2£2(\Dun\ 10, +00)) < +o0,

(v) troq us = g and uy is a minimising renormalisable stationary harmonic map (see Remark 7.5)
so that in particular, for every p € p(ay,...,ax), ux € C°(Q\ {a1,...,ax},N) is harmonic
minimising in Q \ Ule B,(a;) with respect to its own boundary conditions,
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(vi) we have the equalities

Du.|> F 1
[Ducl” | SE)—Ssg(g)logg

lim
n—oo [ 2

_ gren(u*) + QF(U*) — inf{gren(u) -+ QF(U) NS ereﬁ(Q?N) and trggu = g}

k
eom
=&0m lan, . ar) + E QF~; = Wains
i=1

where

G5M15--57T1e

l
(7.18) Whin == inf{Sgeom (b1,...,be) + Z QFm, : bi,...,by € Q are distinct
=1

and (N1, ...,me) is a minimal resolution ofg}.

When N = S!, the weak L? estimate (iii) on the gradient is due to Serfaty and Tice [51, Propo-
sition 1.3].

Remark 7.4. By (i) and (iii), for every p € [1,2), the sequence (u,)nen converges to u strongly in
wip (Q). When N = St such a convergence was known for smooth data [9, Lemma X.11] and
W/22 data [10].

Remark 7.5. Following [39], the map u, € Wiea (Q, N) being a minimising renormalisable singular
harmonic map means that for every map v € Wiea (Q, ) with sing(v) = {(b1,71), - - -, (br, )}
(that is sing(v) differs from sing(u*) only by the position of the points, but not by the =;), one has

gren (u* ) < Eren (’U) .

In particular u, is a stationary renormalisable harmonic map, which means that the its stress-energy
energy tensor has vanishing flux around every singularity, or equivalently the residue of its Hopf
differential vanishes at every singularity, cf. Proposition 7.9 in [39].

When N = S!, Theorem 7.3 is essentially due to Bethuel, Brezis and Hélein [9] for star-shaped
domains, and to Struwe for simply connected domains [52]. The existence of finitely many singu-
larities and the strong convergence in the case of a general compact manifold N was proved by
Canevari [15] general smooth bounded domains

Proof of Theorem 7.3. Since (un)nen is a sequence of minimisers, it follows from Proposition 5.1
that we have

(7.19) lim sup /
Q

n—oo

|Duy > F(uy)
T
2 €
By (7.19) and by Theorem 7.1, up to a subsequence, there exists a family of points (ay, ..., a) in Q

such that (u, ),en converges weakly in I/Vlif Q\{a1, ..., a1}, R”) to some limit u, € Wk (2, N)
and

(7.20) E™(uy) + Qr(ux) < Winin-

Note that from Theorem 7.1, (ii), (iii) and (iv) hold. Furthermore (i) also holds if the strong conver-
gence is replaced by the weak convergence.

Since the map wu, is renormalisable, by Proposition 3.6 and by (4.5), there exists a topological
resolution (71, ...,7%) of g such that for every i € {1,..., ¢}, lim,_,o dsynn(us(a; + p-),7:) = 0
and

1
- gsg(g) IOg — < Whin.
€n

l
(7.21) E () + Qp(us) > EE™ (an,...,ax) + Y Qs
=1

and sing(u) = {(a1,71),- .., (ak,vx)} with each «; being the synharmony class of ;. It follows
thus from (7.18), (7.21) and (7.20) that

¢
(7'22) gren(u*) + QF(U*) == Wmln == g;g/f,orn’f\/k (a17 AR 7a’k) + Z QF7’YZ"
i=1
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)2
By Proposition 5.2, since (uy,)nen is a sequence of minimisers and since £%8(g) = Zle %, we
have also,

|Dug|* | F(un) sg 1

; tTa ¢ (9)log —
< inf{E™"(u) + Qp(u) : u € WE2(Q,N) and troqu = g},

which together with (v) in Theorem 7.1 yields

|Dun|2 ) 1
E(ux) + Qp(uy) = lim / — &% (g) log —
(7.24) (us) + Qr Jim (9)log —
= inf{E™"(u) + Qp(u ) s u € WLHQ,N) and trapgu = g}

ren

(7.23) limsup/
Q

n—oo

Thus we have proved (vi).
For every p € p(ai,...,ar), if the map u € VVI 2(Q\ {ay,...,ax},N) is renormalisable and
satisfies trpg u = g on 8(2 and u = uy in By(a;), then Qr(u) = Qr(u.) and by (7.24),

