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We consider first order local minimization problems min
´
RN f(x0, u,∇u)

over non-negative Sobolev functions u satisfying a mass constraint
´
RN u =

m. We prove that the minimal energy function H(x0,m) is always concave
in m, and that relevant rescalings of the energy, depending on a small pa-
rameter ε, Γ-converge in the weak topology of measures towards the H-mass,
defined for atomic measures

∑
imiδxi as

∑
iH(xi,mi). The Γ-convergence

result holds under mild assumptions on the Lagrangian, and covers several
situations including homogeneous H-masses in any dimension N ≥ 2 for ex-
ponents above a critical threshold, and all concave H-masses in dimension
N = 1. Our result yields in particular the concentration of Cahn-Hilliard flu-
ids into droplets, and is related to the approximation of branched transport
by elliptic energies.
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Notation

Br(x) open ball of radius r centered at x;
Br open ball Br(0);

M(RN ) set of finite signed Borel measures on RN ;
M+(RN ) set of finite positive Borel measures on RN ;

τxµ Borel measure A 7→ µ(A− x) if µ ∈M(RN ) and x ∈ RN ;
cBµ Borel measure τ−x(µ B) if B is the ball Br(x);

µ`
C′0−⇀ µ weak convergence of measures, i.e. weak-? convergence in duality

with the space C0(RN ) of continuous functions vanishing at infinity;
µ`
C′b−⇀ µ narrow convergence of measures, i.e. weak-? convergence in duality

with thhe space of continuous and bounded function Cb(RN );
Σ set of increasing maps σ : N→ N;

σ1 � σ2 σ1, σ2 ∈ Σ are such that σ1(Jn,+∞K) ⊆ σ2(N) for some n ∈ N.

1 Introduction
1.1 Setting
Let N ∈ N∗ and let f : RN × R+ × RN → R+ be a Borel function. Consider the
following energy functional, defined for any fixed x ∈ RN on the set of finite positive
Borel measuresM+(RN ) on RN by

Exf (u) =


ˆ
RN

f(x, u(y),∇u(y)) dy if u ∈W 1,1
loc (RN ,R+),

+∞ otherwise.
(1.1)
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The minimization of this energy energy under a mass constraint gives rise to the notion
of minimal cost function, defined by

Hf (x,m) := inf
{
Exf (u) : u ∈W 1,1

loc (RN ,R+) such that
ˆ
RN

u = m

}
∈ [0,+∞]. (1.2)

As a preliminary result, which deserves interest on its own, we will establish the
following:
Theorem 1.1. Let x ∈ RN . The map m 7→ Hf (x,m) is concave non-decreasing on
(0,+∞), and if we further assume that f(x, 0, 0) = 0 and Hf (x, ·) 6≡ +∞ on (0 +∞),
then it is also continuous on [0,+∞) with Hf (x, 0) = 0.
The proof is very simple and works with no further assumptions on f , and even in a

slightly more general situation as stated in Theorem 2.1.
Our main purpose is to prove that under some conditions, if (fε)ε>0 is a family of

functions fε : RN × R+ × RN → R+ converging pointwise to f as ε → 0, then the
rescaled energy functionals Eε, defined for each ε > 0 onM+(RN ) by

Eε(u) =


ˆ
RN

fε(x, εNu(x), εN+1∇u(x))ε−N dx if u ∈W 1,1
loc (RN ,R+),

+∞ otherwise,
(1.3)

Γ-converge as ε→ 0, for the narrow or weak convergence of measures, to the Hf -mass,
defined onM+(RN ) by (see Definition 2.5):

MHf (u) :=
∑
i∈I

Hf (xi,mi) +
ˆ
RN

H ′f (x, 0) dud(x).

where u = ua + ud is the decomposition of u into its atomic part ua =
∑
i∈I miδxi

where mi = u({xi}) for every i ∈ I ⊆ N, and its diffuse part ud, and H ′f (x, 0) =
limm→0+

Hf (x,m)
m ∈ [0,+∞].

This kind of singular limit in integral functionals is reminiscent of several variational
models with physical relevance which have been the object of intensive mathematical
analysis, such as Cahn-Hilliard fluids with concentration on droplets [BDS96] or on sin-
gular interfaces [MM77], toy models for micromagnetism and liquid crystals like Aviles-
Giga [AG99] and Landau-de Gennes [BPP12], or Ginzburg-Landau theory of supracon-
ductivity [Hél94].
The fact that MHf is expected to be the Γ-limit of Eε is due to the following obser-

vation: if Br(x0) ⊆ RN and uε(x) := ε−Nvε(ε−1(x − x0)), then
´
Br(x0) uε =

´
Br/ε

vε

and ˆ
Br(x0)

fε(x, εNuε(x), εN+1∇uε(x))ε−N dx =
ˆ
Br/ε

fε(x0 + εy, vε(y),∇vε(y)) dy,

so that the energy contribution of a mass m ≥ 0 contained in a ball Br(x0) should be of
the order of Hf (x0,m), where r is arbitrary.
Nevertheless, it is not true in general that MHf is the Γ-limit of the functionals Eε

(see Section 1.3 below). We will need a couple of assumptions on f and fε detailed in
the next section.
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1.2 Assumptions and main result
Our first two assumptions are rather standard and guarantee the sequential lower semi-
continuity of the functionals Exf ,

(H1) f is lower semicontinuous on RN × R+ × RN ,

(H2) f(x, u, ·) is convex for every x ∈ RN , u ∈ R+.

We also need continuity in the spatial variable:

(H3) f(·, u, ξ) is continuous for every u ∈ R+, ξ ∈ RN .

Next, we need a compactness assumption which ensures relative compactness in the
weak topology of W 1,p

loc (RN ) for sequences of bounded energy Exf and bounded mass; it
will also be needed in obtaining lower bounds for the energy (see Proposition 3.8):

(H4) there exist α, β ∈ (0,+∞), p ∈ (1,+∞) such that for all (x, u, ξ) ∈ RN ×R+×RN ,

f(x, u, ξ) ≥ α|ξ|p − βu.

We also impose a condition on the slope of f(x, ·, ξ) at the origin which will be needed
in order to identify the initial slope of Hf (x, ·) (see Section 2.3), and rules out some
non-trivial scale invariant Lagrangians for which the expected Γ-convergence result fails
(see Section 1.3),

(H5) for every x0 ∈ RN ,

f ′−(x0, 0, 0) := lim inf
(x,u,ξ)→(x0,0+,0)

f(x, u, ξ)
u

≥ lim sup
u→0+

sup
|ξ|≤1

f(x0, u, ρ(u)ξ)
u

, (1.4)

with ρ ≡ 0 if N = 1 and for some ρ ∈ C((0, 1], (0,+∞)) satisfying
ˆ 1

0

( ˆ 1

y

dt
ρ(t)

)N
dy < +∞ if N ≥ 2.

Last of all, we need the family of functions fε : RN × R+ × RN → R+ to converge
towards f in a suitable sense, namely, we assume

(H6) fε ↑ f and f ′ε,−(·, 0, 0) ↑ f ′−(·, 0, 0) as ε→ 0.

Notice that this assumption is empty if fε does not depend on ε.
Our main result is the following:

Theorem 1.2. If (fε)ε>0 satisfies (H6) with each fε satisfying (H1)–(H4) and the limit
f satisfying (H5), then MHf is the Γ-limit as ε → 0 of the functionals Eε, defined in
(1.3), for both the weak convergence and the narrow convergence of measures.

In particular, as a Γ-limit, the functional MHf must be lower semicontinuous for the
weak convergence of measures (and so for the narrow convergence as well). This implies
that Hf is lower semicontinuous on RN × R+ (see Proposition 2.7).

We point out that for the Γ− lim sup, we need weaker assumptions on fε and f (see
Proposition 4.2), which will be useful for some applications (see Section 5.5).
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1.3 Examples, counterexamples and applications
We start with a counterexample, justifying the importance of (H5), and we then provide
several examples satisfying our assumptions.

Scale invariant Lagrangians. In the particular case where fε ≡ f and f(x, u, ξ) =
u
−p(1− 1

p?
)|ξ|p, with p ∈ (1, N) and p? = pN

N−p , we find that

Eε(u) =
ˆ
RN

f(x, εNu, εN+1∇u)ε−N =
ˆ
RN

u
−p(1− 1

p?
)|∇u|p = Ef (u),

i.e. the rescaled energies Eε do not depend on ε > 0. A scaling analysis also shows that
the associated cost function satisfies Hf (m) = m1− p

NHf (1). Moreover, it can be seen
that 0 < Hf (1) < +∞, which implies that the Γ-limit of Eε, which is nothing but the
lower semicontinuous relaxation of Ef , does not coincide with MHf . Considering the
perturabation of f given by f̃(x, u, ξ) = f(x, u, ξ) + |ξ|p, we find a Lagrangian satisfying
all our assumptions except (H5) (note that |ξ|p is needed in (H4)), and such that the
associated rescaled energies do not Γ-converge to MHf̃

(see Section 5.1). Hence, an
assumption like (H5) is required in our Γ-convergence result. We will even see that the
lower semicontinuity of Hf and MHf is not guaranteed without (H5).

Concave H-masses in dimension one. Consider the energy

Ef (u) =
ˆ
RN
|∇u|2 + c(u) with Lagrangian f(x, u, ξ) = |ξ|2 + c(u).

In dimension N = 1, it is shown in [Wir19] that for any concave continuous function
H with H(0) = 0, there exists a suitable c ≥ 0 such that Hf = H. As explained in
Section 5.2, Theorem 1.2 implies that the rescaled energies

Eε(u) =
ˆ
RN

f(εNu, εN+1∇u)ε−N (1.5)

Γ-converge to MH , leading to an elliptic approximation of any concave H-mass in di-
mension one. However, in dimension N ≥ 2, we have no positive or negative answer to
the inverse problem, consisting in finding f such that H = Hf for a given H.

Homogeneous H-masses in any dimension. We consider variants of (5.1) with an
additional sublinear term, so as to satisfy our assumptions:

Ef (u) =
ˆ
RN

f(u,∇u) =
ˆ
RN
|∇u|p + us. (1.6)

The rescaled energies as set in (1.5) Γ-converge to a non-trivial multiple of some α-mass
Mα := Mt7→tα for every s ∈ (−p′, 1], and α =

1− s
p

+ s
N

1− s
p

+ 1
N

ranges over
(
1− 3

N+2 , 1
]
when

s, p vary in their respective range and N ≥ 2. More cases, with details, are given in
Section 5.3.
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Cahn-Hilliard approximations of droplets models. Following the works of [BDS96;
Dub98], we consider the functionals

Wε(u) =
ˆ
RN

ε−ρ(W (u) + ε|∇u|2), (1.7)

where W (t) ∼t→+∞ ts for some exponent s ∈ (−2, 1). As shown in Section 5.5, we way
rewrite these functionals to fit our general framework, and recover known Γ-convergence
results, under slightly more general assumptions, as stated in Theorem 5.1. The Γ-limit
is a nontrivial multiple of the α-mass with α = 1−s/2+s/N

1−s/2+1/N .

Elliptic approximations of Branched Transport. The energy of Branched Transport
(see [BCM09] for an account of the theory), in its Eulerian formulation, is an H-mass
defined this time on vector measures w whose divergence is also a measure,

MH
1 (w) :=

ˆ
Σ
H(x, θ(x)) dH1(x) +

ˆ
Rd
H ′(x, 0) d|w⊥|, (1.8)

where w = θξ · H1 Σ +w⊥ is the decomposition of w into its 1-rectifiable and 1-diffuse
parts (see Section 5.4 for more details). An elliptic approximation of Modica-Mortola
type has been introduced in [OS11] for H(m) = mα, α ∈ (0, 1), and their Γ-convergence
result in dimension d = 2 has been extended to any dimension in [Mon15] by a slicing
method which relates the energy of w to the energy of its slicings. The same slicing
method, together with Theorem 1.2, would allow to prove the Γ-convergence of the
functionals

Eε(w) =
{´

Rd fε(x, ε
d−1|w|(x), εd|∇w|(x))ε1−d dx if w ∈W 1,1

loc (Rd,Rd),
+∞ otherwise,

(1.9)

toward MHf
1 for Lagrangians fε → f satisfying (H1)–(H6), thus covering a wide range

of concave H-masses.

