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Abstract

We study the one-dimensional symmetry of solutions to the nonlinear Stokes equation{
−∆u+∇W (u) = ∇p in Rd ,

∇ ·u = 0 in Rd ,

which are periodic in the d−1 last variables (living on the torus Td−1) and globally minimize
the corresponding energy in Ω = R×Td−1, i.e.,

E(u) =
∫

Ω

1
2
|∇u|2 +W (u)dx, ∇ ·u = 0.

Namely, we find a class of nonlinear potentials W ≥ 0 such that any global minimizer u of
E connecting two zeros of W as x1→±∞ is one-dimensional, i.e., u depends only on the x1
variable. In particular, this class includes in dimension d = 2 the nonlinearities W = 1

2 w2 with
w being a harmonic function or a solution to the wave equation, while in dimension d ≥ 3,
this class contains a perturbation of the Ginzburg-Landau potential as well as potentials W
having d + 1 wells with prescribed transition cost between the wells. For that, we develop
a theory of calibrations relying on the notion of entropy (coming from scalar conservation
laws). We also study the problem of the existence of global minimizers of E for general
potentials W providing in particular compactness results for uniformly finite energy maps u in
Ω connecting two wells of W as x1→±∞.
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1 Introduction
Let d ≥ 2 and Ω =R×Td−1 be an infinite cylinder, where T=R/Z is the flat torus. The purpose
of this paper is to investigate the one-dimensional symmetry of divergence-free periodic solutions
u : Ω→ Rd to the nonlinear Stokes problem{

−∆u+∇W (u) = ∇p in Ω,

∇ ·u = 0 in Ω,
(1.1)

where W : Rd → R+ is a nonnegative potential and p : Ω→ R is a pressure. A solution u of (1.1)
is a critical point of the functional

E(u) =
∫

Ω

1
2
|∇u|2 +W (u)dx, u ∈ Ḣ1

div(Ω,Rd), (1.2)

where | · | is the euclidean norm and

Ḣ1
div(Ω,Rd) =

{
u ∈ H1

loc(Ω,Rd) : ∇u ∈ L2(Ω,Rd×d) and ∇ ·u = 0 in Ω

}
.

As boundary condition at x1 =±∞, we impose that our configurations u connect two wells u± ∈
Rd of W where u+1 = u−1 = a ∈R (due to the divergence constraint on u). Namely, we impose that
the x′-average of u is a function in x1 ∈ R having the following limit at infinity:

lim
x1→±∞

∫
Td−1

u(x1,x′) dx′ = u±, W (u±) = 0, (1.3)
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where x′=(x2, . . . ,xd) denotes the d−1 last variables in Td−1. The existence of two wells u± ∈Rd

satisfying the above boundary condition (1.3) is actually a necessary condition for every finite en-
ergy configuration u ∈ Ḣ1

div(Ω,Rd) under suitable assumptions on W (see Lemma 3.5 and Lemma
3.7 below).

Our aim is to analyze the following De Giorgi type problem for global minimizers of E on
Ḣ1

div(Ω,Rd) under the boundary condition (1.3):

Question 1 (one-dimensional symmetry of global minimizers): under which conditions on the
potential W, is it true that every global minimizer u of E over the set of divergence-free maps
satisfying the boundary condition (1.3) is one-dimensional, i.e., u = u(x1)?

We will also discuss the more general existence problem:

Question 2 (existence of global minimizers): under which conditions on W, does there exist a
global minimizer of E on Ḣ1

div(Ω,Rd) under the boundary condition (1.3)?

Our study of the one-dimensional symmetry of minimizers uses a kind of calibration method
which proves on the one hand that any optimal one-dimensional transition layer u connecting
u± at ±∞ is a global minimizer of E, and on the other hand that any global minimizer of E on
Ḣ1

div(Ω,Rd) under (1.3) is one-dimensional. Thus, this method solves both Question 1 and Ques-
tion 2. However, the one-dimensional symmetry of global minimizers requires strong assumptions
on W whereas the general existence problem in Question 2 only requires generic assumptions on
W . For this reason, Question 1 and Question 2 are studied independently.

1.1 Motivation
The above questions arise naturally in the study of certain phase transition models, in particular,
in the theory of liquid crystals or micromagnetics.

i) In dimension d = 2, for the Ginzburg-Landau potential W (u) = 1
4(1− |u|

2)2, the system
(1.1) is well known as the Aviles-Giga model (see [6]) that can be seen as a “baby” model for
the stable states in smectic liquid crystals. In the last twenty years, there has been an intensive
research on the asymptotic behavior of the rescaled energy

uε ∈ Ḣ1
div(Ω,R2) 7→

∫
Ω

ε

2
|∇uε |2 +

1
ε

W (uε)dx, Ω⊂ R2, (1.4)

in the limit ε ↓ 0. More precisely, it is expected that the limit configurations write u= (−∂2ϕ,∂1ϕ)
where ϕ solves the eikonal equation, while the limit energy concentrates on the jump singularities
of u and is proportional to the cubic cost |u+− u−|3 of each jump of u. This study was carried
within the framework of the Γ-convergence in a series of papers proving compactness results
(see [4, 21, 40]), lower bounds (see [7, 41]) and upper bounds for BV limit configurations (see
[18, 46]). However, the question of proving the upper bound for general limit configurations u of
finite energy (not necessarily in BV ) is still open. A challenging problem is the understanding of
the structure properties of the limit configurations (see [16]) as well as the lower semicontinuity
of the limit energy functional for general potentials W (see [4, 7, 12, 37]).

In this theory, a key point relies on the one-dimensional symmetry of minimizing transition
layers uε connecting two limit states u−,u+ ∈ S1 (i.e., W (u±) = 0). A partial result was proved
by Jin-Kohn in [41]: the optimal one-dimensional transition layer is a global minimizer of the
2D energy E on Ḣ1

div(Ω,R2) under the boundary constraint (1.3). In this paper, we will prove the
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complete result in Corollary 2.7 below, namely, every global 2D minimizer of E over Ḣ1
div(Ω,R2)

within (1.3) is one-dimensional, meaning that no 2D microstructure is expected to nucleate be-
tween u− and u+ at ε > 0 fixed. (However, in the limit ε → 0, the symmetry result fails as the
2D microstructure of the cross-tie wall is asymptotically also a global minimizer of the limiting
energy, see Appendix C.)

ii) In dimension d = 3, the system (1.1) can be seen as a reduced model in micromagnetics
in the regime where the so-called stray-field energy is strongly penalized favoring the divergence
constraint ∇ · u = 0 of the magnetization u (the unit-length constraint on u being relaxed in our
system (1.1)). One of the main issues consists in understanding the behavior of the magnetization
u describing the stable states of the energy E, the potential W playing the role of the anisotropy
favoring certain directions of u (i.e., the zeros of W are the “easy axes” of the magnetization).
A rich pattern formation is expected for the magnetization, the generic state consisting in large
uniformly magnetized 3D regions (called magnetic domains) separated by narrow transition layers
(called domain walls) where the magnetization varies very rapidly between two directions u−

and u+ (see e.g. [22, 35] for more details). In this theory, a challenging question concerns the
symmetry of domain walls. Indeed, much effort has been devoted lately to identifying on the
one hand, the domain walls that have one-dimensional symmetry, such as the so-called symmetric
Néel and symmetric Bloch walls (see e.g. [20, 39, 36]), and on the other hand, the domain walls
involving microstructures, such as the so-called cross-tie walls (see e.g., [2, 47]), the zigzag walls
(see e.g., [38, 45]) or the asymmetric Néel / Bloch walls (see e.g. [24, 23]). Our paper aims to
give a general approach in identifying the anisotropy potentials W for which the domain walls are
one-dimensional in the system (1.1).

1.2 Relation with the famous De Giorgi conjecture
If one removes the divergence constraint in our model (1.1), the problem reduces to the study of
one-dimensional symmetry of solutions u : Rd → RN of the equation

−∆u+∇W (u) = 0 in Rd, (1.5)

for a nonnegative potential W : RN → R+.

i) In the scalar case N = 1 and W (u) = 1
4(1− u2)2, the long standing De Giorgi conjecture

predicts that any bounded solution u that is monotone in the x1 variable is one-dimensional in
dimension d ≤ 8, i.e., the level sets {u = λ} of u are hyperplanes. The conjecture has been solved
in dimension d = 2 by Ghoussoub-Gui [31], using a Liouville-type theorem and monotonicity
formulas. Using similar techniques, Ambrosio-Cabré [5] extended these results to dimension
d = 3, while Ghoussoub-Gui [32] showed that the conjecture is true for d = 4 and d = 5 under
some antisymmetry condition on u. The conjecture was finally proved by Savin [48] in dimension
d ≤ 8 under the additional condition limx1→±∞ u(x1,x′) = ±1 pointwise in x′ ∈ Rd−1, the proof
being based on fine regularity results on the level sets of u. Lately, Del Pino-Kowalczyk-Wei
[19] gave a counterexample to the De Giorgi conjecture in dimension d ≥ 9, which satisfies the
condition limx1→±∞ u(x1,x′) =±1.

Finally, we mention that if the convergence limx1→±∞ u(x1,x′) =±1 is uniform in x′ and |u| ≤
1, then the one-dimensional symmetry holds without the monotonicity assumption ∂1u > 0 and
there is no restriction on the dimension d (this is the so-called Gibbons’ conjecture), see e.g.
[8, 9, 26, 15].
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ii) Less results are available for the vector-valued case N≥ 2. In the case N = 2 and W (u1,u2)=
1
2u2

1u2
2, the system (1.5) corresponds to a phase separation model arising in a binary mixture of

Bose-Einstein condensates; one-dimensional symmetry of solutions has been shown in [10, 11]
in dimension d = 2 under some monotonicity / growth / stability conditions on solutions u. Sev-
eral extensions, eventually in higher dimensions d ≥ 2 can be found in [27, 28, 50]. In the case
of more general potentials W and N ≥ 1, one dimensional symmetry for solutions u of (1.5) has
been proved in [29] for low dimensions d provided that each component uk of u (1 ≤ k ≤ N) is
monotone.

As mentioned above, an important observation in the study of De Giorgi type problems is the
relation between monotonicity of solutions (e.g., the condition ∂1u > 0), stability (i.e., the second
variation of the corresponding energy is nonnegative), and local minimization of the energy (in the
sense that the energy does not decrease under compactly supported perturbations of u). We refer
to [1, section 4] for a fine study of these properties. In particular, it is shown that the monotonicity
condition in the De Giorgi conjecture implies that u is a local minimizer of the energy (see [1,
Theorem 4.4]).

In the context of our system (1.1), we need a stronger condition: u is assumed periodic in the
d− 1 last variables and u globally minimizes the energy in Ω. At our knowledge, there are no
Liouville type theorems or monotonicity formulas for (1.1) in order to mimic the general strategy
used for (1.5). In fact, the divergence constraint in (1.1) creates a phenomenological difference
with respect to (1.5). For example, if d = N = 2 and W is the Ginzburg-Landau potential, the
Aviles-Giga model (1.1) has a solution connecting two zeros u+ 6= u− of W (with u+1 = u−1 ) that
is one-dimensional and globally minimizes the energy on Ḣ1

div(Ω ⊂ R2,R2) (see [41]), while the
energy (1.2) has no one-dimensional global minimizer u under the boundary condition (1.3) (no
divergence constraint here) because u+ and u− belong to the same connected component of zeros
of W and, obviously, u cannot be constant.

2 Main results
We start by presenting the results for Question 2, and then the results for Question 1.

2.1 Existence of global minimizers for general potentials W

For the existence of a global minimizer of E under both the divergence constraint and the boundary
condition (1.3), we will need some assumptions about the behavior of W near the sets Rd

a and
Sa ⊂ Rd

a , defined by

Rd
a := {z = (a,x′) ∈ Rd : x′ ∈ Rd−1}, Sa := {z ∈ Rd

a : W (z) = 0}, (2.1)

where a := u+1 = u−1 . Note that if u is an admissible one-dimensional map, i.e. u = u(x1) and
∇ ·u = u′1(x1) = 0, then u1 is constant in R. In particular, u1 ≡ a (due to (1.3)), that is u(x1) ∈ Rd

a
for all x1 ∈R. This partially justifies the fact that we mainly require assumptions on the restriction
of W to a neighborhood of Rd

a in Rd . In particular, we assume:

(H1) Sa is a finite set,

(H2) liminf
z1→a, |z′|→∞

W (z1,z′)> 0.
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First, we state the answer to Question 2 in the case where W has only two zeros u− and u+ in Rd
a ,

and next, we present the general case where Sa is an arbitrary finite set.

The case of two-well potentials W in Rd
a . If Sa = {u−,u+}, this assumption together with (H2)

are sufficient to prove existence in Question 2.

Theorem 2.1. If W : Rd → R+ is a continuous function such that for some a ∈ R,

(H1’) Sa has exactly two distinct elements u− and u+,

and (H2) is fulfilled, then there exists a solution of the minimization problem

inf
{

E(u) : u ∈ Ḣ1
div(Ω,Rd) with (1.3)

}
. (P)

The proof is based on the following general compactness result which is somehow reminiscent
from [24, Lemma 1] and [34, Lemma 4.4]. For that, we introduce the following notation: let

Ḣ1(Ω,Rd) :=
{

u ∈ H1
loc(Ω,Rd) : ∇u ∈ L2(Ω,Rd×d)

}
,

and the x′-average of every u ∈ H1
loc(Ω,Rd) is a continuous function in R denoted by

u(x1) :=
∫
Td−1

u(x1,x′)dx′, x1 ∈ R. (2.2)

If in addition ∇ · u = 0, then the first component u · e1 of the average ū is constant in R (see
Lemma 3.1). The boundary condition (1.3) will be denoted shortly1 by u(±∞) = u±.

Theorem 2.2 (Compactness of bounded energy sequences). Let W : Rd → R+ be a continuous
function, a ∈ R and assume that (H1’) and (H2) are satisfied. Let (un)n≥1 be a sequence in
Ḣ1

div(Ω,Rd) such that un(±∞) = u± ∈ Sa for each n≥ 1 and

sup
n≥1

E(un) = sup
n≥1

∫
Ω

1
2
|∇un|2 +W (un)dx < ∞.

Then there exists a sequence (tn)n≥1 in R such that (un(·+ tn, ·))n≥1 weakly converges (up to a
subsequence) in Ḣ1(Ω,Rd) to a limit u ∈ Ḣ1(Ω,Rd) satisfying

E(u)≤ liminf
n→∞

E(un), ∇ ·u = 0 and u(±∞) = u±.

The case of multi-well potentials W in Rd
a . The case where Sa has three or more elements

requires more attention. In this case, even the existence of global minimizers in the class of
admissible one-dimensional maps γ , i.e.

inf
{∫

R

1
2
|γ̇(t)|2 +W (γ(t))dt : γ ∈ Ḣ1(R,Rd

a) and γ(±∞) = u±
}
, (2.3)

1If E(u) < +∞, we will see in Lemmas 3.5 and 3.7 that the limits u(±∞) = limt→±∞ u(t) always exist provided
that (H1) and (H2) hold true.
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is not guaranteed without additional assumptions on W . For instance, in dimension d = 2, γ

writes γ(t) = (a,γ2(t)) ∈ R2
a and the Euler-Lagrange equation γ̈2 = ∂2W (a,γ2) has no solution if

W vanishes at three points (a,u−2 ), (a,b) and (a,u+2 ) with u−2 < b < u+2 . In order to avoid this
obstruction in our d-dimensional minimization problem (P), we will impose the strict triangle
inequality on the transition cost between the wells of W in Sa. For that, we first introduce the
energy functional restricted to an arbitrary interval I ⊂ R: for every map u ∈ Ḣ1

div(I×Td−1,Rd),
we set

E(u, I) :=
∫

I×Td−1

1
2
|∇u|2 +W (u)dx.

We define the transition cost cW : Rd
a×Rd

a → R+ as follows: for all z−, z+ ∈ Rd
a ,

cW (z−,z+) := inf
{

E(u, I) : I = (t−, t+), u ∈ Ḣ1
div(I×Td−1,Rd),

u(t±) = z±, with t± ∈ R if W (z±)> 0, resp. t± =±∞ if W (z±) = 0
}
, (2.4)

which means that the energy E(u, I) is minimized
• on I = R if W (z−) =W (z+) = 0;
• on I = R+ if W (z−)> 0 but W (z+) = 0;
• on I = R− if W (z−) = 0 but W (z+)> 0;
• over all bounded intervals I ⊂ R if W (z−)> 0 and W (z+)> 0.

When minimizing the energy on a bounded domain (t−, t+)×Td−1, one can actually impose a
more general boundary condition u(t±, ·) = v± (as a trace on {t±}×Td−1) for maps v− and v+

belonging to the set 2

H1
a (Td−1,Rd) :=

{
v ∈ H1(Td−1,Rd) :

∫
Td−1 v1(x′)dx′ = a

}
;

this yields a pseudo-distance dW on H1
a (Td−1,Rd) defined for all v± ∈ H1

a (Td−1,Rd) by 3

dW (v−,v+) := inf
{

E(u, I) : I = [t−, t+]⊂ R,

u ∈ Ḣ1
div(I×Td−1,Rd), u(t±, ·) = v±

}
∈ [0,+∞]. (2.5)

Obviously, if v±≡ z± with z± ∈ Sa, then dW (v−,v+)≥ cW (z−,z+), whereas the opposite inequality
is more delicate (see Proposition 2.4 below).

Our answer to Question 2 in the case of multiple-well potentials W inside Rd
a is the following:

Theorem 2.3. Let W : Rd→R+ be a continuous function such that for some a∈R, Sa contains at
least two distinct wells u− and u+, and the assumptions (H1) and (H2) are fulfilled. In addition,
we assume

(H3) for all z ∈ Sa \{u±}, dW (u−,z)+dW (z,u+)> dW (u−,u+),

2For technical reasons, we restrict to H1 maps on the torus Td−1 instead of H1/2 maps which is the natural trace
space for our admissible configurations.

3Note that dW might be infinite at some points because W (u) is not necessarily L1 for every u ∈ Ḣ1(I×Td−1,Rd)
and every continuous W .
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(H4) dW is lower semicontinuous in H1 on the set Sa×Sa in the following sense: for every z± ∈ Sa
and for every sequences (v±n )n≥1 in H1

a (Td−1,Rd) strongly converging to z± in H1(Td−1),
one has

dW (z−,z+)≤ liminf
n→∞

dW (v−n ,v
+
n ).

Then the problem (P) has a solution, i.e., there exists u∈ Ḣ1
div(Ω,Rd) such that E(u)= cW (u−,u+)

and u(±∞) = u±.

In this multiple-well context, the triangle inequality (H3) is essential. It insures that, if the
energy of an admissible function u with u(±∞) = u± is almost minimal (i.e., E(u)− cW (u−,u+)
is small enough), then the path t 7→ u(t, ·) cannot get too close in H1(Td−1) to a zero of W other
than u− and u+. We also observe that, under the assumption (H4), one has dW = cW on Sa×Sa:

Proposition 2.4. If W :Rd→R+ is a continuous function such that the assumption (H4) is fulfilled
for some a ∈ R, then one has dW (z−,z+) = cW (z−,z+) for every z± ∈ Sa.

The assumption (H4) always holds in dimension d = 2 for a continuous potential W , while in
higher dimensions d ≥ 3, a growth condition on W should be assumed in addition:

Proposition 2.5. Let W : Rd → R+ be a continuous function. If d ≥ 3, assume the following
growth condition: 4

there exist C > 0 and q ∈
(
1,

2d
d−3

)
s.t. W (z)≤C(1+ |z|q), ∀z ∈ Rd. (2.6)

Then for every a ∈ R, z± ∈ Sa and for every sequences (v±n )n∈N ⊂ H1
a (Td−1,Rd) converging

strongly in H1 to z±, one has dW (z−,z+) = limn→∞ dW (v−n ,v
+
n ). In particular, the assumption

(H4) holds true.

2.2 One-dimensional symmetry of global minimizers
In order to prove symmetry of global minimizers of (P), we develop a calibration method for
divergence-free maps in any dimension d ≥ 2; this method is reminiscent in dimension d = 2
from the couple (entropy, entropy-flux) used in scalar conservation laws (see e.g. [7, 41]). More
precisely, if d ≥ 2, our key object is the so-called entropy designing a C 1 map Φ : Rd → Rd such
that for every smooth divergence-free map u : Ω→ Rd with ∇ · [Φ(u)] being integrable on Ω, one
has ∫

Ω

∇ · [Φ(u)] dx≤ E(u) (2.7)

(see Definition 4.5 for a precise statement and comments). If u satisfies the boundary condition
u(±∞) = u± ∈ Sa, then the LHS of (2.7) is independent from u since∫

Ω

∇ · [Φ(u)] dx = Φ1(u+)−Φ1(u−). (2.8)

Next to the first condition (2.7), we impose the following second condition, called saturation
condition for entropies Φ:

Φ1(u+)−Φ1(u−) = E(u1D), (2.9)

4With the convention 2d
d−3 =+∞ if d = 3.
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provided that there exists a minimizing one-dimensional transition layer u1D of (2.3). Note that the
existence of an entropy satisfying the saturation condition implies that u1D is a global minimizer
of (P) (for details see Propositions 4.7 and 4.8). Moreover, if u is another global minimizer
of (P), then (2.7) has to be an equality; this equality is the corner stone in our proofs for the
one-dimensional symmetry of u (see e.g. Proposition 4.19).

The existence of an entropy Φ is a delicate issue and requires strong assumptions on W . Even
if there is no general recipe, we will present three situations where we are able to determine
potentials W for which entropies Φ do exist.

Situation 1. Strong punctual condition (Estrg). We look for continuous potentials W for which
there exist C 1 maps Φ : Rd → Rd satisfying the saturation condition (2.9) and the punctual esti-
mate

(Estrg) |Π0∇Φ(z)|2 ≤ 2W (z) for every z ∈ Rd, (2.10)

where Π0 is the orthogonal projection onto the set of traceless matrices:

Π0U =U− Tr(U)

d
Id, U ∈ Rd×d,

and Id stands for the identity matrix in Rd×d . Then (2.10) is a sufficient condition for Φ to be an
entropy. Indeed, for all smooth u : Ω→ Rd with ∇ ·u = 0, one has ∇u = (∂ jui)i, j ∈ Im(Π0) and
therefore,

∇ · [Φ(u)] = ∇Φ(u) : Π0∇uT = Π0∇Φ(u) : ∇uT

≤ 1
2
(|∇u|2 + |Π0∇Φ(u)|2)

(2.10)
≤ 1

2
|∇u|2 +W (u), (2.11)

where UT is the transpose of a matrix U and the Euclidean scalar product on Rd×d is denoted by

U : V = Tr(UV T ) = ∑
i, j∈{1,...,d}

Ui jVi j.

We refer to Section 4.3 for more details.

Situation 2 (resp. 3). Entropies with symmetric (Esym) (resp. antisymmetric (Easym)) Jaco-
bian. Let Π+ (resp. Π−) be the projection of Rd×d on the subspace of symmetric (resp. antisym-
metric) matrices, that is

Π
±U =

1
2
(U±UT ) for every U ∈ Rd×d.

We want to find potentials W for which there exist maps Φ ∈ C 1(Rd,Rd) satisfying the saturation
condition (2.9) and one of the conditions

(Esym) ∇Φ(z) is symmetric and |Π0∇Φ(z)|2 ≤ 4W (z), ∀z ∈ Rd,

resp. (Easym) Π0∇Φ(z) is antisymmetric and |Π0∇Φ(z)|2 ≤ 4W (z), ∀z ∈ Rd. (2.12)

Then (Esym) (resp. (Easym)) is a sufficient condition for Φ to be an entropy. Indeed, if Φ ∈
C 1(Rd,Rd) satisfies ∇Φ(z) ∈ Im(Π±) for every z ∈ Rd , then for all smooth u : Ω→ Rd with
∇ ·u = 0, one has

∇ · [Φ(u)] = ∇Φ(u) : ∇uT = Π
±

∇Φ(u) : Π0∇uT = Π0∇Φ(u) : Π
±

∇uT . (2.13)

9
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By Young’s inequality and (Esym) (resp. (Easym)) in (2.12), it yields∫
Ω

∇ · [Φ(u)]dx≤ 1
2

(
2‖Π±∇u‖2

L2(Ω)+
1
2
‖Π0∇Φ(u)‖2

L2(Ω)

)
≤ E(u)

due to the following identities valid for u∈ Ḣ1
div(Ω,Rd) with ū∈ L∞(R,Rd) (see Proposition 4.12)

‖Π+
∇u‖2

L2(Ω) = ‖Π
−

∇u‖2
L2(Ω) =

1
2
‖∇u‖2

L2(Ω). (2.14)

Following the criteria (Estrg) in (2.10), or (Esym) (resp. (Easym)) in (2.12), we will construct
potentials W for which all global minimizers of (P) are one-dimensional. We present these results
in dimension d = 2 and then in dimension d ≥ 3. All our results also hold true in the ε−rescaled
model (1.4) for ε > 0 fixed. One important observation is that the existence of an entropy Φ

satisfying the saturation condition (2.9) and one of the conditions (Estrg), (Esym) or (Easym) implies
that any global minimizer of (P) satisfies the following first order PDE, which encodes the Euler-
Lagrange equation (1.1), the (second order) stability conditions and the equipartition of the energy
density, i.e. 1

2 |∇u|2 =W (u) a.e. in Ω:

1. if Φ ∈ C 1(Rd,Rd) satisfies (Estrg), then any global minimizer u of (P) solves

W (u) =
1
2
|Π0∇Φ(u)|2 and ∇uT = Π0∇Φ(u) a.e. in Ω; (2.15)

2. if Φ ∈ C 1(Rd,Rd) satisfies (Easym), then any global minimizer u of (P) solves

W (u) =
1
4
|Π0∇Φ(u)|2 and 2Π

−
∇uT = Π0∇Φ(u) a.e. in Ω; (2.16)

3. if Φ ∈ C 1(Rd,Rd) satisfies (Esym), then any global minimizer u of (P) solves

W (u) =
1
4
|Π0∇Φ(u)|2 and 2Π

+
∇u = Π0∇Φ(u) a.e. in Ω (2.17)

(see Proposition 4.16).

Symmetry results in dimension d = 2. We prove one-dimensional symmetry in the minimiza-
tion problem (P) for potentials W = 1

2w2, where w solves the Laplace equation or the wave
equation and satisfies the following growth condition:

there exist C,β > 0 such that W (z)≤C eβ |z|2 ∀z ∈ R2. (2.18)

Theorem 2.6. Assume that W = 1
2w2 where w ∈ C 2(R2,R) solves

∆w = ∂11w+∂22w = 0 (resp. �w = ∂11w−∂22w = 0) in R2

and let u± = (a,u±2 )∈R2 be two wells of W, i.e. W (u±) = 0, such that w > 0 on the open segment
(u−,u+). Assume that u is a global minimizer of (P) and either u ∈ L∞ or W satisfies the growth
condition (2.18). Then u is one-dimensional, i.e., u = g(x1) where g is the unique minimizer in
(2.3) (up to translation in x1-variable).