Dul? Du, |?
/ ’ 2“" _ / ’ 721’ ‘ +gren(u) + QF(U) o (gren(u*) + QF(U*))
Q\Ui€ 1 Bp(ai) Q\UIC B,(a;)

2
> / [Pu”
Q\Uf:1 By (ai) 2

so that u, is harmonic minimising in 2\ Ule B,(a;) with respect to its own boundary conditions
and, in particular, u, € C*°(Q\ {a1,...,ar}, N) by the result of [42]; this proves (v).
Finally, by (7.24) and Theorem 7.1 (vi), we have for every p € (0, p(a1,...,ax)),

Du,|*? F Du,|?
limsup/ | D | + (Zn) S/ |Du| )
n—oo JO\UL, Bp(a;) 2 €n O\UL, Bo(a) 2

which implies the announced strong convergence in (i). 0

8. AN EXPLICIT COMPUTATION OF THE RENORMALISED ENERGY

Although the geometric renormalised energy of singularities and the renormalised energy of
renormalisable maps are defined via a shrinking holes approach and are thus quite implicit, if €2 is
simply connected and ¢ is a reparametrisation of a minimising atomic geodesic in \V, the geometric
renormalised energy of a single singularity coincides strikingly with A" = S! [39, Theorem 10.1].
When €} = B this geometric renormalised energy can be explicitly computed and this allows one
to locate asymptotic singularities for strictly atomic minimizing geodesic boundary conditions, as
Bethuel, Brezis and Hélein did for A" = S' [9, Theorem 0.4] in response to a question of Matano.

Theorem 8.1. Let () be a Lipschitz bounded domain andlet F € C(RY, [0, +-00)) satisfy F~1({0}) =
N and (1.4). Assume that
(a) g : S* — N is a minimising geodesic,
(b) if (71, ..,7k) is a minimal topological resolution of g then k = 1 and 7y, is homotopic to g,
(c) every map homotopic to g is synharmonic to g.
If for each e € (0,+00), uc is a minimiser of £% in W12(By,R") under the condition trpq u. = g,
then

ue — u,  inWh3(By\ {0}, RY),

e—0

loc

with u,(x) = g(z/|x]).
Proof. By our assumptions and Theorem 7.3, for every sequence (&, )nen in (0, +00) converging
to 0, there exists a map u, € Wias (€2, V) such that sing(u,) = {(a,~)} for some a €  and
(tte, Jnen — sy in W2 (B \ {a}, R”) with

E 1) + Qi = inf {EES™ (@) + Qe ¢ @ € Br} = E597(a) + Q.
It follows then by our assumptions, (3.7), Proposition 4.3 and Theorem 10.1 in [39] that for every
T € Bl,

A 2
1 EEOM (1) + Qo = 507 (1) + Oy = )

47

10g + QF,g-

1— [z
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The minimum is clearly achieved when x = 0, and thus a = 0. By the characterisation (3.8) of the
renormalised energy of the renormalisable map .,

2
2 Ag) 1o 1

1
(8.2) 0=E""(us) =sup = / | Dy | g —,
Bi\B, dm p

p—0 2
which implies that for almost every = € By, u.(x) = g(ﬁ) Since the limit is independent of the
subsequence, the convergence holds for the whole family. 0

9. CONVERGENCE OF SOLUTIONS TO THE GINZBURG-LANDAU EQUATION

We consider now solutions to the Ginzburg-Landau equation (1.5) arising at least formally as
the Euler-Lagrange equation of the Ginzburg-Landau energy (1.3).

In this section, (2 is a Lipschitz bounded domain and we assume that F' € C!'(RY, [0, +-00)), that
F~1({0}) = NV and (1.4).

9.1. Boundedness and Euler-Lagrange equation for minimisers. We first show that under
fairly general and reasonable conditions, minimisers of the Ginzburg-Landau energy £, are weak
solutions to the Ginzburg-Landau equation (1.5).

Proposition 9.1. Ifu € W12(Q, RY) is a minimiser for the Ginzburg—Landau energy and if V.F (u) €
LL (), then for every ¢ € CL(Q,RY),

VF
/Du-Dg0+ Q(U)-g0:0.
Q g

The proof of Proposition 9.1 follows a truncation argument due to Bousquet [12; 46, proof of
Theorem 4.23].