1.4 Structure of the paper
In Section 2, we prove the concavity of the cost function Hf with respect to the mass
variable m in full generality (Theorem 2.1), we establish useful properties of general
H-masses, and we identify the slope at the origin of Hf in terms of f under our as-
sumption (Proposition 2.8 and Proposition 2.9). In Section 3, we apply a concentration-
compactness principle to provide a profile decomposition theorem for sequences of pos-
itive measures (Theorem 3.2), which is used to obtain our main lower bound for the
energy Ef (Proposition 3.9) and also yields an existence criterion for profiles with mini-
mal energy under a mass constraint (Proposition 3.11). Section 4 is dedicated to proving
lower and upper bounds on the rescaled energies Eε (Proposition 4.1 and Proposition 4.2)
that imply in particular our main Γ-convergence result (Theorem 1.2). Last of all, in
Section 5, we provide several examples of energy functionals that fall into our framework,
as summarized in the previous section.
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2 Minimal cost function and H-mass
In this section, we study the properties of general H-masses, of costs Hf associated
with general Lagrangians f , and we relate the slope of Hf at m = 0 to that of f at
(u, ξ) = (0, 0) in the variable u, under particular conditions.

2.1 Concavity and lower semicontinuity of the cost function
Our concavity result stated in Theorem 1.1 is a particular case of:

Theorem 2.1. Let f : R× RN → [0,+∞] be Borel measurable and for every m ∈ R,

H(m) := inf
{
E(u) :=

ˆ
RN

f(u,∇u) : u ∈ L1 ∩W 1,1
loc (RN ),

ˆ
RN

u = m

}
. (2.1)

Then, H is concave non-decreasing on (0,+∞). In particular, H is either identically
+∞ or continuous on (0,+∞). In the latter case, if we further assume that f(0, 0) = 0,
then H is continuous on [0,+∞) with H(0) = 0.

Naturally, a similar statement holds on (−∞, 0) (consider the change of functions
u → −u). Considering Lagrangians f taking infinite values, the previous situation
covers the case where we have a constraint (u,∇u) ∈ A, where A ⊆ R × RN is Borel
measurable. In particular, we can consider the pointwise constraint u ≥ 0 a.e., as in
Theorem 1.1.

Proof. We first prove that H is concave on (0,+∞). Let m > 0 and u ∈ W 1,1
loc (RN )

such that
´
RN u = m. We pick a non-zero vector v ∈ RN and for every t ∈ R, we set

ut(·) = u(·+ tv) and

u ∧ ut(·) = inf{u(·), ut(·)}, u ∨ ut(·) = sup{u(·), ut(·)}.

We have u ∧ ut + u ∨ ut = u+ ut. Hence
ˆ
RN

u ∧ ut +
ˆ
RN

u ∨ ut = 2
ˆ
RN

u = 2m. (2.2)

Moreover, it is standard that u∧ut = u− (ut−u)− ∈W 1,1
loc (RN ) with ∇(u∧ut) = ∇u

a.e. in {u ≤ ut} and ∇(u ∧ ut) = ∇ut a.e. in {u > ut}. Since u ∨ ut = u+ ut − u ∧ ut,
we have similar identities for u ∨ ut, and we obtain

E(u ∧ ut) + E(u ∨ ut) = E(u) + E(ut) = 2E(u). (2.3)

Now, let M : t 7→
´
RN u ∧ u

t. In view of (2.2), (2.3), and by definition of H, we have
proved

H(M(t)) +H(2m−M(t)) ≤ 2E(u). (2.4)

Now, by continuity of translations in L1 and since the map (x, y) 7→ x ∧ y is Lipschitz
on R2, we have that M is continuous on R with M(0) = m. Moreover limt→∞M(t) ≤ 0.
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Indeed, for every R > 0,
´
BR
|ut| =

´
BR(tv)|u| → 0 as |t| → +∞ by integrability of u.

Hence, ut → 0 locally in measure in RN as |t| → +∞ and, by dominated convergence,

M(t) =
ˆ
{u<ut}

u+
ˆ
{u≥ut}

ut =
ˆ
{u<ut}

u+
ˆ
{u−t≥u}

u −−−→
t→∞

2
ˆ
{u<0}

u ≤ 0.

So, by the intermediate value theorem M(R) ⊇ (0,m]. Hence, we have proved H(θ) +
H(2m−θ) ≤ 2E(u) for every θ ∈ (0,m]. Taking the infimum over u such that

´
RN u = m,

we obtain
H(θ) +H(2m− θ)

2 ≤ H(m), ∀θ ∈ (0,m],

that is, H is midpoint concave on (0,+∞). Since H is also bounded below (by 0), we
can deduce that H is concave (0,+∞) (see [RV73, Section 72]).
We now justify that if H(m) < +∞ for some m > 0 and if f(0, 0) = 0, then

limm→0+ H(m) = H(0) = 0. By concavity, this will imply that H is finite, continu-
ous and non-decreasing on [0,+∞). Taking u = 0 in the definition of H immediately
yields H(0) = 0. Now, let u ∈ L1∩W 1,1

loc (RN ) such that
´
RN u = m > 0 and E(u) < +∞.

Up to replacing u by u∨0 and chaging m, one can assume that u ≥ 0 almost everywhere.
Let

t∗ := sup{t ≥ 0 : M(t) > 0} ∈ [0,+∞], where M(t) =
ˆ
RN

u ∧ ut.

Since M is continuous with M(0) =
´
RN u > 0 and limt→+∞M(t) = 0 as seen above,

we have that t∗ ∈ (0,+∞] and limt→t∗M(t) = 0. Moreover, if t∗ = +∞, since ut → 0
locally in measure, by dominated convergence,

lim sup
m→0+

H(m) ≤ lim sup
t→(t∗)−

E(u ∧ ut) = lim sup
t→(t∗)−

ˆ
{u<ut}

f(u,∇u) +
ˆ
{u−t≥u}

f(u,∇u) = 0.

If t∗ < +∞, we have u ∧ ut∗ = 0 a.e. and ut → ut∗ locally in measure as t → t∗ by
continuity of translation in L1. Hence,

lim sup
m→0+

H(m) ≤ lim sup
t→(t∗)−

E(u ∧ ut) = lim sup
t→(t∗)−

ˆ
{u<ut}

f(u,∇u) +
ˆ
{u−t≥u}

f(u,∇u)

=
ˆ
{u<ut∗}

f(u,∇u) +
ˆ
{u−t∗≥u}

f(u,∇u)

≤ 2E(u ∧ ut∗) = 0.

For the lower semicontinuity at 0, we need extra assumptions:

Proposition 2.2. Assume that f : R+ × RN → R+ ∪ {+∞} satisfies (H1), (H2), (H4)
and let Hf as defined in (1.2) (without dependence on x). Either f(0, 0) > 0 and Hf is
identically +∞ on [0,+∞), or f(0, 0) = Hf (0) = 0, so that Hf is in any case concave
non-decreasing and lower semicontinuous on [0,+∞).
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Proof. Since Hf (0) = E(0) = f(0, 0)× (+∞), in view of Theorem 2.1 it suffices to prove
that Hf is lower semicontinuous at 0, thus that lim infn→∞ E(un) ≥ E(0) whenever
(un)n∈N is a sequence of maps in W 1,1

loc (RN ,R+) converging to 0 in L1(RN ). Take such
a sequence and assume w.l.o.g. that E(un) is bounded. By (H4), this implies that
(un)n∈N is bounded in W 1,p

loc for some p ∈ (1,+∞); hence, up to extraction, we can
assume that un converges weakly as n → ∞ to some function in W 1,p

loc which, by L1

convergence, must be identically 0. By lower semicontinuity of integral functionals (see
[But89, Theorem 4.1.1]), we have lim infn→∞ E(un) ≥ E(0).

2.2 H-transform and H-mass
Definition 2.3. We that H : RN × [0,+∞)→ [0,+∞] is mass-subadditive if for every
x ∈ RN and m1,m2 ∈ [0,+∞), one has H(x,m1 +m2) ≤ H(x,m1) +H(x,m2).

We start with an easy lemma:

Lemma 2.4. If H : RN × [0,+∞)→ [0,+∞] is mass-subadditive and admits a slope at
the origin, defined for each x ∈ RN by

H ′(x, 0) := lim
m→0+

H(x,m)
m

∈ [0,+∞], (2.5)

then we also have
H ′(x, 0) = sup

m>0

H(x,m)
m

.

Proof. Let m > 0. By subadditivity, we have for every n ∈ N,

H(x,m)
m

≤
nH(x, mn )

m
=
H(x, mn )

m
n

.

In the limit n→∞, we obtain H(x,m)
m ≤ H ′(x, 0). Since this is true for every m > 0, we

have supm>0
H(x,m)
m ≤ H ′(x, 0). The reverse inequality is obvious.

Definition 2.5. Let H : RN × [0,+∞) → [0,+∞] be a mass-subadditive function
admitting a slope at the origin, as defined in (2.5). We define the H-transform of a
positive Borel measure u ∈M+(RN ) as:

H(u) :=
∑
i∈I

H(xi,mi)δxi +H ′(·, 0)ud,

where u = ua+ud is the decomposition of u into its atomic part ua =
∑
i∈I miδxi , where

mi = u({xi}) for every i ∈ I ⊆ N, and its diffuse (or non-atomic) part ud.
The H-mass of u is then defined by:

MH(u) := ‖H(u)‖ =
∑
i∈I

H(xi,mi) +
ˆ
RN

H ′(x, 0) dud(x).
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MH(u) is a natural spatially non-homogeneous extension (depending on the position
x) of the H-mass of k-dimensional flat currents1 from Geometric Measure Theory, in-
troduced by [Fle66] (see also the more recent works [DH03; Col+17]).
From [BB93], we have the following result2:

Proposition 2.6 ([BB93, Theorem 2.4]). If H : RN × [0,+∞) → [0,+∞] is lower
semicontinuous, mass-subadditive and has a slope at the origin, then MH is sequentially
l.s.c. onM+(RN ) for the weak topology.

From the same work, in particular from [BB93, Theorem 3.2], it can be deduced that
MH is the relaxation for the weak topology of the functional

MH
atom(u) =

{∑k
i=1H(xi,mi) if u =

∑k
i=1miδxi with k ∈ N∗, mi = u({xi}) > 0,

+∞ otherwise.

We need a slightly different result, namely that for any function H : RN × [0,+∞) →
[0,+∞] which is mass-subadditive, has a slope at the origin, the relaxation of MH

atom
for the narrow sequential convergence is MHlsc , where Hlsc is the lower semicontinuous
envelope of H, which can be expressed as

Hlsc(x,m) = sup{G(x,m) : G ≤ H and G is lower semicontinuous} (2.6)
= inf

{
lim inf
n→∞

H(xn,mn) : (xn,mn)n∈N → (x,m), xn ∈ RN , mn ≥ 0
}
.

It is easy to see that Hlsc is still mass-subadditive, has a slope at 0 (the same as H), and
Hlsc(·, 0) ≡ 0.

Proposition 2.7. For any mass-subadditive function H : RN × [0,+∞) → [0,+∞]
which admits a slope at the origin and such that H(·, 0) ≡ 0, the sequentially lower
semicontinuous envelope of MH

atom in the narrow topology ofM+(RN ) is given by MHlsc,
namely we have:

MHlsc = sup
{
F : F ≤MH

atom, F sequentially narrowly l.s.c. onM+(RN )
}
. (2.7)

Note that, unlike the lower semicontinuity, the mass-subadditivity of H is not a neces-
sary condition for the lower semicontinuity of MH . Indeed, MH is lower semicontinuous
if for instance H(x,m) = +∞ when x 6= 0 and H(0, ·) is any lower semicontinuous
function, not necessarily subadditive. Nevertheless the mass-subadditivity would be
necessary if H did not depend on x.