10
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The proof of Theorem 2.6 is based on the construction of an entropy Φ such that

∇Φ(z) =
(
−α(z) w(z)
∓w(z) −α(z)

)
for all z ∈ R2, (2.19)

for some scalar function α that solves the same equation as w. The sign ∓ = + in (2.19) corre-
sponds to Situation 2 of an entropy Φ with symmetric Jacobian which applies if w solves the wave
equation, resp. the sign ∓ = − corresponds to Situation 3 of an entropy Φ with antisymmetric
Jacobian (i.e., Φ is holomorphic on R2) which applies if w is a harmonic function in R2. The
one-dimensional symmetry will follow by investigating the equality in (2.7) (in particular (2.16)
and (2.17)).

If w is harmonic, due to the classical maximum principle, the set {W = 0}= {w = 0} cannot
contain an isolated point or a closed curve. In fact, if w is not constant, then {w = 0} is a union
(possibly infinite) of noncompact smooth curves (without end-points). An example is given by
w(z1,z2) = z1z2, where {w = 0} is the union of two orthogonal straight lines 5. In the case of
the wave equation, we recover the Ginzburg-Landau potential for w(z) = 1−|z|2√

2
and therefore, the

one-dimensional symmetry of global minimizers in the Aviles-Giga model: 6

Corollary 2.7. Let W (z) = (1−|z|2)2

4 and u± = (a,±b) ∈ R2 be two wells of W with a2 + b2 = 1.
Assume that u is a global minimizer of (P). Then u is one-dimensional, i.e. u(x) = g(x1) with
g ∈ C ∞(R,R2) being the unique minimizer of (2.3) (up to translation in x1-variable).

We will provide a symmetry result also for more general potentials W = 1
2w2, where w solves

the Tricomi equation.

Theorem 2.8. Assume that W = 1
2w2 where w ∈ C 2(R2,R) satisfies the Tricomi equation

∂11w− f (z1)∂22w = 0 for every z = (z1,z2) ∈ R2, (2.20)

for a C 1 function f : R→ R with | f | ≤ 1 in R. Let u± = (a,u±2 ) ∈ R2 be two wells of W, i.e.
W (u±) = 0, such that w > 0 on the open segment (u−,u+). If u is a global minimizer of (P)
and either u ∈ L∞ or |∇w| satisfies the growth condition (2.18)7, then u is one-dimensional, i.e.,
u = g(x1) where g is the unique minimizer in (2.3) (up to translation in x1-variable).

Remark 2.9. i) If f = ±1 in (2.20), we recover the case of w satisfying the wave equation and
the Laplace equation, respectively. Another example is given by the potential W = 1

2w2 with

w =
1−δx2

1−x2
2√

2
and the constant δ ∈ (−1,1)\{0} (here, f = δ in (2.20)).

ii) We point out that the symmetry result for global minimizers of (P) fails in general for
potentials W (z) = 1

2w2(z) where w ∈ C 2(R2,R) satisfies the Tricomi equation for some large

function f . Indeed, Jin-Kohn [41] proved that for w =
1−δx2

1−x2
2√

2
where f = δ � 1 is large, the

one-dimensional transition layer between the wells (0,±1) in direction x1 is no longer a global
minimizer because two-dimensional microstructures are energetically less expensive. 8

5The potential W (u) = 1
2 u2

1u2
2 appears naturally in phase separation models, see Example 4.24.

6As stated by R.V. Kohn in [42] (based on a personal communication from S. Serfaty), in the ε-rescaled Aviles-
Giga model (1.4), the two-dimensional microstructure of the cross-tie wall has asymptotically the same energetic cost
as the one-dimensional transition layer in the limit ε → 0, see Appendix C.

7Note that (2.18) is asked for |∇w| and not only for w as in Theorem 2.6; this is because in Theorem 2.6, i.e. when
f is constant, we get from the optimality conditions (2.16) and (2.17) that global minimizers belong to L∞

loc using only
the growth of w. For non-constant f in Theorem 2.8, the growth condition on ∇w is needed in order to deduce the
regularity of global minimizers, see Remark 3.13.

8A similar counter-example was constructed in [17] in a model for the two-gradient theory of phase transitions.
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Symmetry results in dimension d ≥ 2. Following the criterium (Esym) in (2.12), we can con-
struct a family of potentials W in any dimension d ≥ 3 for which the answer to Question 1 is
positive. These potentials are the generalization of the 2D case of potentials W = 1

2w2 where w is
a solution to the wave equation. As in 2D, we will impose a growth condition on the potential W :

∃C,β > 0, ∀z ∈ Rd, W (z)≤

{
C eβ |z|2 if d = 2,
C [1+ |z|2∗] if d ≥ 3,

(2.21)

where 2∗ = 2d
d−2 is the critical integrability exponent for the Sobolev embedding H1(Rd) ↪→

L2∗(Rd). Moreover, we need to assume the existence of an entropy Φ ∈ C 1(Rd,Rd) satisfying
the saturation condition (2.9); more precisely, the minimal energy of one-dimensional transition
layers between two zeros u± ∈ Sa of W (see (2.1)) is given by the geodesic pseudo-distance geoda

W
between u± in the hyperspace Rd

a endowed with the pseudo-metric 2Wg0 (with g0 being the stan-
dard euclidean metric), i.e.,

geoda
W (u−,u+) := inf

{∫ 1

−1

√
2W (γ(t))|γ̇|(t)dt :

γ ∈ Lip([−1,1],Rd
a), γ(±1) = u±

}
. (2.22)

Theorem 2.10. Let Φ = (Φ1, . . . ,Φd) ∈ C 1(Rd,Rd) be a map such that for every z ∈ Rd , ∇Φ(z)
is symmetric and

∂1Φ1(z) = · · ·= ∂dΦd(z). (2.23)

Consider the potential

W (z) =
1
2 ∑

1≤i< j≤d
|∂ jΦi(z)|2 (2.24)

and two wells u± ∈ Rd
a ∩{W = 0} of W for some a ∈ R. If the saturation condition

Φ1(u+)−Φ1(u−) = geoda
W (u−,u+) (2.25)

is satisfied and if u is a global minimizer of (P) such that either (u ∈ L∞(Ω,Rd) and W ∈
C 2(Rd,R+)) or W satisfies the growth condition (2.21), then u is one-dimensional, i.e. u = u(x1).

In order to build explicit examples of potentials W for which Theorem 2.10 applies, we con-
sider entropies Φ ∈ C 1(Rd,Rd) of the form Φ(z) = ∇Ψ(z) for all z ∈ Rd , for some Ψ ∈ C 2(Rd).
Then, ∇Φ = ∇2Ψ is symmetric and the condition (2.23) becomes in terms of Ψ:

∂11Ψ = · · ·= ∂ddΨ. (2.26)

By analogy with the wave equation in R2, solutions of (2.26) can be written

Ψ(z) = ∑
σ∈{±1}d

fσ (σ · z), z ∈ Rd,

where ( fσ )σ is a family of scalar functions defined over R. In particular, we recover the following
extension of the 2D Ginzburg-Landau potential in any dimension d ≥ 3:

Wd(z) :=
1
4
(|z|2−1)2 + |z′′|2(z2

1 + z2
2), z = (z1,z2,z′′) ∈ Rd, z′′ = (z3, . . . ,zd),

12
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corresponding to

Ψd(z) =−
z1z2√

2

(
z2

1 + z2
2

3
+ |z′′|2−1

)
, z = (z1,z2,z′′) ∈ Rd.

We highlight that the saturation condition in Theorem 2.10 is not always satisfied; in fact, we will
see that for the perturbed Ginzburg-Landau potential W3 in 3D, the saturation condition fails for
the wells u± =±e3 of W , i.e., Φ1(u+)−Φ1(u−) = 0 < geoda

W (u−,u+) and in that case, there are
no minimizers of (P), see page 61.

Following the criterium (Estrg) in (2.10), we present another situation where the answer to
Question 1 is positive, consisting in a family of potentials W with finite number of wells X :=
W−1({0}). In this situation, the minimal energetic cost between two wells u± ∈ X is expected
to be given by the geodesic distance geodW between u− and u+ in Rd endowed with the metric
2Wg0 (recall that g0 is the standard euclidean metric): 9 for every z−,z+ ∈ Rd ,

geodW (z−,z+) := inf
{∫ 1

−1

√
2W (γ)|γ̇| :

γ ∈ Lip([−1,1],Rd), γ(±1) = z±
}
. (2.27)

We will prove that for any affine basis X in Rd and any given metric δ on X , there exists a potential
W such that geodW coincides with δ on X and the optimal transition layers between any two wells
of X are one-dimensional. For that, we need to set some notation as the transition direction
between two wells u± ∈ X is not necessarily e1: if u± ∈ X , ν ∈ Sd−1 with ν · (u+−u−) = 0 and
R ∈ SO(d) such that Rν = e1, then we set the rotated cylinder ΩR = R−1Ω and the energy on ΩR

ER(u) :=
∫

ΩR

1
2
|∇u|2 +W (u)dx, ∇ ·u = 0, (2.28)

where the minimisation of ER is considered over divergence-free maps u ∈ Ḣ1
div(ΩR,Rd) that are

periodic in the directions R−1ek, k = 2, . . . ,d and satisfy the boundary condition

lim
t→±∞

∫
R−1Td−1

u(tν +σ)dH d−1(σ) = u±. (2.29)

Theorem 2.11. Let X = {x0, . . . ,xd} be an affine basis in Rd and let δ be a metric on X. Then there
exists a Lipschitz potential W : Rd→R+ such that W (z) = 1 for |z| large enough, X =W−1({0}),
geodW = δ on X ×X and for every u± ∈ X, ν ∈ Sd−1 with ν · (u+−u−) = 0 and any R ∈ SO(d)
such that Rν = e1, if u ∈ Ḣ1

div(ΩR,Rd) is a global minimizer of ER in (2.28) over divergence-free
configurations with the boundary condition (2.29), then u is one-dimensional, i.e., u = g(x · ν)
where g ∈ Ḣ1(R,Rd) with g(±∞) = u± and ER(u) = δ (u−,u+).

The proof of Theorem 2.11 is based on the criterium (Estrg) for the existence of entropies.
More precisely, we construct a potential W of the form 1

2 |∇ϕ|2 for a scalar function ϕ : Rd → R
such that |ϕ(u+)−ϕ(u−)|= δ (u−,u+) for every two wells u± ∈ X ; the corresponding entropy Φ

for a pair of wells u± ∈ X and a direction ν ∈ Sd−1 with ν · (u+− u−) = 0 is given by Φ := ϕν

which satisfies (2.10) and the saturation condition (2.25).
In dimension d ≥ 3, we will show that the criterium (Easym) in (2.12) is too rigid in order to

construct entropies Φ leading to potentials W for which the answer to Question 1 is positive (see
Proposition 4.29 and Corollary 4.30).

9Note the difference with respect to the geodesic distance geoda
W defined in (2.22) where the curves γ are confined

in the hyperspace Rd
a .
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Approximation argument. In order to remove the smoothness condition on the admissible
maps u imposed in the definition of entropies (2.7), a key ingredient is the following regularization
procedure that insures the avoidance of the so-called “Lavrentiev gap” with respect to the general
set of admissible maps (not necessarily smooth) with finite energy {u∈ Ḣ1

div(Ω,Rd) : E(u)< ∞}.
This is done under the growth condition (2.21) imposed on the potential W .

Lemma 2.12. Let W : Rd → R+ be a continuous potential, u± ∈ Sa for some a ∈ R and u ∈
Ḣ1

div(Ω,Rd) be a map such that E(u) < ∞ and u(±∞) = u±. If either W satisfies (2.21) or (u ∈
L∞(Ω) and W ∈ C 2(Rd,R+)) then there exists a sequence (uk)k≥1 ⊂ C ∞∩L∞∩ Ḣ1

div(Ω,Rd) such
that uk(±∞) = u± for each k, and

uk −→
k→∞

u in Ḣ1(Ω,Rd), eden(uk)−→
k→∞

eden(u) in L1(Ω),

where eden(u) stands for the energy density, i.e. eden(u) = 1
2 |∇u|2 +W (u). In the case where the

growth condition (2.21) holds true, then one can impose in addition that uk satisfies uk(±t) = u±

for all t ≥ tk with tk large, for every k ∈ N.

Change of variables under rotation. The fact that we consider an infinite cylinder Ω oriented
in x1-direction, is an implicit way of fixing the direction of the transition between u− and u+. Of
course, one can always reduce to this case by rotation as follows. Let ν ∈ Sd−1 be a new transition
axis and let R ∈ SO(d) be a rotation such that Rν = e1. Define the rotated domain

ΩR := {xR = R−1x : x ∈Ω},

which can be seen as a cylinder, infinite in the direction ν . To be more precise, ΩR is the set of
equivalence classes in Rd endowed with the equivalence relation (x ∼R y iff R(x− y) vanishes in
Ω = R×Td−1). Let us take an admissible configuration

u : Ω→ Rd such that ∇ ·u = 0,

and define the rotated map uR by

uR : ΩR→ Rd, uR(xR) = R−1u(RxR), xR ∈ΩR.

Thus, uR is still divergence free thanks to the elementary computation,

∇ ·uR(xR) = Tr(∇uR(xR)) = Tr(R−1
∇u(RxR)R) = ∇ ·u(RxR) = 0, xR ∈ΩR.

Set WR : Rd → R+ the new potential defined by

WR(zR) =W (RzR), zR ∈ Rd.

Then for any u ∈ Ḣ1
div(Ω,Rd), one has

E(u) =
∫

Ω

1
2
|∇u|2 +W (u)dx = ER(uR) =

∫
ΩR

1
2
|∇uR|2 +WR(uR)dxR.

Moreover, if u± are two wells of W compatible with the divergence constraint and the boundary
condition u(±∞) = u±, i.e., (u+−u−) · e1 = 0, then the rotated wells,

u±R := R−1u± ∈ {WR = 0},

14
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are compatible with the divergence constraint ∇ ·uR = 0 and the new boundary condition:

lim
t→±∞

∫
{xR∈ΩR : xR·ν=t}

uR(xR)dH d−1(xR) = u±R .

Moreover, if Φ : Rd → Rd satisfies (2.7) and (2.8), then ΦR defined by

ΦR : Rd → Rd, ΦR(zR) = R−1
Φ(RzR), zR ∈ Rd,

is an entropy adapted to the new energy functional ER and the rotated wells u±R , i.e. (2.7) and (2.8)
hold true for (ΩR,ΦR,uR,ER) instead of (Ω,Φ,u,E).

From the previous analysis, we deduce that the study of the existence and the symmetry of
global minimizers for a potential WR and a transition configuration (ν ,u+R ,u

−
R ) (i.e. a transition

axis ν , and two wells u±R of WR with ν · (u+R − u−R ) = 0) reduces to the same study for the po-
tential W (z) =WR(R−1z) and the transition configuration (e1,u+,u−) = (Rν ,Ru+R ,Ru−R ). For the
existence of minimizers, the assumptions of Theorems 2.1 and 2.3 easily transpose to any configu-
ration axis ν . For the one-dimensional symmetry of global minimizers, note that the assumptions
on W = 1

2w2 in Theorem 2.6 (when w is harmonic), Corollary 2.7 and Theorem 2.11 are invariant
by rotation, i.e. it remains true with WR instead of W . Indeed, the Laplace equation ∆w = 0 is in-
variant by rotation, while for the Ginzburg-Landau potential, w(z) = 1−|z|2√

2
is radially symmetric.

The previous analysis also implies that in Theorem 2.11, it is enough to prove one-dimensional
symmetry for the special transition axis ν = e1 (i.e. R = Id and ΩR = Ω).

2.3 Structure of the paper
In Section 3, we analyze Question 2 on the existence of global minimizers, proving Theorem 2.1
in Section 3.2 and Theorem 2.3 in Section 3.3. Section 4 is dedicated to Question 1, i.e., the study
of one-dimensional symmetry of minimizers. We first make a quick analysis of the minimization
problem (2.3) in 1D in Section 4.1. In Section 4.2, we prove the approximation argument in
Lemma 2.12. In Section 4.3, we explain our main tool, the entropy method; as an immediate
consequence, we present the structure of global minimizers as solutions to a first order PDE system
in Section 4.4. Our main results on the symmetry of minimizers in 2D (i.e. Theorems 2.6, 2.8
and Corollary 2.7) are shown in Section 4.5. Finally, we extend our method to some situations in
higher dimension by proving Theorems 2.10 and 2.11 in Section 4.6.

3 Existence of global minimizers
Due to the translation invariance in x1-direction of the domain Ω and of the energy E, the exis-
tence of a global minimizer in (P) under the boundary condition (1.3) is not trivial. In order to
overcome loss of compactness, we need a procedure that allows to concentrate the energy around
the origin. This will be made possible by translating each element un of a given minimizing se-
quence (un)n∈N, in such a way that the transition between u− and u+ is roughly achieved in a fixed
neighborhood of the origin in Ω.

3.1 Some preliminaries
We denote by (ei)i=1,...d the canonical basis of Rd , and we recall the notations Rd

a and Sa in (2.1).
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About the boundary condition. Given u ∈ Ḣ1
div(I×Td−1,Rd), where I ⊂ R is an interval, we

recall that u is the x′-average of u on Td−1 defined in (2.2). The following observation will be
useful in the sequel.

Lemma 3.1. If I ⊂R is an interval and u∈ Ḣ1(I×Td−1,Rd), then u∈ Ḣ1(I,Rd)⊂C 0,1/2(I,Rd).
If in addition ∇ ·u = 0, then

u1(t) := u(t) · e1 is constant in I.

In particular, if I =R and u(±∞) = u± ∈Rd
a for some a ∈R, then u1(t)≡ a, i.e. u(t) ∈Rd

a for all
t ∈ I.

Proof. The fact that u ∈ Ḣ1(I,Rd) immediately follows from the Jensen inequality:

∫
I
| d
dx1

u(x1)|2 dx1 =
∫

I

∣∣∣∣∫Td−1
∂1u(x1,x′)dx′

∣∣∣∣2 dx1 ≤
∫

I×Td−1
|∇u|2 dx.

In particular, u ∈ C 0,1/2(I,Rd) by Sobolev embedding. When ∇ ·u = 0, since Td−1 has no bound-
ary, one has

d
dx1

u1 =
∫
Td−1

∂1u1 dx′ =−
∫
Td−1

∇
′ ·u′ dx′ = 0 a.e. in I,

where
∇
′ = (∂2, . . . ,∂d) and u′ = (u2, . . . ,ud).

This entails that u1 is constant.

We will use the following standard result several times in the proofs of the one-dimensional
symmetry of minimizers:

Lemma 3.2. If u ∈ Ḣ1(Ω,Rd) satisfies u(±∞) = u±, then there exist two sequences (R+
n )n∈N and

(R−n )n∈N such that (R±n )n∈N→±∞ and

‖u(R±n , ·)−u±‖H1(Td−1,Rd) −→n→∞
0,

where u(R, ·) stands for the trace of the Sobolev function u at x1 = R, for every R ∈ R.

Proof. As the function x1 7→ ‖∇′u(x1, ·)‖2
L2(Td−1)

is integrable over R, one can find two sequences
(R±n )n∈N→±∞ such that ‖∇′u(R±n , ·)‖L2 tends to 0 as n→ ∞. Moreover, by assumption, u(x1)
tends to u± as x1→±∞. This finishes the proof as convergence of gradients and convergence in
average implies convergence in H1(Td−1), by the Poincaré-Wirtinger inequality.

Remark 3.3. If f ∈ Ḣ1(Ω) with f̄ ∈ L∞(R), then there exist two sequences (R±n )n∈N→±∞ such
that the product ‖ f (R±n , ·)‖L2(Td−1)‖∂1 f (R±n , ·)‖L2(Td−1) → 0 as n→ +∞. The proof follows as
above since the L2 norm of f (R±n , ·) is kept bounded by the Poincaré-Wirtinger inequality.
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About the cost function cW . A fundamental observation in proving the existence of global
minimizers is the following nondegeneracy property of cW defined in (2.4):

Proposition 3.4. Let W : Rd → R+ be a continuous function and assume that (H1) and (H2) are
satisfied for some a ∈ R. Then, for all δ > 0, there exists ε > 0 such that for all x,y ∈ Rd

a ,

|x− y| ≥ δ =⇒ cW (x,y)≥ ε.

In order to prove Proposition 3.4, we need to estimate the energy from below. This can be done
by averaging in the d−1 last variables. Namely, given an interval I⊂R and u∈ Ḣ1(I×Td−1,Rd),
the Jensen inequality yields

E(u, I) =
∫

I

∫
Td−1

(
1
2
|∂1u|2 + 1

2
|∇′u|2 +W (u)

)
dx′ dx1

≥
∫

I

1
2

∣∣∣ d
dx1

u(x1)
∣∣∣2 + e(u(x1, ·))dx1,

where the energy density e is defined by

e(v) :=
∫
Td−1

1
2
|∇′v|2 +W (v)dx′ for all v ∈ H1(Td−1,Rd).

Thus, if in addition ∇ ·u = 0 and u1 ≡ a in I, one has

E(u, I)≥
∫

I

1
2

∣∣∣ d
dt

u(t)
∣∣∣2 +V (u(t))dt, (3.1)

where V : Rd
a → R+ is defined for all z ∈ Rd

a by

V (z) := inf
{

e(v) : v ∈ H1(Td−1,Rd),
∫
Td−1 v = z

}
≥ 0. (3.2)

This observation is the starting point in the proof of the following lemma:

Lemma 3.5. Let W : Rd → R+ be a continuous function and assume that (H2) is satisfied for
some a ∈ R. Then the function V : Rd

a → R+ defined in (3.2) satisfies the following:

1. V is lower semicontinuous in Rd
a ,

2. for all z ∈ Rd
a , V (z)≤W (z), the infimum in (3.2) is achieved and

[
V (z) = 0⇔W (z) = 0

]
,

3. V∞ := liminf
z∈Rd

a , |z|→∞

V (z)> 0,

4. for all interval I ⊂ R and for all u ∈ Ḣ1
div(I×Td−1,Rd) such that u(t) ∈ Rd

a for all t ∈ I,
one has

E(u, I)≥ EV (u, I) :=
∫

I

1
2

∣∣∣ d
dt

u(t)
∣∣∣2 +V (u(t))dt.

Proof of Lemma 3.5. Claim 4 follows from (3.1). We divide the rest of the proof in three steps.

STEP 1: PROOF OF CLAIM 2. Clearly, for all z∈Rd
a , one has V (z)≤ e(z) =W (z). By the compact

embedding H1(Td−1) ↪→ L2(Td−1), the continuity of W and Fatou’s lemma, the direct method in
the calculus of variations implies that the infimum is achieved in (3.2). If W (z) = 0, then V (z) = 0

17
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(as V ≤W in Rd
a). Conversely, if V (z) = 0 with z ∈ Rd

a , then a minimizer v ∈ H1(Td−1,Rd) in
(3.2) satisfies V (z) = e(v) = 0 so that v≡ z and W (z) = 0.

STEP 2: V IS LOWER SEMICONTINUOUS IN Rd
a . Let (zn)n≥1 be a sequence converging to z in

Rd
a . We need to show that

V (z)≤ liminf
n→∞

V (zn).

W.l.o.g.10, one can assume that (V (zn))n≥1 is a bounded sequence that converges to liminfn→∞V (zn).
By Step 1, for each n≥ 0, there exists vn ∈ H1(Td−1,Rd) such that∫

Td−1
vn = zn and e(vn) =V (zn).

Since (zn)n≥1 and (e(vn))n≥1 are bounded, (vn)n≥1 is bounded in H1(Td−1,Rd) by the Poincaré-
Wirtinger inequality. Thus, up to extraction, one can assume that (vn)n≥1 converges weakly in H1,
strongly in L1 and a.e. in Td−1 to a limit v ∈ H1(Td−1,Rd). In particular,

∫
Td−1 v = z. Since the

L2 norm is lower semicontinuous in weak L2-topology and W is continuous, by Fatou’s Lemma,
we deduce that e is lower semicontinuous in weak H1(Td−1,Rd)-topology. Thus,

V (z)≤ e(v)≤ liminf
n→∞

e(vn) = liminf
n→∞

V (zn).

STEP 3: PROOF OF CLAIM 3. Assume by contradiction that there exists a sequence (zn)n≥1 ⊂ Rd
a

such that |zn| → ∞ and V (zn)→ 0 as n→ ∞. Then, there exists a sequence of maps (wn)n≥1 in
H1(Td−1,Rd) satisfying∫

Td−1
wn(x′)dx′ = 0 for each n ∈ N and e(zn +wn) −→

n→∞
0.

By the Poincaré-Wirtinger inequality, we have that (wn)n≥1 is bounded in H1. Thus, up to ex-
traction, one can assume that it converges weakly in H1, strongly in L1 and a.e. to a function
w ∈ H1(Td−1,Rd). Then w is constant since

0 = liminf
n→∞

e(zn +wn)≥ liminf
n→∞

∫
Td−1
|∇wn|2 dx′ ≥

∫
Td−1
|∇w|2 dx′.

We deduce w≡ 0 since
∫
Td−1 w = limn→∞

∫
Td−1 wn = 0. Thus wn→ 0 a.e and (H2) implies that for

a.e. x ∈ Td−1,
liminf

n→∞
W (zn +wn(x))≥ liminf

|z′|→∞,z1→a
W (z1,z′)> 0,

which contradicts the fact that e(zn +wn)→ 0.

The following lemma provides an estimate from below of the energy by the geodesic distance
geoda

V in Rd
a endowed with the singular metric 2V g0 (note that V vanishes on Sa that is finite by

(H1)), g0 being the standard euclidean metric in Rd
a; this geodesic distance is defined for every

x,y ∈ Rd
a by

geoda
V (x,y) := inf

{∫ 1

−1

√
2V (σ(t))|σ̇ |(t)dt :

σ ∈ Lip([−1,1],Rd
a), σ(−1) = x, σ(1) = y

}
. (3.3)

10Without loss of generality.
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Lemma 3.6. Let W : Rd → R+ be a continuous function such that (H1) and (H2) are satisfied
for some a ∈ R and let V : Rd

a → R+ be the function defined in (3.2). Then the function geoda
V :

Rd
a×Rd

a → R+ is continuous, it defines a distance over Rd
a and

cW (x,y)≥ geoda
V (x,y) for every x,y ∈ Rd

a.

Moreover, for every δ > 0, there exists ε > 0 such that for every x,y ∈ Rd
a with |x− y| ≥ δ , we

have geoda
V (x,y)≥ ε .

Proof of Lemma 3.6. STEP 1: PROOF OF THE INEQUALITY cW ≥ geoda
V . Indeed, by Lemma 3.5

(point 4.) and Young’s inequality, one has for every x,y ∈ Rd
a ,

cW (x,y)≥ inf
{∫

I

√
2V (σ(t))|σ̇ |(t)dt : I ⊂ R interval,

σ ∈ Ḣ1(I,Rd
a), σ(inf I) = x, σ(sup I) = y

}
.