Proof of Proposition 9.1. Let § € C*(R™) such that ® = 1 on (0,1) and § = 0 on (2, +0cc). For every
R > 0, we consider the function nr = 6(|u|/R). We have, since ng € W12(£2) and since u is
bounded on the set {nr # 0},

. Ep(u+t —&x(u VF(u
0 = tiny ZE0F P177) F():/URDU‘DSD+DU‘(D77R)SD+ 2()'@73
t—0 t Q €
VE() gy, DuPe0(F)
Letting R — 400, we conclude in view of Lebesgue’s dominated convergence theorem. 0

The condition of Proposition 9.1 can be obtained by establishing an apriori bound on the min-
imiser.

Proposition 9.2. If there exists a function ¥ : C%*(R? RY) such that
V() = ¥(y)| <[z -yl

(a) VU is non-expansive in R, i.e.,
(b)) F o UV < FinRY,

(c) ¥ =id on N,

then for every g € W}/2’2(8Q,N), if u is a minimiser for the Ginzburg—Landau energy such that
troqu = g, then u € Ky almost everywhere in (), where

14 -
Ky = {xeR” : limsup’ (z+7) (z)] :1}.
h—0 ’h‘

In particular, if F'(Rz/|z|) < F(z) for some R > 0 and every z € R” \ Bp, taking

B(z) = z %f\z]<R7
Rz/|z| if|z| > R

we conclude that any minimiser of the Ginzburg-Landau energy (1.3) satisfies ||u| oy < R. This
is the case in particular when N = S! and F(z) = (1 — |2|)?/4 [8, Proposition 2].

When the set Ky is bounded, Proposition 9.1 also implies that u is a weak solution of the
Ginzburg-Landau equation.



GINZBURG-LANDAU RELAXATION FOR HARMONIC MAPS INTO A GENERAL MANIFOLD 31

Proof of Proposition 9.2. If u is a minimiser, we set v = W o u. By (c), we have trgq v = Vo trggu =
g on 0f2. Now, by (b) and since u is a minimiser, we have

/\DUP /\Dv\2 /Q 5(2)_ [ €2 /!Dv!2

By (a) and by the chain rule for distributional derivatives [2], we have |Dv|?> < |Du|? almost
everywhere in ), and either | Du|? = |Dv|?> = 0 or |Dv|? < |Du/|? onu™!(R”\ Ky ). By optimality,
this means that Du = 0 a.e. on v~ ' (R” \ Ky ); hence, by the chain rule, D (dist(u(z), Ky)) = 0
a.e. on u” ' (R” \ Ky). Since the weak derivative of dist(u(-), K;;) also vanishes a.e. on the zero
level set, i.e. on u™!(Ky), this implies that D (dist(u(z), Ky)) = 0 a.e. in €. By (c), N' C Ky and
thus by the trace condition we find dist(u, Ky) = 0 a.e. in {2 which implies the conclusion. g

9.2. Uniform convergence to the manifold. Given a boundary data g € W'/22(9Q, N/ ), we
show that the asymptotic vanishing of the penalisation term in the Ginzburg-Landau equation for
a sequence of solutions implies that the distance to the manifold vanishes asymptotically uniformly.

Theorem 9.3. If (¢, )nen is a sequence in (0, +00) converging to O and if for everyn € N, u,, €
W12(Q,RY) is a solution to the Ginzburg—Landau equation (1.5) and trag u, = g € W/22(0Q, N,
ifa € Q and p > 0 are such that

lim F(Zn) =0,
=0 JONB,(a)  n
and
Sup [ DunllL2 0B, () + 1 (un)ll Lo @B, @) < +00,
ne
then

Jim [[dist(un, Nl (@B, 2(a)) = 0-

The assumptions of boundedness on Du,, and of convergence of F'(u,,)/c2 hold for sequences
of minimisers away from singularities (Theorem 7.3). The uniform bound on Aw,, follows from an
a priori bound on u,, (see Proposition 9.2) and the local boundedness of VF'; it could also follow
from the global boundedness of V F'.

The uniform convergence to the vacuum manifold N away from singularities was known for
N = S! [8, Step B.2]. The result is reminiscent of uniform convergence of the modulus of W2~
converging sequences of functions whose Laplacian and whose modulus on the boundary are con-
trolled [11, Lemma 2.13].

The next lemma states that harmonic functions tend uniformly to the image of their trace when
we approach the boundary.