Proof of Proposition 2.7. Since Hlsc is lower semicontinuous and mass-subadditive, we
know from Proposition 2.6 that MHlsc is lower semicontinuous in the weak topology
hence also in the narrow topology ofM+(RN ). Since MHlsc ≤ MH

atom, we deduce that
MHlsc is lower or equal than the right hand side in (2.7).

1In the case k = 0, since signed measures are merely 0-currents with finite mass.
2In the notations of this paper, we take µ = 0 and f(x, s) = |s|2; we have ϕf,µ(x, 0) = 0 and ϕf,µ(x, s) =

+∞ if s 6= 0.
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In order to prove the opposite inequality, we take a functional F :M+(RN )→ R+ such
that F ≤MH

atom and F is sequentially lower semicontinuous for the narrow convergence.
We shall see that F ≤MHlsc .
We first prove that F ≤MHlsc

atom. For this, we let u =
∑k
i=1miδxi be a finitely atomic

positive measure and we let un :=
∑k
i=1mi,nδxi,n where for each i ∈ {1, . . . , k}, (xi,n)n∈N

is a sequence of points converging to xi and mi,n is a sequence of non-negative numbers
converging tomi such thatHlsc(xi,mi) = limn→∞H(xi,n,mi,n). Then (un)n∈N converges
narrowly to u and, by lower semicontinuity,

F (u) ≤ lim inf
n→∞

F (un) ≤ lim inf
n→∞

MH
atom(un) = lim

n→∞

k∑
i=1

H(xi,n,mi,n) =
k∑
i=1

Hlsc(xi,mi),

so that F (u) ≤MHlsc
atom(u) as wanted.

We now prove that F ≤ MHlsc . Let u ∈ M+(RN ) and let u = ua + ud be the
decomposition of u into its atomic part ua =

∑k
i=1miδxi , with k ∈ N ∪ {+∞} (here,

k = 0 if there is no atom), and its diffuse part ud. We then discretize ud by taking
n ∈ N, a partition (Qni )i∈{1,...,(n2n)N} of [−n, n)N by means of cubes of the form Qni =
cni + 2−n[−1, 1)N with cni ∈ RN , and we define

un :=
n∧k∑
i=1

miδxi +
(n2n)N∑
i=1

ud(Qni )δxni ,

where for each i ∈ {1, . . . , (n2n)N}, xni ∈ Q̄ni is some point such that

H ′lsc(xni , 0) = inf
x∈Q̄ni

H ′lsc(x, 0). (2.8)

Such an xni exists since Q̄ni is compact and x 7→ H ′lsc(x, 0) is lower semicontinuous as a
supremum of lower semicontinuous functions by Lemma 2.4.
The sequence (un)n∈N converges narrowly to u. We deduce from the lower semicon-

tinuity of the functional F , from the inequality F (u) ≤MHlsc
atom(u), and from lemma 2.4

and (2.8), together with monotone convergence, that

F (u) ≤ lim inf
n→∞

n∧k∑
i=1

Hlsc(xi,mi) +
(n2n)N∑
i=1

Hlsc(xni , ud(Qni ))

≤
k∑
i=1

Hlsc(xi,mi) + lim inf
n→∞

(n2n)N∑
i=1

H ′lsc(xni , 0)ud(Qni )

≤
k∑
i=1

Hlsc(xi,mi) + lim inf
n→∞

(n2n)N∑
i=1

ˆ
Qni

H ′lsc(x, 0) dud

=
k∑
i=1

Hlsc(xi,mi) +
ˆ
RN

H ′lsc(x, 0) dud = MHlsc(u).
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2.3 Slope at the origin of the minimal cost function
Proposition 2.8. Let f : R+×RN → R+∪{+∞} be lower semicontinuous with N ≥ 2.
For every function ρ ∈ C((0, 1], (0,+∞)) such that

ˆ 1

0

(ˆ 1

y

dt
ρ(t)

)N
dy < +∞, (2.9)

the function Hf defined in (1.2) (without dependence on x) satisfies

lim
m→0+

Hf (m)
m

≤ lim sup
u→0+

sup
ξ∈SN−1

f(u, ρ(u)ξ)
u

. (2.10)

Proof. Notice that when f(0, 0) > 0, by lower semicontinuity of f ,

lim sup
u→0+

sup
ξ∈SN−1

f(u, ρ(u)ξ)
u

≥ lim inf
(u,ξ)→(0+,0)

f(u, ξ)
u

= +∞,

hence (2.10) is true. Assume now that f(0, 0) = 0, let ρ ∈ C((0, 1], (0,+∞)) be as in
(2.9), and let

F (y) =
ˆ 1

y

dt
ρ(t) ∈ [0,+∞], y ≥ 0.

The function F is decreasing, and belongs to C1((0, 1]) and LN ((0, 1]) by assumption.
We now consider the solution of the ODE v′ε = −ρ(vε), with vε(0) = ε, given by

vε(r) =
{
F−1(F (ε) + r), if 0 ≤ r < F (0)− F (ε),
0 if r ≥ F (0)− F (ε).

Notice that vε ∈ W 1,1
loc (R+) because it is nonincreasing and bounded, hence it has finite

total variation, and it is of class C1 except possibly at rε := F (0) − F (ε), where it
has no jump. As a consequence the radial profile defined by uε(x) := vε(|x|) belongs to
W 1,1

loc (RN ) and we compute, using the change of variables s = vε(r) (i.e. r = F (s)−F (ε))
and an integration by parts combined with monotone convergence.

mε :=
ˆ
RN

uε = |SN−1|
ˆ ∞

0
vε(r)rN−1 dr

= −|SN−1|
ˆ ε

0
s(F (s)− F (ε))N−1F ′(s) ds

= |SN−1| lim
t↓0

(ˆ ε

t

(F (s)− F (ε))N

N
ds−

[
s

(F (s)− F (ε))N

N

]ε
t

)

= |SN−1|
ˆ ε

0

(F (s)− F (ε))N

N
ds −−−→

ε→0
0.

The equality on the last line holds because limt→0+
´ ε
t (F − F (ε))N < +∞ (since F ∈

LN ((0, 1])), hence limt→0 t(F (t)−F (ε))N exists by existence of the limit in the previous
line, and it must be zero (again, because F ∈ LN ((0, 1])).
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Moreover, since sup[0,+∞) vε = ε,

E(uε) =
ˆ ∞

0

ˆ
SN−1

f(vε(r), v′ε(r)ξ)rN−1 dHN−1(ξ) dr ≤ mε sup
u≤ε, |ξ|=1

f(u, ρ(u)ξ)
u

.

By assumption, we deduce that

lim sup
m→0+

H(m)
m

≤ lim sup
ε→0+

E(uε)
mε

≤ lim sup
u→0+

sup
ξ∈SN−1

f(u, ρ(u)ξ)
u

.

In dimension N = 1, we need no other assumption than H < +∞, as stated below.

Proposition 2.9. Let f : R+ × R → R+ ∪ {+∞} be Borel measurable. The function
H defined by (2.1) (with N = 1) is either identically infinite on (0,+∞), or it satisfies
(2.10) with ρ ≡ 0.

Proof. One can assume that there exists u ∈ W 1,1
loc (R,R+) with 0 <

´
R u < +∞ and

E(u) < +∞. In particular, up to changing the value of u on a negligible set, u is
continuous on R. Let ε ∈ (0, supR u), set Aε := {x : u(x) = ε} which is non-empty by
the intermediate value theorem and integrability of u, and define

aε =
{

inf Aε if inf Aε > −∞,
any point in (−∞,−ε−1) ∩Aε otherwise,

bε =
{

supAε if supAε < +∞,
any point in (ε−1,+∞) ∩Aε otherwise.

By continuity and integrability of u, u(aε) = u(bε) = ε and u < ε on R\[aε, bε]. Moreover
aε, bε converge to points −∞ ≤ a ≤ b ≤ +∞, hence u = 0 on R\(a, b) and by dominated
convergence, since ∇u = 0 a.e. on {u = 0},

+∞ > lim
ε→0+

ˆ
R\[aε,bε]

u+ f(u,∇u) = f(0, 0)L(R \ (a, b)).

Notice that this limit is necessary zero. Letm > 0. If ε is small enough, then
´
R\[aε,bε] u <

m so that we can take Rε > 0 such that εRε = m−
´
R\[aε,bε] u. We then define

uε(x) =


u(x) if x ≤ aε,
ε if aε < x < aε +Rε,

u(bε + x− (aε +Rε)) if x ≥ aε +Rε,

so that
´
R vε = m. Moreover,

E(vε) = E(u,R \ [aε, bε]) +Rεf(ε, 0).

Hence, as Rε = m+o(1)
ε as ε→ 0,

H(m) ≤ lim sup
ε→0+

E(vε) = m lim sup
ε→0+

f(ε, 0)
ε

.
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3 Lower bound for the energy and existence of optimal profiles
Our main tool to localize the energy and obtain a lower bound relies on a profile de-
composition for bounded sequences of positive measures, which is reminiscent of the
concentration compactness principle of P.-L. Lions. This differs from classical strategies
to localize the energy which are based on suitable cut-offs. Naturally, this concentration
compactness result also provides a criterion for the existence of optimal profiles in (1.2).

3.1 Profile decomposition by concentration compactness
We prove a profile decomposition theorem for bounded sequences of positive measures
over RN , which is essentially equivalent to [Mar14, Theorem 1.5] in the Euclidean case.
We have added an extra information on mass conservation that will be useful, and
provide a self-contained simple proof. We start with a definition.

Definition 3.1. A sequence of positive measures (µn)n∈N ∈M+(RN ) is vanishing if

sup
x∈RN

µn(B1(x)) −−−→
n→∞

0.

Any bounded sequence of positive measures over RN may be decomposed (up to sub-
sequence) into a countable collection of narrowly converging “bubbles” and a vanishing
part, accounting for the total mass of the sequence, as stated in the following theorem.

Theorem 3.2. For every bounded sequence (µn)n∈N of positive Borel measures on RN ,
there exists a subsequence (µn)n∈σ(N), σ ∈ Σ, a non-decreasing sequence of integers
(kn)n∈σ(N) converging to some k ∈ N ∪ {+∞}, a sequence of non-trivial positive Borel
measures (µi)0≤i<k, and for every n ∈ σ(N), a collection of balls (Bi

n)0≤i<kn centered at
points of suppµn such that, writing for all n ∈ σ(N),

µn = µbn + µvn, where µbn =
∑

0≤i<kn
µn Bi

n, (3.1)

(A) bubbles emerge: (cBinµn)n∈σ(N)
C′b−−−⇀

n→∞
µi for every i < k,3

(B) bubbles split: min0≤i<j<kn dist(Bi
n, B

j
n) −−−→

n→∞
+∞,

(C) bubbles diverge: min0≤i<kn diam(Bi
n) −−−→

n→∞
+∞,

(D) the bubbling mass is conserved: ‖µbn‖ −−−→
`→∞

∑
0≤i<k‖µi‖,

(E) the remaining part is vanishing: supx∈RN µvn(B1(x)) −−−→
n→∞

0.

3Recall that cBµ = (x 7→ x− y)](µ B) if B = Br(y) and µ ∈M(RN ).

14



Before proving Theorem 3.2, we introduce the “bubbling” function of a sequence of
finite signed measures (µn)n∈N:

m((µn)n∈N) := sup
{
‖µ‖ : (τ−xσ(`)µσ(`))`∈N

C′0−⇀ µ, σ ∈ Σ, xσ(`) ∈ RN (∀`)
}
. (3.2)

Although we will use this function on signed measures, we will start from a sequence of
positive measures and use the following characterization of vanishing sequences, which
holds only in the case of positive measures:
Lemma 3.3. A sequence (µn)n∈N of finite positive measures is vanishing if and only if
m((µn)n∈N) = 0.

