METRIC METHODS FOR HETEROCLINIC CONNECTIONS
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ABsTRACT. We consider the problem min fR %I)‘/l2 + W(y)dt among curves connecting two given wells of W > 0
and we reduce it, following a standard method, to a geodesic problem of the form min fol K(y)lyldr with K =

V2W. We then prove existence of curves minimizing this new action just by proving that the distance induced
by K is proper (i.e. its closed balls are compact). The assumptions on W are minimal, and the method seems
robust enough to be applied in the future to some PDE problems.

1. INTRODUCTION

The minimization of an energy such as

1
(1.1) (y:1-R) o f (§|y|2(z) + W(y(t))) dr
1

is a very common problem in many mathematical issues, first of all because of its meaning in classical
mechanics (where it corresponds to kinetic + potential energy). The corresponding Euler-Lagrange equation
v"" = VW(y) represents the simplest example of motion according to the Newton’s law where the force
producing the acceleration is of gravitational type. The same minimization problem and the same ODE also
appear in other issues, for instance in phase transition models, where a suitable rescaling of the curve y gives
the optimal transition between two states (we refer for instance to [3] for a general introduction to this field).
For many applications, the case where / = R, W > 0 and y connects two wells of W (i.e. y(xo0) = x* with
W(x*) = 0) is the most interesting one. The optimal curve 7 is called a heteroclinic connection (in contrast
with the homoclinic connections, which are solutions of y”” = VW(y) but with same limits at +co).

The existence of a heteroclinic connection is a delicate problem, because of the lack of compactness of
the set H'(R) and of the invariance by translations of the action to be minimized. Many ways to overcome
this problem have been proposed, under suitable assumptions on W (on its degeneracy or radial monotonicity
near the wells, for instance). We cite [6] as a first analysis of this problem, and many more recent papers, in
particular [1, 4, 5]. This last paper, [5], is the one with the most general result, as it removes the monotonicty
assumptions of [1] around the wells. In [5] there is the assumption lim inf—,.c W(x) > 0, but it is easy to see
that it can weakened into something like vW(x) > k(|x|) with fooo k(t)dt = +oco, as we do in this paper. Note
that [1] already used a similar assumption, in the form liminf}y_,c [x|?W(x) = +o0, but ours is weaker, and
optimal (it is easy to build example of cases where the minimum is not attained without it).

The idea behind the method that we propose here, very much different from [1, 5], is classical: reduce the
problem to a geodesic problem for a weighted metric with a cost given by K(x) := v2W(x), i.e., instead of
minimizing (1.1), solving

1
min [ (VWG ) s

with given initial and final data. The difficulty in this problem is the fact that K is not bounded from be-
low, which makes it difficult to obtain bounds on a minimizing sequence. Instead, we propose an abstract
metric approach: we show that the distance dx induced by the weight K makes R“ a proper space, which
automatically means that it admits the existence of geodesics.

1



2 ANTONIN MONTEIL, FILIPPO SANTAMBROGIO

We present our approach in the framework of a general metric space X instead of R? in order to prepare
possible later extensions to higher dimensional problems, i.e. attacking

min f (1|Vu|2(x)+W(u(x)) dx
RxI 2

where x = (x1, x2), and boundary data are fixed as x; — *oo. This can be interpreted in our framework using
x1 as 7 and X to be L*(I), with an effective potential of the form u [, 110, ul(x2)* + W(u(x2)) dx,. But this
obviously raises extra difficulties due to the lack of compactness in infinite dimensions.

The paper is organised as follows: first we recall the main notions concerning curves and geodesics in
metric spaces, then we consider the problem of minimizing a weighted length in a metric space, with a
weight K which can possibly vanish, then we apply this result to the problem of heteroclinic connections.

2. MINIMAL LENGTH PROBLEM IN METRIC SPACES

Let (X, d) be a metric space, a standard situation being X = R¢ endowed with the Euclidean distance.
Curve in (X, d). A curve is a continuous map y : I — X, where I C R is a non-empty interval. We denote the
set of Lipschitz maps (resp. locally Lipschitz maps) from I to X by L(1, X) (resp. Lj,.(I, X)). We also need
to introduce the set of piecewise locally Lipschitz maps:

Lo, X) =y € CULX) : g =infl <ty <--- <ty = supl, Vi, ¥ € LioelI O (11, 1121))).