Therefore, we only need to prove that the value of the above infimum remains unchanged if mini-
mizing on a set of more regular curves, namely σ ∈ Lip([−1,1],Rd

a). W.l.o.g. we assume that I is
an open interval; then let σ ∈ Ḣ1(I,Rd

a)⊂ Ẇ 1,1
loc (I,R

d
a) with σ(inf I) = x, σ(sup I) = y and define

the arc-length s : I→ J := s(I)⊂ R by

s(t) :=
∫ t

t0
|σ̇ |(t ′)dt ′, t ∈ I,

where t0 ∈ I is some fixed instant. Then, the arc-length reparametrization of σ , i.e.

σ(s(t)) := σ(t), t ∈ I,

is well-defined and provides a Lipschitz curve σ : J→ Rd
a with constant speed, i.e. | ˙̄σ | = 1 a.e.,

and such that σ(infJ) = x and σ(supJ) = y. Moreover, the change of variables s = s(t) yields∫
I

√
2V (σ(t)) |σ̇ |(t)dt =

∫
J

√
2V (σ(s))ds =

∫
J

√
2V (σ(s))|σ̇ |(s)ds.

If J is unbounded, we take a small parameter ε > 0 and we choose a compact interval [p,q] ⊂ J
such that

|x−σ(p)| sup
[x,σ(p)]

√
2V + |σ(q)− y| sup

[σ(q),y]

√
2V ≤ ε (3.4)

(here, we used the fact that V is locally bounded in Rd
a as V ≤W by Lemma 3.5) and we replace

σ
∣∣
(infJ,p] (resp. σ

∣∣
[q,supJ)) by a constant-speed parametrization of the line segment [x,σ(p)] (resp.

[σ(q),y]). The resulting curve σ̃ : J̃ ⊂ R→ Rd
a still connects x to y and by (3.4) with J̃ a compact

interval, it satisfies ∫
J̃

√
2V (σ̃(s)) | ˙̃σ |(s)ds≤

∫
[p,q]

√
2V (σ(s)) |σ̇ |(s)ds+ ε.

Last of all, by affine reparametrization, we can actually assume that J̃ = [−1,1]; the desired in-
equality follows by arbitrariness of ε > 0.
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STEP 2: geoda
V : Rd

a×Rd
a → R+ DEFINES A DISTANCE OVER Rd

a . The only non-trivial axiom to
check is the non-degeneracy, i.e., geoda

V (x,y) > 0 whenever x 6= y. Indeed, any continuous curve
σ : [−1,1]→ Rd

a such that σ(−1) = x and σ(1) = y has to cross the ring

Cη(x) := {z ∈ Rd
a :

η

2
≤ |z− x| ≤ η}

for any η ∈ (0, |x− y|], thus implying the estimate

geoda
V (x,y)≥

η

2
inf

z∈Cη (x)

√
2V (z). (3.5)

Since Lemma 3.5 yields V is lower semicontinuous and vanishes only on the finite set Sa (by
(H1)), one can find a small enough η ∈ (0, |x− y|) such that Cη(x)∩Sa = /0, so that V is bounded
from below by a positive constant on Cη(x) and thus, geoda

V (x,y)> 0.

STEP 3: THERE EXIST R,C ∈ (0,+∞) SUCH THAT FOR EVERY x,y ∈ Rd
a WITH |x| ≥ R AND

|y| ≥ R, ONE HAS

geoda
V (x,y)≥C|x− y|. (3.6)

By Lemma 3.5, there exists R ∈ (0,+∞) such that

V (z)≥ V∞

2
> 0 for every z ∈ Rd

a with |z| ≥ R
2
.

We take x,y ∈ Rd
a such that |x| ≥ R and |y| ≥ R and w.l.o.g., we assume |x| ≥ |y| and x 6= y. Then

we apply (3.5) to η = |x−y|
4 ∈ (0, |x|2 ]; noticing that for every z∈Cη(x), one has |z| ≥ |x|−η ≥R/2,

we obtain

geoda
V (x,y)≥

|x− y|
8

inf
|z|≥R

2

√
2V (z)≥

√
V∞

8
|x− y|.

STEP 4: geoda
V : Rd

a ×Rd
a → R+ IS CONTINUOUS. Let x, x̃,y, ỹ ∈ Rd

a ∩B for some ball B ⊂ Rd .
As geoda

V is a distance on Rd
a , then

|geoda
V (x,y)−geoda

V (x̃, ỹ)| ≤ |geoda
V (x,y)−geoda

V (x̃,y)|+ |geoda
V (x̃,y)−geoda

V (x̃, ỹ)|
≤ geoda

V (x, x̃)+geoda
V (y, ỹ).

Letting the transition σ be the segment [x, x̃] in the definition (3.3), one gets geoda
V (x, x̃)≤ supB

√
2V ·

|x− x̃| (idem when (x, x̃) is replaced by (y, ỹ)) and the conclusion follows since V is locally
bounded in Rd

a as V ≤W by Lemma 3.5.

STEP 5: FOR EVERY δ > 0, THERE EXISTS ε > 0 SUCH THAT FOR EVERY x,y ∈Rd
a , |x−y| ≥ δ

IMPLIES geoda
V (x,y) ≥ ε . Assume by contradiction that there exist δ > 0 and two sequences

(xn)n≥1 and (yn)n≥1 in Rd
a such that |xn−yn| ≥ δ for each n≥ 1 and limn→∞ geoda

V (xn,yn) = 0. In
particular, by (3.6), the sequence (min{|xn|, |yn|})n≥1 is bounded; up to exchange xn and yn, one
can assume that (xn)n≥1 is bounded and up to extraction, one can assume that it has a subsequence
converging to some x ∈ Rd

a . Fixing R,C > 0 such that (3.6) holds true and z0 ∈ Rd
a such that

|z0| ≥ R, we obtain for every n≥ 1 such that |yn| ≥ R,

C|yn− z0| ≤ geoda
V (yn,z0)≤ geoda

V (yn,xn)+geoda
V (xn,z0) −→n→∞

geoda
V (x,z0).

Thus, the sequence (yn)n≥1 is bounded as well so that it has a subsequence converging to some
y ∈ Rd

a; by continuity of geoda
V , we have geoda

V (x,y) = 0 and so x = y, thus contradicting the fact
that |x− y|= limn→∞ |xn− yn| ≥ δ .

20



R. Ignat and A. Monteil De Giorgi conjecture for Stokes problem

Proof of Proposition 3.4. Proposition 3.4 immediately follows from Lemma 3.6.

We finish this preliminary section by the following lemma which will be useful in proving that
the boundary constraint u(±∞) = u± is preserved by limits of minimizing sequences for E:

Lemma 3.7. With the function V and the energy EV given by Lemma 3.5, under the assumptions
(H1) and (H2), let σ ∈ Ḣ1(R,Rd

a) be a map of finite energy EV (σ ,R) < +∞. Then there exist
z−, z+ ∈ Sa such that lim

t→±∞
σ(t) = z±.

Proof. By Lemma 3.6, we know that geoda
V : Rd

a ×Rd
a → R+ defines a distance on Rd

a . If the
target space Rd

a of σ is endowed with the distance geoda
V , then the estimate EV (σ ,R)<+∞ yields

a bound on the total variation of σ : R→ (Rd
a,geoda

V ). Indeed, for every sequence t1 ≤ ·· · ≤ tN in
R, by the Young inequality, we have

N

∑
i=1

geoda
V (σ(ti+1),σ(ti))≤

N

∑
i=1

EV (σ , [ti, ti+1])≤ EV (σ ,R)<+∞.

In particular, for every ε > 0, there exists R > 0 such that for all t,s ∈R with t,s≥ R or t,s≤−R,
one has geoda

V (σ(t),σ(s))< ε . By Lemma 3.6, it follows that for every δ > 0, there exists ε > 0
such that geoda

V (x,y)< ε implies |x− y|< δ ; thus, we deduce that σ has a limit z± ∈ Rd
a at ±∞.

Since V (σ(·)) is integrable in R, we have furthermore that V (z±) = 0, i.e. z± ∈ Sa.

3.2 The case of double-well potentials in Rd
a. Proofs of Theorems 2.1 and 2.2

Given a continuous potential W : Rd → R+ with only two wells u± in Rd
a for some a ∈ R, i.e.,

Sa = {u±}, our aim is to prove existence of a solution to the minimization problem (P). We will
actually prove relative compactness (up to translation in x1-direction) of admissible configurations
with uniformly bounded energy (not only minimizing sequences) as stated in Theorem 2.2. The
proof for double-well potentials in Rd

a will use Proposition 3.4, whereas the case of multiple-well
potentials in Rd

a requires more precise estimates on the energy and the relative compactness only
holds for minimizing sequences.

Strategy for proving Theorem 2.2. Since E is lower semicontinuous on Ḣ1(Ω,Rd) endowed
with the weak convergence (i.e., L2-weak convergence of gradients and strong L2

loc-convergence
of maps), and since boundedness of the energy implies boundedness of the L2-norm of gradients,
it is enough to prove that the boundary condition (1.3) is preserved in the limit (up to translation in
x1-direction). We will present two proofs of Theorem 2.2. The first proof is based on the following
Lemma 3.8 which does not use the fact that Sa = {u±} but only the fact that Sa is finite (i.e. (H1))
and is somehow reminiscent from the compactness result [34, Lemma 4.4], while the second proof
is based on [24, Lemma 1].

Lemma 3.8. Let W : Rd → R+ be a continuous function and assume that (H1) and (H2) are
satisfied for some a ∈ R. Let (un)n≥1 be a sequence in Ḣ1

div(Ω,Rd) such that un(±∞) = u± ∈ Sa
for each n≥ 1 and

sup
n

E(un) = sup
n

∫
Ω

1
2
|∇un|2 +W (un)dx < ∞.
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If ε > 0 is a small radius such that the closed balls B± := B(u±,ε) ⊂ Rd are disjoint, then there
exist a sequence (tn)n≥1 ⊂ R and T ≥ 1, such that, up to a subsequence, one has for every n ≥
log2 T ,

un(t) /∈ B− for all t ∈ [tn +T, tn +2n] and un(t) /∈ B+ for all t ∈ [tn−2n, tn−T ].

Proof of Lemma 3.8. STEP 1: STUDY OF THE OSCILLATIONS OF (un)n≥1. For each fixed n≥ 1,
let us build a sequence of intervals (In

k )k≥1 by induction as follows (see Figure 1):

•u+

•u−

B+

B−

x1

x′

•
un(α

n
2 )

•
un(β

n
1 ) •

un(α
n
3 )

•
un(β

n
2 )

•
un(α

n
4 )

•
un(β

n
3 )

In
1

In
2

In
3

In
4

Figure 1: Possible trajectory for un and the corresponding In
k

• In
1 := (αn

1 ,β
n
1 ), where αn

1 =−∞ and β n
1 < ∞ is the first instant for which un(β

n
1 ) ∈ ∂B+. In

other words, In
1 is the first maximal interval in u−1

n (Bc
+) (which exists since un(−∞) = u−),

where Bc
+ := Rd \B+.

• In
2 = (αn

2 ,β
n
2 ) is the maximal interval in u−1

n (Bc
−) containing β n

1 . Thus, either un(β
n
2 ) ∈ ∂B−

or β n
2 =+∞.

• Given k ≥ 2, assume that In
k = (αn

k ,β
n
k ) has been constructed, and that β n

k < +∞. Then we
define In

k+1 = (αn
k+1,β

n
k+1) as the maximal interval in u−1

n (Bc) containing β n
k , where either

B = B− if un(In
k ) ⊂ Bc

+ or B = B+ if un(In
k ) ⊂ Bc

−. Thus, either un(β
n
k+1) ∈ ∂B or (B = B−

and β n
k+1 =+∞).

This induction stops at the first iteration step kn ∈N∪{+∞} for which β n
kn
=+∞. Note that kn≥ 2,

for every n.

STEP 2: (kn)n≥1 IS A BOUNDED SEQUENCE. Indeed, by construction for n fixed, the αn
k and β n

k
are ordered as follows:

α
n
1 =−∞ < α

n
2 < β

n
1 ≤ α

n
3 < β

n
2 ≤ α

n
4 < β

n
3 ≤ α

n
5 ≤ ·· ·< β

n
kn
=+∞.

In particular, for every index k ∈ (1,kn), one has αn
k < β n

k−1 ≤ αn
k+1 < β n

k . Moreover, by construc-
tion of In

k , we know that either un(β
n
k−1) ∈ ∂B+ and both un(α

n
k ) and un(β

n
k ) belong to ∂B−, or
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un(β
n
k−1) ∈ ∂B− and both un(α

n
k ) and un(β

n
k ) belong to ∂B+; in other words, un makes two transi-

tions between B− and B+ (one on (αn
k ,β

n
k−1) and the other on (β n

k−1,β
n
k )). In particular, since the

intervals (In
2k)1<2k<kn are disjoint, one has

2cW (B−,B+)

⌊
kn−1

2

⌋
≤ ∑

1<2k<kn

E(un, In
2k)≤ sup

n
E(un,R)< ∞,

where
⌊

kn−1
2

⌋
is the integer part of kn−1

2 , and

cW (B−,B+) := inf{cW (x,y) : x ∈ B−, y ∈ B+}.

By Proposition 3.4, one has cW (B−,B+)> 0, and so supn kn < ∞.

STEP 3. We prove that there exist two indices k0, l0 and an unbounded set X ⊂N∗ (corresponding
to the indices of a subsequence of (un)n≥1) such that

• for all n ∈ X , 1≤ k0 < l0 ≤ kn,

• (Length(In
k0
))n∈X and (Length(In

l0
))n∈X converge to +∞ as n→+∞,

• for all n ∈ X , un(In
k0
)⊂ Bc

+ and un(In
l0
)⊂ Bc

−,

• (|αn
l0
−β n

k0
|)n∈X is bounded.

In order to prove existence of k0, l0, we define a finite sequence (σk)1≤k≤K ⊂{0,+,−} as follows.
We first pick K ≥ 2 to be a value that repeats infinitely many times in the sequence (kn)n≥1 (that
is bounded in N). We set X to be the set of those (infinitely many) indices n with kn = K; then
one has In

K = (αn
K,+∞) for every n ∈ X . Then, for each k ∈ N with 1 ≤ k ≤ K, we set σk by the

following algorithm (the set X might change at some steps):

• σk := 0 if the sequence (Length(In
k ))n∈X is bounded;

• σk := + if there exists a sequence (n j) j∈N ⊂ X such that Length(In j
k )→ ∞ as j→ ∞ and

un j(I
n j
k )⊂ Bc

− for every j ∈ N (in this case, X is replaced by the sequence (n j) j);

• σk := − if there exists a sequence (n j) j∈N ⊂ X such that Length(In j
k )→ ∞ as j→ ∞ and

un j(I
n j
k )⊂ Bc

+ for every j ∈ N (in this case, X is replaced by the sequence (n j) j).

Clearly, one has σ1 = − and σK = +. Thus, the sequence (σk)1≤k≤K contains at least a sub-
sequence (σk)k0≤k≤l0 of the form (−,0, . . . ,0,+). This means that (In

k0
)n∈X and (In

l0
)n∈X are un-

bounded, and that the intermediate interval between In
k0

and In
l0

is of uniformly bounded length,
i.e. (|αn

l0
−β n

k0
|)n∈X is bounded. Moreover, by construction, un(In

k0
)⊂ Bc

+ and un(In
l0
)⊂ Bc

− for all
n ∈ X .

STEP 4: END OF THE PROOF. By Step 3, the conclusion of Lemma 3.8 holds true, up to a
subsequence, with the choice tn = β n

k0
(or alternatively, take tn = αn

l0
), and T = max{1,supn |αn

l0
−

β n
k0
|}.

23



R. Ignat and A. Monteil De Giorgi conjecture for Stokes problem

First Proof of Theorem 2.2. Let us take (tn)n≥1 ⊂R and T such that the conclusion of Lemma 3.8
holds true: up to a subsequence, there exists ε > 0 such that for each n≥ log2 T ,{

un(t + tn) /∈ B(u−,ε) for all t ∈ [T,2n]

un(t + tn) /∈ B(u+,ε) for all t ∈ [−2n,−T ].
(3.7)

Since (un(·+ tn, ·))n≥1 is bounded in Ḣ1
div(Ω,Rd), up to a subsequence, it has a weak limit u ∈

Ḣ1
div(Ω,Rd). In particular, by the Sobolev embedding Ḣ1(R,Rd

a) ↪→ C 0, 1
2 (R,Rd

a), one has (un(·+
tn))n≥1→ u weakly in Ḣ1 and uniformly on compact subsets of R. From (3.7), one deduces

u(t) /∈ B(u−,ε) for all t ≥ T and u(t) /∈ B(u−,ε) for all t ≤−T. (3.8)

Now, from Lemma 3.5 and by lower semicontinuity of EV in weak Ḣ1-topology, we learn that

EV (u,R)≤ liminf
n→∞

EV (un,R)≤ liminf
n→∞

E(un)<+∞.

In particular, by Lemma 3.7, u has a limit z± ∈ Sa at ±∞. But (3.8) forces z± = u± since 11

Sa = {u−,u+}; thus, (1.3) holds true. Since E is lower semicontinuous in weak Ḣ1(Ω,Rd)-
topology, the proof is now complete.

We point out a second proof, based on the following compactness result [24, Lemma 1.], which
can be seen as a generalization of Lemma 3.8 in terms of the average sequence {ūn}:

Lemma 3.9 (L. Döring, R. Ignat, F. Otto [24]). Let (vn)n≥1 be a sequence of scalar functions
vn : R→ R uniformly bounded in Ḣ1(R), i.e., supn ‖v̇n‖L2(R) < ∞, and such that

liminf
t→+∞

vn(t)> 0 and limsup
t→−∞

vn(t)< 0 for each n≥ 1.

Then up to a subsequence, there exist (tn)n≥1 ⊂ R and v ∈ Ḣ1(R) such that vn(·+ tn)→ v weakly
in Ḣ1(R) with liminf

t→+∞
v(t)≥ 0 and limsup

t→−∞

v(t)≤ 0.

Second proof of Theorem 2.2. Let (un)n≥1 be a sequence as in Theorem 2.2, and apply Lemma 3.9
to (vn)n≥1 given by

vn(t) :=
(

un(t)−
1
2
(u++u−)

)
· (u+−u−), n≥ 1, t ∈ R.

It is clear that (vn)n≥1 satisfies the assumptions in Lemma 3.9 since (∇un)n≥1 is bounded in L2

and
lim

t→±∞
vn(t) =±

1
2
|u+−u−|2.

Thus there exist (tn)n≥1 ⊂ R and v ∈ Ḣ1(R) such that vn(·+ tn) → v weakly in Ḣ1(R) with
liminf
t→+∞

v(t)≥ 0 and limsup
t→−∞

v(t)≤ 0.

Moreover, as before, (un(·+ tn))n≥1 converges weakly in Ḣ1 to some limit u ∈ Ḣ1
div(Ω,R2)

and we have also (un(·+ tn))n≥1→ u weakly in Ḣ1. The fact that u(±∞) = u± is shown exactly

11This is the only place where (H1’) is needed instead of (H1) in the proof of Theorem 2.2.
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as in the first proof of Theorem 2.2, except that instead of (3.8) we use the following properties of
the limit v:

v(t) =
(

u(t)− 1
2
(u++u−)

)
· (u+−u−) for all t ∈ R, and liminf

t→±∞
±v(t)≥ 0.

By Lemma 3.7, we conclude the second proof of Theorem 2.2.

Proof of Theorem 2.1. There exists a minimizing sequence with uniformly bounded energy (note
that we have E(u)<+∞ for some 1D smooth transition u = u(x1) : R→Rd

a between u− and u+).
Thus, Theorem 2.1 is a consequence of Theorem 2.2.

3.3 The case of multiple-well potentials in Rd
a. Proof of Theorem 2.3

The proof of Theorem 2.3 relies on Lemma 3.8 (which do not use Assumptions (H3) and (H4))
and the following Lemma 3.10 which aims to prevent lack of compactness due to the presence of
a third well z0 ∈ Sa \{u−,u+} and uses also the assumptions (H3) and (H4):

Lemma 3.10. Let W : Rd → R+ be a continuous function such that (H1) - (H4) are satisfied for
some a ∈ R and let (un)n≥1 be a minimizing sequence, i.e. un ∈ Ḣ1

div(Ω,Rd), un(±∞) = u± ∈ Sa
for each n≥ 1, and

lim
n→∞

∫
Ω

1
2
|∇un|2 +W (un)dx = inf

{
E(u) : u ∈ Ḣ1

div(Ω,Rd) with u(±∞) = u±
}
.

Then, for all δ <min{|x−y| : x,y∈ Sa, x 6= y} and for all z∈ Sa\{u−,u+}, one has supn≥1 L 1(u−1
n (B(z,δ ))

)
<

+∞, where L 1 stands for the Lebesgue measure in R.

Proof of Lemma 3.10. Assume by contradiction that there exist δ < inf{|x−y| : x,y∈ Sa, x 6= y},
a well z0 ∈ Sa \ {u−,u+} and a subsequence (unk)k≥1 such that L 1(Ik

)
→ +∞ as k→ ∞, where

Ik := u−1
nk
(B(z0,δ )) is an open set. Since∫

Ik

(∫
Td−1

(1
2
|∇′unk(x1,x′)|2 +W (unk(x1,x′))

)
dx′
)

dx1 ≤ sup
n≥1

E(un)<+∞,

we deduce the existence of a sequence (tk)k≥1 such that for each k ≥ 1, tk ∈ Ik and∫
Td−1

(1
2
|∇′unk(tk,x

′)|2 +W (unk(tk,x
′))
)

dx′ −→
k→∞

0.

Since we have furthermore unk(tk) ∈ B(z0,δ )⊂ (Rd
a \Sa)∪{z0}, the sequence (unk(tk, ·))k≥1 con-

verges to a constant z ∈ Rd
a strongly in H1(Td−1,Rd), and this constant belongs to Sa (since

W (z) = 0 by Fatou’s Lemma) so that we have necessarily z = z0. Moreover, for each k, by
Lemma 3.2 applied to unk , there exist R−k and R+

k such that R−k < tk < R+
k , with ‖unk(R

±
k , ·)−

u±‖H1 → 0 as k→ ∞. Then, by definition of dW , we get

E(unk)≥ dW (unk(R
−
k , ·),unk(tk, ·))+dW (unk(tk, ·),unk(R

+
k , ·));

since (un)n≥1 is a minimizing sequence and by (H4), we obtain in the limit k→ ∞,

cW (u−,u+)≥ dW (u−,z0)+dW (z0,u+),

thus contradicting Hypothesis (H3) since dW (u−,u+) ≥ cW (u−,u+) (by definitions (2.4) and
(2.5)).
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Proof of Theorem 2.3. Let (un)n≥1 ⊂ Ḣ1(Ω,Rd) be a minimizing sequence for the minimization
problem (P), i.e.

+∞ > E(un) −→
n→∞

cW (u−,u+), ∇ ·un = 0 and un(±∞) = u±.

From the first proof of Theorem 2.2 (based on Lemmas 3.7 and 3.8 that use only the assumptions
(H1) and (H2)), we learn that (un)n≥1 converges up to a subsequence (and up to translation)
weakly in Ḣ1(Ω,Rd) to a limit u satisfying u(±∞) = z± ∈ Sa. For potentials W with more than
two wells, we cannot deduce at this stage z± = u±; however, we can assert that z− 6= u+ and
z+ 6= u− (thanks to Lemma 3.8). The conclusion will follow from Lemma 3.10. Indeed, by
Fatou’s lemma, we have for all δ > 0 such that δ < |x− y| whatever x,y ∈ Sa with x 6= y, and
z ∈ Sa \{u−,u+},∫

R
1B(z,δ )(u(t))dt ≤ liminf

n→∞

∫
R

1B(z,δ )(un(t))dt = liminf
n→∞

L 1(u−1
n (B(z,δ ))

)
<+∞.

In particular, L 1(u−1(B(z,δ ))
)

is finite and u cannot converge to z ∈ Sa \ {u−,u+} at ±∞. We
have thus proved u(±∞) = z± = u± and u is a solution to the minimization problem (P) since
E(u)≤ liminfn→∞ E(un) by lower semicontinuity of E.

3.4 Analysis of the transition cost. Proof of Propositions 2.4 and 2.5
Proof of Proposition 2.4. By definitions (2.4) and (2.5), we have dW (z−,z+)≥ cW (z−,z+) for all
z± ∈ Sa (there is no need of any assumption on W , in particular, no need of (H4)). Indeed, dW
is defined by minimizing E(u, I) on finite intervals I with Dirichlet conditions u = z± on the
boundary of I×Td−1; extending u by setting u = z± out of I×Td−1 (z− at the left side and z+

at the right side of I) yields an admissible function ũ with the same energy E(ũ) = E(u, I) since
W (z±) = 0, and then E(u, I)≥ cW (z−,z+).

Conversely, we now prove that dW (z−,z+)≤ cW (z−,z+) for all z± ∈ Sa under the assumption
(H4). Indeed, let u ∈ Ḣ1

div(Ω,Rd) be a map such that E(u) < +∞ and u(±∞) = z±. Thanks to
Lemma 3.2, there exist two sequences (R±n )n≥1 →±∞ with (‖u(R±n , ·)− z±‖H1)n≥1 → 0 and it
follows from (H4),

dW (z−,z+)≤ liminf
n→∞

dW (u(R−n , ·),u(R+
n , ·))≤ liminf

n→∞
E(u, [R−n ,R

+
n ])≤ E(u).

The conclusion follows by taking the infimum over u.

Proposition 2.5 is a consequence of the following technical but standard lemma:

Lemma 3.11. If W : Rd → R+ is a continuous potential satisfying (2.6), then the quantity

J(v0,v) := inf
{

E(u, [0,1]) : u ∈ Ḣ1
div([0,1]×Td−1), u(0, ·) = v0, u(1, ·) = v

}
,

defined for every v0 ∈ Sa and every v∈H1(Td−1,Rd) such that
∫
Td−1 v·e1 = a, satisfies (J(v0,vn))n≥1→

0 for every sequence (vn)n≥1→ v0 in H1(Td−1,Rd) with
∫
Td−1 vn · e1 = a for each n≥ 1.

Proof. Up to replacing vn by vn + v0, u by u+ v0 (in the infimum defining J(v0,v)) and W (·) by
W (v0 + ·), one can assume that v0 = 0 ∈ Sa with a = 0. So, let (vn)n≥1 be a sequence converging
to 0 in H1(Td−1,Rd) such that for each n,

∫
Td−1 e1 ·vn = 0. We shall prove J(0,vn)→ 0 as n→∞.