Proof. Assume that (µn)n∈N is vanishing and that (τ−xσ(`)µσ(`))`∈N
C′0−⇀ µ for some σ ∈ Σ

and some sequence of points (xσ(`))`∈N. Then, for every x ∈ RN ,

µ(B1(x)) ≤ lim inf
`→∞

τ−xσ(`)µσ(`)(B1(x)) = lim inf
`→∞

µσ(`)(B1(x+ xσ(`))) = 0,

i.e. µ = 0 and thus m((µ`)`∈N) = 0.
Conversely, if (µn)n∈N is not vanishing, then there exists ε > 0, σ ∈ Σ a sequence of

points (xn)n∈σ(N) in RN such that µn(B1(xn)) ≥ ε for every n ∈ σ(N). Up to further

extraction, one can assume that (τ−xσ(`)µσ(`))`∈N
C′0−⇀ µ ∈M(RN ). We have

µ(B̄1(0)) ≥ lim sup
`→∞

τ−xσ(`)µσ(`)(B̄1(0)) = lim sup
`→∞

µσ(`)(B̄1(xσ(`))) ≥ ε > 0,

which entails m((µ`)`∈N) ≥ ε > 0.

Proof of Theorem 3.2. If (µn)n∈N is vanishing, then we take σ = Id and k = 0, so that
µσ(`) = µ` = µv` , (A) to (D) are empty statements and (E) is satisfied since (µn)n∈N is
vanishing. Assume on the contrary that (µn)n∈N is not vanishing. We shall construct
the bubbles by induction and prove their properties in several steps.
Step 1: construction of bubbles centers. At first step (step 0), since m((µn)n∈N) > 0,
there exists σ0 ∈ Σ and a sequence of points (x0

n)n∈σ0(N), such that

(τ−x0
n
µn)n∈σ0(N)

C′0−⇀ µ0 ∈M(RN ) with ‖µ0‖ ≥ 1
2m((µn)n∈N). (3.3)

We then set µ0
n := µn− τx0

n
µ0 and we continue by induction, starting from the sequence

(µ0
n)n∈σ0(N). More precisely, assume that for a fixed step k− 1 ∈ N, for every i ∈ N with

0 ≤ i ≤ k − 1, we have built µi ∈ M(RN ), σi ∈ Σ, points (xin)n∈σi(N) and sequences
(µin)n∈σi(N) ∈M(RN ) such that for every i,

σi � σi−1, (3.4)
µin = µn −

∑
0≤j≤i

τ
xjn
µj , (∀n ∈ σi(N)), (3.5)

(τ−xinµ
i−1
n )n∈σi(N)

C′0−⇀ µi, (3.6)

‖µi‖ ≥ 1
2m((µin)n∈σi(N)) > 0, (3.7)
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where σ−1 := Id, (µ−1
n ) := (µn). If m((µk−1

n )n∈σk−1(N)) = 0, we stop; otherwise, we
proceed to the next step k to build σk, µ

k, (xkn)n∈σk(N), (µkn) as we did at step k = 0,
starting with (µk−1

n )n∈σk−1(N). Either the induction stops at some step k − 1 ∈ N for
which m((µk−1

n )n∈σk−1(N)) = 0 or the previous objects are defined for every i ∈ N, in
which case we let k := +∞.

Step 2: splitting of bubbles centers. We prove that

lim
σi(N)3n→∞

dist(xin, xjn) = +∞ for every i, j ∈ N with 0 ≤ j < i < k. (3.8)

Indeed, assume by contradiction that there is a first index i < k such that for some
j0 < i, (dist(xin, xj0n ))n∈σi(N) is not divergent. In particular, there exists σ � σi such that
(xin−xj0n )n∈σ(N) → x ∈ RN . Moreover, (dist(xin, xjn))n∈σi(N) →∞, for every j < i, j 6= j0
by minimality of i and the triangle inequality dist(xjn, xj0n ) ≤ dist(xjn, xin) + dist(xin, xj0n ).
Notice by (3.5) that for every n ∈ σ(N),

µi−1
n = µj0−1

n − τ
x
j0
n
µj0 −

∑
j0<j<i

τ
xjn
µj ,

hence taking the translation τ−xin ,

τ−xinµ
i−1
n = τ

x
j0
n −xin

(τ−xj0n µ
j0−1
n − µj0)−

∑
j0<j<i

τ
xjn−xin

µj ,

and passing to the weak limit, knowing that xj0n − xin → −x and dist(xjn, xin)→ +∞ for
j0 < j < i,

µi = τ−x(µj0 − µj0)−
∑

j0<j<i

0 = 0.

This contradicts the fact that (τ−xinµ
i−1
n )n∈σ(N)

C′0−⇀ µi 6= 0 and proves (3.8).

Step 3: weak convergence of bubbles. From (3.6) we get

τ−xinµ
i−1
n = τ−xinµn −

∑
0≤j<i

τ−xin+xjn
µj , (3.9)

and by (3.8), the sum converges weakly to 0, and so

(τ−xinµn)n∈σi(N)
C′0−⇀ µi for every i ∈ N with i < k. (3.10)

Step 4: construction of the bubbles with mass conservation. We now construct the
extraction σ ∈ Σ that we need by induction: we set σ(0) = 0 and, assuming that
σ(0) < · · · < σ(` − 1), with ` ∈ N∗, have been constructed, we set σ(`) := n with
n ∈ σ`∧k−1(N) large enough so that n > σ(`− 1) and for every i < ` ∧ k,

µn(B`(xin)) ≤ ‖µi‖+ 2−`, (3.11)
and

min
0≤j<i

dist(xin, xjn) ≥ 4`. (3.12)
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Such an n exists by (3.8) and (3.10), noticing that µn(B`(xin)) = (τ−xinµn)(B`). Then
for each n = σ(`), ` ∈ N, we set kn = ` ∧ k, and for each i ∈ {0, . . . , kn − 1},

Bi
n := B`(xin).

Finally, for every n ∈ σ(N), we decompose µn as expected:

µn = µbn + µvn, where µbn =
∑

0≤i<kn
µn Bi

n.

Let us check the four first items (A)–(D). Notice that (C) is fulfilled because diam(Bi
σ(`)) =

`→ +∞ as `→∞, and (B) because of (3.12). Since for every i < k, limσ(N)3n→∞ diam(Bi
n) =

+∞ and cBinµn = (τ−xin(µn Bi
n)) for every n ∈ σi(N), (cBinµn)n∈σ(N) converges weakly

to µi by (3.10), and together with (3.11) it implies that

(cBinµn)n∈σ(N)
C′b−⇀ µi,

i.e. (A) is satisfied. Moreover, by (3.11) again,

lim sup
`→∞

∑
0≤i<kσ(`)

µσ(`)(Bi
σ(`)) ≤

∑
0≤i<k

‖µi‖+ lim sup
`→∞

(` ∧ k)2−` =
∑

0≤i<k
‖µi‖,

and since kn → k, by Fatou’s lemma we have,∑
0≤i<k

‖µi‖ ≤ lim inf
`→∞

∑
0≤i<kσ(`)

µσ(`)(Bi
σ(`)),

which proves (D) because
∑

0≤i<kσ(`)
µσ(`)(Bi

σ(`)) = ‖µbσ(`)‖.

Step 5: vanishing of the remaining part, proof of (E). By Lemma 3.3, it suffices to prove
that m((µvn)n∈σ(N)) = 0. We claim that:

m((µvn)n∈σ(N)) ≤ m((µin)n∈σi(N)), for every i ∈ N with i < k, (3.13)

which concludes since m((µkn)n∈σk−1(N)) = 0 if k < ∞, and m((µin))n∈σi(N)) → 0 as
i→∞ if k =∞. Indeed, if k =∞, we have by (3.7) and (D),

1
2
∑
i∈N

m((µin)n∈σi(N)) ≤
∑
i∈N
‖µi‖ = lim

`→∞
‖µbσ(`)‖ ≤ lim inf

`→∞
‖µσ(`)‖ <∞.

Let us show (3.13). Let σ̄ � σ and (xn)n∈σ̄(N) be a sequence of points such that

(τ−xnµvn)n∈σ̄(N)
C′0−⇀ µ ∈M(RN ).

We need to prove that ‖µ‖ ≤ m((µin)n∈σi(N)) for every i < k. Assume without loss of
generality that ‖µ‖ > 0. Then for every i < k,

(dist(xn, xin))n∈σ̄(N) →∞. (3.14)
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Otherwise, up to subsequence, (dist(xn, xin))n would be bounded by some constant M ,
and for every r > 0,

(τ−xnµvn)(Br) ≤ µvn(Br+M (xin)) −−−→
n→∞

0,

because µvn is supported on RN \ ∪0≤i<knB
i
n and Br+M (xin) ⊆ Bi

n for n large enough by
(E). Hence µ would be 0, a contradiction. Up to further extraction, one can assume that
(τ−xnµn)n∈σ̄(N) converges weakly to a measure µ̄ ∈ M(RN ). Since µvn ≤ µn, we have
µ ≤ µ̄. Moreover by (3.5), for every i < k and n ∈ σ̄(N) large enough,

τ−xnµ
i
n = τ−xnµn −

∑
0≤j≤i

τ
xjn−xn

µj ,

and because of (3.14) the sum converges weakly to 0, so that τ−xnµin
C′0−⇀ µ̄, and conse-

quently,
‖µ‖ ≤ ‖µ̄‖ ≤ m((µin)n∈σi(N)),

which is what had to be proved.

Step 6: re-centering of the bubbles at points of suppµn. By (3.10), (τ−xinµn)n∈σ(N)
converges weakly to the non-trivial measure µi for every i < k, thus

Ri/2 := lim sup
σ(N)3n→+∞

dist(suppµn, xin) < +∞. (3.15)

Therefore, for every n large enough, there is a point x̃in such that |xin − x̃in| < Ri and
x̃in ∈ suppµn. After a further extraction, one may assume that for every i, |xin − x̃in| <
Ri < rni with diamBi

n = 2rin for every n, and (xin−x̃in)n∈σ(N) converges to some pi ∈ RN .
Finally, we set r̃ni := rni − Ri and B̃i

n := B(x̃in, r̃ni ) ⊆ Bi
n. After replacing the balls Bi

n

by B̃i
n, (B) and (C) are satisfied by definition. Notice that (τ−x̃inµn)n∈σ(N) converges

weakly to µ̃i := τpiµ
i with ‖µ̃i‖ = ‖µi‖, and lim supn‖cBinµn‖ = lim supn µn(B̃i

n) ≤
lim supn µn(Bi

n) = ‖µi‖ hence (A) holds. Besides, using Fatou’s lemma,

lim sup
n

∑
i<kn

µn(B̃i
n) ≤ lim sup

n

∑
i<kn

µn(Bi
n) =

∑
i<k

‖µi‖

≤
∑
i<k

lim inf
n

µn(B̃i
n) ≤ lim inf

n

∑
i<kn

µn(B̃i
n)

so that limn
∑
i<kn µn(B̃i

n) =
∑
i‖µi‖ and (D) is satisfied. In particular, limn

∑
i<kn µn(Bi

n\
B̃i
n) = limn

∑
i<kn µn(Bi

n)− limn
∑
i<kn µn(B̃i

n) = 0 and (E) holds as well.

Remark 3.4. If the sequence of families of balls (Bi
n)0≤i<kn satisfies the conclusion of the

theorem, i.e. (A)–(E), then it is also the case for any family of balls (B̃i
n)0≤i<kn with

the same centers as those of Bi
n and with smaller but still divergent radii (i.e. satisfying

(C)). It can be easily seen following the arguments at Step 6 of the proof.
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3.2 Lower bound by concentration compactness
We will first establish a lower bound for the minimal energy along vanishing sequences
defined on varying subsets of RN . We say that a sequence of Borel functions (un)n∈N,
each defined on some open set Ωn ⊆ RN , is vanishing if the sequence of measures
(|un| LN Ωn)n∈N is vanishing in the sense of Definition 3.1, namely if ‖un‖L1

uloc(Ωn) → 0
as n → ∞, where L1

uloc(Ω) is the set of uniformly locally integrable functions on the
open set Ω, i.e. Borel functions u on Ω such that

‖u‖L1
uloc(Ω) := sup

x∈RN

ˆ
Ω∩(x+[0,1)N )

|u| < +∞. (3.16)

It will be convenient to first extend our Sobolev functions to a neighbourhood Ωδ of Ω
where for every δ > 0 and every set X ⊆ RN , we have set

Xδ := {x ∈ RN : dist(x,X) < δ}.