Lemma 9.4. IfQ has a Lipschitz boundary and ifv € W12(Q, RY) satisfies —Av = 0 in Q and if
trgo v € N almost everywhere in 0N, then
lim  dist(v(z),N) = 0.
e
dist(z,00)—0
Lemma 9.4 follows from the corresponding property for harmonic extensions of functions of

vanishing mean oscillation (VMO) [14, Theorem A3.2] and the embedding of W1/22(9Q, R¥) in
VMO(9£2,R) (see [11, Lemma 2.12] for N = S!). We give a direct proof when v is is W 12(, R).

Proof of Lemma 9.4. Since the function v is harmonic, by the maximum principle, v is bounded.
There exists a constant C'; such that for every y € €2 (see for example [29, Theorem 2.10])

ClHUHLoo(Q
. Dv —
(1) (Do)l < dist(y, 09Q)
For every x € Q, we let r := dist(z,99Q). If 0 < n < 1, we have
9.2) dist(v(z),N) < ][ lv(y) — v(z)|dy +][ dist(v(y), ) dy.
Bnr(x) Bnr(m)
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In view of (9.1), we have

Crllollz=o
©3) f lo(y) - v(z)| dy < —DE=@
Byr(z) n

n

Next, since the set 2 has a Lipschitz boundary and trq dist(v, N') = 0, we have the following
Poincaré inequality

(9.4) / dist(v(y), v(00Q))* < 027“2/ |Dvl?.
Bar(2)N9 Bor ()N

It follows from (9.4) that

(9.5) ][ dist(v(y), N)dy < <][ dist(v(y),/\/)2 dy> ’ < % </ |Dv|2> 5.
Bnr(x) Bnr(fl') n BQT({L')OQ

In order to conclude we observe that when 7 is small enough, the first-term in the right-hand side
of (9.2) can be made arbitrarily small by (9.3), while for any given > 0 the second term in the
right-hand side of (9.2) goes to 0 in view of (9.5) and Lebesgue’s dominated convergence theorem
since v € WH2(Q,RY). O

Lemma 9.5 (Regularity estimate). If Q) is a Lipschitz bounded domain and if w € W12(Q,RY) is
such that Aw € L>®(Q,R") and tropq w = 0, then for p > 0 and for every a € Q,

1 1
[1Dwl| e @nB, 5(a)) < CO)([IDW 1208, (@) + 1AW Lo (nB, (a))) 2 1Dw 72005, (a))
Lemma 9.5 is reminiscent of the L°° estimates [8, Lemma A.1].

Proof of Lemma 9.5. We fix p > 2. Since 0f) has a Lipschitz boundary, there exists pg > 0 such
that if 2 dist(z, 0Q2) < r < pg, then B, (x) N € is homeomorphic to a half-ball and has uniformly
Lipschitz boundary. By a finite covering argument, we can assume that p < pg.

By classical Calderon-Zygmund estimates and a scaling argument, we have for every « € () and

r € (0,p/2) \ (dist(z,00), 2dist(z, 0)),

|wll e (@B, (2)
7'2

(9.6) HDQwHLP(QﬂBr/Q(m)) < Cl( L HAwHLP(QmBT(m))>-

If r € (0,p) N (2dist(z,dN), +00), from the Poincaré-Sobolev inequality following from the
Poincaré inequality [|w| 1205, ¢))) < Cor||Dwl|7. (@B, () combined with the two-dimensional

Sobolev inequality, [[wl| s, ¢)) < Car®P(r~|wl 2ns, @) + |DwllL2@nB,v)), Wwe have

since w = 0 on 012,

2
(9.7) [l zr @B, (2)) < Car? | Dwl 2008, (@)
and thus by (9.6) and (9.7)
|Dwl| 20N B, («
(9:8) ”DQwHLP(QﬂBT/z(w)) < C5< 2(_% =) + HAwHLP(QﬂBT(m))>§
T

the latter inequality also holds when r € (0, p/2) N (0, dist(z, 952)) by assuming without loss of
generality that |’ Bi(n) W= 0, since a Poincaré-Sobolev inequality is also at hand in this case.