To this aim, we look for an admissible map of the form un = Pvn−wn, where P : H1(Td−1,Rd)→
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H
3
2
−
([0,1]×Td−1,Rd) is the harmonic extension operator such that for all v ∈ H1(Td−1,Rd),

Pv(0, ·) = 0, Pv(1, ·) = v and ‖Pv‖
H

3
2
− ≤C‖v‖H1 , where 3

2
−

stands for a real number strictly less

than 3
2 . In order that ∇ ·un = 0, we impose on wn the following conditions:{

∇ ·wn = fn in Q := [0,1]×Td−1,

wn = 0 on ∂Q = {0,1}×Td−1,
(3.9)

where fn = ∇ · (Pvn). By Sobolev embedding, for any p < 2d
d−1 , there exist some constants

C1,C2,C3 > 0, two real numbers 1
2
− ∈ (0, 1

2) and 3
2
− ∈ (1+ 1

2
−
, 3

2) (all depending on p) such
that

‖ fn‖Lp(Q) ≤C1‖ fn‖H1/2−(Q)
≤C2‖Pvn‖H3/2−(Q)

≤C3‖vn‖H1(Td−1).

It is known (see for instance [13, Theorem 2]) that there exists a solution wn of (3.9) such that

‖wn‖W 1,p(Q) ≤C4‖ fn‖Lp(Q),

where C4 > 0 is a constant only depending on d. Since vn → 0 in H1(Td−1), then fn → 0 in
Lp(Q), and wn → 0 in W 1,p(Q). Moreover Pvn → 0 in H3/2−(Q), and H3/2−(Q) is continu-
ously embedded in W 1,p(Q). Thus, we have proved that un = Pvn−wn→ 0 in W 1,p(Q). Since
E(un, [0,1]) = 1

2‖∇un‖2
L2(Q)

+ ‖W (un)‖L1(Q) and we can choose p ≥ 2, it remains to prove that

W (un)→ 0 in L1(Q).
In dimension d = 2, one can choose p ∈ (2,4) so that W 1,p(Q) is continuously embedded in

C 0,α for some α > 0; thus, both (un)n≥1 and (W (un))n≥1 converge uniformly to 0, in particular,
W (un)→ 0 in L1(Q). In dimension d ≥ 3, for q given in (2.6), we can choose p close to 2d

d−1 so
that W 1,p(Q) is continuously embedded in Lq yielding un→ 0 in Lq(Q); up to a subsequence, one
can assume that un→ 0 a.e. in Q. But (2.6) provides a constant C > 0 such that W (z)≤C|z|q for
every z ∈ Rd with |z| ≥ 1. Then ‖W (un)1|un|>1‖L1 ≤C‖un‖q

Lq → 0 as n→ ∞, and it is clear that
W (un)1|un|≤1→ 0 in L1(Q) by the dominated convergence theorem. This concludes W (un)→ 0
in L1(Q).

Proof of Proposition 2.5. Since one can always glue together two Ḣ1
div maps when their traces

coincide (with the new map still belonging to Ḣ1
div), the following immediately holds for each

v±n ∈ H1
a (Td−1,Rd):

J(z−,v−n )+dW (v−n ,v
+
n )+ J(z+,v+n )≥ dW (z−,z+),

J(z−,v−n )+dW (z−,z+)+ J(z+,v+n )≥ dW (v−n ,v
+
n ).

If (v±n )n≥1→ z± in H1(Td−1), then Lemma 3.11 implies that (dW (v−n ,v
+
n ))n≥1 has a limit given

by dW (z−,z+).

3.5 Regularity of minimizers.
Under some regularity assumption on W , any global minimizer u of the problem (P) solves (1.1)
so that classical regularity results for the Stokes equation apply:

Proposition 3.12. Let W ∈ C 1(Rd,R) and u ∈ Ḣ1
div(Ω,Rd) be a solution of (P). Assume in

addition that either u ∈ L∞
loc(Ω) or W is globally Lipschitz on Rd . Then there exists a pressure p

such that (1.1) holds true; moreover, p ∈W 1,q
loc (Ω,R) and u ∈W 2,q

loc (Ω,Rd) for every q ∈ (1,+∞).
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Proof. By minimality, one has E(u) ≤ E(u+ εv) for every ε > 0 and every smooth test map v
compactly supported in Ω with ∇ ·v = 0. By the Taylor-Lagrange formula applied to W ∈ C 1, for
all x∈Ω, there exists t(x)∈ [0,1] such that W (u(x)+εv(x)) =W (u(x))+ε∇W (u(x)+ε t(x)v(x)) ·
v(x). Thus, one has the inequality

0≤ E(u+ εv)−E(u)
ε

=
∫

Ω

∇u ·∇vdx+
∫

Ω

∇W (u(x)+ εt(x)v(x)) · v(x)dx+
ε

2

∫
Ω

|∇v|2 dx.

In the limit when ε → 0, by the dominated convergence theorem (note that, within our assump-
tions, ∇W (u+ εtv) is locally bounded in Ω as ε → 0), one gets∫

Ω

∇u ·∇v+∇W (u) · vdx≥ 0.

Replacing v by −v, it follows that the above LHS vanishes. In other words, the distribution
−∆u+∇W (u) vanishes when tested against smooth compactly supported divergence-free maps v,
which means that there exists a distribution p ∈D ′(Ω) such that

−∆u+∇W (u) = ∇p in D ′(Ω).

Since either u ∈ L∞
loc(Ω) or W is globally Lipschitz on Rd , then ∇W (u) ∈ L∞

loc(Ω) which implies
the claimed regularity results for u and p thanks to standard regularity for the Stokes equation (see
e.g. [30, Theorem IV.2.1]).

Remark 3.13. Without assuming u ∈ L∞
loc(Ω) or W being globally Lipschitz on Rd , one can still

show that a global minimizer u ∈ Ḣ1
div(Ω,Rd) of (P) solves the Stokes system (1.1) within some

(weaker) growth conditions on ∇W . Indeed, as u belongs to Ḣ1(Ω,Rd), one has u ∈ L2∗
loc(Ω,Rd)

with 2∗ := 2d
d−2 if d ≥ 3, and, by the Moser-Trudinger estimate, eα|u(x)|2 ∈ L1

loc(Ω) for all α > 0 if
d = 2. Thus, it is enough to assume that

|∇W (z)| ≤

{
Ceα|z|2 for some C > 0 and α > 0 if d = 2,
C(1+ |z|r) for some C > 0 and r < 2∗ if d ≥ 3.

If d = 2, one has ∇W (u) ∈ Lq
loc(Ω,Rd) for all q ∈ (1,+∞), and we get the same regularity result:

p ∈W 1,q
loc (Ω,R) and u ∈W 2,q

loc (Ω,Rd) for every q ∈ (1,+∞). If d ≥ 3 and r < 2∗, one gets p ∈
W 1,q

loc (Ω,R) and u ∈W 2,q
loc (Ω,Rd) for every q ∈ (1, 2∗

r ].

4 One dimensional symmetry of global minimizers

4.1 Analysis of the one-dimensional profile
In this section, we study existence, uniqueness and properties of one-dimensional minimizers in
(2.3) which are essential for our aim of analyzing the one-dimensional symmetry in Question 1. In
particular, the sufficient conditions we will find for W in order to prove existence in (2.3) are more
general than the ones presented in Theorems 2.1 and 2.3 for the d-dimensional problem (P). The
problem (2.3) shares the same difficulties (translation invariance, multiple zeros of the potential,
etc. . . ), but the proofs will be easier to establish since (2.3) is a minimization problem in 1D.
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Minimal energy of one-dimensional transitions. We will focus here on maps u : Ω→ Rd ,
only depending on the first variable x1, such that ∇ · u = 0 and u(±∞) = u± ∈ Sa, a ∈ R. Since
∇ ·u = ∂1u1 = 0, one has u1 ≡ a. Thus, u writes u(x) = ū(x1) = γ(x1) ∈ Rd

a for a.e. x1 ∈ R. Our
aim is to analyze solutions γ of the 1D minimization problem

γ ∈ Argmin
{

E(γ) : γ ∈ Ḣ1(R,Rd
a), γ(±∞) = u±

}
, (4.1)

where the one-dimensional energy E is defined for all γ ∈ H1
loc(R,R

d
a) by

E(γ) =
∫
R

1
2
|γ̇(t)|2 +W (γ(t))dt.

By Young’s inequality, one has

E(γ)≥ LW (γ) :=
∫
R

√
2W (γ(t)) |γ̇(t)|dt. (4.2)

The RHS integral in (4.2) is invariant by monotone reparametrization and represents the length of
the curve γ in Rd

a endowed with the singular Riemannian metric gW (z) = 2W (z)g0, where g0 is
the usual Euclidean metric on Rd

a .
If W ∈W 1,∞

loc (Rd), any solution γ of (4.1) satisfies the Euler-Lagrange equation,

γ̈(t) = ∇W (γ(t)).

In particular, γ̈ ∈ L∞
loc (i.e., γ̇ ∈W 1,∞

loc ). Moreover, multiplying the above equation by γ̇ and inte-
grating provides the equipartition of the 1D energy density:

1
2
|γ̇(t)|2 =W (γ(t)) in R.

Note that if a curve γ : R→ Rd
a satisfies the equipartition identity, then the inequality in (4.2)

becomes equality. Therefore, every global minimizer γ of E connecting u− to u+ is expected to
lie on an energy-minimizing geodesic between u− and u+ in (Rd

a,gW ) (see Proposition 4.1). The
metric gW is singular on Sa = {W = 0} but, at least if Sa is discrete, it induces the distance defined
in (3.3) for W instead of V , i.e., for all u± ∈ Rd

a ,

geoda
W (u−,u+) = inf

{∫ 1

−1

√
2W (γ(s)) |γ̇(s)|ds :

γ ∈ Lip([−1,1],Rd
a), γ(±1) = u±

}
. (4.3)

First, we prove that the infimum of E in (2.3) always coincides with geoda
W (u−,u+) under very

weak assumptions on W . This result is quite standard, but we prove it for completeness:

Proposition 4.1. For every continuous potential W : Rd → R+ and any two wells u± ∈ Sa for
some a ∈ R, one has

geoda
W (u−,u+) = inf

{
E(γ) : γ ∈ Ḣ1(R,Rd

a), γ(±∞) = u±
}
. (4.4)

In particular, if there exists a minimizer γ in (4.1), then

E(γ) = LW (γ) = geoda
W (u−,u+)

and we have equipartition of the energy density, i.e.

|γ̇(t)|=
√

2W (γ(t)) for a.e. t ∈ R.
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Proof. One can assume that u− 6= u+. The inequality ≤ in (4.4) follows from (4.2) and (4.3)
(within the reparametrization and smoothing argument presented at Step 1 of the proof of Lemma 3.6).
For the reverse inequality, we divide the proof according to whether W has only two wells or not
in Rd

a .

STEP 1: DOUBLE-WELL POTENTIALS IN Rd
a . Assume that W (z) > 0 for all z ∈ Rd

a \ {u±}. We
need to prove that for every curve γ ∈ Lip([−1,1],Rd

a) such that γ(±1) = u±, one has

LW (γ)≥ inf
{

E(λ ) : λ ∈ Ḣ1(R,Rd
a), λ (±∞) = u±

}
.

Up to reparametrizing γ , one can assume that it is injective and has constant speed so that W (γ(·))>
0 and |γ̇| ≡ v > 0 in (−1,1). We then reparametrize γ by equipartition: we set λ := γ ◦σ in such
a way that |λ̇ |=

√
2W (λ ), i.e. we need σ : R→ [−1,1] to solve

σ̇(t) =

√
2W (γ(σ(t)))

v
for all t ∈ R.

Indeed, by the Peano-Arzela Theorem, there exists such a (maximal) solution σ ∈ C 1(R, [−1,1])
which is nondecreasing and converges to ±1 at ±∞. The claimed inequality then follows since

LW (γ) = LW (λ ) = E(λ ) and λ (±∞) = u±.

STEP 2: MULTI-WELL POTENTIALS IN Rd
a . Take a continuous function ξ : Rd → R+ such that

ξ = 0 on {u−,u+} and ξ > 0 on Rd \{u−,u+}, and set Wε :=W + ε2ξ for each ε > 0. By Step
1, one has

geoda
Wε
(u−,u+)≥ inf

{∫
R

1
2
|γ̇(t)|2 +Wε(γ(t))dt : γ ∈ Ḣ1(R,Rd

a), γ(±∞) = u±
}
.

Since Wε ≥W , it is enough to prove that

geoda
W (u−,u+)≥ limsup

ε→0
geoda

Wε
(u−,u+).

To prove this last fact, observe that for every curve γ ∈ Lip([−1,1],Rd
a) such that γ(±1) = u±,

we have geoda
Wε
(u−,u+) ≤ LWε

(γ) ≤ LW (γ)+ εLξ (γ) by subadditivity of t 7→
√

t. The desired
inequality follows by taking the limsup as ε → 0 and then, the infimum over γ .

The last statement follows from (4.2) where the equality holds for a minimizer γ of (4.1). In
particular, |γ̇(t)|=

√
2W (γ(t)).

As consequence, we deduce that any global minimizer of the d-dimensional problem (P)
having the image confined in the hyperplane Rd

a is necessarily one-dimensional:

Corollary 4.2. Let W : Rd → R+ be a continuous potential and a ∈ R such that Sa contains at
least two wells u± of W. If u ∈ Ḣ1

div(Ω,Rd) is a global minimizer of (P) with u(x) ∈ Rd
a for

a.e. x ∈ Ω, then u is one-dimensional, i.e. there exists g ∈ Ḣ1(R,Rd
a) with u(x) = g(x1) for a.e.

x = (x1,x′) ∈Ω.

Proof. By Lemma 3.2, there exist two sequences (R±n )n≥1 such that R±n →±∞ and the Sobolev
trace u(R±n , ·)→ u± a.e. in Td−1 as n→ ∞; by Fubini’s theorem, it follows

E(u)≥
∫
Td−1

{∫ R+
n

R−n

1
2
|∂x1u(x1,x′)|2 +W (u(x1,x′))dx1

}
dx′+

1
2

∫
Ω

|∇′u|2 dx

≥
∫
Td−1

{∫ R+
n

R−n
|∂x1u(x1,x′)|

√
2W (u(x1,x′))dx1

}
dx′+

1
2

∫
Ω

|∇′u|2 dx,
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where ∇′ = (∂2, . . . ,∂d). Since u(R±n , ·) ∈ Rd
a a.e. by assumption, we have by definition (4.3) of

geoda
W and by the reparametrization and smoothing argument presented at Step 1 of the proof of

Lemma 3.6,

E(u)≥
∫
Td−1

geoda
W (u(R−n ,x

′),u(R+
n ,x
′))dx′+

1
2

∫
Ω

|∇′u|2 dx.

By Fatou’s Lemma, and by continuity of geoda
W (·, ·) (see Step 4 in the proof of Lemma 3.6), one

gets in the limit n→ ∞,

E(u)≥ geoda
W (u−,u+)+

1
2

∫
Ω

|∇′u|2 dx.

By Proposition 4.1, geoda
W (u−,u+) is the infimum of E restricted to 1D transitions connecting

u− to u+, thus geoda
W (u−,u+) ≥ cW (u−,u+) = E(u). Combined with the above inequality, the

minimality of u yields ∇′u = 0 a.e., that is, u only depends on x1.

Existence of 1D minimizers in dimension 2. When d = 2, the situation is very simple since
R2

a is of dimension 1. Set u± = (a,u±2 ) and γ(t) = (a,ϕ(t)) for t ∈ R, where ϕ : R→ R satisfies
ϕ(±∞) = u±2 . It is clear that the infimum (4.3) can be restricted to those curves γ such that ϕ is
monotone. Then the change of variables y = ϕ(t) yields

geoda
W (u−,u+) =

∫
[u−2 ,u

+
2 ]

√
2W (a,y)dy, (4.5)

where [u−2 ,u
+
2 ] = {tu

−
2 + (1− t)u+2 : 0 ≤ t ≤ 1} (which makes sense even if u−2 > u+2 ). Re-

call that solutions of (4.1) are characterized by the equipartition identity, which is equivalent to
|ϕ ′| =

√
2W (a,ϕ). The existence and uniqueness of the one-dimensional profile is given in the

following:

Proposition 4.3. If W : R2→R+ is a continuous function and u± = (a,u±2 ) ∈R2
a are two distinct

zeros of W for some a ∈ R, then one has equivalence of the two following assertions:

• the minimization problem (4.1) has a solution,

• the function y 7→ 1√
W (a,y)

belongs to L1
loc((u

−
2 ,u

+
2 )), with the convention 1√

0
=+∞.

In case of existence, minimizers γ = (a,ϕ) : R→ Rd
a are characterized by

ϕ ∈ C 1(R,R), ϕ(±∞) = u±2 and

{
ϕ ′ =

√
2W (a,ϕ) if u−2 ≤ u+2 ,

ϕ ′ =−
√

2W (a,ϕ) if u−2 > u+2 .
(4.6)

Moreover, there exists at most one minimizer (up to translation) γ = (a,ϕ) of (4.1) such that ϕ

is strictly monotone. In particular, the problem (4.1) has a unique solution if W (a,y) > 0 for
y ∈ (u−2 ,u

+
2 ).

Proof. W.l.o.g., one can assume that u−2 < u+2 . First, we prove that (4.6) holds true if and only if
ϕ solves (4.1). If γ = (a,ϕ) solves (4.1) with ϕ ∈ Ḣ1(R,R), then, by the minimality of γ , ϕ is
monotone and, since we have assumed u−2 < u+2 , it is actually nondecreasing on R. Moreover, by
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Proposition 4.1, one has equality in (4.2), therefore |γ̇|=
√

2W (γ), i.e. ϕ solves (4.6). Conversely,
if ϕ solves (4.6), then γ solves (4.1) since by (4.5), we have

E(γ) =
∫
R

1
2
|ϕ ′|2 +W (a,ϕ)dt =

∫
R

√
2W (a,ϕ)|ϕ ′|dt

=
∫ u+2

u−2

√
2W (a,y)dy = geoda

W (u−,u+).

Second, we prove the equivalence of the two assertions for existence in (4.1). On the one hand,
if F(·) := (2W (a, ·))−1/2 ∈ L1

loc((u
−
2 ,u

+
2 )), a solution ϕ : R→ R to (4.6) is given by ϕ(t) = u−

if t ≤ G(u−2 ), ϕ(t) = G−1(t) if t ∈ (G(u−2 ),G(u+2 )) and ϕ(t) = u+ if t ≥ G(u+2 ), where G is an
antiderivative of F , i.e. G ∈W 1,1

loc ((u
−
2 ,u

+
2 )) with G′ = F > 0 a.e. in (u−2 ,u

+
2 ) (in particular, G has

an inverse G−1 on its range G((u−2 ,u
+
2 )), so ϕ is well defined). Thus, by the above argument, (a,ϕ)

is a minimizer in (4.1). On the other hand, if (4.1) has a minimizer, i.e., (4.6) has a solution ϕ , then
for all η < 1

2(u
+
2 − u−2 ), there exist two real numbers t± ∈ R such that t− ≤ t+, ϕ(t−) = u−2 +η

and ϕ(t+) = u+2 −η . Then, by the change of variables y = ϕ(t),

∫ u+2 −η

u−2 +η

dy√
2W (a,y)

=
∫ t+

t−

ϕ ′(t)dt√
2W (a,ϕ(t))

= t+− t− <+∞,

which implies local integrability of (2W (a, ·))−1/2 on (u−2 ,u
+
2 ).

Existence of 1D minimizers in dimension d ≥ 3. In higher dimension d ≥ 3, the problem of the
existence of a one-dimensional minimizer in (4.1) is more delicate. Proposition 4.4 below gives
sufficient conditions on W for solving the existence problem in (4.1). These sufficient conditions
are more general than the ones in Theorems 2.1 and 2.3. 12

Proposition 4.4. Let W : Rd → R+ be a continuous potential and a ∈ R such that:

1. Sa = {z ∈ Rd
a : W (z) = 0} is finite and contains at least two wells u±;

2. liminf|z′|→∞W (a,z′)> 0;

3. geoda
W (u−,u+)< geoda

W (u−,z)+geoda
W (z,u+) for all z ∈ Sa \{u±}.

Then the one-dimensional minimization problem (4.1) has a solution.

Proof. The proof follows the same arguments as in the second proof of Theorem 2.3 based on
Lemma 3.9 (see [24, Lemma 1.]). Take a minimizing sequence (γn)n≥1 ⊂ Ḣ1(R,Rd

a) such that
γn(±∞) = u± and E(γn)→ geoda

W (u−,u+) as n→ ∞. Then there exist ε > 0 and N > 0 such
that for n ≥ N we have γn(R)∩B(z,ε) = /0 for every z ∈ Sa \ {u±}. This is because otherwise,
there would be sequences (nk)k≥1 ⊂ N and (snk)k≥1 ⊂ R, and z ∈ Sa \{u±} such that nk→ ∞ and
γnk(snk)→ z as k→ ∞; since

E(γnk)
(4.2)
≥ LW (γnk)≥ geoda

W (u−,γnk(snk))+geoda
W (γnk(snk),u

+),

12A generalization of Proposition 4.4 can be found in [44, Theorem 3], [51, Theorem 2.5] and [49, Theorem 1].
The proof of Proposition 4.4 is new, therefore we present it here.
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the continuity of geoda
W (see Step 4 in the proof of Lemma 3.6) would yield in the limit k→ ∞:

geoda
W (u−,u+) ≥ geoda

W (u−,z) + geoda
W (z,u+) which contradicts the assumption 3. Now, for

n≥ N, we define

vn(t) =
(

γn(t)−
1
2
(u++u−)

)
· (u+−u−) for all t ∈ R.

Since (v̇n)n≥1 is bounded in L2(R) (because (γ̇n)n≥1 does it) and vn(±∞) = ±1
2 |u

+− u−|2, by
Lemma 3.9, there exist v ∈ Ḣ1(R) and a sequence (tn)n≥1 ⊂R such that, up to a subsequence, one
has vn(·+ tn)→ v weakly in Ḣ1(R) and locally uniformly in R, and liminft→±∞±v(t)≥ 0. Also,
up to a subsequence, (γn(·+ tn))n≥1 converges weakly in Ḣ1 and locally uniformly in R to a curve
γ ∈ Ḣ1(R,Rd

a); in particular, E(γ) ≤ geoda
W (u−,u+) (by the lower semicontinuous of E in weak

Ḣ1-topology), γ(R)∩B(z,ε) = /0 for every z ∈ Sa \{u±} and v(t) =
(
γ(t)− 1

2(u
++u−)

)
· (u+−

u−) for all t ∈ R. By Lemma 3.7, we know that γ(±∞) = z± with z± ∈ Sa. Since γ stays away
from Sa \ {u±}, then {z±} = {u±}; finally, the sign of v at ±∞ implies that z± = u±, leading to
E(γ) = geoda

W (u−,u+).

4.2 A density result. Proof of Lemma 2.12
The aim of this section is to prove Lemma 2.12, i.e., the set Ḣ1

div∩C ∞∩L∞(Ω,Rd) is dense in the
admissible set {u ∈ Ḣ1

div(Ω,Rd) : E(u) < ∞} within the topology induced by the energy E. A
situation where this property fails was pointed out by Lavrentiev [43]: he gave an example of an
energy functional whose infimum over smooth functions is strictly greater than the infimum over
all finite energy admissible configurations. This phenomenon is now usually called “Lavrentiev
gap” in the literature. The role of Lemma 2.12 is to give a sufficient condition on W such that the
“Lavrentiev gap” is avoided for the energy E.

Proof of Lemma 2.12 when W satisfies (2.21). We will define a sequence (uk)k≥1⊂ L∞∩C ∞ con-
verging strongly to u in Ḣ1

div(Ω,Rd) s.t. for each k ≥ 1, uk(x) = u± in a neighborhood of ±∞.

STEP 1. CUTTING u BY u± AT ±∞. By Lemma 3.2, there exist two sequences (R+
n )n≥1 and

(R−n )n≥1 such that R±n → ±∞ and u(R±n , ·)→ u± strongly in H1(Td−1,Rd) as n→ +∞. Then,
since the growth condition (2.21) is more restrictive than (2.6), Lemma 3.11 allows to construct
for each n≥ 1 a new map vn ∈ Ḣ1(Ω,Rd) such that vn(x)= u(x) if x∈ [R−n ,R+

n ]×Td−1, vn(x)= u+

if x1 ≥ R+
n +1, vn(x) = u− if x1 ≤ R−n −1, and E(vn)→ E(u) as n→∞. In particular, (vn)n≥1→ u

in Ḣ1(Ω,Rd).

STEP 2. SMOOTHING u BY CONVOLUTION. By Step 1, one can assume that there exists R > 0
with u = u± for ±x1 ≥ R. Let us take a smooth mollifying kernel ρ ∈ C ∞(R) such that ρ ≥ 0,∫
Rρ = 1, and ρ is even on R and compactly supported in (−1/2,1/2). For each k ≥ 1, we set

ρk(t) = kρ(kt) for every t ∈ R and

ρ
⊗d
k (y) :=

d

∏
i=1

ρk(yi), for every y = (y1, . . . ,yd) ∈ Rd.

Since (−1/2,1/2)d isometrically embeds into Ω =R×Td−1 via the quotient map, ρ
⊗d
k induces a

smooth kernel on Ω (corresponding to the periodized kernel in Td−1 for every x1 ∈ R) that is still
denoted by ρ

⊗d
k . This allows to define the regularization by convolution of u by

uk(x) := ρ
⊗d
k ∗u(x) =

∫
Ω

u(x− y)ρ⊗d
k (y)dy for every x ∈Ω.
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Then (uk)k≥1→ u in Ḣ1(Ω,Rd), i.e. uk→ u in L2
loc(Ω,Rd) and ∇uk = ρ

⊗d
k ∗∇u→ ∇u in L2(Ω)

as k→ ∞. Moreover, uk ∈ C ∞(Ω,Rd) and, since u = u± for ±x1 ≥ R > 0 and ρk(x1) is supported
in x1 ∈ (−1/2,1/2), one has uk = u± for ±x1 ≥ R+1; in particular u ∈ L∞(Ω,Rd). Concerning
the divergence constraint, we observe that ∇ ·uk = ρ

⊗d
k ∗ (∇ ·u) = 0.

STEP 3. CONVERGENCE OF THE ENERGY DENSITIES eden(uk) IN L1(Ω). Since (∇uk)k≥1→∇u
in L2(Ω), it is enough to prove convergence of (W (uk))k≥1 in L1(Ω). Note that, since uk = u± out
of the set

ωR+1 := (−R−1,R+1)×Td−1

and W (u±) = 0, W (uk) is compactly supported in ωR+1. Thus, by Vitali’s convergence theorem, it
is enough to prove that (W (uk))k≥1 is uniformly integrable in ωR+1. We use (2.21) which means
that there exist α,C > 0 such that W (z)≤ F(z), where

F(z) :=

{
C eα|z|2 if d = 2,
C [1+ |z|2∗] if d ≥ 3.

By the Gagliardo-Nirenberg-Sobolev inequality (if d ≥ 3) and by the Moser-Trudinger inequality
(if d = 2) respectively, one has F(u) ∈ L1(ωR+2). We prove that (F(uk))k≥1, and so (W (uk))k≥1,
are uniformly integrable in ωR+1, the main ingredient being the convexity of F . Indeed, for all
measurable set A⊂ ωR+1, by Jensen’s inequality and Fubini’s theorem, we have∫

A
W (uk)dx≤

∫
A

F(uk)dx =
∫

A
F
(∫

Ω

u(x− y)ρ⊗d
k (y)dy

)
dx

≤
∫

A

∫
Ω

F(u(x− y))ρ⊗d
k (y)dydx

=
∫

Ω

ρ
⊗d
k (y)

{∫
A−y

F(u(z))dz
}

dy;

the last integral goes to 0 when the Lebesgue measure of A tends to 0, uniformly in k.