We will need to consider sufficiently regular domains for which we have an extension
operator W 1,p ∩ L1

uloc(Ω) → W 1,p ∩ L1
uloc(Ωδ). We will only apply it to domains with

smooth boundary, in which case we can use a reflexion technique. Since we want quan-
titative estimates, we will use the notion of reach of a set X ⊆ RN (see [Fed59]). We
say that X has positive reach if there exists δ > 0 such that every x ∈ Xδ has a unique
nearest point π(x) on X. The greatest δ for which this holds is denoted by reach(X)
and the map x ∈ Xreach(X) 7→ π(x) ∈ X is called the nearest point retraction.

Example 3.5. Assume that Ω is a perforated domain B0 \
⋃k
i=1B

i where the Bi are
disjoint closed balls included in some open ball B0 (possibly B0 = RN ). Then,

reach(∂Ω) = inf{radius(Bi) : i = 0, . . . , k} ∪ {dist(∂Bi, ∂Bj) : i 6= j}.

By [Fed59, Theorem 4.8], we have

i) if x, y ∈ Xδ with 0 < δ < δ0 := reach(X), then |π(x)− π(y)| ≤ δ0
δ0−δ |x− y|,

ii) if x ∈ X and Dx is the intersection of Xreach(X) with the straight line crossing ∂Ω
orthogonally at x, then π(y) = x for every y ∈ Dx.

Lemma 3.6 (Extension). Let Ω ⊆ RN be an open set such that its boundary ∂Ω is C1

with positive reach. Then, for every δ ∈ (0, reach(∂Ω)), every p ∈ [1,+∞) and every
u ∈ L1 ∩W 1,p(Ω), there exists ū ∈ L1 ∩W 1,p(Ωδ) such that ū = u a.e. on Ω, and

‖ū‖L1(Ωδ) ≤ A‖u‖L1(Ω), ‖ū‖L1
uloc(Ωδ) ≤ A‖u‖L1

uloc(Ω), ‖∇ū‖Lp(Ωδ) ≤ A‖∇u‖Lp(Ω),

with a constant A < +∞ depending only on N, δ and reach(∂Ω).

Proof. Let σ : (∂Ω)δ → (∂Ω)δ be the reflexion through ∂Ω, defined by σ(x) = 2π(x)−x.
By the properties i) and ii) of the nearest point retraction, we have that σ = σ−1 (simply
because π(σ(x)) = π(x)) and σ is L-Lipschitz with a constant L < +∞ depending on δ
and reach(∂Ω) only.
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We define ū by ū = u on Ω and ū = u ◦ σ on Ωδ \ Ω4. This map is well defined
since σ(Ωδ \ Ω) ⊆ Ω. Indeed, if we had x, σ(x) ∈ Ωδ \ Ω, then the line segment [x, σ(x)]
would meet ∂Ω orthogonally at its center π(x), and would remain out of Ω elsewhere,
because otherwise there would exist a point y belonging either to ∂Ω ∩ (x, π(x)) or
∂Ω ∩ (π(x), σ(x)) thus contradicting the definition of π(x). Such a situation is not
possible for a C1 boundary.
Moreover, by the change of variable formula and the chain rule, ū satisfies the desired

estimates since σ is bi-Lipschitz with its Lipschitz constants controlled in terms of δ and
reach(∂Ω).

We will need a localized version of the Gagliardo–Nirenberg–Sobolev inequality in a
particular case:

Lemma 3.7. Let Ω ⊆ RN be an open set such that ∂Ω is C1 with positive reach, let
p ∈ [1,+∞), let r ≥ p(1 + 1

N ), and assume that r ≤ pN
N−p when p < N . Then for every

u ∈ L1 ∩W 1,p(Ω),

‖u‖Lr(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖L1(Ω)

)α‖u‖1−α
L1

uloc(Ω),

where α ∈ (0, 1] is the unique parameter such that 1
r = α(1

p −
1
N ) + (1 − α), and the

constant C < +∞ depends on N, r, p and reach(∂Ω).

Proof of Lemma 3.7. We let u ∈ L1 ∩W 1,p(Ω) and we extend u to ū ∈ L1 ∩W 1,p(Ωδ) as
in Lemma 3.6, with δ := reach(Ω)/2. By the Gagliardo–Nirenberg–Sobolev inequality
(see [Nir59]) on the hypercube Qδ = [− δ√

N
, δ√

N
)N , we have

‖ū‖Lr(Qδ) ≤ C‖∇ū‖
α
Lp(Qδ)‖ū‖

1−α
L1(Qδ) + C‖ū‖L1(Qδ).

We then cover Ω with the hypercubes Qδ(c) = c+Qδ ⊆ Ωδ centered at points c on the
grid C := Ω ∩ δZN . Since α ≥ N

N+1 , we can check that

rα = r − 1
1 + 1

N −
1
p

≥ p. (3.17)

By superadditivity of s 7→ s
rα
p and of s 7→ srα, we obtain

‖u‖rLr(Ω) ≤
∑
c∈C
‖ū‖rLr(Qδ(c))

≤ C ′
∑
c∈C
‖∇ū‖

p rα
p

Lp(Qδ(c))‖ū‖
r(1−α)
L1(Qδ(c)) + C ′‖ū‖rL1(Qδ(c))

≤ C ′′‖∇ū‖rαLp(Ωδ)‖ū‖
r(1−α)
L1

uloc(Ωδ)
+ C ′‖ū‖rαL1(Ωδ)‖ū‖

r(1−α)
L1

uloc(Ωδ)

≤ C ′′′
(
‖∇u‖Lp(Ω) + ‖u‖L1(Ω)

)rα‖u‖r(1−α)
L1

uloc(Ω).

4Note that ū is not defined on ∂Ω, but this set is negligible.
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Proposition 3.8. Assume that f : RN × R+ × RN → R+ satisfies (H1) and (H4) for
some p ∈ (1,+∞). Consider a vanishing sequence (un)n∈N in W 1,1

loc (Ωn,R+), where the
Ωn ⊆ RN are open sets with C1 boundary and such that infn∈N reach(∂Ωn) > 0, and a
sequence (Φn)n∈N of Borel maps Φn : Ωn → RN such that supy∈Ωn |Φn(y) − x0| → 0 as
n → +∞ for some x0 ∈ RN . If θn :=

´
Ωn un > 0 for every n and (θn)n∈N is bounded,

then:
lim inf
n→+∞

1
θn

ˆ
Ωn
f(Φn(y), un(y),∇un(y)) dy ≥ f ′−(x0, 0, 0),

where f ′−(x0, 0, 0) was defined in (1.4).
Proof of Proposition 3.8. Without loss of generality, we may assume after extracting a
subsequence that:

K := sup
n

1
θn

ˆ
Ωn
f(Φn(y), un(y),∇un(y)) dy + θn < +∞. (3.18)

We consider the sequence of measures (νn)n∈N ∈M+(RN × R× RN ) defined by

νn := 1
θn

(Φn, un,∇un)](un LN Ωn), n ∈ N.

We are going to show in several steps that νn
C′b−⇀ δ(x0,0,0) and deduce the result. It

suffices to show that the three projections νin := (πi)]νn, i ∈ {1, 2, 3} converge narrowly
to δx0 , δ0 and δ0 respectively. Indeed, this would imply that (νn) converges narrowly
to a measure concentrated on (x0, 0, 0), hence to δ(x0,0,0) since the νn are probability
measures. First of all, since (νn) has bounded mass and (θn) is bounded, we may take
a subsequence (not relabeled) such that νn

C′0−⇀ ν and θn → θ as n → ∞ for some
ν ∈M+(RN × R× RN ) and θ ≥ 0.

Step 1: ν1
n

C′b−⇀ δx0. This is a direct consequence of the fact that ν1
n is concentrated on

Φn(RN ) for every n and dist(Φn(RN ), x0) as n→∞.

Step 2: ν2
n

C′b−⇀ δ0. By (3.18) and our assumption (H4), there is a constant K1 > 0 withˆ
Ωn
|∇un|p ≤ K1

ˆ
Ωn
un, ∀n ∈ N. (3.19)

We deduce from Markov’s inequality, and Lemma 3.7 applied with r = p(1 + 1
N ), corre-

sponding to α = N
N+1 , that

ν2
n([η,+∞)) = 1

θn

ˆ
{un≥η}

un = 1
θn

ˆ
{un≥η}

u1−r
n urn

≤ 1
θnηr−1

ˆ
Ωn
urn

≤ C

θnηr−1
(
‖∇un‖Lp(Ωn) + ‖un‖L1(Ωn)

)rα‖un‖r(1−α)
L1

uloc(Ωn)

≤ C ′

ηr−1
(
1 + θp−1

n

)
‖un‖r(1−α)

L1
uloc(Ωn),
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where in the last inequality, we have used the identity αr = p and (3.19).
Since (un)n∈N is vanishing and (θn)n∈N is bounded, the last term in the previous

inequality goes to zero as n→∞ and it follows that ν2
n

C′b−⇀ δ0.

Step 3: ν3
n

C′b−⇀ δ0. Fix M > 0 and η > 0. One has by (3.19),

ν3
n([M,+∞)) = 1

θn

ˆ
{|∇un|≥M}

un ≤
1
θn

ˆ
{un<η}∩{|∇un|≥M}

un + 1
θn

ˆ
{un>η}

un

≤ η

θn
LN ({|∇un| ≥M}) + ν2

n([η,+∞))

≤ η

θn

1
Mp

ˆ
Ωn
|∇un|p + ν2

n([η,+∞))

≤ ηK1
Mp

+ ν2
n([η,+∞)).

By the previous step, we know that limn→+∞ ν
2
n([η,+∞)) = 0, hence taking the superior

limit as n → +∞ then η → 0 we get limn→+∞ ν
3
n([M,+∞)) = 0. Since this is true for

every M > 0 we obtain ν3
n

C′b−⇀ δ0.

Step 4: conclusion. By the previous steps, we deduce that νn
C′b−⇀ δ(x0,0,0) as n →

+∞. We define g : RN × R × RN → [0,+∞] as the lower semicontinuous envelope of
RN × R∗+ × RN 3 (x, u, ξ) 7→ 1

uf(x, u, ξ). By (H1), we have g(x, u, ξ) = 1
uf(x, u, ξ) if

u > 0, and by (1.4), we have g(x, 0, 0) = f ′−(x, 0, 0) for every x ∈ RN . Hence, by lower
semicontinuty of g and Fatou’s lemma, we get

lim inf
n→∞

ˆ
Ωn
f(Φn, un,∇un) ≥ lim inf

n→∞

ˆ
{un>0}

f(Φn, un,∇un)
un

un

= lim inf
n→∞

ˆ
RN×R×RN

g(x, u, ξ) dνn(x, u, ξ)

≥
ˆ
RN

g(x, u, ξ) dδ(x0,0,0) = f ′−(x0, 0, 0),

which ends the proof of the lemma.