By the Morrey-Sobolev embedding W'? c C%'~2/P and the Cauchy-Schwarz inequality, we
have for almost every x € Q and r € (0, p/2) \ (2dist(z, 09), 4 dist(x, 0Q))

Dw(x)] < ][ Duw(x) — Dw(y)|dy +f Dul
QNB,5(x) QNB,. 5 ()

(9.9)

17% N HDwHLQ(QﬁBr/Q(J»‘))>

<C (HD?memBrmxw ;

and it follows thus from (9.8), (9.9) and |
r € (0,p/2) \ (dist(z, 09), 4dist(z, 0)),

Awl|ro@np, @) < ()P Aw|| e 0nB, ) that if

[ Dwl| 2B, (a)) >

r

9.10) Du()| < Cr (rquuLw(mB,,w ;
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since B,.(z) C B,(a). We observe now that (9.10) holds also for r € [dist(z, 992), 4 dist(z, 9Q)] N
(0, p/2) with 4C7 instead of C7 and we conclude by taking

D
v min /2. [ Dwl| 2B, (a)) . -
| Aw]| oo (B, (a))

Proof of Theorem 9.3. Following [8, Proof of Step B.1], let v € W1H2(€2,R¥) be a solution to the
Dirichlet problem

—Av =0 in{,
{ v=g onJfd.

For each n € N, we define the function w,, := u,, — v, which satisfies by assumption on u,, and by
construction of v,

VF(uy,)
2

wy, =0 on 0f).

—Aw,, =

in €,

By Lemma 9.5 and by assumption, we have

(9.11)
1 1
1Dwnl 22 (@B, o) < CLIDwallL20nB, @) + 1Awnll e @B, @) * 1 Dwall 205, (@)
Cy
< 2
En

Let now ¢ € (0, §4M). By Lemma 9.4, there exists » > 0, such that if dist(z,0Q) < r, then
dist(v(z), N) < §/2. If moreover x € QN B,s(a) and dist(z,0Q) < £,6/(2C2) < r, then,
thanks to (9.11), we have |w,,(x)| < 0/2. Hence for n large enough, as u,, = w, + v,

(9.12) for allz € QN B,/5(a) such that dist(z,9Q) < £,6/(2Cs), dist(un(z),N) < 0.

We consider now a point z € 2 N B,/5(a) such that dist(x,0Q) > ¢,0/(4C2); we have by
classical estimates on harmonic extensions (see (9.1)) and by (9.11)

C3

(9.13) [Dun(@)| < .

We assume now by contradiction that there exists a sequence (a,)nen in B,/s(a) N € such that
dist(up (an), N') > 26. By continuity, we can assume that dist(u,(a,),N) = 24. By (9.12), we
have in particular dist(a,, 02) > ,9/(2C3) and so for n large enough,

B, s5/(acs)(an) C{x € QN By(a) : dist(z,09Q) > £,6/(4C2)}.

Since the distance to a closed set is non-expansive, using (9.13), we have if x € B; 5/(10,)(an),

|dist (un (), N) — dist(un(an), N)| < Jun(z) — up(ay,)| < ec—?;;kv — Qp-

n

Hence, for every « € Bg,. s2(a,) with Cy == inf{1/(6nrC2); 1/Cs}, we have
§ < dist(up(z),N) <36 < Iy

Hence, we have if n is large enough, using (1.4),

L E/ w - / F(gn),
2 2 Boyens2(an) €n QNB,(a) €

n

which cannot hold by assumption if n € N is large enough since the right-hand side goes to zero.

O
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9.3. Weak convergence of solutions. The next result shows that, under some assumptions, the
limit of weakly converging sequences of solutions to the Ginzburg-Landau equation are harmonic
maps. For a related result when A\ is a compact manifold of dimension 1 we refer to [38].

Theorem 9.6. Assume that g € W'/22(0Q, N), that (€, )nen is a sequence in (0, +00) converging
to 0 and that for everyn € N, u,, € WH2(Q, R¥) is a solution to the Ginzburg-Landau equation (1.5)
with tropq u, = g. If ' € CY(Nj), for some a € 2 and p > 0, we have

(i) (unlonB,(a))neN converges weakly to some limit u in W2(Q N B,(a),R¥),

(ii) limnﬁooHdiSt(un,./\/')HLoo(Qme(a)) =0,

() 1-s00 Jo, 0T = 0,

then u is a N -valued harmonic map in Q N B,(a).

For the classical Ginzburg-Landau, we have DII\/ [V F'(uy,)] = 0 which implies (iii). We recover
from Theorem 7.1, Theorem 9.3 and Theorem 9.6 that solutions to the classical Ginzburg-Landau
satisfying an upper-bound of the form (7.1) converge to a harmonic map with values into S! outside

a finite set of singularities when ¢ goes to zero [9, Theorem X.1].