Length of a curve. Given any curve y : I — X, we define the length of y by the usual formula

N-1
La(y) = sup 3" d(y(1;), y(tis1)) € R U [+00},
i=0
where the supremum is taken over all N > 1 and all sequences fyp < --- < ty in /. A curve v is said to be

rectifiable if L(y) < oo.
Length of locally Lipschitz curves. For piecewise locally Lipschitz maps we have the following represen-
tation formula for the length:

Proposition 1. Giveny € Ly,.(1, X), the following quantity,

. . d(y(1),y(s))

[71(r) = lim S22 220
A

is well defined for a.e. t € I and measurable. |y| is called metric derivative of y. Moreover, one has

La(y) = j; (0 dr.

We refer for instance to [2] for the notion of metric derivative and for many other notions on the analysis
of metric spaces.
Parametrization. If y : I — X isacurve, and ¢ : I’ — [ is a non-decreasing surjective continuous mapping,
called parametrization, then the curve o = y o ¢ : I’ — X satisfies Ly(0) = Ly(y). The curve v is said to
have constant speed if for all t,¢’ € I s.t. t <t', Ly(y|.ry) = Alt —1'|. A1is the speed of the curve y. Note that y
has constant speed A if and only if y is Lipschitz and |y(#)| = A a.e. The curve y is parametrized by arc length
if A = 1. Assume that a curve 7 satisfies L;(y,7) < oo for all compact subset J C I: then, it is well-known that
there exists a reparamatrization of y parametrized by arc length. Up to renormalization, it is always possible
to consider curves defined on I = [0, 1].
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Minimal length problem. We define the intrinsic pseudo-metric geod (called geodesic distance) by mini-
mizing the length of all curves y connecting two points x* € X:

2.1 geod(x™,xT) ;= inf{Ly(y) : y:x > x"} €0, +00],

where the notation v : x~ + x* means that y is a path from x~ to x*: there exists a~ < a® s.tt. y €
C%[a~,a*],X) with y(a*) = x*. Here, if a* or a~ is infinite, we use the convention y(£00) := limy_1c Y() =
x*, if the limit exists.

When (X, d) is a Euclidean space, geod = d and the infimum value in (2.1) is achieved by the segment
[a~,a"]. In general, a metric space such that geod = d is called length space.

The minimal length problem consists in finding a curve y : x~ + x* such that L;(y) = geod(x~, x*). The
existence of such a curve, called minimizing geodesic, is given by the classical theorem (see [2], for instance):

Theorem 1. Assume that (X, d) is proper, i.e. every bounded closed subset of (X, d) is compact. Then, for
any two points x* such that geod(x*, x™) < +oo, there exists a minimizing geodesic joining x~ and x™.

3. MINIMAL LENGTH PROBLEM IN WEIGHTED METRIC SPACES

Let (X, d) be a metric space and K : X — R* be a nonnegative function called weight function. From now
on, we make the following assumptions on (X, d, K):

(H1): (X,d) is a proper length metric space.

(H2): K is continuous and X := {K = 0} is finite.

(H3): Forall x € X, K(x) > k(d(x, X)) for some function k € CO(R*, R*) with [[~ k(r)dt = +oo.
Assumption (H1) is satisfied in particular by any Euclidean space. The confining property (H3) is fulfilled
whenever lim inf 4, v)—o0 K(x) > O for instance.

Our aim is to investigate the existence of a curve y € L,,(I, X) minimizing the K-length, defined by

Lg(y) == j; K(y(®) Iyl dr.

Namely, we want to find a curve y € Lp,(1, X) which minimizes the K-length between given points x* € X:
dx(x™,x") == inf{Lg(y) : v € Lpipe(,X)s.t.y 1 x~ - x"}

We are going to prove that dg is a metric on X s.t. (X, di) is proper and Lx = Ly, thus implying the existence
of a geodesic between two joinable points, in view of Theorem 1 (see Theorem 2 below).

Proposition 2. The quantity dg is a metric on X. Moreover (X, dx) enjoys the following properties

(1) dk and d are equivalent ( i.e. they induce the same topology) on all d-compact subsets of X.