We now establish our main energy lower bound along sequences with bounded mass
(not necessarily vanishing):

Proposition 3.9. Assume that (fε)ε>0 is a family of functions fε : RN×R+×RN → R+
satisfying (H1), (H2), (H4) and (H6) for some limit f . Let (εn)n∈N be a sequence
of positive numbers going to zero, (Rn)n∈N and (rn)n∈N be two sequences in (0,+∞]
such that limn→∞ rn = limn→∞Rn − rn = +∞, (un)n∈N be a sequence of functions
un ∈ W 1,1

loc (BRn ,R+) with finite limit mass m := limn→∞
´
Brn

un, and (Φn)n∈N be a
sequence of Borel maps Φn : BRn → RN such that

sup
y∈BRn

|Φn(y)− x0| −−−→
n→∞

0 for some x0 ∈ RN . (3.20)

22



Then there exists a family (ui)0≤i<k of functions in W 1,1
loc (RN ,R+) with k ∈ N ∪ {+∞},

such that mi :=
´
RN u

i ∈ (0,+∞) for every i, and

m = mv +
∑

0≤i<k
mi with mv ≥ 0, (3.21)

lim inf
n→∞

ˆ
BRn

fεn(Φn, un,∇un) ≥ mvf
′
−(x0, 0, 0) +

∑
0≤i<k

ˆ
RN

f(x0, u
i,∇ui). (3.22)

Proof. We first assume, up to subsequence, that the left hand side of (3.22) is a limit.
We apply the profile decomposition Theorem 3.2 to the sequence of positive measures
µn = un LN|Brn where, without loss of generality, we assume the extraction σ to be the
identity for convenience, and we use the same notation as in Theorem 3.2. In particular,
for each bubble Bi

n = Brin(xin), with 0 ≤ i < kn, we have xin ∈ suppµn ⊆ Brn . By
assumption, we have limn→∞(Rn − rn) = +∞; hence, up to reducing the radii of the
balls Bi

n if necessary, in such a way that their radii still diverge (see Remark 3.4), we
can assume that

Bi
n ⊆ BRn−1, 0 ≤ i < kn. (3.23)

For each 0 ≤ i < kn, we let uin := un(· + xin). Assuming without loss of generality
that the left hand side of (3.22) is finite, we get that the sequence (uin)n is bounded in
W 1,p

loc (RN ) by (H4). Hence, after a further extraction if needed, we get that (uin)n∈N ⇀ ui

weakly in W 1,p
loc (RN ) for some limit ui, for every 0 ≤ i < k = lim kn. Setting mi =

´
RN u

i

for every i, by (D) in Theorem 3.2, we have

mv := m−
∑

0≤i<k
mi = lim

n→∞

ˆ
Brn\∪0≤i<knB

i
n

un.

Fix ε > 0. We decompose the energy as
ˆ
BRn

fε(Φn, un,∇un) =
ˆ
BRn\∪0≤i<knB

i
n

fε(Φn, un,∇un)

+
∑

0≤i<kn

ˆ
B
rin

fε(Φn(·+ xin), uin,∇uin). (3.24)

Note that the domains Ωn := BRn \ ∪0≤i<kB
i
n satisfy infn∈N reach(∂Ωn) > 0 as no-

ticed in Example 3.5, thanks to (3.23) and (B), (C) in Theorem 3.2. Hence, applying
Proposition 3.8 to the Lagrangian fε, we obtain

lim inf
n→∞

ˆ
BRn\∪0≤i<knB

i
n

fε(Φn, un,∇un) ≥ mv(fε)′−(x0, 0, 0). (3.25)

Moreover, by lower semicontinuity of integral functionals (see [But89, Theorem 4.1.1]),
in view of (3.20), we have for each i with 0 ≤ i < k,

lim inf
n→∞

ˆ
B
rin

fε(Φn(·+ xin), uin,∇uin) ≥
ˆ
RN

fε(x0, u
i,∇ui). (3.26)
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Finally, by (3.24), (3.25), (3.26), (H6) and by monotone convergence, we deduce that

lim inf
n→∞

ˆ
BRn

fεn(Φn, un,∇un) ≥ lim
ε→0+

(
mv(fε)′−(x0, 0, 0) +

∑
0≤i<k

ˆ
RN

fε(x0, u
i,∇ui)

)
= mvf

′
−(x0, 0, 0) +

∑
0≤i<k

ˆ
RN

f(x0, u
i,∇ui).

3.3 Existence of optimal profiles
For the existence of an optimal profile in (1.2), we need a criterion that rules out splitting
and vanishing of minimizing sequences:

Lemma 3.10. Let H : R+ → R+ be a concave function. Then H is subadditive, and if
for some 0 < θ < m one has H(m) = H(m− θ) +H(θ), then H is linear on (0,m).

Proof. By concavity, t 7→ H(t)
t is non-increasing. Hence,

H(m) = θ
H(m)
m

+ (m− θ)H(m)
m

≤ θH(θ)
θ

+ (m− θ)H(m− θ)
m− θ

.

But, by assumption, the last inequality is an equality which means that H(m)
m = H(θ)

θ =
H(m−θ)
m−θ . In particular, the monotone function t 7→ H(t)

t must be constant on [θ,m], i.e.
H must be linear on [θ,m]. By concavity this is only possible if H is linear on [0,m].

We can now state and prove our existence result:

Proposition 3.11. Assume that f : RN × R+ × RN → R+ satisfies (H1), (H2), (H4)
and (H5). Let (x0,m) ∈ RN ×R+. If Hf (x0, ·) is not linear on [0,m] then (1.2) admits
a solution u ∈W 1,1

loc (RN ,R+), i.e.
´
RN u = m and

´
RN f(x0, u,∇u) = Hf (x0,m).

Proof. If m = 0, we take u = 0. If m > 0, we apply Proposition 3.9 in the following
situation: fε ≡ f , Rn ≡ +∞, Φn ≡ x0, (un)n∈N is a minimizing sequence for the
minimization problem in (1.2), and (rn)n∈N is a sequence of positive radii going to +∞
such that limn→∞

´
Brn

un = m. We obtain

Hf (x0,m) ≥ mvf
′
−(x0, 0, 0) +

∑
0≤i<k

ˆ
RN

f(x0, u
i,∇ui),

with k ∈ N ∪ {+∞}, ui ∈ W 1,p
loc (RN ,R+) and m =

∑
0≤i<kmi + mv, where mi :=´

RN u
i. By Proposition 2.8 and Proposition 2.9, in view of our assumption (H5), we have

f ′−(x0, 0, 0) ≥ H ′f (x0, 0). Moreover, by lemma 2.4, we have mvH
′
f (x0, 0) ≥ Hf (x0,mv).

Hence, by definition of Hf ,

Hf (x0,m) ≥ mvf
′
−(x0, 0, 0) +

∑
0≤i<k

ˆ
RN

f(x0, u
i,∇ui) ≥

∑
0≤i<k

Hf (x0,mi) +Hf (x0,mv).

24



Since the concave function Hf (x0, ·) is not linear on [0,m], by Lemma 3.10, we have
either k = 1 and mv = 0, and we are done, or k = 0 and m = mv. But in the latter
case, we would have Hf (x0,m) = mH ′f (x0, 0) which implies that the monotone function
t 7→ Hf (x0,t)

t is constant on [0,m], i.e. that Hf (x0, ·) is linear on [0,m]. This contradicts
our assumption.

4 Γ-convergence of the rescaled energies towards the H-mass
We establish lower and upper bounds for the Γ − lim inf and Γ − lim sup respectively,
from which we deduce the proof of our main Γ-convergence result. The upper bound on
the Γ− lim sup holds under more general assumptions and will be needed in Section 5.5.

4.1 Lower bound for the Γ− lim inf
Given a Borel function f : RN × R+ × RN → R+, we define

H−f (x,m) := inf{Hf (x,m), f ′−(x, 0, 0)m}, x ∈ R, m ∈ R+, (4.1)

recalling that Hf is defined in (1.2) and f ′−(x, 0, 0) in (1.4). Notice that under (H5), in
view of Proposition 2.8 and Proposition 2.9 we have H−f (x,m) = Hf (x,m).

Proposition 4.1. Assume that (fε)ε>0 is a family of functions fε : RN×R+×RN → R+
satisfying (H1), (H2), (H4) and (H6) where f = limε→0 fε. Let (εn)n∈N be a sequence
of positive numbers going to zero, (un)n∈N be a sequence in W 1,1

loc (RN ,R+), and let

en(x) := fεn(x, εNn un(x), εN+1
n ∇un(x))ε−Nn , x ∈ RN ,

be the energy density of un. If un LN
C′0−⇀ u ∈ M+(RN ) and en LN

C′0−⇀ e ∈ M+(RN ),
then

e ≥ Hf
−(u). (4.2)

In particular, Γ(C′0)− lim infε→0 Eε ≥MH−
f .

Proof of Proposition 4.1. Set H := H−f . To obtain (4.2), it is enough to prove that if
x0 ∈ RN is an atom of u, i.e. u({x0}) > 0, then

e({x0}) ≥ H(x0, u({x0})). (4.3)

and that if x0 ∈ suppu is not an atom of u, then

lim sup
R→0+

e(BR(x0))
u(BR(x0)) ≥ H

′(x0, 0). (4.4)

Indeed (4.3) implies that e ≥ (H(u))a (the atomic part of the measure H(u)) while
(4.4) implies that e ≥ H ′(·, 0)ud = (H(u))d, by Radon-Nikodỳm theorem (see [AFP00,
Theorem 2.22]); these two relations yield e ≥ (H(u))a + (H(u))d = H(u) as required.

25



We fix x0 ∈ suppu and proceed in several steps.

Step 1: blow-up near x0. We first take two sequences of positive radii (R`)`∈N → 0 and
(r`)`∈N such that for every ` ∈ N, r` ∈ (0, R`),

e(∂BR`(x0)) = u(∂Br`(x0)) = 0, (4.5)
and

lim
`→∞

e(BR`(x0))
u(Br`(x0)) = lim sup

R→0+

e(BR(x0))
u(BR(x0)) . (4.6)

This last property is obtained by taking first a sequence (ρ`)` such that

lim sup
R→0+

e(BR(x0))
u(BR(x0)) = lim

`→∞

e(Bρ`(x0))
u(Bρ`(x0)) ,

then using monotone convergence the measures to get first r` then R` such that 0 <
r` < R` < ρ`, u(Br`(x0)) ≥ (1− 2−`)u(Bρ`(x0)) and e(BR`(x0)) ≥ (1− 2−`)e(Bρ`(x0)).
By weak convergence and (4.5), according to [AFP00, Proposition 1.62 b)], we have

for every ` ∈ N,

lim
n→∞

en(BR`(x0)) = e(BR`(x0)) and lim
n→∞

ˆ
Br` (x0)

un = u(Br`(x0)).

Hence, there exists an extraction (n`)`∈N ∈ Σ such that

lim
`→∞

r`
εn`

= +∞ and lim
`→∞

R` − r`
εn`

= +∞, (4.7)

satisfying the following conditions:

u({x0}) = lim
`→∞

ˆ
Br` (x0)

un` , e({x0}) = lim
`→∞

en`(BR`(x0)), (4.8)

and

lim sup
`→∞

e(BR`(x0))
u(Br`(x0)) = lim

`→∞

en`(BR`(x0))´
Br` (x0) un`

. (4.9)

We may rewrite the mass and energy in terms of the re-scaled map v` defined by

v`(y) := εNn`un`(x0 + εn`y), y ∈ RN , ` ∈ N (4.10)

as follows: ˆ
Br` (x0)

un` =
ˆ
B
ε−1
n`

r`

v`, (4.11)

and

en`(BR`(x0)) =
ˆ
B
ε−1
n`

R`

fεn` (x0 + εn`y, v`(y),∇v`(y)) dy. (4.12)
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Step 2: proof of (4.3). By Proposition 3.9, we have

e({x0}) = lim
`→∞

en`(BR`(x0)) ≥ mvf
′
−(x0, 0, 0) +

∑
0≤i<k

Hf (x0,mi). (4.13)

Here k ∈ N ∪ {+∞} and m = mv +
∑

0≤i<kmi, with mi > 0, mv ≥ 0 and

m = lim
`→∞

ˆ
B
ε−1
n`

r`

v` = u({x0}).

Since the function H = H−f , defined in (4.1), is the infimum of two functions which
are concave in the mass m, it is itself concave in m hence subadditive. From (4.13) we
thus arrive at

e({x0}) ≥ H−f (x0,mv)+
∑

0≤i<k
H−f (x0,mi) ≥ H−f

(
x0,mv+

∑
0≤i<k

mi

)
= H−f (x0, u({x0})).