When F € C3(RY), the condition (iii) in Theorem 9.6 follows from lim,, . /. 0NB,(a) % =0,

in view of the next lemma:

Lemma 9.7. Let F € C3(Nj,, [0, +00)). If F~1({0}) = N and F satisfies (1.4), then there exist
constants C' € (0,400) and § € (0,0xr) such that for every z € N,

(9.14) |DIIn (2)[VE(2)]| < CF(z).
Proof of Lemma 9.7. By a second-order Taylor expansion of DF(z), we have for v € R”

(9.15)
DF (2)[DIly (2)[v]] = DF Iy (2))[DIy (2) [v] + D*F (Il (2) [z = Hn(2), DILy (2)[0]]
+ O(|v| dist(z, N)?).
We first have for every z € N,
(9.16) DF (Il (2)) =0,

so that the first term in the right-hand side of (9.15) vanishes. Differentiating (9.16), we get for
v,w € R” and z € N,

(9.17) D?F(Iy(2))[w, DIy (2)[v]] = 0,
so that the second term in the right-hand side of (9.15) also vanishes. We deduce from (9.15), (9.16)
and (9.17), that
| DIy (2)*[VF(2)]| < Cy dist(z, V)%
Since DIIxs(z) is self-adjoint and VF(z) = 0 when z € N, we have
|DI\(2)*[VF(2)] — DIy (2)[VF(2)]] < Cydist(z,N)?, forall z € N O
and the conclusion follows.

We begin the proof of Theorem 9.6 with the following geometrical identity for the nearest-point
projection:

Lemma 9.8. Foreveryy € N, h € R” andw € T, N, we have
(918)  w - DI (y)[h, h] = w - D’y (y)[h, DIy (y) (k] + DILy (y)[h] - DIy (y)[h, w].
Proof. Setting h' := DII\/(y)[h] and h* := h — h', we have
(919 w- D*Tn(y)[h, h] — w - D*Tn(y)[h, b = BT - DTy (y) [, w]
— w- D ()7, 1]+ w - DTy (y) [ b
—hT - DMy (y)[h",w] = hT - D’y (y)[h, w].

Since ht € Tyl./\/, and since Iy (y + thL) = IIpr(y) for all ¢ small enough , we have, by differen-
tiating twice:

(9.20) D2Tp(y)[ht, ht] = 0.
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By the connection between the nearest-point projection and the second fundamental form [43,
lemma 3.2], we have

(9.21) w - DTpr(y) (b hT] = =h" - By(w,h") = hT - D*Ty(y)[h", w].
Finally, since w € T,\, h" € T, and by using that DILx/(y) : T,N ® T,N — T;*N we have
(9.22) h' - DM (y)[h",w] = 0.

In view of (9.20),(9.21) and (9.22), the right-hand side of (9.19) vanishes and the conclusion follows.
O

Lemma 9.9. For every y € Nj,, the map an(y) == DI (y) DIInr(y)* : Tiiye ()N — Tiipe)N
is invertible. Moreover, if a map u € W2 (Q, RY) satisfies [[dist (u, N)|| oo () < Onv» then we have

loc
‘aN(u)_lDHN(u)[Au] — div]apn(u) ' DIy o w)]| < Clu— Ip (w)]|Dul?.

Here, we recall that DIIy (y)* : Ti1,(,)N' — R stands for the adjoint of DIl (y) which is
defined by

DIz (y)[v] -w = v - DI (y)*[w] forallv € RY and w € THN(y)N.

Lemma 9.9 is a generalisation of the decomposition when A = S! of u into its modulus and
argument [8, (51)-52)], which is connected to the substitution in the Schrédinger equation to obtain
Madelung equations, see e.g. [19] and references therein.

Proof of Lemma 9.9. First of all, we have that ay(y) is invertible since DIIx/(y) is onto.
Leti € {1,2}. We have on the one hand

OZ (I o u) = 0; (an(w)an (u) 10 (I o u))

623) = ay(u)o; (aN(u)*lai(HN o u)) + 05 (o (w))anr (w) 710;(TTxr o w),
with
(9.24) 9i(an(u)) = DTy (w)[0;u] o DIy (u)* + DIy (u) o (D*Tn(w)[0;u])".