(2) (X,dg) is a proper metric space.

(3) Any locally Lipschitz curve y : I — X is also dk-locally Lipschitz and the metric derivative of y in
(X, dk), denoted by Y|k, is given by |y|k(1) = K(y(1)) [Y|(?) a.e.

(4) We have Li(y) = Lay(y) for all y € Lyjoc(1, X).

Theorem 2. For any x,y € X, there exists y € Lpjoc(I,X) s.t. Lx(y) = dg(x,y)andy : x = y.

Proof. Let us see how Proposition 2 implies Theorem 2. As (X, dk) is a proper metric space, Theorem 1
insures the existence of a Ly, -minimizing curve y : x — y. Up to renormalization, one can assume that y is
parametrized by L, -arc length. By minimality, we also know that y is injective and thus, y meets the finite
set {K = 0} at finite many instants #; < --- < 5. As K is bounded from below by some positive constant on
each compact subinterval of (#,#;41) fori € {1,..., N}, Lemma 1 below implies that vy is piecewise locally
d-Lipschitz. Finally, thanks to Statement 4 of Proposition 2, the fact that y minimizes Ly, means that it also
minimizes Lx among L, curves connecting x to y. O
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In order to prove Proposition 2, we will need the following estimations on dg.
Lemma 1. Forall x,y € X, one has
Kagrp(0) d(x,y) < di(x,y) < K () d(x, ),
where K,.(x) and K" (x) are defined for any r > 0 and x € X by
K (x) :=inf{K©®) : dx,y) <r}, K'(x):=sup{Ky) : d(x,y) <r}.

Proof. Set r :=d(x,y). Since any curve y : x — y has to get out of the open ball B := By(x, r), it is clear that

Le) = [ KO o> rinf K = &0,
1

Taking the infimum over the set of curves y € L, joining x and y, one gets the first inequality.

For the second inequality, let us fix £ > 0. By construction, there exists a Lipschitz curve y : x = y, that
one can assume to be parametrized by arc-length, s.t. Ly(y) < r + &. In particular, Im(y) is included in the
ball By(x, r + £). Thus, one has

dg(x,y) < Lg(y) < (r + &) K™ (x)

and the second inequality follows by sending & — 0. Indeed, the mapping r — K’(x) is continuous on
[0, +c0) since K uniformly continuous on compact sets and since bounded closed subsets of X are compact
(assumption (H1)). m]

Proof of Proposition 2. The proof is divided into six steps.

STEP 1: dg IS A METRIC.

First note that dx is finite on XxX. Indeed, given two points x, y € X, just take a Lipschitz curve connecting
them, and use Lk (y) < La(y) SuPyyy) K < +o0. The triangle inequality for dk is a consequence of the stability
of the set £, by concatenation. The fact that dg(x,y) = O implies x = y is an easy consequence of the
finiteness of the set {K = 0}. Indeed, if x # y, then any curve y : x — y has to connect B;(x, €) to B;(x, 2¢)
for all £ > 0 small enough. This implies that Lx(y) > € inf¢c K, where C = {y : & < d(x,y) < 2¢}. But for ¢
small enough, C does not intersect the set {K = 0} so that infc K > 0. In particular, dg(x,y) > € infc K > 0.

STEP 2: dg AND d ARE EQUIVALENT ON -COMPACT SETS.

Take Y C X a compact set, and suppose ¥ C By(xp, R) just to fix the ideas. Consider the identity map
from (Y, d) to (Y,dg). It is an injective map between metric spaces. Moreover, it is continuous, since, as a
consequence of Lemma 1, we have dg < Cd on Y X Y, where C = supg (, 3z, K < +oo (note that the closed
ball B;(xg,3R) is d-compact, and that we supposed d = geod since (X, d) is a length space). Hence, as every
injective continuous map defined on a compact space is a homeomorphism, d and di are equivalent (on Y).