Step 3: proof of (4.4). Fix ε > 0 and assume that m = u({x0}) = 0. In that case, we
apply Proposition 3.8 to the sequence of functions (v`)`∈N defined on the sets Ω` = Bε−1

n`
r`

and the function fε to get, thanks to (H6):

lim sup
R→0+

e(BR(x0))
u(BR(x0)) = lim

`→∞

en`(BR`(x0))´
Br` (x0) un`

≥ lim inf
`→∞

1´
B
ε−1
n`

r`

v`

ˆ
B
ε−1
n`

r`

fε(x0 + εn`y, v`(y),∇v`(y))

≥ (fε)′−(x0, 0, 0).

Taking the limit ε→ 0+, we deduce by (H6) and (4.1):

lim sup
R→0+

e(BR(x0))
u(BR(x0)) ≥ f

′
−(x0, 0, 0) ≥ (H−f )′(x0, 0). (4.14)

In view of the discussion at the beginning of the proof, we have now proved (4.2).

Step 4: lower bound for the Γ − lim inf. We justify that (4.2) implies the lower bound
Γ(C′0) − lim infε→0 Eε ≥ MH−

f . Indeed, fix u ∈ M+(RN ) and consider a family (uε)ε>0
weakly converging to u as ε → 0. We need to show that MH(u) ≤ lim infε→0 Eε(uε).
Assume without loss of generality that the inferior limit is finite and take a sequence of
positive numbers (εn)n∈N → 0 such that this inferior limit is equal to limn→∞ Eεn(uεn).
Now the energy density en associated to un = uεn has bounded mass and up to extracting
a subsequence one may assume that it converges weakly to some measure e ∈M+(RN ).
By the previous steps, e ≥ H(u), and by lower semicontinuity and monotonicity of the
mass:

lim inf
ε→0

Eε(uε) = lim inf
n→∞

‖en‖ ≥ ‖e‖ ≥ ‖H(u)‖ = MH(u).
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4.2 Upper bound for the Γ− lim sup
In this section, we introduce the following substitute for (H6), where f, (fε)ε>0 are Borel
maps from RN × R+ → RN to R+:

(U) there exists C < +∞ such that for every x, y ∈ RN , u ∈ R+ and ξ ∈ RN ,

lim sup
ε→0+

fε(x+ εy, u, ξ) ≤ f(x, u, ξ) and fε(y, u, ξ) ≤ Cf(x, u, ξ) ∀ε > 0.

Proposition 4.2. Assume that f, (fε)ε>0 satisfy (U). If u ∈M+(RN ), then there exists

(uε)ε>0 ∈W 1,1
loc (RN ,R+) such that uε LN

C′b−⇀ u when ε→ 0 and which satisfies

lim sup
ε→0+

Eε(uε) ≤MHf,lsc(u),

where Hf,lsc ≤ Hf stands for the lower semicontinuous envelope of Hf , defined in (2.6).
In other words, we have Γ(C′b)− lim supε→0 Eε ≤MHf,lsc.

Proof of Proposition 4.2. Let F = Γ(C′b) − lim supε→0 Eε. As an upper Γ-limit, F is
sequentially lower semicontinuous in the narrow topology. Hence, by Proposition 2.7, it is
enough to prove that F (u) ≤MHf (u) whenever u is finitely atomic. Let u =

∑k
i=1miδxi

with k ∈ N, mi ≥ 0, xi ∈ RN , and assume without loss of generality that xi 6= xj
when i 6= j and MHf (u) < +∞. Fix η > 0. For each i = 1, . . . , k, there exists
ui ∈ W 1,1

loc (RN ,R+) such that
´
RN ui = mi and

´
RN f(xi, ui,∇ui) ≤ H(xi,mi) + η. We

define for every i = 1, . . . , k,

uiε(x) = ε−Nui(ε−1(x− xi)), x ∈ RN , (4.15)
and

uε = sup{uiε : i = 1, . . . , k}, (4.16)

which converge narrowly as measures to u as ε→ 0. We have by change of variables:

Eε(uε) ≤
k∑
i=1
Eε(uε, {uiε = uε}) ≤

k∑
i=1
Eε(uiε) =

k∑
i=1

ˆ
RN

fε(xi + εx, ui,∇ui).

Using our assumption (U) and the dominated convergence theorem, one gets as ε→ 0:

F (u) ≤ lim sup
ε→0

Eε(uε) ≤
k∑
i=1

ˆ
RN

f(xi, ui,∇ui) ≤
k∑
i=1

H(xi,mi) + kη = MH(u) + kη.

The conclusion follows by arbitrariness of η > 0.
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4.3 Proof of the main Γ-convergence result
We now explain how Theorem 1.2 follows from Proposition 4.1 and Proposition 4.2.

Proof of Theorem 1.2. The lower bound Γ(C′0) − lim infε→0 Eε ≥ MH−
f follows from

Proposition 4.1, and the upper bound Γ(C′b) − lim supε→0 Eε ≤ MHf,lsc from Proposi-
tion 4.2, where the assumption (U) is a consequence of (H3) and (H6). By Proposi-
tion 2.8 and Proposition 2.9, thanks to our assumption (H5), we have H−f = Hf , and
Hf ≥ Hf,lsc by definition. The result follows because the weak topology is weaker than
the narrow topology.

5 Examples, counterexamples and applications
5.1 Scale-invariant Lagrangians and necessity of assumption (H5)
Our assumption (H5) is not very standard, but we need a condition of this type in order
to get Γ-convergence of the rescaled energies Eε towards MHf , as shown by the following
class of scale-invariant Lagrangians:

fε(x, u, ξ) = f(u, ξ) with f(u, ξ) =
{
u
p( 1
p?
−1)|ξ|p if u > 0,

0 else,
(5.1)

where p ∈ (1, N), N ∈ N∗ and p? := pN
N−p . By straightforward computations, Eε(u) =

Ef (u) :=
´
RN f(u,∇u) for every ε > 0 and u ∈W 1,p

loc (RN ) in that case.
Moreover, the associated cost functionHf is not trivial. Indeed, applying the Gagliardo–

Nirenberg–Sobolev inequality,( ˆ
RN
|v|p?

) 1
p? ≤ C

(ˆ
RN
|∇v|p

) 1
p
, ∀v ∈ Lp? ∩W 1,1

loc (RN ),

to the function v = u
1
p? , we obtain that for every u ∈W 1,1

loc (RN ,R+)) ∩ L1(RN ),(ˆ
RN

u

) p
p?

≤
(
C

p?

)p ˆ
{u>0}

u
p
p?
−p|∇u|p =

(
C

p?

)p
Ef (u).

Hence, for every m > 0, we have Hf (m) > 0, and even Hf (m) < +∞ since any function
u = vp

? , with v ∈ W 1,p(RN ,R+), has finite energy. Replacing u by mu in the infimum
defining Hf in (1.2), we actually obtain

Hf (m) = m1− p
NHf (1), 0 < Hf (1) < +∞. (5.2)

In that case, it is clear that the Γ-limit of Eε ≡ E in the weak or narrow topology
of M+(RN ), that is the lower semicontinuous relaxation of Ef , does not coincide with
MHf ; indeed, the first functional is finite on diffuse measures whose density has finite
energy, while the second functional is always infinite for non-trivial diffuse measures
since H ′f (0) = +∞.
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These scaling invariant Lagrangians are ruled out by our assumption (H5). All the
other assumptions are satisfied except (H4). Note that the following perturbation of f ,

f̃(u, ξ) =
(
1 + u

p( 1
p?
−1))|ξ|p

satisfies all the assumptions except (H5), and provides a counterexample to the Γ-
convergence. Indeed, MHf̃

≥ MHf is still infinite on diffuse measures, while (the
relaxation of) Ef̃ is finite for any diffuse measure whose density has finite energy.
We stress that an assumption like (H5) is actually needed, even for the lower semi-

continuity of the function Hf – recall that if MHf is a Γ-limit, then it must be lower
semicontinuous by [Bra02, Proposition 1.28], which in turn implies that the function Hf

is lower semicontinuous by Proposition 2.7. Indeed, consider the Lagrangians

f(x, u, ξ) =
(
1 + u

p( 1
p?
−1))|ξ|p(x),

with p ∈ C0(RN , (1, N)) such that p(0) = p ∈ (1, N) and p(x) > p when x 6= 0. Then,
we have Hf (0,m) = m1− p

NH(1), but Hf (x, ·) ≡ 0 if x 6= 0 as can be easily seen via the
change of function εNu(ε ·), with ε > 0 small.

5.2 General concave costs in dimension one
It has been proved in [Wir19] that for any continuous concave function H : R+ → R+
with H(0) = 0, there exists a function c : R+ → R+ such that c(0) = 0, u 7→ c(u)

u is
lower semicontinuous and non-increasing on (0,+∞), and for every m ≥ 0,

H(m) = inf
{ˆ

R
|u′|2 + c(u) : u ∈W 1,1

loc (R,R+),
ˆ
R
u = m

}
.

The Lagrangians of the form fε(x, u, ξ) = |ξ|2 + c(u), in dimension N = 1, satisfy all our
assumptions (H1)–(H6), hence our Γ-convergence result stated in Theorem 1.2 yields the
Γ-convergence of the functionals

Eε(u) =
ˆ
R
ε3|u′|2 + c(εu)

ε
, u ∈W 1,2(R,R+),

towards MH for both the weak and narrow convergence of measures. Therefore, we may
find an elliptic approximation of any concave H-mass. Let us stress that c is determined
in [Wir19] from H through several operations including a deconvolution problem, but
no closed form solution is given in general; nonetheless, an explicit solution is provided
if c is affine by parts.

However, in dimension N ≥ 2, we have no positive or negative answer to the inverse
problem, consisting in finding f satisfying our assumptions with Hf = H, for a given
continuous concave function H : R+ → R+ with H(0) = 0. Note that, unlike the one-
dimensional case, we cannot reach a function H having a non-trivial plateau with a
Lagrangian of the form f(x, u, ξ) = |∇u|p + c(u), with p ∈ (1,+∞) and c : R+ → R+
lower semicontinuous, in dimension N ≥ 2.
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Indeed, assume by contradiction that Hf (m) = h0 ∈ (0,+∞) for every m ∈ [m1,m2],
with 0 ≤ m1 < m2. Then, we get that f satisfies all our assumptions ((H5) being satisfied
with ρ(u) = uα if α ∈ (1

p , 1+ 1
N ), for example α = 1), and we deduce by Proposition 3.11

that there exists u ∈W 1,p(RN ,R+) such that Ef (u) = Hf (m2) and
´
RN u = m2. By the

Pólya-–Szegö inequality, up to replacing u by its symmetric decreasing rearrangement,
we can assume that u(x) = u?(|x|) with u? : R+ → R+ non-increasing. Removing a slice
of the form {−η ≤ x1 ≤ η} to the function u, and gluing together the two portions on
either side of this slice, we obtain a function with slightly less mass, if η > 0 is small,
and with less energy; since Hf is constant on a left neighbourhood of m2, this means
that the energy of u on this slice must vanish and, in particular, that u is constant here.
Since u is radial, this means that u is constant on RN , a contradiction with the fact that´
RN u = m2 ∈ (0,+∞).

5.3 Homogeneous costs in any dimension
In this section, we provide Lagrangians f to obtain the α-mass Mα := Mt7→tα in any
dimension N for a wide range of exponents, including super-critical exponents α ∈(
1− 1

N , 1
]
. We consider for every p ∈ [1,+∞), s ∈ (−∞, 1] and N ∈ N∗, the energy

defined for every u ∈W 1,1
loc (RN ,R+) by

EN,ps(u) :=
ˆ
RN

fN,p,s(u,∇u) :=
ˆ
RN
|∇u|p + us. (5.3)

Notice that for p > 1, fN,p,s satisfies all our hypotheses (H1)–(H5) (without dependence
on x), (H5) holding in dimension N ≥ 2 with ρ(t) = t for example. Thus by Theorem 1.2
the re-scaled energies Γ-converge to the HfN,p,s-mass, with HfN,p,s .
One may compute HfN,p,s substituting u by v such that u = mλNv(λ·) in (1.2), where

λ = m
s/p−1

1+N−sN/p . (5.4)

Straightforward computations give
´
RN v = 1 if

´
RN u = m, and

EN,p,s(u) = mα(N,p,s)EN,p,s(v), where α(N, p, s) =
1− s

p + s
N

1− s
p + 1

N

,

thus
HN,p,s(m) = cN,p,sm

α(N,p,s), where cN,p,s = HN,p,s(1).