On the other hand, we have
(9.25) O} (T o u) = 0;( DI p(u)[0su]) = D*Tr[0su, Oyu] + DI [02u),

and therefore by (9.23), (9.24) and (9.25), we have

(9.26) DIIpr(u) [afu] — apn(u)0; (ozN(u)flai(HN o u))
= (D*ILy (u)[du) o DIy (u)* + DIy (u) o DIy (u)[05u]*)[en (u) " 0;(Iy o u)]
— D™y (u)[O5u, Oiu).
Since the left-hand side of (9.26) lies in 11y N(U)N , it suffices to estimate the projection of the right-
hand side of (9.26) on Ty, ()N
Since DIIx (ITpr(u)) is the orthogonal projection onto the tangent space Tty N(u)./\/ , we have that

both DI (I (u)) = DI (I (w))* and ap (I (u)) are the identity on Ty, (,,) V. Hence, by
using a Taylor expansion, we have for every v € 11y N(U)N ,

(9:27) v DTy (u)[Biu] [DIy (u)*ap (u) ' 0i(Ty o u)]
= v - DTy (T (w)) [85u, DIy (T (w)) [B5ul] + O(fv]Ju — Ty (w)||0;uf?),

(9.28) v - DIz (u) o D (w)[05u]*[an(u) ~10;(TTx o )]
= DMy () 0, DT ()" [o]] - anr () O5(TTy o )
= DIy (Iy () [9yu, v] - 9y (I © w) + O(Jvlfu — Iy (w)||95uf?).
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and, in view of Lemma 9.8,
v - D*T () [O5u, Osu) = v - DT (T (w)) [Dsu, u] + O([v|u — Tar(u)||0;ul?)
— v DTy (T () [, DTy (T () (95
+ D2 (I (w)) [Diu, v] - DI (T (w)) [D54]
+O(Jvllu — Ty (u)||95ul?).
Hence from (9.26), (9.27), (9.28) and (9.29) we arrive at
(9:30) | () ! DT (u) [0 ) — B3 (anr(w) 10Ty 0 w))| < Cilu — Tar(w)]|sul.
The conclusion then follows by the triangle inequality and summing (9.30) over ¢ € {1, 2}. O

(9.29)

Proof of Theorem 9.6. By classical regularity estimates, we have u,, € W?P(Q,). It follows from
our assumption limy, oo |dist(wn, N)||Lec (@B, (@) = 0, that for n € N large enough we have
[[dist (wn, N) |l oo (@B, (a)) < On” s0 that we can define vy, = TIx © un|onB, (a)- By smoothness of
I, and the assumption (i), we know that the sequence (v, ),en converges to u weakly in W12(QN
B,(a),R"). Moreover, we have

(9:31) DI pr(vn)[Avs] = fr + gn,
where, using the same notation azr(y) = DIy (y) DIIn(y)* as in Lemma 9.9,

fn = DIy (vy) [div ((id —anr(un) ") Doy)]
and
gn = DIl (vy,) div (a/\/(un)levn) .
By weak convergence, (Dvy, )nen is bounded in L2. Using the fact that ax(y) depends smoothly
ony € Nj,, and that o (y) = id, & when y € N, by find by our assumption (ii),

Jim | (id —an (tn) ") Dvnll 2008, (@) = 0,
and we deduce that

(9.32) | fll -1 (@B, ()R 0

Now, we have from Lemma 9.9 and by smoothness of DIl yy,

lgnllzt < Cr (len (un) DILy () Aty | 1+ ([t — T () | Dty | 1)

and since u,, satisfies the Ginzburg-Landau equation, we have by our assumption (iii), by Lemma 9.7
and by the assumption

1
[ DIy (un) [Aun]| L1 (@nB, (a)) < %HDHN(UTL)[VF(UTL)]HLl(QﬁBP(a)) — 0.

We have also |||ty —TIpnr () || Dun|?|| 2 — 0 by the asumption (ii) and by boundedess of (| Dy, | )nen
in L?(Q N B,(a)). Hence

(9.33) gnll L1 @nB, (a),RY) 0

Since DIIxs(vy,) is the orthogonal projection on 7, V, the conclusion follows from (9.31), (9.32),
(9.33) and the result about weak limits of Palais-Smale sequences for the harmonic maps equation
in [7] (see also [28] and [47]). U

9.4. Higher-order convergence of solutions. Under regularity assumptions on the boundary,
we improve the convergence away from singularities.

We assume in this section that the set {2 is a bounded open set with C? boundary, that F' €
C3(RY, [0, 4+00)) and that F satisfies the non-degeneracy condition (2.10).

Theorem 9.10. Let g € C2(0, N), (€1 )nen be a sequence in (0, +00) converging to 0 and (uy, )nen
be a sequence of solutions to (1.5) with u,, € C*(Q,R") and unjon = g- If F' € C%(N), if for some
a € Qandp e (0,400), we have

i) (un)nen converges to some N -valued harmonic map u, in WH2(Q N B,(a),RY),

i) limy,— o0 [|dist (un, N) || Lo (B, (a)) = 0,

i) 1m0 forp (@)~ = 0,
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then (un )nen is bounded in VV@’?(Q N By(a)) forallp € [1,+00) andr € (0, p).