STEP 3: EVERY CLOSED BALL IN (X, dg) IS d-BOUNDED

This is a consequence of assumptions (H1) and (H3). Let us take xo,x € X with dg(x, xo) < R. By
definition, there exists y € Ljoc(I, X) s.t. ¥ : xo = x and Lg(y) < di(xo, x) + 1. Now, set ¢(t) := d(y(1), 2):
since the function x — d(x, X) has Lipschitz constant equal to 1, we have ¢ € L,,-(I,R) and |¢' ()| < |y’ (?)]
a.e. Take i : R* — R™ the antiderivative of k, i.e. A’ = k with A(0) = 0, and compute [A(¢(2))]" = k(d(2))¢’ (7).
Hence,

I(p(N]'] = k(@' (D] < K(y(0)) Iy (D)
and h(d(y(1), X)) < h(d(xg, X)) + Lg(y) < h(d(x9,Z)) + R + 1. Since lim,_,, h(s) = +oo, this provides a bound
on d(x, X) which means that the ball By, (xo, R) is d-bounded.

STEP 4: EVERY CLOSED BALL IN (X, dg) 1S dg-COMPACT

Now that we know that closed ball in (X, dg) are d-bounded, since (X, d) is proper, we know that they are
contained in d-compact sets. But on this sets d and dg are equivalent, hence these balls are also d-closed,
hence d-compact, and thus dg-compact.
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STEP 5: PROOF OF STATEMENT 3. Lety : I — X be a d-locally Lipschitz curve valued in X. Thanks to the
second inequality in Lemma 1, v is also dk-locally Lipschitz. Now, Lemma 1 provides

diy@),y(s)) _ dx(y(®),(s)) < K'((0)) d(y(1), y(s))

K (y(1) = = sl T

with r := d(y(1), y(s)). In the limit s — 7 we get
Ky(@) yI(®) < [ylk(0) < K(y(@) [7l(1) a.e.,

where the continuity of » — K"(x) and r — K,(x) on [0, +c0) has been used.

LasT sTEP: PROOF OF STATEMENT 4. This is an easy consequence of Statement 3. Indeed, by additivity of
Lk and Ly, and since Lx(y) = sup Lg(yy), Lg,(y) = sup Ly (y,), both supremum being taken on compact
subsets J C I, it is enough to prove that Lg(y) = Ly, (y) when y € L(I,X). But any curve y € L(I,X) is
locally dg-Lipschitz and satisfies

Lax(y) = flliflk(t)dt= fIK(V(t)) Y1) dr = Lg(y). m

4. EXISTENCE OF HETEROCLINIC CONNECTIONS

Our aim is to investigate the existence of a global minimizer of the energy

1
Ew(y) = fR (5|y|2<r>+W<y<r>>)dr,

defined over locally Lipschitz curves y : x~ + x* valued in a metric space (X,d). Here W : X » Rt isa
continuous function, called potential in all the sequel, and x* € X are two wells, i.e. W(x*) = 0. Note that
W(x*) = 0 is a necessary condition for the energy of y to be finite. The main result of this section is the
following:

Theorem 3. Ler (X, d) be a metric space, W : X +— R* a continuous function and x~, x* points of X such
that:

H): (X, d, K) satisfies hypotheses H1 — 3 of the previous section, where K := V2W.
(STID): W(x™) = W(x*) = 0 and dx (defined above) satisfies the following strict triangular inequality
on the set (W =0}: forall x € X\ {x,x} s.t. W(x) =0, dg(x~,x") <dg(x,x)+dg(x,x).

Then, there exists a heteroclinic connection between x~ and x™, i.e. y € L(R, X) such that
Ew(y) =inf{Ew(0) : 0 € Lppe(R,X), 00:x > xT}.
Moreover, Ew(y) = dg(x~, x%).
Proof. This theorem is a consequence of Theorem 2 and the following consequence of Young’s inequality:
4.1 forall y € Lpic(R, X), Ew(y) = Lk(y),

where K := V2W. Indeed, thanks to assumption (H), Theorem 2 provides a Lg-minimizing curve yq : I —
X, that one can assume to be injective and parametrized by Lg-arc length, connecting x~ to x*. Thanks to
assumption (STI), it is clear that the curve y cannot meet the set {W = 0} at a third point x # x*: in other
words K(y(#)) > 0 on the interior of I. Thus, g is also d-locally Lipschitz on I (and not only piecewise
locally Lipschitz). In particular, one can reparametrize the curve yg by Lg-arc length, so that |yg| = 1 a.e.
Then, in view of (4.1), it is enough to prove that yy can be reparametrized in a curve y satisfying |y| = Koy
a.e., so that (4.1) becomes an equality. By the way, this automatically implies that y is Lipschitz, since it
provides a bound on |y’|. Namely, we look for an admissible curve y : R — X of the form y(¢) = yo(¢(?)),
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where ¢ : R — [ is C', increasing and surjective. For 1 to satisfy the equipartition condition, i.e. |y|(f) =
K(y(t)) a.e., we need ¢ to solve the ODE