We look for cases when the cost is non-trivial, i.e. neither identically zero nor infinite
on (0,+∞). Take an auxiliary exponent q ∈ [1,+∞) and α ∈ [0, 1] such that 1 =
αq + (1− α)s. By Hölder inequality,

ˆ
RN

u =
ˆ
RN

uαqu(1−α)s ≤
(ˆ

RN
uq
)α (ˆ

RN
us
)1−α

.
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Moreover, choosing q ∈ (1, p?) if p < N and any q ∈ (1,+∞) if p ≥ N , by the Gagliardo–
Nirenberg–Sobolev inequality, for every u ∈W 1,1

loc ∩ L1(RN ,R+),

(ˆ
RN

uq
) 1
q

= ‖u‖Lq ≤ C‖∇u‖βLp‖u‖
1−β
L1 ,

with β ∈ (0, 1) such that 1
q = β

(
1
p −

1
N

)
+ (1− β). Hence,

(ˆ
RN

u

)1−qα(1−β)
≤ C

(ˆ
RN
|∇u|p

) qαβ
p
(ˆ

RN
us
)1−α

,

and the cost is non-zero for every m > 0.
In the case s ∈ [0, 1], any u = vr with v ∈ C1

c (RN ) is a competitor with finite energy,
thus EN,p,s is non-trivial for every p ∈ [1,+∞). In the case s < 0, consider the competitor
u : x 7→ (1 − |x|)γ+ for γ > 0 to be fixed later. Then

´
RN |∇u|

p < +∞ if and only if
t 7→ (1 − t)(γ−1)p is integrable at 1−, i.e. (γ − 1)p > −1 ⇐⇒ γ > 1 − 1/p, and´
{u>0} u

s < +∞ if and only if γs > −1 ⇐⇒ γ < −1/s. Therefore, one may find γ > 0
satisfying both conditions, and ensure that HfN,p,r,s is non-trivial, if

−p′ < s < 0.

To summarize, we have shown that HfN,p,s is non-trivial if:

s ∈ (−p′, 1].

Since α = α(N, p, s) is monotone in s, one may easily compute the range of α. If p and
N are fixed, α ranges over

(
N−1

N+1+1/p , 1
]
when s ∈ (−p′, 1]. Notice that when N = 1

we obtain the whole range α ∈ (0, 1], and at least the range
[
1− 2

N+1 , 1
]
for every p in

dimension N ≥ 2. Finally, we obtain a range α ∈
(
N−1
N+2 , 1

]
when p ranges over (1 +∞]

in dimension N .

5.4 Branched transport approximation: H-masses of normal 1-currents
Branched Transport is a variant of classical optimal transport (see [San15] and Sec-
tion 4.4.2 therein for a brief presentation of branched transport, and [BCM09] for a vast
exposition) where the transport energy concentrates on a network, i.e. a 1-dimensional
subset of Rd, which has a graph structure when optimized with prescribed source and
target measures. It can be formulated as a minimal flow problem,

min
{

MH
1 (w) : div(w) = µ− − µ+

}
,

where µ± are probability measures on Rd, H : Rd × R+ → R+ is mass-subadditive, and
the H-mass MH

1 is this time defined for finite vector measures w ∈ M(Rd,Rd) whose
distributional divergence is also a finite measure; in the language of currents, it is called a
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1-dimensional normal current. Any such measure may be decomposed into a 1-rectifiable
part θξ ·H1 Σ where θ(x) ≥ 0 and ξ(x) is a unit tangent vector to Σ for H1-a.e. x ∈ Σ,
and a 1-diffuse part w⊥ satisfying |w⊥|(A) = 0 for every 1-rectifiable set A:

w = θξ · H1
|M + w⊥.

The H-mass is then defined by:

MH
1 (w) :=

ˆ
Σ
H(x, θ(x)) dH1(x) +

ˆ
Rd
H ′(x, 0) d|w⊥|. (5.5)

In the case H(x,m) = mα with 0 < α < 1, a family of approximations of these
functional has been introduced in [OS11]:

Eβ,ε(w) =
{´

Rd ε
γ1 |∇w|2 + ε−γ2 |w|β if w ∈W 1,2

loc (Rd,Rd),
+∞ otherwise,

(5.6)

with β = 2−2d+2αd
3−d+α(d−1) , γ1 = (d−1)(1−α) and γ2 = 3−d+α(d−1). It has been shown in

[OS11; Mon17] that the functionals Fβ,ε Γ-converge as ε→ 0+, in the topology of weak
convergence of u and its divergence, to a non-trivial multiple of the α-mass Mα

1 := MH
1

with H(x,m) = mα in dimension d = 2. The result extends to any dimension d, by
[Mon15], thanks to a slicing method that relates the energy Eβ,ε with the energy of the
sliced measures u = (w · ν)+ supported on the slices Va = {x ∈ Rd : x · ν = a} ' RN ,
for any given unit vector ν ∈ Rd, defined by

Ēβ,ε(u) =
ˆ
RN

εγ1 |∇u|2 + ε−γ2 |u|β.

The functionals Ēβ,ε Γ-converge as ε→ 0+, in the weak-? topology of C′b, to cMα for some
non-trivial c, as shown in Section 5.3, and one may recover every α-mass in this way for
α ∈

(
2d−4
2d+1 , 1

]
, and in particular every so-called super-critical exponents for Branched

Transport in dimension d, that is α ∈ (1− 1/d, 1].
The same slicing method would allow to extend our Γ-convergence result stated in

Theorem 1.2 to functionals defined on vector measure

Eε(w) =
{´

Rd fε(x, ε
d−1|w|(x), εd|∇w|(x))ε1−d dx if w ∈W 1,1

loc (Rd,Rd),
+∞ otherwise,

(5.7)

for Lagrangians fε → f fitting the framework of Theorem 1.2. The expected Γ-limit, for
the weak topology of measures and their divergence measure, would be the functional
MHf

1 , with Hf defined in (1.2). Note that this approach would provide approximations
of H-masses for more general continuous and concave cost functions H : R+ → R+
satisfying H(0) = 0. By [Wir19], we would obtain all such H-masses when N = 1
(corresponding to d = 2).
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5.5 A Cahn-Hilliard model for droplets
Following the works [BDS96] in the one-dimensional case and [Dub98] in higher dimen-
sion, we consider functionals onM+(RN ) of the form:

Wε(u) =


ˆ
RN

ε−ρ(W (u) + ε|∇u|2) if u ∈W 1,1
loc (RN ,R+),

+∞ otherwise,
(5.8)

where W : R+ → R+ is a Borel function satisfying W (t) ∼u→+∞ us for some exponent
s ∈ (−∞, 1). In [BDS96; Dub98], it is in particular proven, under some assumptions
on the slope of W at 0 and its regularity, that the family (Wε)ε>0 Γ-converges to a
non-trivial multiple of the α-mass, α = 1−s/2+s/N

1−s/2+1/N , when s ∈ (−2, 1) and ρ = ρ(s,N) :=
N(1−s)

(N+2)+N(1−s) . In this section, we recover this Γ-convergence result using our general
model.
Replacing ε with ε̄ := ε(N+2)+N(1−s) and noticing that 1− ρ = N+2

(N+2)+N(1−s) , one gets
for every u ∈W 1,1

loc (RN ,R+):

Wε̄(u) =
ˆ
RN

ε−N(1−s)W (u) + εN+2|∇u|2 =
ˆ
RN

(
[εNsW (ε−NεNu)] + |εN+1∇u|2

)
ε−N

=
ˆ
RN

fWε (x, εNu, εN+1∇u)ε−N ,

where fWε is defined for every x ∈ RN , u ∈ R+, ξ ∈ RN by

fWε (x, u, ξ) := Wε(u) + |ξ|2 and Wε(u) := εNsW (ε−Nu).

Therefore if we take fε = fWε in our general model (1.3) we exactly get Wε̄ = Eε. The
fact that W (u) ∼ us as u → +∞ implies that Wε converges pointwise to the map
ks : u 7→ us if u > 0, ks(0) = 0, hence fWε converges to fs : (x, u, ξ) 7→ ks(u) + |ξ|2.

Theorem 5.1. Assume that W : R+ → R+ satisfies:

(HW1) W is lower semicontinuous,

(HW2) {W = 0} = {0},

(HW3) W (u) ∼u→+∞ us for some s ∈ (−∞, 1),

(HW4) sup
u>0

W (u)
us

< +∞,

(HW5) 0 < lim inf
u→0+

W (u)
u

.

Then (Wε)ε>0 Γ-converges to MHfs , for both topologies C′0 and C′b, and if s ∈ (−2, 1]
then MHfs is a nontrivial multiple of Mα where α = 1−s/2+s/N

1−s/2+1/N .
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To prove this theorem, we start with a simple lemma.

Lemma 5.2. Assume that W satisfies (HW1)–(HW5). Then for every δ ∈ (0, 1), there
exists cδ ∈ (0,+∞) such that for every ε > 0 and every u ∈ R+,

δ(up ∧ cδε−N(1−s)u) ≤Wε(u). (5.9)

Proof. Fix δ ∈ (0, 1). There exists M > 0 such that δus ≤ W (u) for every u ≥ M .
Besides, the map w : u 7→ W (u)/u is lower semicontinuous and positive on (0,M ] by
(HW1) and (HW2), and since lim infu→0w(u) > 0 by (HW5), w is necessarily bounded
from below on (0,M ] by some contant c > 0. As a consequenceWε(u) ≥ δus if u ≥ εNM
and Wε(u) ≥ cεN(s−1)u if u ≤ εNM , hence:

∀u ∈ R, Wε(u) ≥ δ(us ∧ cε−N(1−s)u).

Proof of Theorem 5.1. By (HW4), there exists a constant C such that fWε ≤ Cfs for
every ε, and since fWε does not depend on the x variable and converges pointwise to fs,
(U) is satisfied and our Γ− lim sup result stated in Proposition 4.2 yields

MHfs ≥ Γ(C′b)− lim sup
ε→0

Eε.

Fix δ ∈ (0, 1). By Lemma 5.2, there exists cδ such that

∀x, u, ξ, fWε (x, u, ξ) ≥ δ(|ξ|2 + (us ∧ cδε−N(1−s)u) =: f δε (x, u, ξ).

It is easy to check that f δε satisfies (H1), (H2) and (H4) for every ε > 0. Moreover f δε ↑ δfs
and (f δε )′−(·, 0, 0) = δcδε

−N(1−s) ↑ +∞ = (δfs)′−(·, 0, 0) as ε→ 0, thus (H6) holds for the
family (f δε )ε>0, and by applying our Γ − lim inf result stated in Proposition 4.1 to the
energies Eδε induced by f δε we get:

Γ(C′0)− lim inf Eε ≥ Γ(C′0)− lim inf Eδε ≥MH−
δfs .

We get the result by taking the limit δ → 1, noticing that (fs)′−(·, 0, 0) = +∞, so that
H−δfs = Hδfs = δHfs and MH−

δfs = MδHfs = δMHfs .

Remark 5.3. We recover the Γ-convergence results of [BDS96] and [Dub98] when s ∈
(−2, 1) under slightly more general assumptions: besides (HW2) and (HW3), the au-
thors impose the existence of a nontrivial slope limu→0

W (u)
u ∈ (0,+∞) and a regularity

condition (either W is of class C1 or continuous and nondecreasing close to 0), which
are stronger than (HW1), (HW4) and (HW5). Let us stress however that these works
also tackle the cases s < −2 in any dimension, where the exponent ρ has to be fixed to
ρ(−2, N), and the case s = −2 in dimension one, where a logarithmic factor must be
introduced, replacing ε−ρ with ε−ρ(−2,1)|log ε|−1 = ε−1/2|log ε|−1. This implies that in
our model we get a trivial Γ-limit when s ≤ −2, namely Hfs ≡ +∞ on (0,+∞).
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