In particular, it follows by the Morrey-Sobolev embedding that (u,)nen converges to u, in
CL*(QN B, s(a)) forall 0 < o < 1.

The first tool to prove Theorem 9.10 is the following proposition that was proved in [22] in
dimension n > 3 and whose proof is the same for n = 2. It relies on the fact that when dist(u,,, )
is small, a Bochner-type formula holds: —Ae.(u,) < Ce.(uy)? if u, is a solution of (1.5) and

2
where e.(u) = % + % and on boundary elliptic estimates on the gradient.
Proposition 9.11 ([22, Proposition 3.1]). LetQ C R? be aC? bounded domain andlet g € C*(0Q, N).
There exist £9,10 € (0,+00) and C = C(F,Q,g) € (0,+00) such that for every ¢ € (0,e0), p €
(0,1) anda € Q, ifu € C?(,RY) is a solution of (1.5) withtrgqu = g, dist (u, N) | Lo (@B, (a)) <

o and
Dul*> F
(9.34) E = [Du + (;L) < 7o,
QNB,(a) 2 €
then
Dul> F
(9.35) p° sup (ﬂ—i—ﬂ) < C(E+p%.
2 g2
Bp/Q(a)

Proof of Theorem 9.10. By a covering argument, we can restrict our attention to the case r = § with

p > 0 sufficiently small so that
Du,|?
[k,
QNB,(a)

with 7 given by Proposition 9.11, and thus when n € N is large enough

Du,|? F(u
[ Dk re
QNB,(a) 2 €n

It follows then, from Proposition 9.11, that

(9.36) ilelgHDunHLoo(Bp/Q(a)) < +00.
Let Q(y) = distar(y, N)2. A direct computation shows that
2
(9.37) A(Q(ur)) = DQ(un)[Auy] + Z DZQ(un)[&un, Diun].
i=1

Since u,, satisfies the Ginzburg-Landau equation (1.5) and by (2.10), we have

DQ(uy)[Auy) = DQ(uy) [W;(Qm)] _ 2wz(;m) .

n

2m .
(un — T (un)) > €2F dist (w,, N)?.
n
Moreover, by the computation of the second derivatives of the squared distance given in Remark 2.4,

using (2.2) and the inequality \/% <14z on (0, %), we have for every z € N, /o andv € RY,

2Jv|? S _2dist(z,./\/)\v\2.

1 dist(z,N) N
-

DQQ(z)[v,v] = 2|v|2 —2DTpr(2)[v] - v > 2|v|2 —

Hence, by (9.36), (9.37) and the two preceding estimates, we have for n large enough,

. 2
AQCun)) = 21 dist (g, N)?2 — 2IMENIDGE L Cop s oG,
€2 N €2

We have thus proved that the function () o u,, satisfies for n large enough
938) —2A(Q 0 up) +CoQ 0 up < C3e23/Q 0wy in B,p(a) N
' Qou,=0 on B, /s(a) N oS,

where the boundary condition holds because u,, € N on 9. As in [45, Lemma 6 and Lemma 7],
we deduce from the maximum principle that

Q o u, = dist(u,, N)? < Cyel  in B,/4(a) N Q.
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Since |[VF|? = 0 on N, by minimality, we have also D(|[VF|?) = 0 on N; as F € C3(RY), this
means that there is a constant Cs € (0, +00) with |[VF(2)[> < Cs dist(z,N')? for every z € N,
Hence,

VF(u, .
(9.39) |Au,| = ’67(2)‘ <VCyC5 in B,(a) N Q.

By elliptic estimates we obtain that (uy, ),cn is bounded in I/Vlz’Cp(BpM (a)NQ) for every p € [1, +00).
U

The C1* convergence is the best we can hope for if we consider convergence up to the boundary,
since if we had C? convergence up to the boundary we would have Au, = 0 on the boundary
which is incompatible with —Awu, = By, (Vu, Vu,), where B, * is the second fundamental form
of N at u, see [8, Remark 1] when N = S!. However it is natural to address the question of
higher convergence in the interior of {2 away from the singularities. Since this relies on a bootstrap
argument such a result is not easy to obtain for general potential /' and should be rather addressed
for specific F.. We refer to [9] and [45] for results in this direction in the Ginzburg-Landau and
Landau-de Gennes models.
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