Proof of Lemma 2.12 when W ∈ C 2(Rd,R+) and u ∈ L∞(Ω,Rd). We shall define a sequence (uk)k≥1⊂
L∞∩C ∞ converging to u in Ḣ1

div(Ω,Rd) with uk(±∞) = u± for each k ≥ 1.

STEP 1. SMOOTHING u BY CONVOLUTION. We follow the strategy in Step 2 in the preceding
proof and we obtain for each k≥ 1 a map uk = ρ

⊗d
k ∗u ∈ C ∞∩ Ḣ1

div(Ω,Rd) such that (uk)k≥1→ u
in Ḣ1(Ω,Rd) and a.e. It is also clear that (uk)k≥1 is bounded in L∞(Ω,Rd) since for each k ≥ 1,
‖uk‖L∞ ≤ ‖u‖L∞ < +∞. We now check that uk(±∞) = u±. Indeed, for every x1 ∈ R, we have by
Fubini’s theorem,

uk(x1) =
∫
Td−1

uk(x1,x′)dx′

=
∫
R

ρk(y1)
∫
Td−1

ρ
⊗(d−1)
k (y′)

∫
Td−1

u(x1− y1,x′− y′)dx′ dy′ dy1

=
∫
R

ρk(y1)

{∫
Td−1

ρ
⊗(d−1)
k (y′)dy′

}{∫
Td−1

u(x1− y1,z′)dz′
}

dy1

= ρk ∗u(x1).

In particular, uk = ρk ∗u has the same limit as u at ±∞, that is u±.
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STEP 2. CONVERGENCE OF eden(uk) IN L1(Ω). It is enough to prove convergence of (W (uk))k≥1
in L1(Ω). By continuity of W , we know that (W (uk))k≥1→W (u) a.e. and by Fatou’s lemma, we
deduce ∫

Ω

W (u)dx≤ liminf
k→∞

∫
Ω

W (uk)dx.

Therefore, it is enough to prove that

limsup
k→∞

∫
Ω

W (uk)dx≤
∫

Ω

W (u)dx. (4.7)

We shall use the following λ -convexity type inequality for the potential W ∈ C 2(Rd): for every
z1,z2 ∈ B := B(0,‖u‖L∞),

W (z1)≥W (z2)+∇W (z2) · (z1− z2)−λ |z1− z2|2,

where λ = 1
2 sup{|∇2W (z)| : z ∈ B}. Applying this inequality to z1 = u(x) and z2 = uk(y) with

x ∈Ω and y ∈ ωR := (−R,R)×Td−1 for some fixed R > 1, one gets∫
Ω

W (u(x))dx =
∫

Ω

∫
ωR

W (u(x))ρ⊗d
k (x− y)dydx

≥∫
Ω

∫
ωR

[
W (uk(y))+∇W (uk(y)) ·

(
u(x)−uk(y)

)
−λ |u(x)−uk(y)|2

]
ρ
⊗d
k (x− y)dydx, (4.8)

where every integrand in (4.8) is integrable on (x,y)∈Ω×ωR for vanishing on {|x1|> R+1}. We
first claim that the second term (involving ∇W ) in (4.8) will disappear since, as ρ

⊗d
k (z) = ρ

⊗d
k (−z)

for all z ∈ Rd and by Fubini’s theorem, one has∫
Ω

∫
ωR

∇W (uk(y)) ·u(x)ρ
⊗d
k (x− y)dydx =

∫
ωR

∇W (uk(y)) ·uk(y)dy

=
∫

Ω

∫
ωR

∇W (uk(y)) ·uk(y)ρ
⊗d
k (x− y)dydx.

We then claim that the integral

I :=
∫

Ω

∫
ωR

|u(x)−uk(y)|2ρ
⊗d
k (x− y)dydx

vanishes in the limit k→ ∞. Indeed, by Jensen’s inequality, we have

|u(x)−uk(y)|2 =
∣∣∣∣∫

Ω

(u(z)−u(x))ρ⊗d
k (y− z)dz

∣∣∣∣2
≤
∫

Ω

|u(z)−u(x)|2ρ
⊗d
k (y− z)dz

=
∫

Ω

∣∣∣∣∫ 1

0
∇u(x+ t(z− x))(z− x)T dt

∣∣∣∣2 ρ
⊗d
k (y− z)dz

≤
∫

Ω

∫ 1

0
|∇u(x+ t(z− x))|2|z− x|2ρ

⊗d
k (y− z)dt dz.
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We have thus obtained the estimate

I ≤
∫

Ω

∫
ωR

∫
Ω

∫ 1

0
|∇u(x+ t(z− x))|2|z− x|2ρ

⊗d
k (y− z)ρ⊗d

k (x− y)dt dzdydx.

We now use the changes of variables s = z−x and w = y−x, and the fact that ρ
⊗d
k (y− z)ρ⊗d

k (x−
y)= 0 if |x−y|= |w| ≥

√
d

2k or |z−y|= |s−w| ≥
√

d
2k (here, | · | is the norm induced on Ω=R×Td−1

by the euclidean norm on Rd via the quotient map). We obtain

I ≤
∫

Ω

∫
B(0,

√
d

2k )

∫
B(w,

√
d

2k )

∫ 1

0
|∇u(x+ ts)|2|s|2ρ

⊗d
k (s−w)ρ⊗d

k (w)dt dsdwdx

≤ d
k2

∫
B(0,

√
d

2k )

∫
B(w,

√
d

2k )

∫ 1

0
ρ
⊗d
k (s−w)ρ⊗d

k (w)
(∫

Ω

|∇u(x+ ts)|2 dx
)

dt dsdw

=
d
k2‖∇u‖2

L2(Ω),

where we have used the inequality |s| ≤ |s−w|+ |w| ≤
√

d
k . Finally, we have obtained∫

Ω

W (u(x))dx≥
∫

ωR

W (uk(y))dy− λd
k2 ‖∇u‖2

L2(Ω).

Passing to the limit as R→ ∞ by the monotone convergence theorem, and then taking the limsup
as k→ ∞, we obtain (4.7).

4.3 Entropy method
Our main tool in the study of the global minimizers of the energy E under both the divergence
constraint and the boundary condition u(±∞) = u± ∈ Sa is the entropy method that we develop
here in any dimension d ≥ 2. In dimension d = 2, this method has reminiscence in the works of
Aviles-Giga [6, 7], Jin-Kohn [41] and has been formalized in Ignat-Merlet [36] for obtaining lower
bounds for the energy of Bloch walls and in DeSimone-Kohn-Müller-Otto [21] to obtain compact-
ness in the Aviles-Giga model for the potential W (u) = 1

4(1−|u|
2)2. If the one-dimensional transi-

tion layer in (4.1) is known to be a global minimizer in (P) in the Aviles-Giga model in dimension
d = 2 (see [41]), i.e., geoda

W (u−,u+) = cW (u−,u+), we will prove that the one-dimensional tran-
sition layer is actually the unique global minimizer in (P) (up to translation). Surprisingly, this
can be done by use of the entropy method which was initially design to prove optimality rather
than uniqueness.

It is instructive to think of the entropy method as an adaptation of the calibration method to
the framework of divergence-free maps. In fact, the calibration method has been already used
by Alberti-Ambrosio-Cabré in [1] in the context of the (scalar) De Giorgi conjecture in order to
prove that the monotonicity assumption required on entire scalar solutions u of (1.5) (e.g., ∂1u> 0)
implies local minimality of u. The outlook of the calibration method is the following:

Assume that E is a functional defined on some functional space A composed of functions
u : Ω→ X (e.g., Ω⊂ Rd and X = RN) and let u0 ∈A be a critical point of E . Then a calibration
associated to the functional E and the critical point u0 is a functional F defined on A such that:

(C1) F (u0) = E (u0),
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(C2) F (u)≤ E (u) for all u ∈A ,

(C3) F is a null-lagrangian, i.e. F (u) = F (v) whenever u = v on ∂Ω.

This immediately implies that u0 is a global minimizer of E under Dirichlet boundary conditions
(namely, u = u0 on ∂Ω). In that case, if u is another global minimizer of E with u = u0 on ∂Ω,
then F (u) = E (u). In some cases, this equality will allow us to prove one-dimensional symmetry
of a global minimizers. Recall that null-lagrangians can be expressed in a divergence form, see
e.g. [33]. Here, we use calibrations F of the form

F (u) =
∫

Ω

∇ · [Φ(u)]dx,

where Φ will denote an entropy. This yields the following definition (see also [36] for alternative
definitions), which amounts to imposing (C2) on the above F in the space A = C ∞ ∩ L∞ ∩
Ḣ1

div(Ω,Rd) and the energy functional E = E:

Definition 4.5. A map Φ∈C 1(Rd,Rd) is called entropy if for all u∈C ∞∩L∞∩ Ḣ1
div(Ω,Rd) with

E(u)< ∞, one has ∇ · [Φ(u)] ∈ L1(Ω) and∫
Ω

∇ · [Φ(u)]dx≤ E(u). (4.9)

Remark 4.6. The condition ∇ · [Φ(u)] ∈ L1, imposed for every u ∈ C ∞ ∩ L∞ with ∇ · u = 0 and
E(u)< ∞, can be insured by the punctual condition:

∃C > 0, |∇Φ(z)|2 ≤CW (z), ∀z ∈ Rd.

Indeed, we have by Cauchy-Schwarz and Young inequalities,∫
Ω

|∇ · [Φ(u)]| ≤
∫

Ω

|∇Φ(u)| |∇u| ≤
∫

Ω

1
2
(
CW (u)+ |∇u|2

)
≤max

{
1,

C
2

}
E(u)< ∞. (4.10)

Thus, an alternate definition of an entropy, stronger than Definition 4.5, would be to impose
|∇Φ|2 ≤ 2W , i.e. C = 2 in the preceding inequalities (so that (4.10) implies (4.9)). However,
for the potentials W we will look at, this condition is often too strong to allow the existence of an
entropy. This is for instance the case of the Aviles-Giga potential in dimension d = 2:

W (z) =
1
4
(1−|z|2)2.

Indeed, if |∇Φ(z)|2 ≤CW (z) for all z∈R2, with C > 0, then Φ must be constant on {W = 0}= S1

and (C1) cannot be satisfied if u− 6= u+ since

F (u0) =
∫

Ω

∇ · [Φ(u0)]dx = Φ1(u+)−Φ1(u−) = 0 < E(u0)

by the Gauss-Green formula (see Lemma 4.9 below). More generally, this condition is too strong
when u− and u+ are on the same connected component in {W = 0}.
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Now, if we set F (u) :=
∫

Ω
∇ · [Φ(u)]dx, then (C3) is automatically satisfied because of the

(nonstandard) Gauss-Green formula. More precisely, if u(±∞) = u± ∈ Sa then one has the identity
(see Lemma 4.9):

F (u) = Φ1(u+)−Φ1(u−).

Since our goal is to identify potentials W such that the optimal 1D transition u0 in (4.1) (given by
Propositions 4.3 and 4.4) minimizes (P), it remains to check (C3), i.e. F (u0) = E(u0). Since
E(u0) = geoda

W (u−,u+), this condition, called saturation condition for the entropy Φ, depends on
u± and reads

Φ1(u+)−Φ1(u−) = geoda
W (u−,u+). (4.11)

If there exists an entropy Φ satisfying the saturation condition, then the calibration method yields
optimality of u0 in the class A of smooth bounded divergence-free maps. Thanks to Lemma 2.12,
F is a calibration in the larger class ˜A = Ḣ1

div(Ω,Rd) (thus yielding optimality of u0 in this larger
class) provided the growth condition (2.21) on W (needed in Lemma 2.12).

The above arguments on how the entropy method proves the optimality of one-dimensional
transition layers in (P) are summarized in the following:

Proposition 4.7. Let W : Rd → R+ be a continuous potential satisfying the growth condition
(2.21) and let a ∈ R be such that Sa contains at least two points u±. If there exists an entropy
Φ ∈ C 1(Rd,Rd) satisfying the saturation condition (4.11) then one-dimensional transitions are
optimal in (P), i.e.

geoda
W (u−,u+) = inf

{
E(u) : u ∈ Ḣ1

div(Ω,Rd), u(±∞) = u±
}

(= cW (u−,u+)). (4.12)

In the case when a minimizing one-dimensional transition layer u0 exists (see Propositions 4.3
and 4.4), (4.12) yields u0 to be a global minimizer of the d-dimensional problem (P). A-priori, in
that context, other global minimizers in (P) might exist. We will see later some situations where
the 1D minimizer u0 is indeed the unique minimizer, i.e., the answer to Question 1 is positive.

When the growth condition (2.21) on W is dropped out, the conclusion of Proposition 4.7 still
holds provided that the infimum of E is considered over bounded admissible function u in Ω:

Proposition 4.8. If W ∈ C 2(Rd,R+) and a ∈ R are such that Sa contains at least two points u±

and there exists an entropy Φ ∈ C 1(Rd,Rd) satisfying the saturation condition (4.11), then

geoda
W (u−,u+) = inf

{
E(u) : u ∈ Ḣ1

div(Ω,Rd)∩L∞(Ω,Rd), u(±∞) = u±
}
. (4.13)

Before proving Propositions 4.7 and 4.8, we need the following Gauss-Green type formula,
applied on the unbounded domain Ω for bounded admissible maps:

Lemma 4.9. For all u ∈ L∞∩ Ḣ1(Ω,Rd) such that u(±∞) = u± and Φ ∈ C 1(Rd,Rd) such that
∇ · [Φ(u)] ∈ L1(Ω), one has ∫

Ω

∇ · [Φ(u)]dx = Φ1(u+)−Φ1(u−).

Proof of Lemma 4.9. As a consequence of Lemma 3.2, there exist two sequences (R±n )n≥1 with
u(R±n ,x

′)→ u± for a.e. x′ ∈ Td−1 as n→ ∞. By the Gauss-Green formula, applied to Φ(u) ∈
H1(ωn,Rd) on the bounded domain ωn := (R−n ,R

+
n )×Td−1, one has∫

ωn

∇ · [Φ(u)]dx =
∫
Td−1

(
Φ1(u(R+

n ,x
′))−Φ1(u(R−n ,x

′))
)

dx′.

The conclusion follows from the dominated convergence theorem.
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Proof of Propositions 4.7 and 4.8. The inequalities ≥ in (4.12) and (4.13) follow from Proposi-
tion 4.1. Conversely, we want to prove geoda

W (u−,u+) ≤ E(u) for every u ∈ Ḣ1
div(Ω,Rd) such

that E(u) < ∞ when either (u ∈ L∞(Ω,Rd) and W ∈ C 2(Rd,R+)) or W satisfies the growth con-
dition (2.21). By Lemma 2.12, there exists a sequence (uk)k∈N ⊂ C ∞ ∩ L∞ ∩ Ḣ1

div(Ω,Rd) with
uk(±∞) = u± such that

uk→ u in Ḣ1(Ω) and E(uk)→E(u) as k→ ∞.

Moreover, by Definition 4.5, Lemma 4.9 and the saturation condition (4.11), one has

geoda
W (u−,u+) = Φ1(u+)−Φ1(u−) =

∫
Ω

∇ · [Φ(uk)]≤ E(uk) for each k ∈ N.

In the limit k→ ∞, we obtain geoda
W (u−,u+)≤ E(u), thus ending the proof.

Our strategy to find entropies. The easiest way to ensure that a given C 1 map Φ is an entropy
is to impose the punctual inequality |∇Φ|2 ≤ 2W (see Remark 4.6). This condition is too strong to
have the saturation condition (4.11) fulfilled when u− and u+ lie on the same connected component
in {W = 0}. However, due to the constraint ∇ · u = 0 imposed on our admissible maps, this
condition can be relaxed in the weaker condition |Π0∇Φ|2 ≤ 2W , where Π0 is the projection onto
the set of traceless matrices (see (2.10)), as explained in Section 2.2 in Situation 1.

Remark 4.10. Knowing Π0∇Φ is equivalent to knowing ∇Φ up to an affine homothety. Indeed,
if Φ is a C 1 map with Π0∇Φ(z) = 0, namely ∇Φ(z) = α(z)Id with α(z) ∈ R for all z ∈ Rd , then
it is well known that Φ is an affine homothety, i.e. Φ(z) = αz+β for every z ∈ Rd , with α ∈ R
and β ∈ Rd . Moreover, affine homotheties Φ are trivial for our problem in the sense that the
corresponding calibration F (u) =

∫
Ω

∇ · [Φ(u)]dx vanishes for every u ∈ Ḣ1
div(Ω,Rd).

Situation 1. Strong punctual condition (Estrg). A sufficient condition for a C 1 map Φ to be an
entropy is the inequality (2.10) and this fact is shown by inequality (2.11) for all u ∈ C ∞∩L∞∩
Ḣ1

div(Ω,Rd) with E(u)< ∞. In fact, (2.10) is equivalent to imposing (2.11) for all u:

Proposition 4.11. Given a map Φ ∈ C 1(Rd,Rd), the two following conditions are equivalent:

• ∇ · [Φ(u)]≤ 1
2 |∇u|2 +W (u) for all u ∈ L∞∩C ∞(Ω,Rd) with ∇ ·u = 0,

• |Π0∇Φ(z)|2 ≤ 2W (z) for all z ∈ Rd .

In particular, if (2.10) holds true, then Φ is an entropy.

Proof. It is clear, by (2.11), that the second condition implies the first one. Assume now that the
first condition is satisfied. Fix z0 ∈ Rd , an invertible matrix p ∈ Rd×d such that Tr(p) = 0, and
take a periodic map u ∈ L∞ ∩C ∞(Ω,Rd) with ∇ · u = 0 such that u(x) = z0 + pT x for all x in a
small ball B ⊂ Ω centered at the origin. Such a map exists; it can be constructed in two steps as
follows.

1. Cut-off: first, consider a divergence-free map w ∈ C 1(3B\2B,Rd) such that w(x) = z0 + pT x
on ∂ (2B) and w = 0 on ∂ (3B) (such a function w exists because the normal component of w at
∂ (2B) has vanishing average on ∂ (2B) due to the assumption Tr(p) = 0); then we define the
map v : Ω→ Rd by v(x) = z0 + pT x on 2B, v(x) = w(x) on 3B\2B and v(x) = 0 on Ω\3B. In
particular, v is a C 1 divergence-free map in Ω.
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2. Mollification: if v is not smooth, we set u := ρ ∗v in Ω, where ρ is a smooth mollifying kernel
concentrated on B such that

∫
B yρ(y)dy = 0 (this is true if for instance ρ(−y) = ρ(y) for every

y ∈ B); thus, u is smooth, bounded, divergence-free and it is easy to see that u(x) = z0 + pT x
on B.

By the first inequality in the statement of the proposition, one has

∇ · [Φ(u)](x) = ∇Φ(u(x)) : p≤ 1
2
|p|2 +W (u(x)) for all x ∈ B.

In particular, for x = 0 and u(0) = z0, we obtain

∇Φ(z0) : p≤ 1
2
|p|2 +W (z0).

Since the set of invertible matrices p ∈ Im(Π0) is dense in Im(Π0), we deduce that the above
inequality is actually satisfied for every p ∈ Im(Π0). By making the choice p = Π0∇Φ(z0), we
conclude 1

2 |p|
2 ≤W (z0).

The criterium provided by Situation 1 is not applicable in the Aviles-Giga situation. In that
case, we need more sophisticated computations in the estimation of ∇ · [Φ(u)] which we explain
in the following.

Situations 2 and 3. Entropies with symmetric (resp. antisymmetric) Jacobian (Esym) (resp.
(Easym)). The main tool in the Situations 2 and 3 presented in Section 2.2 relies on the following
computation, which is inspired by the technique of Jin-Kohn [41] in dimension d = 2:

Proposition 4.12. For all u = (u1, . . . ,ud) ∈ Ḣ1
div(Ω,Rd) such that ū ∈ L∞(R,Rd), one has∫

Ω

|∇u|2 =
∫

Ω
∑

1≤i< j≤d
|∂iu j−∂ jui|2 (4.14)

=
∫

Ω
∑

1≤i< j≤d
|∂iu j +∂ jui|2 +2

∫
Ω

d

∑
i=1
|∂iui|2.

In other words, if Π+ (resp. Π−) denotes the projection on the set of symmetric (resp. of antisym-
metric) matrices, then (2.14) holds true.

Proof. First notice that (2.14) is a rewriting of (4.14) in terms of Π±∇u because

|Π−∇u|2 = 1
2 ∑

i< j
|∂iu j−∂ jui|2 while |Π+

∇u|2 = ∑
i
|∂iui|2 +

1
2 ∑

i< j
|∂iu j +∂ jui|2.

We now prove (4.14). Since u ∈ Ḣ1(Ω,Rd), up to convolution with a smooth kernel (as in the
proof of Lemma 2.12), one can assume that u ∈ C ∞∩ Ḣ1

div(Ω,Rd). Then we compute

∑
i< j
|∂iu j±∂ jui|2 = ∑

i 6= j
|∂iu j|2±2 ∑

i< j
∂iu j∂ jui = ∑

i6= j

(
|∂iu j|2±∂iu j∂ jui

)
. (4.15)

Together with the identity 0 = |∇ ·u|2 = |∑i ∂iui|2 = ∑i, j ∂iui∂ ju j, (4.15) implies

∑
i< j
|∂iu j−∂ jui|2 = |∇u|2−∑

i, j
∂iu j∂ jui = |∇u|2−∑

i, j

(
∂iu j∂ jui−∂iui∂ ju j

)
.
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In order to prove the first identity in (4.14), we have to prove that integrating the last term of
the above RHS, we obtain 0. Let us use the notation bi j = ∂iu j∂ jui− ∂iui∂ ju j ∈ L1(Ω) because
u∈ Ḣ1(Ω,Rd). For all i, j ∈ {1, . . . ,d}, one has bi j = b ji and bii = 0. Moreover, if i 6= 1 and j 6= 1,
since xi and x j lie on the torus T which has no boundary, integrating by parts twice yields∫

Td−1
∂iui∂ ju j dx′ =−

∫
Td−1

ui∂i ju j dx′ =
∫
Td−1

∂ jui∂iu j dx′,

that is ∫
Ω

bi j = 0, i 6= 1, j 6= 1.

It remains to prove that

∑
j 6=1

∫
Ω

b1 j dx = 0.

Indeed, for every R−,R+ ∈ R with R− < R+, integrating ∂1u1∂ ju j by parts on [R−,R+]×Td−1

twice (so as to switch ∂1 and ∂ j), and using the divergence constraint, it yields∣∣∣∣∑
j 6=1

∫
[R−,R+]×Td−1

b1 j dx
∣∣∣∣= ∣∣∣∣∑

j 6=1

∫
[R−,R+]×Td−1

(∂1u1∂ ju j−∂1u j∂ ju1)dx
∣∣∣∣

=

∣∣∣∣∑
j 6=1

∫
Td−1

u1(R+,x′)∂ ju j(R+,x′)−u1(R−,x′)∂ ju j(R−,x′)dx′
∣∣∣∣

=

∣∣∣∣∫Td−1
u1(R+,x′)∂1u1(R+,x′)−u1(R−,x′)∂1u1(R−,x′)dx′

∣∣∣∣
≤ ‖u1(R+, ·)‖L2‖∂1u1(R+, ·)‖L2 +‖u1(R−, ·)‖L2‖∂1u1(R−, ·)‖L2.

Now, Remark 3.3 yields two sequences (R±n )n≥1→±∞ such that

‖u1(R±n , ·)‖L2‖∂1u1(R±n , ·)‖L2 → 0;

the above inequality applied to R± = R±n yields the claimed identity in the limit n→ ∞.
For the second equality in (4.14), because of the condition ∇ ·u = 0 and (4.15), one has

∑
i< j
|∂iu j +∂ jui|2 = |∇u|2 +∑

i, j
∂iu j∂ jui−2∑

i
|∂iui|2

= |∇u|2−2∑
i
|∂iui|2 +∑

i, j

(
∂iu j∂ jui−∂iui∂ ju j

)
.

Again, (4.14) follows from the fact that
∫

Ω ∑i, j bi j = 0.

We now explain how we use this proposition to find entropies. Let us consider a map Φ ∈
C 1(Rd,Rd), assume that Π0∇Φ(z) is either symmetric for all z or antisymmetric for all z, denoted
shortly by

Π0∇Φ(z) ∈ Im(Π±) for all z ∈ Rd.

Then for all u ∈ C ∞ ∩ L∞ ∩ Ḣ1
div(Ω,Rd) and E(u) < +∞, by self-adjointness of an orthogonal

projection, one obtains (2.13). Now, by Young’s inequality 2st ≤ s2/2+2t2 and Proposition 4.12
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(note that ū ∈ L∞ because u does it), then∫
Ω

∇ · [Φ(u)]dx≤ 1
2

(
1
2
‖Π0∇Φ(u)‖2

L2(Ω)+2‖Π±∇u‖2
L2(Ω)

)
=

1
2

(
1
2
‖Π0∇Φ(u)‖2

L2(Ω)+‖∇u‖2
L2(Ω)

)
.

Moreover, since E(u)<∞, the condition ∇·[Φ(u)]∈L1(Ω) can be insured by imposing |Π0∇Φ|2≤
CW for some constant C > 0. Thus, if C = 4, the above argument yields the following proposition:

Proposition 4.13. Let Φ ∈ C 1(Rd,Rd) be a map such that Π0∇Φ is either symmetric in Rd or
antisymmetric in all Rd , and such that |Π0∇Φ|2 ≤ 4W. Then Φ is an entropy.

Remark 4.14. It is well known that (Esym) in (2.12) implies that there exists Ψ ∈ C 2(Rd,R) such
that ∇Φ(z) = ∇2Ψ(z) for all z ∈ Rd , where ∇2Ψ(z) is the Hessian matrix of Ψ. In other words,
there exists a constant Φ0 ∈ Rd such that

Φ(z) = Φ0 +∇Ψ(z) for all z ∈ Rd.

The saturation condition. It remains to confront the above estimates to the saturation condition
(4.11) for two fixed zeros u± of W such that u± ∈ Rd

a for some a ∈ R. Assume that there exists γ

which achieves the infimum in the definition (4.3) of geoda
W , i.e.