(4.2) ¢’ (1) = F(p(1)),

where F : I — R is the continuous function defined by F = K oy on I and F = 0 outside /. Thanks to the
Peano-Arzela theorem, (4.2) admits at least one maximal solution ¢g : J = (+7,¢*) > R such that 0 € J and
¢0(0) is any point inside /. Since F vanishes out of 7, we know that Im(pg) C 1. Moreover, since ©p 1s non
decreasing on /, it converges to two distinct stationary points of the preceding ODE. As F > 0 inside /, one
has lim,_,;+ ¢o(f) = sup I and lim,_, ¢o(¢) = inf I. We deduce that ¢ is an entire solution of the preceding
ODE, i.e. I = R. Indeed, if I # R, say t* < +co, then one could extend ¢ by setting ¢o(¢) = sup I for ¢ > *.
Finally, the curve y := yq o ¢ satisfies y(£o0) = x*, |7|(r) = K(y(¢)) a.e. and so

Ew(y) = Lk(y) = Lk (y0) = dg(x", x7) < inf{lEw(0) : 0 € Lpie(R, X), ¥ 1 x - y}.

Thus, y minimizes Ey over all admissible connections between x~ and x*. O

Remark. o It is easy to see that the equirepartition of the energy, that is the identity W2 (1) = 2W(¥(1)),

is a necessary condition for critical points of Eyy.

e The assumption (STI) is not optimal but cannot be removed, and is quite standard in the literature.
Without this assumption, it could happen that a geodesic y would meet the set {W = 0} at a third
point x # x*. In this case, it is not possible to parametrize y in such a way that |y|(¢) = K(y(?)).

e However, if K = V2W is not Lipschitz, it is possible that there exists a heteroclitic connection
¥ : x~ = x* meeting (W = 0} at a third point x # x*. Indeed, if liminf,_,, K(y)/|y| > O, then, there
exists a heteroclinic connection y~ : x~ — x which reaches x in finite time (say, y ™ (¢) = x for ¢ > 0).
Similarly, there exists a heteroclinic connection y* : x + x* such that y*(¢) = z for t < 0. Thus,
there exists a heteroclinic connection between x~ and x* obtained by matching y~ and y*.

REFERENCES

[1] N. D. Arikakos, G. Fusco, On the connection problem for potentials with several global minima, Indiana Univ. Math. J. 57 No.
4 (2008), 1871-1906

[2] L. AmBrosio anp P. TiLLL, Topics on analysis in metric spaces. Oxford Lecture Series in Mathematics and its Applications (25).
Oxford University Press, Oxford, 2004.

[3] A.BRramEs, Approximation of free-discontinuity problems. Lecture Notes in Mathematics, 1694, Springer-Verlag, Berlin, 1998.

[4] P. ANToNopPouLOS, P. SMYRNELIS, On minimizers of the Hamiltonian system #”” = VW(u) and on the existence of heteroclinic,
homoclinic and periodic orbits, Indiana Univ. Math. J., to appear.

[5] C. Sourpis, The heteroclinic connection problem for general double-well potentials, preprint available at
http://arxiv.org/abs/1311.2856

[6] P. STERNBERG, Vector-Valued Local Minimizers of Nonconvex Variational Problems, Rocky Mountain J. Math. Volume 21,
Number 2 (1991), 799-807.

LABORATOIRE DE MATHEMATIQUES D’ORsAY, UNiv. Paris-Sup, CNRS, UNIVERSITE PAris-SacLay, 91405 Orsay Cepex, FRANCE,,
antonin.monteil@math.u-psud. fr, filippo.santambrogio@math.u-psud.fr