γ ∈ Argmin
{∫ 1

−1

√
2W (γ(s)) |γ̇(s)|ds : γ ∈ Lip([−1,1],Rd

a), γ(±1) = u±
}

(4.16)

(see Propositions 4.3 and 4.4 for sufficient conditions, and Proposition 4.1 for the link between
geoda

W and the 1D minimization problem in (4.1)). For a map Φ ∈ C 1(Rd,Rd), the saturation
condition (4.11) rewrites as∫ 1

−1
∇Φ1(γ(t)) · γ̇(t)dt =

∫ 1

−1

√
2W (γ(t)) |γ̇(t)|dt. (4.17)

We now combine (4.17) with the conditions assumed on Π0∇Φ in Proposition 4.11 or Proposi-
tion 4.13, that is one of the criteria (Estrg), (Esym) or (Easym) in (2.10), or (Esym) (resp. (Esym)) in
(2.12). In fact, the condition (4.17) implies a saturation of the inequalities in (Estrg), (Esym) and
(Easym) on the range Im(γ) so that Π0∇Φ is fully determined on Im(γ):

Proposition 4.15. Assume that there exists γ ∈ Lip([−1,1],Rd
a) satisfying (4.16) and a map Φ ∈

C 1(Rd,Rd) satisfying the saturation condition (4.11). Then,

• if Φ satisfies (Estrg) in (2.10), one has

Π0∇Φ(γ(t)) =
√

2W (γ(t)) e1⊗
γ̇(t)
|γ̇(t)|

a.e. in [−1,1];

• if Φ satisfies (Esym) in (2.12), one has

Π0∇Φ(γ(t)) = 2
√

2W (γ(t)) Π
+

(
e1⊗

γ̇(t)
|γ̇(t)|

)
a.e. in [−1,1];
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• if Φ satisfies (Easym) in (2.12), one has

Π0∇Φ(γ(t)) = 2
√

2W (γ(t)) Π
−
(

e1⊗
γ̇(t)
|γ̇(t)|

)
a.e. in [−1,1].

Proof. First assume that (Estrg) is fulfilled. Since γ̇1(t) = 0 a.e. in [−1,1] and Π0∇Φ and ∇Φ

coincide out of the diagonal, the Cauchy-Schwarz inequality and (2.10) imply

∇Φ1(γ) · γ̇ = Π0∇Φ(γ) : (e1⊗ γ̇)≤
√

2W (γ) |γ̇| a.e. in [−1,1].

Combined with (4.11) which rewrites as (4.17), we deduce that ∇Φ1(γ) · γ̇ =
√

2W (γ) |γ̇| a.e. in
[−1,1]. In other words, we have

Π0∇Φ(γ) :
(

e1⊗
γ̇

|γ̇|

)
=
√

2W (γ) a.e. in [−1,1]

which implies the claim by the case of equality in the Cauchy-Schwarz inequality A : B ≤ |A| |B|
for matrices A,B ∈ Rd×d .

Similarly, in the cases where (Esym) (read ± = + in the following) or (Easym) (read ± = − in
the following) are fulfilled, we have |Π0∇Φ|2 ≤ 4W and we deduce

∇Φ1(γ) · γ̇ = Π0Π
±

∇Φ(γ) : (e1⊗ γ̇)

= Π0∇Φ(γ) : Π
±(e1⊗ γ̇)≤

√
2W (γ) |γ̇| a.e. in [−1,1],

where we used the equality |Π±(e1⊗ γ̇)|= |γ̇|√
2
. The claim follows by saturation of (4.17) and by

the case of equality in the Cauchy-Schwarz inequality.

4.4 Structure of global minimizers
The aim of this section is to highlight that the existence of an entropy Φ satisfying the satura-
tion condition (4.11) and one of the conditions (Estrg), (Esym) or (Easym) in (2.10)/(2.12), implies
that any solution to the global minimization problem (P) satisfies a first order PDE which en-
codes in particular the equipartition of the energy density, and implies in general one-dimensional
symmetry:

Proposition 4.16. Let W : Rd → R+ be a continuous potential and a ∈ R such that Sa contains
at least two wells u± of W, and assume that there exists Φ ∈ C 1(Rd,Rd) satisfying the saturation
condition (4.11) and either (Estrg), (Esym) or (Easym) in (2.10) or (2.12).

If u is a global minimizer of (P) and if either(
u ∈ L∞(Ω,Rd) and W ∈ C 2(Rd,R+)

)
or W satisfies the growth condition (2.21), then (2.15) (resp. (2.16), (2.17)) in the case (Estrg)
(resp. (Easym), (Esym)) holds true.

Conversely, if W satisfies the growth condition (2.21) and u ∈ Ḣ1
div(Ω,Rd) solves (2.15) (resp.

(2.16), (2.17)) in the case (Estrg) (resp. (Easym), (Esym)), then u is a global minimizer of (P).

Remark 4.17. If u is one-dimensional, then u = u(x1) = (a,ϕ(x1)) ∈ Rd
a , and the first order PDE

in (2.15), (2.16) and (2.17) is equivalent to the ODE ϕ̇(t) = [∂2Φ1, . . . ,∂dΦ1](a,ϕ(t)).
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Proof. We will focus on the third case (Esym), the first and second cases are similar. Namely,
assume that Φ ∈ C 1(Rd,Rd) satisfies (4.11), that ∇Φ is symmetric and |Π0∇Φ|2 ≤ 4W . If u ∈
C ∞∩L∞ with ∇ ·u = 0, then by (2.13),

∇ · [Φ(u)] = Π0∇Φ(u) : Π
+

∇uT = Π0∇Φ(u) : Π
+

∇u

=
1
4
|Π0∇Φ(u)|2 + |Π+

∇u|2− 1
4

∣∣Π0∇Φ(u)−2Π
+

∇u
∣∣2 .

If E(u) < ∞, we have ∇ · [Φ(u)] ∈ L1(Ω) due to |Π0∇Φ(u)|2 ≤ 4W (u) in (2.12); thus, from
Lemma 4.9, Proposition 4.12 and the boundary condition u(±∞) = u±, we deduce by integrating
the preceding identity that

Φ1(u+)−Φ1(u−) = E(u)−
∫

Ω

(
W (u)− 1

4
|Π0∇Φ(u)|2

)
dx

− 1
4

∫
Ω

∣∣Π0∇Φ(u)−2Π
+

∇u
∣∣2 dx. (4.18)

Since each term of the RHS is controlled by the energy density 1
2 |∇u|2 +W (u) and since the

integrands depend continuously on u, we deduce by Lemma 2.12 that the relation (4.18) still holds
for all u ∈ Ḣ1

div(Ω,Rd) with E(u)<+∞ and u(±∞) = u±, without assuming that u is smooth, but
only that u is bounded whenever W does not satisfy (2.21) and W ∈ C 2. Moreover, since W ≥
1
4 |Π0∇Φ|2, the last two terms in (4.18) are nonnegative; in particular, E(u) ≥ Φ1(u+)−Φ1(u−).
Now, by the saturation condition (4.11) and Proposition 4.1, Φ1(u+)−Φ1(u−) = geoda

W (u−,u+)
coincides with the infimum of the energy over 1D transitions. Thus, if u is a global minimizer of
(P) and either (u ∈ L∞(Ω,Rd) and W ∈ C 2(Rd,R+)) or W satisfies the growth condition (2.21),
then the last two terms of (4.18) vanish, i.e. (2.17) holds true.

Conversely, if u solves (2.17), then (4.18) yields E(u) = Φ1(u+)−Φ1(u−). Since W sat-
isfies (2.21) and Φ satisfies (Esym), then (4.18) gives also E(v) ≥ Φ1(u+)−Φ1(u−) for every
v ∈ Ḣ1

div(Ω,Rd) with E(v)<+∞ and v(±∞) = u± (without assuming v bounded). In particular, u
is a global minimizer of (P).

In dimension d ≥ 3 there is no hope for uniqueness of global minimizers, even up to a trans-
lation in x1-direction; in fact, 1D solutions of (4.1) need not be unique when Rd

a is of dimension
d−1 ≥ 2 since there could be two distinct minimizers of geoda

W connecting u− to u+ within the
hyperspace Rd

a . Therefore, in these cases, there is no uniqueness in the first order PDE in (2.15),
(2.16) and (2.17). Nevertheless, we will prove in the following that a necessary condition in hav-
ing uniqueness is given by a punctual condition u(x0) = u0 ∈ Rd . For that, we will focus on the
cases (Estrg) and (Esym) because in the case (Easym) there are only “trivial” entropies as we shall see
in Proposition 4.29 (thus, it is useless in proving uniqueness in that case). Note that in those two
cases, the first order PDE system in (2.15) and (2.17) is of the form ∇u = F(u) when (Estrg) holds
true, and Π+∇u = F(u) when (Esym) is satisfied, where F maps Rd into the set of square matri-
ces. If F is locally Lipschitz 13, it is clear that C 1-solutions of ∇u = F(u) such that u(x0) = u0
are unique by the Cauchy-Lipschitz theorem (applied to t 7→ u(x0 + tv) which satisfies an ODE
whatever v ∈ Rd). Equations of the form Π+∇u = F(u) are weaker (obviously, they cover the
first class of equations since if ∇u = F(u) then Π+∇u = Π+F(u) = F̃(u)) and we show that they
enjoy a similar uniqueness property in the case of Lipschitz solutions (which is coherent with the
regularity in Proposition 3.12):

13Note that if Φ ∈W 2,∞
loc then F corresponds to a locally Lipschitz map.
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Proposition 4.18. If F ∈Liploc(Rd,Rd×d) and v,w∈Liploc(Ω,Rd) are two solutions of the system
Π+∇u = F(u) a.e. such that v(x0) = w(x0) for some x0 ∈Ω, then v = w.

Proof. Let us fix R > 1 such that x0 ∈ B(0,R− 1). Since u := v−w is Lipschitz in B(0,R) and
u(x0) = 0, one has

|u(x)| ≤ LR distΩ(x,x0) for all x ∈ B(0,R),

where LR > 0 is the Lipschitz constant of u in B(0,R) and distΩ is the distance induced on Ω =
R×Td−1 by the euclidean distance in Rd (via the quotient map). By Korn’s inequality and a
compactness/scaling argument, we deduce that for all r < 1,∫

B(x0,r)
|u|2 dx≤C1r2

∫
B(x0,r)

|Π+
∇u|2 dx, (4.19)

where the constant C1 > 0 only depends on R, LR and the dimension d. Since F is Lipschitz in
a ball containing v(B(0,R))∪w(B(0,R)), by the ODE satisfied by v and w, we have |Π+∇u| =
|F(v)−F(w)| ≤ CF |u| for some CF > 0. Combined with (4.19), since B(x0,r) ⊂ B(0,R), we
finally deduce ∫

B(x0,r)
|u|2 dx≤C2r2

∫
B(x0,r)

|u|2 dx,

where the constant C2 > 0 depends on R, but is independent of x0 ∈ B(0,R− 1) and r < 1. This
implies that u = v−w = 0 on B(x0,r0) for the choice of a small radius r0 := 1

2C−1/2
2 . Since r0 is

uniform for all x0 ∈ B(0,R−1), applying the same reasoning when the point x0 is replaced by any
point in B(x0,r0), and repeating the procedure inductively, yield the equality v = w a.e. in B(0,R).
Since this is true for all R > 0, we have proved v = w.

The preceding result does not imply one-dimensional symmetry of solutions of the first order
PDE in (2.15), (2.16) and (2.17) in dimension d ≥ 3 (thus, of global minimizers of (P)) due to
the additional assumption v(x0) = w(x0). In the cases (Estrg) or (Esym), a simple situation where
this one-dimensional symmetry holds is given by entropies Φ satisfying additionally (2.23).

Proposition 4.19. Let W : Rd → R+ be a continuous potential and a ∈ R such that Sa contains
at least two wells u± and assume that there exists an entropy Φ = (Φ1, . . . ,Φd) ∈ C 1(Rd,Rd)
satisfying either (Estrg) or (Esym), the saturation condition (4.11) and the condition (2.23). If u is
a global minimizer of (P) such that either (u ∈ L∞(Ω,Rd) and W ∈ C 2(Rd,R+)) or W satisfies
the growth condition (2.21) then u is one-dimensional, i.e. u = g(x1) for some g ∈ Ḣ1(R,Rd

a).

Proof. Since the diagonal of Π0∇Φ vanishes, it follows from Proposition 4.16 that ∂iui = 0 a.e. for
all i ∈ {1, . . . ,d}. In particular, u1(x1,x′) does not depend on x1 ∈ R. By Lemma 3.2, there exist
two sequences (R±n )n≥1 such that R±n →±∞ and u(R±n ,x

′)→ u± ∈ Sa for a.e. x′ ∈Td−1 as n→+∞.
In particular, u1 ≡ a, i.e. u ∈ Rd

a a.e. in Ω, and the conclusion follows from Corollary 4.2.

We will explain in Section 4.6 how Theorem 2.10 is a consequence of the above Proposi-
tion 4.19.

4.5 One-dimensional symmetry in dimension 2. Proof of Theorems 2.6 and
2.8

Our aim is to identify potentials W for which one has existence of an entropy, and so optimality
of the 1D transition layers (by Proposition 4.7). We also want to deduce rigidity results from
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the entropy method, i.e., every global minimizer in (P) is one-dimensional symmetric. We will
restrict ourselves to very specific potentials. Namely, we impose that there exists w ∈ C 2(R2,R)
such that W (z) = 1

2w2(z) for all z ∈ R2 and

∂11w±∂22w = 0 in R2.

We will also discuss the case of more general potentials W = 1
2w2 with w being a solution of the

Tricomi equation.

Existence of entropies. We start with the case of W = 1
2w2 where ∆w = 0 or �w = 0 in R2.

Motivated by Proposition 4.13, we look for entropies Φ ∈ C 1(R2,R2) that subscribe to Situation
2 or 3 (i.e., (Esym) or (Esym) in (2.12) holds true), namely, we impose the punctual condition (2.19)
on Φ:

Π0∇Φ(z) = ∇Φ(z)+α(z)I2 =

(
0 w(z)

∓w(z) 0

)
for all z ∈ R2,

where α is a scalar function to be determined. In the case ∓ = − corresponding to the antisym-
metry of Π0∇Φ imposed by (Easym) in (2.12), by Cauchy-Riemann, this condition implies that Φ

is holomorphic on R2 ' C which is coherent with the assumption on w to be harmonic. Indeed,
writing Φ(z) = Φ1(x,y)+ iΦ2(x,y) for z = x+ iy ∈ C' R2, (2.19) implies that Φ is holomorphic
with the (complex) derivative −∂zΦ(z) = α(z)+ iw(z); then α is the harmonic conjugate of w
(defined up to an additive constant). In the case ∓=+, the symmetry of Π0∇Φ is coherent with
the assumption on w to be a solution of the wave equation and corresponds to (Esym) in (2.12).

Lemma 4.20. Let W = 1
2w2 with w ∈ C 2(R2,R) such that ∂11w± ∂22w = 0 in R2 and for some

a ∈ R, w vanishes at u± = (a,u±2 ) ∈ Sa and w ≥ 0 on the segment [u−,u+]. Then there exists an
entropy Φ ∈ C 3(R2,R2) satisfying the saturation condition (4.11) together with (2.19) for some
α ∈ C 2(R2).

Proof. By the Poincaré lemma, we know that the existence of a map Φ satisfying (2.19) is equiv-
alent to the system

−∂2α−∂1w =±∂2w−∂1α = 0,

which rewrites ∇α = (±∂2w,−∂1w). Applying again the Poincaré lemma, the last equality for α

is equivalent to the equation ∂11w±∂22w = 0 as stated in our assumption. Moreover, in this case,
α satisfies the same equation as w.

Let us check now that a map Φ with (2.19) is an entropy that satisfies the saturation condition
(4.11). Since we assume that w is C 2, we know that α is C 2 and that Φ is C 3. The fact that
Φ is an entropy is a consequence of Proposition 4.13 since |Π0∇Φ(z)|2 = 4W (z). The saturation
condition (4.11) follows from the equality ∂2Φ1(z) = w(z) =

√
2W (z) for all z ∈ [u−,u+], where

we use the assumption w≥ 0 on [u−,u+]. Indeed, one has

Φ1(u+)−Φ1(u−) =
∫ u+2

u−2
∂2Φ1(a,z2)dz2 =

∫ u+2

u−2

√
2W (a,z2)dz2

(4.5)
= geoda

W (u−,u+). (4.20)
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One-dimensional symmetry for (P). Proof of Theorem 2.6. For the two previous classes of
potentials, Lemma 4.20 and Proposition 4.16 yield one-dimensional symmetry of global minimiz-
ers. We start with the case where w solves �w = 0:

Theorem 4.21. Let W : R2→ R+ be a continuous potential and a ∈ R such that Sa contains at
least two points u±= (a,u±2 ). Assume that W ≥ 1

2w2 on R2 and (W = 1
2w2 and w> 0 on (u−,u+)),

where w ∈ C 2(R2,R) solves the wave equation �w = 0 in R2. If u is a global minimizer in (P)
such that either u ∈ L∞ or |w| satisfies the growth condition (2.18), then u is one-dimensional,
i.e. u(x) = g(x1) a.e. where g : R→ R2

a is, up to a translation in the x1-variable, the unique
one-dimensional transition layer given by Proposition 4.3.

Proof of Theorem 4.21. First, we note that by Lemma 4.20, there exists an entropy Φ∈C 3(R2,R2)
associated to the potential 1

2w2 satisfying the saturation condition (4.11) for this potential 1
2w2, to-

gether with (2.19) (with ∓=+ and α ∈ C 2(R2)). The symmetry of global minimizers is proved
by considering two cases:

Case 1: W = 1
2w2 on R2. Then, by Proposition 4.16, if u is a global minimizer of (P), it satisfies

2Π+∇u = Π0∇Φ(u) a.e., i.e.

∂1u2 +∂2u1 = w(u) ∈ L2(Ω) and ∂1u1 = ∂2u2 = 0 a.e. in Ω.

In particular, u2 only depends on x1 and u1 only depends on x2. Thanks to Lemma 3.2, since
H1(T) is embedded in C 0(T), we know that u1(Rn, ·) converges uniformly to a for a sequence
Rn → ∞ and thus, u1 ≡ a. This implies that u is one-dimensional and the uniqueness property
follows from Proposition 4.3.

Case 2: W ≥ 1
2w2 on R2. We prove that if u is a global minimizer in (P), i.e., E(u) = cW (u−,u+),

then u is also a global minimizer for the energy v 7→
∫

Ω
1
2 |∇v|2 + 1

2w2(v). Indeed,

∫
Ω

1
2
|∇u|2 + 1

2
w2(u)≤ E(u) = cW (u−,u+)

≤ geoda
W (u−,u+) = geoda

w2
2
(u−,u+) = c w2

2
(u−,u+),

where the last two last equalities follow from W = 1
2w2 on [u−,u+] and Proposition 4.7 (as Φ is an

entropy satisfying the saturation condition (4.11) for the potential 1
2w2). Therefore, the conclusion

follows by Case 1.

Proof of Corollary 2.7. Since W (z) = 1
4(1−|z|

2)2 satisfies the growth condition (2.18), the con-
clusion follows from Theorem 4.21.

When w is harmonic, we have a similar rigidity result:

Theorem 4.22. Let W : R2→ R+ be a continuous potential and u± = (a,u±2 ) ∈ Sa be two wells
of W for some a ∈ R. Assume that W ≥ 1

2w2 on R2 and (W = 1
2w2 and w > 0 on (u−,u+)) for

some harmonic function w ∈ C 2(R2,R). If u is a global minimizer of (P) such that either u ∈ L∞

or |w| satisfies the growth condition (2.18) then u is one-dimensional, i.e. u(x) = g(x1) a.e. with
g : R→ R2

a being, up to a translation in the x1-variable, the unique one-dimensional transition
layer given by Proposition 4.3.
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Remark 4.23. The advantage of the Laplace operator over the wave operator consists in being
rotation invariant. Consequently, if w is harmonic, then Theorem 4.22 also applies in an infinite
cylinder in any direction ν ∈ S1 as explain at page 14, in particular, if W is a multi-well potential
that is positive on the segment relying two wells.

Proof of Theorem 4.22. As in the previous proof, by Lemma 4.20, there exists an entropy Φ ∈
C 3(R2,R2) associated to the potential 1

2w2 satisfying the saturation condition (4.11) for the po-
tential 1

2w2, together with (2.19) (with∓=− and α ∈ C 2(R2)). By the same argument explained
in Case 2 of the proof of Theorem 4.21, we can assume W = 1

2w2 on R2.
By Proposition 4.16, if u is a global minimizer of (P), it satisfies 2Π−∇uT = Π0∇Φ(u) a.e.,

i.e. u is a solution of the following first order quasilinear PDE system:{
∂1u1 +∂2u2 = 0
−∂2u1 +∂1u2 = w(u)

a.e. in Ω. (4.21)

Since either u ∈ L∞ or |w| satisfies (2.18), i.e. |w|(z) ≤C exp(β |z|2) for all z ∈ R2 and for some
C,β > 0, we have by the Moser-Trudinger inequality that w(u) ∈ Lp

loc(Ω) for every p ∈ (1,+∞).
By (4.21), we write u = ∇⊥ϕ = (−∂2ϕ,∂1ϕ) with −∆ϕ = w(u) and we deduce by elliptic regu-
larity that u = ∇⊥ϕ ∈W 1,p

loc (Ω,R2) for every p ∈ (1,+∞). Thus, we have u ∈ C 0,θ ⊂ L∞
loc with

θ > 0. By the chain rule applied to the composition w ◦ u with w ∈ C 1 (w is harmonic, thus
smooth) and u∈ L∞

loc∩H1
loc(Ω), we can compute the derivative ∂2 of the second equation in (4.21)

in the distributional sense:

−∂22u1 +∂12u2 = ∂1w(u) ∂2u1 +∂2w(u) ∂2u2.

Since ∇ ·u = 0, one has ∂2u2 =−∂1u1 yielding ∂12u2 =−∂11u1 in the distribution sense, and thus,

−∂22u1−∂11u1 = ∂1w(u) ∂2u1−∂2w(u) ∂1u1.

Consequently, u1 solves the following elliptic semi-linear equation

−∆u1−∇
⊥w(u) ·∇u1 = 0. (4.22)

In particular, since w is smooth, we deduce that u1 ∈ C 2,θ by a classical boot-strap argument for
elliptic PDE’s. Using the classical maximum principle and the boundary condition (1.3), we shall
prove that u1 is constant. Indeed, Lemma 3.2 yields two sequences (R±n )n≥1→±∞ such that

u1(R±n , ·)→ a uniformly on T when n→ ∞.

Take ε > 0 and n large enough to have |u1(R±n ,x2)−a| ≤ ε for all x2 ∈ T. Applying the maximum
principle to the elliptic equation (4.22) on the domain [R−n ,R

+
n ]×T, one gets

|u1(x)−a| ≤ ε for all x ∈ [R−n ,R
+
n ]×T.

Since this can be done for arbitrary small values of ε > 0 and large values of n, one has actually
u1 ≡ a and ∇ · u = ∂2u2 = 0. Thus, u depends on x1 and the uniqueness of u (up to translation)
follows from Proposition 4.3.
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Example 4.24. An elementary example of potential for which Theorem 4.22 applies is given by
W (z) = 1

2(z1z2)
2. In this case, the set {W = 0} is the union of the two axis {z1 = 0} and {z2 = 0}.

For two wells u+,u− 6= 0 which are not on the same axis, the transition axis ν := (u+− u−)⊥

(which plays the role of e1 in the preceding computations) can be any vector different than the
two axis e1 and e2 (see the last paragraph in Section 2.2). Theorem 4.22 asserts that, with a
periodicity condition with respect to the second variable in the basis (ν ,ν⊥), that is x ·ν⊥, one has
1D symmetry of global minimizers of the energy for the transition between u− and u+. For two
wells lying on the same axis, e.g. u± = (0,u±2 ) ∈ {z1 = 0}, the minimization problem (P) has no
solution. Indeed, if u(x1,x2) = (0,ϕ(x1)) with ϕ(±∞) = u±2 , then the energy of u writes

E(u) =
1
2

∫
R
|ϕ ′(t)|2 dt,

so that the infimum over all admissible ϕ is 0. Of course, this infimum is not achieved if u− 6= u+

since any zero-energy configuration should be constant.
Note that W (z) = 1

2(z1z2)
2 can also be seen within the framework of Theorem 4.21 since

w(z) = z1z2 solves the wave equation as ∂11(z1z2) = ∂22(z1z2) = 0. However, as we noticed in
Remark 4.23, Theorem 4.22 applies for any rotation of W contrary to Theorem 4.21: for example,
the rotation of angle Π

4 of w leads to the potential w̃(z) = 1
2(z

2
1− z2

2) that is still harmonic but not
solution of the wave equation.

Proof of Theorem 2.6. It is a direct consequence of Theorems 4.21 and 4.22.

The case of potentials satisfying the Tricomi equation. Proof of Theorem 2.8 The above
results can be extended to potentials W (z) = 1

2w2(z) where w ∈ C 2(R2,R) satisfies the Tricomi
equation (2.20) for a continuous function f : R→ R with | f | ≤ 1 in R. The idea is to construct a
map Φ ∈ C 1(R2,R2) and a scalar function α ∈ C 1(R2,R) such that

Π0∇Φ(z) = ∇Φ(z)+α(z)I2 =

(
0 w(z)

f (z1)w(z) 0

)
for all z ∈ R2.

As before, by Poincaré’s lemma, one checks that the existence of Φ and α are equivalent with the
Tricomi equation in (2.20) (as a consequence, −∇α = ( f (z1)∂2w,∂1w) in R2).

Step 1. Φ is an entropy associated to the potential W = 1
2w2. Indeed, if u ∈ C ∞(Ω,R2),

∇ · [Φ(u)]+α(u)∇ ·u = [∇Φ(u)+α(u)Id] : ∇uT=w(u)( f (u1)∂2u1 +∂1u2).

In particular, if ∇ ·u = 0, one deduces that ‖∇ · [Φ(u)]‖L1(Ω) ≤ 2E(u) since | f | ≤ 1; moreover,

2∇ · [Φ(u)] =
(

f (u1)∂2u1 +∂1u2
)2

+w2(u)−
(
w(u)− ( f (u1)∂2u1 +∂1u2)

)2

=
(
|∇u2|2 + f (u1)

2|∇u1|2
)
+w2(u)−

(
w(u)− ( f (u1)∂2u1 +∂1u2)

)2

−
(
∂2u2− f (u1)∂1u1

)2−2 f (u1)
(
∂1u1∂2u2−∂1u2∂2u1

)
. (4.23)

Denoting by F the antiderivative of f such that F(0) = 0 and using that ∇ ·u = 0, we compute as
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in the proof of Proposition 4.12: for R− < R+,

IR−,R+ :=
∣∣∣∫

(R−,R+)×T
f (u1)

(
∂1u1∂2u2−∂1u2∂2u1

)
dx
∣∣∣

=
∣∣∣∫

(R−,R+)×T

(
∂1(F(u1))∂2u2−∂1u2 ∂2(F(u1))

)
dx
∣∣∣

=
∣∣∣∫

T

(
F(u1(R+,x2))∂1u1(R+,x2)−F(u1(R−,x2))∂1u1(R−,x2)

)
dx2

∣∣∣.
If u ∈ C ∞ ∩ L∞ ∩ Ḣ1

div(Ω,R2) and E(u) < +∞, then by Remark 3.3 there exist two sequences
(R+

n )n≥1 and (R−n )n≥1 such that R±n →±∞ and

‖u1(R±n , ·)‖L2(Td−1)‖∂1u1(R±n , ·)‖L2(Td−1)→ 0 as n→+∞.

Therefore, since |F(u1)| ≤ |u1|, we deduce IR−n ,R+
n
→ 0. By (4.23), we obtain

∫
Ω

∇ · [Φ(u)] = E(u)− 1
2

∫
Ω

(1− f (u1)
2)|∇u1|2

− 1
2

∫
Ω

(
w(u)− ( f (u1)∂2u1 +∂1u2)

)2

− 1
2

∫
Ω

(
∂2u2− f (u1)∂1u1

)2 (4.24)

and we conclude
∫

Ω
∇ · [Φ(u)]dx≤ E(u), i.e. Φ is an entropy.

Step 2. The saturation condition (4.11) for two wells u± = (a,u±2 ) ∈ Sa provided that w ≥ 0 on
[u−,u+]. This follows by the computation (4.20).

Step 3. Symmetry of a global minimizer u of (P) provided that (either u ∈ L∞ or |∇w| satisfies
the growth condition (2.18)). By (4.24) and Lemma 4.9, for every u∈C ∞∩L∞∩ Ḣ1

div(Ω,R2) with
E(u)<+∞ and u(±∞) = u±, one has

Φ1(u+)−Φ1(u−) = E(u)− 1
2

∫
Ω

(1− f (u1)
2)|∇u1|2

− 1
2

∫
Ω

(
w(u)− ( f (u1)∂2u1 +∂1u2)

)2

− 1
2

∫
Ω

(
∂2u2− f (u1)∂1u1

)2
. (4.25)

Since each term of the RHS is controlled by the energy density 1
2(|∇u|2 +w2(u)) and since the

integrands depend continuously on u, we deduce by Lemma 2.12 that the equality (4.25) still holds
for all u ∈ Ḣ1

div(Ω,Rd) with E(u)<+∞ and u(±∞) = u±, without assuming that u is smooth, but
only that u∈ L∞ or W ∈C 2 satisfies (2.21)14. In particular, if u is a global minimizer of (P), then

geoda
W (u−,u+)

Step 2
= Φ1(u+)−Φ1(u−)

(4.25)
≤ E(u)

(P)
= cW (u−,u+)

Prop. 4.7
= geoda

W (u−,u+).

14Note that if |∇w| satisfies the growth condition (2.18), then |w| also satisfies the growth condition (2.18).
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Therefore, the above inequality, based on (4.25), is an equality which means that the three integrals
in (4.25) vanish, that is

f (u1(x))2 = 1 or ∇u1(x) = 0 a.e. in Ω, (4.26)
f (u1)∂2u1 +∂1u2 = w(u) and ∂2u2 = f (u1)∂1u1 a.e. in Ω. (4.27)

Note that by Remark 3.13 (due to the growth condition (2.18) on ∇w), we have that u∈W 2,q
loc (Ω,R2)

for every q > 1; in particular, u ∈ C 1(Ω,R2) so that (4.26) and (4.27) hold for every x ∈ Ω. Let
F : R→ R be an antiderivative of f ; we shall prove that under the above conditions, we have

−∆[F(u1)]+ f (u1)∇
⊥w(u) ·∇[F(u1)] = 0 distributionally in Ω. (4.28)

We first note that each term in the equation (4.28) (and in the following computations leading to it)
actually belongs to Lq

loc(Ω) for every q> 1. Indeed, we have ∆[F(u1)] , f (u1), ∇⊥w(u), ∇[F(u1)]∈
Lq

loc since F ∈ C 2, w ∈ C 2 and u ∈W 2,q
loc ⊂ L∞

loc for q > 1. Next, by (4.26), we have

∇u1 = ( f (u1))
2

∇u1 = f (u1)∇[F(u1)] (4.29)

and from (4.27), we obtain{
∂1[F(u1)] = f (u1)∂1u1 = ∂2u2

∂2[F(u1)] = f (u1)∂2u1 =−∂1u2 +w(u).

Hence,
∆[F(u1)] = ∂2[w(u)] = ∂1w(u)∂2u1 +∂2w(u)∂2u2

and by the identity ∂2u2 =−∂1u1 and (4.29), we find

∆[F(u1)] = ∇
⊥w(u) ·∇u1 = f (u1)∇

⊥w(u) ·∇[F(u1)]

which is the desired equation (4.28). Repeating the argument in the proof of Theorem 4.22, we
deduce from (4.28) that F(u1) ≡ F(a) in Ω yielding u1 ≡ a in Ω by (4.29); by the divergence
constraint, u2 depends only on x1.

Proof of Theorem 2.8. It is a direct consequence of the above arguments.

Remark 4.25. Theorem 2.8 leads to a large class of potentials W (z) = 1
2w2(z) for which the sym-

metry result holds true (see e.g. Remark 2.9 where f is constant in the Tricomi equation (2.20)).
An example with a nonconstant function f in (2.20) is given by

w(z1,z2) = (1+ sin2 z1

2
)cosz2 and f (z1) =−

cosz1

2(1+ sin2 z1
2 )

, | f | ≤ 1,

for which Theorem 2.8 applies for any two wells u− = (z1,π(k− 1
2)) and u+ = (z1,π(k+ 1

2)) with
k ∈ Z and z1 ∈ R.
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4.6 One-dimensional symmetry in higher dimension. Proof of Theorems 2.10
and 2.11

We start by investigating the existence of entropies in any dimension d ≥ 2 by the three sufficient
conditions (Estrg), (Esym) or (Easym) in (2.10) or (2.12). Obviously, the question of existence of an
entropy depends on the potential; in fact, our aim is rather to find potentials W with pairs of zeros
(u−,u+) for which one has existence of an entropy Φ satisfying the saturation condition. We shall
see in particular that the condition (Easym) for entropies Φ with antisymmetric Jacobians (analogue
to the case of harmonic potentials W in 2D) is too restrictive in dimension d ≥ 3, i.e., only trivial
entropies can be found in this case (see Proposition 4.29). The criterium (Esym) (where the entropy
Φ has symmetric Jacobian), analogue to potentials that are solutions to the wave equation in 2D,
provides nontrivial entropies, in particular, corresponding to an extension of the Ginzburg-Landau
potential in dimension d ≥ 3 (see Theorem 4.31). We are also able to handle a nontrivial class of
potentials with a finite number of wells (see Theorem 4.27) by use of the first criterium (Estrg) in
dimension d ≥ 2.

Strong punctual condition (Estrg). We look for C 1 maps Φ : Rd→Rd satisfying the saturation
condition (4.11) and the punctual estimate (2.10), i.e., |Π0∇Φ|2 ≤ 2W in Rd . We are able to
construct such an entropy in the situation when the following holds:

geoda
W (u−,u+) = geodW (u−,u+), ∀u± ∈ Sa, (4.30)

where geodW was defined in (2.27) (it corresponds to the geodesic (pseudo-)distance between u−

and u+ in Rd – and not Rd
a as in the definition of geoda

W in (4.3) – endowed with the (pseudo-
)metric 2Wg0).

Theorem 4.26. If W : Rd → R+ is a continuous potential satisfying the growth condition (2.21),
if a∈R, u−,u+ ∈ Sa and if geoda

W (u−,u+) = geodW (u−,u+), then any global minimizer u in (P)
is one-dimensional, i.e. u = g(x1) with g : R→ Rd

a .

Proof. We first set ϕ(z) := geodW (u−,z) for every z ∈Rd . It is easy to see that ϕ ∈ Liploc(Rd,R)
and |∇ϕ| ≤

√
2W a.e. Since ϕ does not need to belong to C 1 class 15, we introduce a standard

mollifying kernel ρ` = `dρ(·`), with ρ ∈C ∞
c (Rd,R+) such that

∫
Rd ρ = 1, and we set ϕ` := ρ`∗ϕ

for each ` ∈ N∗. We observe that, by Jensen’s inequality,

|∇ϕ
`|2 = |ρ` ∗∇ϕ|2 ≤ ρ

` ∗ |∇ϕ|2 ≤ 2ρ
` ∗W in Rd. (4.31)

Now, let u ∈ Ḣ1
div(Ω,Rd) satisfy E(u) < +∞, u(±∞) = u± and take the sequence of smooth

approximations (uk)k∈N∗ ⊂ C ∞ ∩ L∞ ∩ Ḣ1
div(Ω,Rd) provided by Lemma 2.12. In particular we

impose that uk(±t) = u± for large values of t ≥ 0, i.e., t ≥ Tk ∈ R+. We now set ωk = [−Tk,Tk]×
Td−1 and we compute

ϕ
`(u+)−ϕ

`(u−) =
∫

ωk

∂1(ϕ
`(uk)) =

∫
ωk

∇ϕ
`(uk) ·∂1uk

≤
∫

ωk

1
2
|∇uk|2 +

1
2
|∇ϕ

`(uk)|2−
1
2

d

∑
j=2
|∂ juk|2

≤
∫

ωk

1
2
|∇uk|2 +(ρ` ∗W )(uk)−

1
2

d

∑
j=2
|∂ juk|2.

15If ϕ ∈ C 1, then the corresponding entropy is Φ = ϕe1 which satisfies (2.10) and the saturation condition (4.11).
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We now observe that when `→ ∞, ϕ`(u+)−ϕ`(u−)→ ϕ(u+)−ϕ(u−) = geodW (u−,u+) and∫
ωk
(ρ` ∗W )(uk)→

∫
ωk

W (uk) since (ρ` ∗W )` tends to W uniformly on compact sets and uk ∈ L∞

for each k. Thus, passing to the limit `→ ∞ in the preceding estimates and rearranging the terms,
we obtain16

geodW (u−,u+)+
1
2

∫
Ω

d

∑
j=2
|∂ juk|2 ≤ E(uk),

which in the limit k→ ∞ yields

geodW (u−,u+)+
1
2

∫
Ω

d

∑
j=2
|∂ ju|2 ≤ E(u).

Since geodW (u−,u+) = geoda
W (u−,u+) is the infimum of the energy over 1D admissible maps

(see Proposition 4.1), in particular, geodW (u−,u+)≥ E(u) for any global minimizer u in (P), we
immediately deduce that u only depends on x1.

We now investigate the existence of potentials W with a finite number of wells for which
Theorem 4.26 applies. The simplest way to guarantee (4.30) is to set W = 1

2w2 for some w such
that the line segment [x,y] minimizes the Lw-length between any two points x,y ∈ {w = 0}. Here,
we denoted for every continuous function w :Rd→R+ and for all Lipschitz curve γ : [−1,1]→Rd

(and not restricted to Rd
a), the length:

Lw(γ) =
∫ 1

−1
w(γ(t))|γ̇(t)|dt.

The existence of appropriate weight functions w is given by:

Theorem 4.27. Let X = {x0, . . . ,xd} be an affine basis of Rd and let δ be a pseudo-metric over
X, that is δ ∈ ∆(X), where ∆(X) is defined by 17

∆(X) =
{

δ ∈ RX×X
+ : ∀x,y,z ∈ X , δ (x,x) = 0, δ (x,y) = δ (y,x),

δ (x,y)≤ δ (x,z)+δ (z,y)
}
.

Then there exists a Lipschitz bounded function w : Rd → R+ such that

1. for all z ∈ X, w(z) = 0,

2. w(z) =
√

2 if |z| is large enough,

3. for all x,y ∈ X with δ (x,y)> 0 and t ∈ (0,1), w(ty+(1− t)x)> 0,

4. for all x,y ∈ X, Lw(xy) = geodw2/2(x,y) = δ (x,y), where xy stands for the line segment
between x and y, parametrized by xy(t) = ty+(1− t)x for all t ∈ [0,1].

Moreover, if δ is a metric, i.e. δ (x,y)> 0 for all x,y ∈ X with x 6= y, then w can be chosen in such
a way that w > 0 on Rd \X.

Setting W = 1
2w2, for every two wells u± ∈ X, any ν ∈ Sd−1 with ν ·(u+−u−) = 0 and any R∈

SO(d) such that Rν = e1, if u∈ Ḣ1
div(ΩR,Rd) is a global minimizer of ER in (2.28) over divergence-

free configurations satisfying the boundary condition (2.29), then u is one-dimensional, i.e., u =
g(x ·ν) where g ∈ Ḣ1(R,Rd) with g(±∞) = u± and ER(u) = δ (u−,u+).

16Note that ∇uk is compactly supported in ωk so that integrating on Ω or ωk is the same.
17 Recall that a pseudo-metric δ can vanish at a point (x,y) for some x 6= y.
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Remark 4.28. The assumption that X is an affine basis in Rd cannot be removed in Theorem 4.27.
Indeed, let X ⊂ R2 be the set of vertices of a square endowed with the metric δ (x,y) := 2 if
x,y ∈ X lie on the same edge of the square and δ (x,y) := 1 if x,y ∈ X lie on the same diagonal
of this square (see Figure 2). Assume by contradiction that δ = geodW for W = 1

2w2 with some

•
2

•x1

2

•
x22•

2
0.4
0.2

0.6

0.8
•x0

Figure 2: A complete graph of the four vertices of a square and the associated δ -distances

weight function w (defined on R2) such that the line segments [x,y] are minimal for geodW for
every two vertices x and y of the square. Since the length (in the metric geodW over R2) of the two
diagonals is 1, there exist two vertices x1,x2 on the same edge such that geodW (x0,xi) ≤ 1/2 for
i = 1,2, where x0 is the intersection of the two diagonals. We thus have by the triangle inequality
2 = geodW (x1,x2)≤ geodW (x0,x1)+geodW (x0,x2)≤ 1 which is a contradiction.

The proof of Theorem 4.27 relies on two tools: the decomposition of δ in terms of extremal
pseudo-metrics (see Lemma A.1 in the appendix) and the existence of a calibration ϕ for the line
segments xy, with x,y ∈ X , when the pseudo-metric δ is extremal and w = |∇ϕ| (see Lemma B.1
in the appendix). Here, we just explain how Lemma A.1 and Lemma B.1 imply Theorem 4.27.

Proof of Theorem 4.27. We divide the proof into several steps.

STEP 1: THE CASE OF AN EXTREMAL PSEUDO-METRIC δ , I.E., δ = δY FOR SOME Y ⊂ X WITH

Y 6= /0 AND Y 6= X , WHERE

δY (x,y) :=

{
0 if (x,y ∈ Y ) or (x,y /∈ Y ),
1 otherwise.

Let ϕY ∈ C ∞
c (Rd,R) be a scalar function satisfying all the properties claimed in Lemma B.1 and

define the Lipschitz compactly supported function wY : Rd → R+ by

wY (z) = |∇ϕY (z)| for all z ∈ Rd.

We claim that the differential form ω = dϕY is a calibration for the line segment xy for every
x,y ∈ X , in the following sense:

• for any Lipschitz curve γ : [0,1]→ Rd with γ(0) = x and γ(1) = y, one has

ϕY (y)−ϕY (x) =
∫

γ

ω =
∫ 1

0
∇ϕY (γ(t)) · γ̇(t)dt ≤

∫ 1

0
wY (γ(t))|γ̇(t)|dt = LwY (γ),

• the preceding inequality is an equality when γ = xy with (x,y ∈ Y ), (x,y ∈ X \Y ) or (x ∈ Y
and y ∈ X \Y ), i.e.

ϕY (y)−ϕY (x) =
∫ 1

0
(∇ϕY (ty+(1− t)x) , y− x)dt = LwY (xy).
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This comes from the fact that ∇ϕY (ty+(1− t)x) and y− x are positively collinear if x ∈ Y and
y ∈ X \Y and wY = |∇ϕY |; as a consequence, the segment xy minimizes the LwY -length between
any two points x,y ∈ X and by Lemma B.1, LwY (xy) = |ϕY (y)− ϕY (x)| = δ (x,y) for every
x,y ∈ X , i.e. w = wY satisfies Point 4 in Theorem 4.27. Points 1 and 3 in Theorem 4.27 are a
consequence of the properties of ϕ = ϕY in Lemma B.1.

STEP 2: THE CASE OF A GENERAL PSEUDO-METRIC δ . By Lemma A.1, δ writes

δ = ∑
Y∈Pstr(X)

λY δY ,

for some parameters λY ≥ 0, where

Pstr(X) := {Y ⊂ X : Y 6= X and Y 6= /0}. (4.32)

We set
w = ∑

Y∈Pstr(X)

λY wY ,

with the wY : Rd → R+ defined in Step 1. It is easy to check Points 1, 3 and 4 in Theorem 4.27.
For instance, Point 4 comes from the fact that for every Lipschitz curve γ : [0,1]→Rd connecting
x to y, one has

Lw(xy) = ∑
Y∈Pstr(X)

λY LwY (xy) = δ (x,y)≤ ∑
Y∈Pstr(X)

λY LwY (γ) = Lw(γ).

STEP 3: REACHING POINT 2 AND IMPROVEMENT TO THE CASE WHEN δ IS A METRIC. If w0
is the function given by Step 2, we set w = w0 +w1, where w1 is any Lipschitz function such that
w1 = 0 on G := ∪x,y∈X [x,y], w1 > 0 on Rd \G and such that w1 ≡

√
2 if |z| is large enough. The

line segments between any two points x,y ∈ X are still optimal with Lw instead of Lw0 because
of the inequality Lw(γ) ≥Lw0(γ) for all curves γ and the equality Lw(xy) = Lw0(xy). Hence,
the function w satisfies Point 4 in Theorem 4.27; the other points are easy to check.

STEP 4. The symmetry of global minimizers of ER is a direct consequence of Theorem 4.26 and
the analysis presented in Section 2.2 at the paragraph “Change of variables under rotation”.

Proof of Theorem 2.11. It is a direct consequence of Theorem 4.27.

Entropies with antisymmetric Jacobians (Easym). If in dimension 2, we have constructed en-
tropies Φ satisfying (Easym) that are holomorphic (see Lemma 4.20), we will show that in dimen-
sion d ≥ 3, the antisymmetry of Π0∇Φ imposed in the criterium (Easym) is very rigid for maps
Φ:

Proposition 4.29. Let d ≥ 3 and Φ = (Φ1, . . . ,Φd) : Rd → Rd be a locally Lipschitz map such
that

Π0∇Φ(z) is antisymmetric for a.e. z ∈ Rd. (4.33)

Then there exist c = (c1, . . . ,cd) ∈ Rd and a linear antisymmetric application L = (L1, . . . ,Ld) ∈
L (Rd,Rd) such that for all i ∈ {1, . . . ,d} and z ∈ Rd ,

Φ
i(z) = Φ

i(0)+Liz+
d

∑
j=1

{
c jz jzi− ci

|z j|2

2

}
. (4.34)
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Proof. Up to regularizing Φ by convolution with a smooth mollifying kernel (thus preserving
the algebraic constraint), one can assume that Φ is smooth. Indeed, for some mollifying kernel
(ρε)ε>0, assume that Φε := ρε ∗Φ writes in the preceding form: Φε = Φε(0)+Lε + qε , where
Lε is the linear part and qε is the quadratic part which depends on the parameter cε ∈ Rd . Since
(Φε)ε is locally bounded in W 1,∞, we know that (Φε(0))ε and (Lε = ∇Φε(0))ε are bounded.
Thus, qε = Φε −Φε(0)−Lε is also bounded in the space of quadratic forms, which means that
the parameter cε is bounded. Thus, there is a subsequence εi → 0 such that cεi → c ∈ Rd and
Lεi → L ∈L (Rd,Rd) as i→ ∞. In the limit, one gets the identity Φ = Φ(0)+L+ q where q is
the quadratic form given by the last term in the RHS of (4.34).

Moreover, up to replacing Φ by Φ−Ψ with Ψ(z) = Φ(0) +∇Φ(0)z, one can assume that
Φ(0) = 0 and ∇Φ(0) = 0. For the sake of simplicity, we shall write fi = ∂i f for the partial
derivative w.r.t. zi of some scalar or vector function f defined on Rd . In particular, writing
Φ = (Φ1, . . . ,Φd), we have the notation

Φ
i
j = ∂ jΦ

i for all i, j ∈ {1, . . . ,d}.

Now, the algebraic constraint (4.33) rewrites{
Φ1

1 = · · ·= Φd
d =: α ∈ L∞

loc,

Φi
j =−Φ

j
i for all i 6= j.

In particular, if i, j,k ∈ {1, . . . ,d} are three distinct indices, then by the Schwarz theorem,

∂ jΦ
i
k =−∂ jΦ

k
i = Φ

j
ki =−Φ

i
jk and thus, Φ

i
jk = 0.

In particular, Φi
j only depends on zi and z j. Therefore, for the purpose of notation, we afford to

write
Φ

i
j(z) = Φ

i
j(zi,z j) for i 6= j.

Then, for every i and j such that i 6= j, one has

Φ
i
j j =−Φ

j
i j =−αi and Φ

i
ji = α j .

In particular, αi only depends on zi and z j for all j 6= i. Since d ≥ 3, this means that αi depends on
zi only:

αi(z) = αi(zi).

Now, for every i and j with i 6= j, one has

−αii = (Φi
j j)i = Φ

i
i j j = (Φi

i j) j = α j j .

In particular, −αii = α j j for all i 6= j which implies for k /∈ {i, j}, −αii = αkk =−α j j = αii, that
is αii = 0. As αi depends only on zi, we deduce that αi is constant for all i ∈ {1, . . . ,d}, i.e.,

αi ≡: ci ∈ R.

Since Φi
j(z) = Φi

j(zi,z j) with (Φi
j)i = α j = c j and (Φi

j) j =−αi =−ci, and since ∇Φ(0) = 0, one
has {

Φi
j(z) = c jzi− ciz j when i 6= j ,

Φ1
1(z) = · · ·= Φd

d(z) = α(z) = ∑i cizi ,

and the proposition follows.
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We will show that in dimension d ≥ 3, the rigidity (4.33) imposed on entropies within the
criterium (Easym) cannot be compatible with the saturation condition (4.11) for two distinct wells
u± ∈ Sa, a ∈ R if the geodesic cost geoda

W (u−,u+)> 0.

Corollary 4.30. Let W : Rd → R+ be a continuous potential and u± ∈ Sa, with a ∈ R. As-
sume that there exists an entropy Φ ∈ C 1(Rd,Rd) satisfying (Easym) and the saturation condition
(4.11). If u ∈ Ḣ1

div(Ω,Rd) is a global minimizer in (P) such that either (u ∈ L∞(Ω,Rd) and
W ∈ C 2(Rd,R+)) or W satisfies the growth condition (2.21) then the Td−1-average u of u is
constant; in particular, u− = u+.

Proof. By Proposition 4.29, there exist an antisymmetric matrix A ∈ Rd×d and c ∈ Rd such that
Π0∇Φ(z) = z⊗ c− c⊗ z+A for a.e. z ∈ Rd and we deduce by Proposition 4.16 that

2Π
−

∇uT = u⊗ c− c⊗u+A a.e. in Ω.

By integrating over x′ ∈ Td−1, we obtain the system 2Π−∇uT = u⊗ c− c⊗u+A which rewrites{
d
dt ϕ(t) = ac′− c1ϕ(t)+A′1
c′⊗ϕ−ϕ⊗ c′ = A′

for a.e. t ∈ R, (4.35)

where ϕ : R→ Rd−1, c′ ∈ Rd−1 and A′ ∈ R(d−1)×(d−1) are determined by u = (a,ϕ) ∈ Rd
a , c =

(c1,c′) ∈ Rd , A′ = (Ai j)i, j≥2, and A′1 is the first row vector of A′.
If c′ = 0, then the only bounded solutions of the ODE d

dt ϕ(t) = −c1ϕ(t)+A′1 in R are the
constant solutions; thus, we deduce that u = (a,ϕ) is constant.

If c′ 6= 0, by multiplying the second equation of (4.35) by c′
|c′|2 , we obtain

ϕ(t) =
(

γ(t)− A′

|c′|

) c′

|c′|
, where γ(t) := ϕ(t) · c′

|c′|
for a.e. t ∈ R. (4.36)

Moreover, the first equation of (4.35) yields

d
dt

γ =−c1γ +b, with b ∈ R.

Again, since the only bounded solution of this ODE in R are constant, we deduce that γ is constant.
Then ϕ and u = (a,ϕ) are constant as well by (4.36).

Entropies with symmetric Jacobians (Esym). This criterium turns out to be more useful than
(Easym) in dimension d ≥ 3, although very restrictive. By Proposition 4.19, if there exists a map
Φ ∈ C 1(Rd,Rd) satisfying the following conditions:

• ∇Φ(z) is symmetric and satisfies (2.23) for all z ∈ Rd ,

• |Π0∇Φ(z)|2 ≤ 4W (z) for all z ∈ Rd ,

• Φ satisfies the saturation condition (4.11), i.e.,

Φ1(u+)−Φ1(u−) = geoda
W (u−,u+),
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then one has one-dimensional symmetry of global minimizers of (P) provided some growth con-
dition on W . One can reformulate this result in the following way, where the saturation condition
(4.11) is replaced by (4.37).

Proposition 4.31. Let Φ ∈ C 1(Rd,Rd) be such that ∇Φ is symmetric satisfying (2.23) in Rd and
consider the potential W given in (2.24) and two wells u± ∈ Rd

a ∩{W = 0}. If v ∈ Ḣ1
div(Ω,Rd)

solves the system
2Π

+
∇v = Π0∇Φ(v), (4.37)

and if v(x) = v(x1), v1 ≡ a, v(±∞) = u± and W satisfies the growth condition (2.21), then v is a
global minimizer of (P) and any other global minimizer u depends on x1 only.

Proof. We first observe that (2.24) rewrites |Π0∇Φ|2 = 4W ; hence, by (2.24) and Proposition
4.13, we know that Φ is an entropy. We now show that if v is a 1D solution of (4.37), then Φ

satisfies the saturation condition (4.11). Indeed, note that (4.37) reads

2Π
+

∇v =


0 v̇2 . . . v̇d
v̇2 0 . . . 0
...

...
...

v̇d 0 . . . 0

= Π0∇Φ(v) =

 0 (∂ jΦi(v)) j>i
. . .

(∂ jΦi(v)) j<i 0

 .

Then we have
|v̇|2 = 1

2
|2Π

+
∇v|2 = 1

2
|Π0∇Φ(v)|2 (2.24)

= 2W (v)

and since
v̇ = (0,∂2Φ1(v), . . . ,∂dΦ1(v)),

this yields

Φ1(u+)−Φ1(u−) =
∫
R

∇Φ1(v(t)) · v̇(t)dt =
∫
R
|v̇(t)|2 dt =

∫
R

√
2W (v(t))|v̇(t)|dt

(4.3)
≥ geoda

W (u−,u+).

Moreover, the reverse inequality also holds. Indeed, by (4.3), we can choose a sequence of curves
(γk)k≥1 in Lip([−1,1],Rd

a) such that

γk(±1) = u± and (LW (γk))k≥1→ geoda
W (u−,u+)

so that

Φ1(u+)−Φ1(u−) =
∫ 1

−1
∇Φ1(γk(t)) · γ̇k(t)dt

(2.24)
≤

∫ 1

−1

√
2W (γk)|γ̇k| → geoda

W (u−,u+).

Thus, the saturation condition Φ1(u+)−Φ1(u−) = geoda
W (u−,u+) follows and, as a by-product,

one gets optimality of v since E(v) = LW (v) = Φ1(u+)−Φ1(u−) is minimal by Proposition 4.7.
The one-dimensional symmetry of other minimizers u is a consequence of Proposition 4.19.

Proof of Theorem 2.10. It is a direct consequence of Proposition 4.19.
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Strategy for constructing entropies. We now investigate whether (2.24) provides nontrivial poten-
tials W for which one has one-dimensional symmetry of global minimizers in (P). We thus look
for maps Φ ∈ C 1(Rd,Rd) such that for all z ∈ Rd , ∇Φ(z) is symmetric. If so, by the Poincaré
Lemma, there exists Ψ ∈ C 2(Rd) such that

Φ(z) = ∇Ψ(z) for all z ∈ Rd.

In addition, we require that (2.23) holds for Φ, which amounts to imposing (2.26) on Ψ. By
analogy with the wave equation in R2, solutions of these equations can be written

Ψ(z) = ∑
σ∈{±1}d

fσ (σ · z),

where ( fσ )σ is a family of scalar functions defined over R (this form of Ψ follows by an induction
argument over the dimension d). However, this formula is not so easy to manipulate and we
rather use an induction method: the entropy Φ in Rd will be constructed as an extension of the
entropy Φ defined on Rd−1 ∼ {zd = 0}∩Rd . More precisely, assume that the map Φ = ∇Ψ (with
Ψ ∈ C 2(Rd−1)) is an entropy in Rd−1 leading to the potential W := 1

4 |Π0∇Φ|2. We now look for
an entropy Φ : Rd → Rd , of the form Φ = ∇Ψ with Ψ : Rd → R, such that Ψ(z1, . . . ,zd−1,0) =
Ψ(z1, . . . ,zd−1). The function Ψ defined by

Ψ(z1, . . . ,zd) =
1
2
(
Ψ(z1, . . . ,zd−2,zd−1 + zd)+Ψ(z1, . . . ,zd−2,zd−1− zd)

)
(4.38)

is an extension of Ψ which solves (2.26) in Rd provided that Ψ solves the same equation (2.26) in
dimension d−1.

Ginzburg-Landau type potential in dimension d ≥ 3. We shall build examples of entropies in
every dimension d ≥ 3 by use of the preceding induction method. Let us initialize the induction in
dimension d = 2 with the Ginzburg-Landau potential Wd=2(·) := 1

4(1−| · |
2)2 for which we have

the Aviles-Giga entropy

Φ
d=2 := ∇Ψd=2, where Ψd=2(z1,z2) =−

z1z2√
2

(
z2

1 + z2
2

3
−1
)

and let (Ψd)d≥2 be the unique sequence of scalar functions given inductively by (4.38), where
Ψ = Ψd : Rd → R and Ψ = Ψd−1 : Rd−1→ R for every d ≥ 3. Then, an easy computation yields

Ψd(z) =−
z1z2√

2

(
z2

1 + z2
2

3
+ |z′′|2−1

)
∀z = (z1,z2,z′′) ∈ Rd, z′′ := (z3, . . . ,zd).

The map Φd := ∇Ψd : Rd → Rd is an entropy for the following potential18

Wd(z) :=
1
4
|Π0∇Φ

d(z)|2 = 1
4
(|z|2−1)2 + |z′′|2(z2

1 + z2
2) for every z ∈ Rd.

Symmetry of global minimizers in the case of the potential Wd . We will follow Proposition 4.31.
Let us give a detailed study in dimension d = 3 (the same argument works for d = 4). The gradient
of the entropy Φ3 = ∇Ψ3 writes

∇Φ
3(z) = ∇

2
Ψ3(z) =

1√
2

−2z1z2 1−|z|2 −2z2z3
1−|z|2 −2z1z2 −2z1z3
−2z2z3 −2z1z3 −2z1z2

 .

18Note that the growth condition (2.21) is valid for Wd only for dimensions d ≤ 4.
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e2•−e2•
•

u−
•

u+e1

Figure 3: Phase space with the set {W3 = 0}= S1∪{±e3}

We have
{W3 = 0}= {z ∈ S2 : z3 = 0 or z1 = z2 = 0}= S1∪{±e3},

where S2 is the unit sphere in R3, S1 = S2∩{z3 = 0} and (e1,e2,e3) is the canonical basis of R3.

Case 1: wells u± in S1. Let u± be two wells in S1 such that (u+−u−) · e1 = 0:

u± = (a,±b,0),

where b > 0 and a2 + b2 = 1 (see Figure 3). Note that since W3 is invariant by rotation around
the axis Re3, it is not restrictive to take ν = e1 when considering two wells such that u+− u− is
orthogonal to ν ∈ S1. By Proposition 4.31, the symmetry of global minimizers in (P) follows
from the existence of a 1D solution of the system (4.37). Note that a one-dimensional transition
v = (a,v2(x1),v3(x1)), with (v2,v3)(±∞) = (±b,0), satisfies (4.37) if and only if

(v̇2(x1), v̇3(x1)) =
1√
2

(
b2− v2

2(x1)− v2
3(x1) , −2v2(x1)v3(x1)

)
and av3(x1) = 0. (4.39)

A solution of this ODE such that (v2,v3)(±∞) = (±b,0) is given by

(v2(x1),v3(x1)) = (b tanh(
bx1√

2
),0);

if a 6= 0 this is the only solution of (4.39) up to translation (since (4.39) then yields v3 ≡ 0), while
if a = 0, i.e. b = 1, there are also solutions with non vanishing v3 (consider the unique solution of
(4.39) such that (v2,v3)(0) = (0,h) with h ∈ (−1,1); it is easy to see that this solution is defined
on R and satisfies (v2,v3)(±∞) = (±b,0)). Thus, this argument proves both the one-dimensional
symmetry of global minimizers in (P) (via Proposition 4.31) and the uniqueness of optimal 1D
transition layers (up to a translation) when a 6= 0.

Case 2: wells u± in the set {±e2,±e3}. In this case, a = 0. By symmetry, it is enough to consider
transitions from u− = e3 to u+ = e2 and from u− = e3 to u+ =−e3. In both cases, (4.39) reads

(v̇2, v̇3) =
1√
2
(1− v2

2− v2
3,−2v2v3).

For the transition between e3 and e2, it is convenient to use the change of variable u = (u1,u2) :=
(v2 + v3,v2− v3) so that the preceding ODE is equivalent to the decoupled system

(u̇1, u̇2) =
1√
2
(1−u2

1 , 1−u2
2), u(±∞) = (1,±1),
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O
e2−e2

e3

−e3

Figure 4: Geodesics in the plane {z1 = 0}

whose only solution lies on a straight line (see figure 4), and is given by

u1(x1) = v2(x1)+ v3(x1)≡ 1 and u2(x1) = v2(x1)− v3(x1) = tanh(
x1√

2
).

As before, this argument proves both the one-dimensional symmetry and uniqueness (up to a
translation) of global minimizers in (P).

For the transition between e3 and −e3, we remark that the x2-axis {z1 = z3 = 0} is the reunion
of five solutions of (4.39): two stationary solutions v≡±e2, one supported on {z2 <−1, z1 = z3 =
0}, one on {−1 < z2 < 1, z1 = z3 = 0}, and the other on {1 < z2, z1 = z3 = 0}. In particular, by the
Cauchy-Lipschitz Theorem, no solution can meet the line {z1 = z3 = 0} and there is no solution
connecting −e3 to e3; hence, there is no global minimizer in (P). Also note that the entropy Φ =
Φ3 satisfies Φ1(e3)−Φ1(−e3) = 0 (because Φ1 is even in z3) and geoda

W (−e3,+e3)> 0 (because
±e3 are isolated zeros of W ); therefore, the saturation condition imposed in Theorem 2.10 is not
always satisfied.

A Characterization of extremal pseudo-metrics
Given a finite set X with at least two elements, we define the set ∆(X) of pseudo-metrics on X by

∆(X) =
{

δ ∈ RX×X
+ : ∀x,y,z ∈ X , δ (x,x) = 0, δ (x,y) = δ (y,x),

δ (x,y)≤ δ (x,z)+δ (z,y)
}

(see footnote at page 53) and the set ∆1(X) of normalized pseudo-metrics on X by

∆1(X) := {δ ∈ ∆(X) : σ(δ ) = 1} , where σ(δ ) = ∑
x,y∈X

δ (x,y).

We look for those normalized pseudo-metrics δ which are extremal in ∆1(X) in the following
sense

∀t ∈ (0,1), ∀δ1,δ2 ∈ ∆1(X),
(
δ = tδ1 +(1− t)δ2 =⇒ δ1 = δ2

)
.

Lemma A.1. A pseudo-metric δ is extremal in the compact convex set ∆1(X) if and only if it is of
the form δ = 1

σ(δY )
δY for some Y ⊂ X (with Y 6= /0 and Y 6= X), where δY is defined for all x,y ∈ X

by

δY (x,y) =

{
0 if (x,y ∈ Y ) or (x,y /∈ Y ),
1 otherwise.

61



R. Ignat and A. Monteil De Giorgi conjecture for Stokes problem

In particular, any pseudo-metric δ ∈ ∆(X) writes δ = ∑Y∈Pstr(X)λY δY , with (λY )Y ⊂ R+, where
Pstr(X) was defined in (4.32).

Proof. The second part, i.e. the decomposition of any pseudo-metric in terms of extremal pseudo-
metrics, is a consequence of the first part of the lemma and the Krein-Milman theorem: ∆1(X) is
the convex enveloppe of its extremal points. It remains to prove the characterization of extremal
pseudo-metrics in ∆1(X).

STEP 1: FROM PSEUDO-METRICS TO METRICS. For every δ ∈ ∆(X), let X/δ be the set of
equivalence classes in X endowed with the equivalence relation x∼ y defined by (x∼ y iff δ (x,y)=
0). X/δ is endowed with the metric δ defined by δ (ξ ,υ) := δ (x,y) whenever x ∈ ξ and y ∈ υ

for every ξ ,υ ∈ X/δ . Note that δ is well defined, thanks to the triangle inequality on δ , and that
X/δ has at least two points when δ 6≡ 0. Moreover, the first part of the lemma is equivalent to
(δ ∈ ∆1(X) is extremal iff X/δ has exactly two points). We use the following fact:

Claim A.2. A pseudo-metric δ ∈ ∆1(X) is extremal if and only if the normalized metric

δ̂ :=
1

σ(δ )
δ ∈ ∆1(X/δ )

is extremal.

Proof of Claim A.2. Indeed, first assume that δ is extremal in ∆1(X). It is clear that any pseudo-
metric α ∈ ∆1(X/δ ) induces a pseudo-metric α̂∗ ∈ ∆1(X) defined by

α̂∗(x,y) =
1

σ(α∗)
α∗(x,y), with α∗(x,y) = α(x,y),

where x and y stand for the equivalence classes of x and y respectively in X/δ . Assume that
δ̂ = tα +(1− t)β with α,β ∈ ∆1(X/δ ) and t ∈ (0,1). Then, for all x,y ∈ X , one has

δ (x,y) = δ (x,y) = tσ(δ )α(x,y)+(1− t)σ(δ )β (x,y)

= tσ(δ )α∗(x,y)+(1− t)σ(δ )β∗(x,y);

in particular, this yields 1 = σ(δ ) = tσ(δ )σ(α∗)+(1− t)σ(δ )σ(β∗) and so

δ (x,y) = sα̂∗(x,y)+(1− s)β̂∗(x,y), with s = tσ(δ )σ(α∗) ∈ (0,1).

Since δ is extremal in ∆1(X), one has α̂∗ = β̂∗ yielding σ(α∗) = σ(β∗) (because α,β ∈ ∆1(X/δ ))
and finally, α = β .

Conversely, assume that δ̂ is extremal in ∆1(X/δ ) and that

δ = tδ1 +(1− t)δ2

with δ1,δ2 ∈ ∆1(X) and t ∈ (0,1). For i∈ {1,2}, δi induces a pseudo-metric δ̂i ∈ ∆1(X/δ ) defined
by

δ̂i =
1

σ(δi)
δi,
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where δi(x,y) = δi(x,y) and x̄, ȳ are the equivalence classes in X/δ of x and y, respectively.
It is clear that δ1 and δ2 are well defined since δ (x,y) = 0 implies that δ1(x,y) = δ2(x,y) = 0.
Moreover, the extremal pseudo-metric δ̂ decomposes into

δ̂ = sδ̂1 +(1− s)δ̂2 with s :=
tσ(δ1)

σ(δ )
= 1− (1− t)

tσ(δ2)

σ(δ )
;

as above, this implies δ1 = δ2 and so δ1 = δ2.

STEP 2: CASE WHERE δ IS A METRIC. By the preceding claim, it is enough to prove that a
metric δ ∈ ∆1(X) (and not only a pseudo-metric) is extremal if and only if X has 2 points. For
the first implication, if X has two points, then any metric δ is extremal since ∆1(X) is reduced to
a single point. Conversely, we have:

Claim A.3. Assume that X = {x1, . . . ,xn} has n≥ 3 distinct points and that δ ∈ ∆1(X) is a metric
over X, then δ is not extremal.

Proof of Claim A.3. First, it is standard to see that the metric space (X ,δ ) is isometrically em-
bedded in Rn−1 endowed with the euclidean distance. In other words, there exists a subset
Y = {y1, . . . ,yn} ⊂ Rn−1 of n points (thought as a polytope) such that δ (xi,x j) = |yi− y j| for
all i, j ∈ {1, . . . ,n}. Let D be the straight line (y1,y2). Up to reorder the points x1, . . . ,xn and
y1, . . . ,yn, one may assume that

Y ∩D = {y1, . . . ,ym} with 2≤ m≤ n,

and that (y1, . . . ,ym) is an increasing sequence in D ordered by the relation (x≤ y iff (y−x) · (y2−
y1) ≥ 0). Given a parameter h ∈ R (not necessarily positive) with |h| being small, we now build
a small perturbation δ h of the metric δ on X such that δ h(xi,xi) := 0 and for all i, j ∈ {1, . . . ,n}
with i < j,

δ
h(xi,x j) = δ

h(x j,xi) :=

{
δ (xi,x j)+h if i = 1 and 2≤ j ≤ m,

δ (xi,x j) otherwise.

Let us justify that δ h is a metric, at least for small values of |h|. The idea is that δ h corresponds
to the euclidian metric in Rn−1 by moving the point y1 on the line D, keeping y2, . . . ,ym fixed and
moving eventually the other points ym+1, . . . ,yn; calling y′1, . . . ,y

′
n these new points, then δ h is a

metric on X iff such a (modified) polytope y′1, . . . ,y
′
n exists. The only nontrivial fact is the triangle

inequality. Consider a triangle (xi,x j,xk), with i < j < k. If i≥ 2 or (i = 1 and j > m), the triangle
inequality of δ in (xi,x j,xk) is trivial since δ is a metric. Otherwise, one has to show that for all
j ∈ {2, . . . ,m} and k > j (with i = 1), one has

|δ h(x1,xk)−δ
h(xk,x j)| ≤ δ

h(x1,x j)≤ δ
h(x1,xk)+δ

h(xk,x j). (Tr)

Let us divide the proof of these inequalities according to whether k > m or not, and considering
the initial polytope y1, . . . ,yn corresponding to the metric δ :

• If k > m, (Tr) is equivalent to

||y1− yk|− |yk− y j|| ≤ |y1− y j|+h≤ |y1− yk|+ |yk− y j|.

Since the triangle (y1,yk,y j) is not flat (as y1,y j ∈ D but yk /∈ D), these inequalities are true for
small values of h.
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• If k ≤ m, one has 1 < j < k ≤ m and, since (y1, . . . ,ym) ⊂ D is ordered in a monotonous way
on the line D, one has |yk− y1|= |yk− y j|+ |y j− y1|. Thus, (Tr) is equivalent to the following
trivial inequalities for |h| ≤ |y1− y2|:

|y j− y1|+h≤ |y1− y j|+h≤ |y j− y1|+h+2|yk− y j|.

Let us prove that δ is not extremal. Fix h > 0 small enough so that δ h and δ−h are two metrics
over X and 2(m−1)h < σ(δ ) = 1. Since

δ =
1
2
(δ h +δ

−h) = λh
δ h

σ(δ h)
+λ−h

δ−h

σ(δ−h)
and λ−h +λh = 1,

where λ±h := 1
2σ(δ±h) = 1

2σ(δ )±(m−1)h> 0 and σ(δ ) = 1, we conclude that δ is not extremal
in ∆1(X).

This proves completely Lemma A.1.

B Calibration of extremal pseudo-metrics
Lemma B.1. Let X = {x0, . . . ,xd} be an affine basis of Rd . If δ = δY for some Y ⊂ X then there
exists a smooth compactly supported function ϕ ∈ C ∞

c (Rd,R) such that:

1. for all x,y ∈ X, |ϕ(x)−ϕ(y)|= δ (x,y),

2. for all x,y ∈ X with (x,y ∈ Y ) or (x,y /∈ Y ), and for all t ∈ [0,1], ∇ϕ(ty+(1− t)x) = 0,

3. for all x ∈ Y , y ∈ X \Y , and t ∈ (0,1), ∇ϕ(ty+(1− t)x) and y− x are positively collinear,
i.e. ∇ϕ(ty+(1− t)x) = λ (y− x) with λ = λ (x,y, t)> 0.

Proof. When δ = 0, i.e. Y = /0 or Y = X , one can take ϕ = 0. We now assume that Y /∈ { /0,X}
and we reorder the affine basis (x0, . . . ,xd) in such a way that

Y = {x0, . . . ,xm} with 0≤ m≤ d−1. (B.1)

We shall construct the calibration ϕ step by step. We first need to pick a nonnegative function
g ∈ C ∞(R,R+) having the following properties:

• for all t ≤ 0, g(t) = 0 and for all t ≥ 1, g(t) = 1,

• for all t ∈ (0,1), g′(t)> 0,

• for all t ∈ R, g(t)+g(1− t) = 1.

STEP 1: SMOOTH TRANSITIONS gλ
i j BETWEEN gλ

i j(xi) = 0 AND gλ
i j(x j) = 1. For every i, j ∈

{0, . . . ,d}, i 6= j, λ ∈ (0,1), and z ∈ Rd , we set

gλ
i j(z) =

{
g
(
λ−1 pi j(z)

)
g
(

1− |z−xi|−pi j(z)
λ0|z−xi|

)
if z 6= xi,

0 if z = xi,
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x0• Supp(ξ00)
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Figure 5: The supports of the ξi j when d = 2

where λ0 ∈ (0,1) will be fixed later and

pi j(z) = (z− xi) ·
x j− xi

|x j− xi|
.

If λ < |xi−x j| for all i, j with i 6= j then the function gλ
i j performs a transition between gλ

i j(xi) = 0
and gλ

i j(x j) = 1 along the segment [xi,x j]. Moreover, gλ
i j is smooth in Rd and supported in the cone

C λ0
i j :=

{
z ∈ Rd : pi j(z)≥ (1−λ0)|z− xi|

}
⊃
{

tx j +(1− t)xi : t ≥ 0
}
.

STEP 2: PARTITION OF UNITY. Let us pick λ0 ∈ (0,1) small enough so that the balls B(xi,λ0)

with i ∈ {0, . . . ,d} are disjoint and two distinct sets in {C λ0
i j ∩C λ0

ji : i < j} can only meet at a
point in X = {x0, . . . ,xd} (see Figure 5); define the family of functions (ξi j)i≤ j ⊂ C ∞(Rd,R+) by

ξi j(z) =

{
gλ0

i j (z)g
λ0
ji (z) if 0≤ i < j ≤ d

g(1−λ
−1
0 |z− xi|) if 0≤ i = j ≤ d

for all z ∈ Rd.

If i < j, then Supp(ξi j) = C λ0
i j ∩C λ0

ji while Supp(ξii) = B(xi,λ0). In particular, for every z /∈ X ,
ξi j(z) vanishes except at most for two choices of indices: either ξi j alone, or (ξi j and ξii with i < j)
or (ξi j and ξ j j with i < j). Moreover, one has

∑
i≤ j

ξi j = 1 in ∪i, j [xi,x j].

Indeed, for all ` ∈ {0, . . . ,d},
∑
i≤ j

ξi j(x`) = ξ``(x`) = 1

and for all z in the open segment (xi,x j) with i < j,

∑
i≤ j

ξi j(z) = ξii(z)+ξ j j(z)+ξi j(z);

if dist(z,{xi,x j})> λ0 then ξii(z) = ξ j j(z) = 0 and ξi j(z) = 1; otherwise, if for instance pi j(z) =
|z−xi| ≤ λ0, then ξi j(z) = g(λ−1

0 pi j(z)), ξ j j(z) = 0, ξii(z) = g(1−λ
−1
0 pi j(z)) = 1−g(λ−1

0 pi j(z)),
and thus ∑i≤ j ξi j(z) = ξii(z)+ξi j(z) = 1.
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STEP 3: CONSTRUCTION OF THE CALIBRATION ϕ . Recalling the notation (B.1), we set for all
z ∈ Rd:

ϕ(z) = ∑
0≤i≤m< j≤d

((
ξi j(z)+ξii(z)

)
gri j

i j (z)−ξ j j(z)gr ji
ji (z)

)
+ ∑

m<i, j≤d
ξi j(z),

where ri j := |xi− x j|. We observe that each term in both sums indexed by i, j ∈ {0, . . . ,d} is
supported in Supp(ξi j) (in particular, ϕ is compactly supported) and we deduce that for all z ∈
(xi,x j) with i, j ∈ {0, . . . ,d} and i 6= j,

ϕ(z) = 0 if i, j ≤ m,

ϕ(z) = ξii +ξi j +ξ j j = 1 if i, j > m,

ϕ(z) =
(
ξi j +ξii

)
gri j

i j −ξ j j gr ji
ji +ξ j j = gri j

i j if i≤ m < j,

since gr ji
ji = 1−gri j

i j and ξi j +ξii+ξ j j = 1 on (xi,x j). In particular, ϕ(xi) = 0 for all i ∈ {0, . . . ,m}
and ϕ(x j) = 1 for all j ∈ {m+1, . . . ,d} which proves the conclusion 1. in Lemma B.1. The other
properties required on ∇ϕ , i.e. the conclusions 2. and 3. in Lemma B.1, are a consequence of the
fact that for all z ∈ (xi,x j), with i, j ∈ {0, . . . ,d} and i 6= j:

• the derivatives of ϕ in any direction orthogonal to x j − xi vanish, i.e. ∇ϕ(z) and x j − xi are
collinear;

• if i, j ≤ m or i, j > m, ϕ is constant in (xi,x j), and so ∇ϕ(z) = 0;

• if i≤ m < j, ϕ(·) = gri j
i j (·) = g(r−1

i j pi j(·)) on (xi,x j) and so

∇ϕ(z) = λi j(z)(x j− xi) with λi j(z) := r−1
i j g′(r−1

i j pi j(z))
x j− xi

|x j− xi|
> 0,

where we used that g is increasing in (0,1). The proof is now complete.

C The ε−rescaled Aviles-Giga model and the cross-tie wall
For the two-dimensional strip Ω = R×R/Z that is periodic in x2-direction, we consider the ε-
rescaled Aviles-Giga energy Eε (with ε > 0) defined for maps u : Ω→ R2 with ∇ ·u = 0 in Ω (as
in (1.4)):

Eε(u) =
∫

Ω

ε

2
|∇u|2 + 1

2ε
w(u)2 dx, w(u) =

1−u2
1−u2

2√
2

.

Let u±∗ = (0,±1). The aim of this section is to check that in the limit ε → 0, the cross-tie wall
between the limit states u±∗ (see [2]) has asymptotically the same energy as the 1D symmetric wall
(as stated by R.V. Kohn in [42], based on a personal communication from S. Serfaty). Before
stating this result, we recall that:

•As ε→ 0, the finite energy limit configurations are u : Ω→ S1 with ∇ ·u= 0 and the limit energy
is given by

E0(u) =
∫

J(u)
f (|u+−u−|)dH 1, f (t) =

t3

6
√

2
,
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m

n

Figure 6: Limit cross-tie wall uη(α) connecting the states u±∗ = (0,±1) in a strip of thickness η .
Here, α ∈ (0, π

4 ] is the angle of the isosceles triangle, that is equal with half the angle represented
by the two circle arrows.

where the jump set J(u) of u is a H 1−rectifiable set 19 oriented by a unit vector field ν : J(u)→ S1

and u± : J(u)→ S1 stand for the traces of u on J(u) with respect to ν (see Section 1.1 and the
references quoted there). So, for H 1-almost every x ∈ J(u), we can characterize the jump of u
by a so called “wall angle” θ(x) such that u±(x) = cosθ(x)ν(x)± sinθ(x)ν⊥(x). In particular,
|u+(x)−u−(x)|= 2|sinθ(x)|.

• For ε > 0 fixed and u± = (a,±b) ∈ S1, Jin-Kohn proved in [41] that the 1D symmetric wall
u(x) = (a,b tanh( bx1√

2ε
)) is a global minimizer of Eε within the boundary condition u(±∞, ·) = u±.

Moreover, we proved in Corollary 2.7 that the 1D symmetric wall is the unique global minimizer
of that problem. (In fact, our symmetry results obtained for ε = 1 also hold for the ε-rescaled
Aviles-Giga energy Eε .) In particular, for the states u±∗ = (0,±1),

Eε(1D symmetric wall)< Eε(cross-tie wall), ∀ε > 0.

Moreover, as stated in [42] for the limit states u±∗ = (0,±1),

Eε(1D symmetric wall) = Eε(cross-tie wall)+o(1) as ε → 0.

This is a consequence of the following computation:

Lemma C.1. For the limit states u±∗ = (0,±1), we have

E0(limit 1D symmetric wall) = E0(limit cross-tie wall),

i.e.,

f (2) = f (2cosα)+ cotα f (2sinα)+
∫

α

0

f (2sinθ)

sin2
θ

dθ , ∀α ∈ (0,
π

4
].

Proof. Let uη(α) be the limiting cross-tie wall connecting the states u±∗ = (0,±1) defined by
Alouges-Rivière-Serfaty in [2] (see Figure 6) for a fixed angle α ∈ (0, π

4 ] in the strip of thickness
η � 1. We repeat this microstructure in layers of thickness η along the straight vertical wall
(u−∗ ,u

+
∗ ) which is the limiting 1D symmetric wall. If η → 0 then uη(α)→ (u−∗ ,u

+
∗ ).

The limit energy E0 (per unit length) of the limiting cross-tie wall is given by:

19Even if the finite energy limit configurations u are not necessarily in BV, the jump set J(u) and the traces u± are
still well defined, see [16].
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• the cost of vertical jumps is f (2cosα) and their length is equal 1.

• the cost of horizontal jumps (on the basis of the isosceles triangle) is f (2sinα) and their length
is equal cotα .

• the cost of horizontal jumps (coming from the vortex field): in a point x = (x1,0) with x1 ≥ cotα

2 ,
we write x1 =

cotθ

2 with θ ∈ (0,α) so that the cost of the jump at x is f (2sinθ); therefore, the cost
of these horizontal jumps as x1 ≥ cotα

2 is

2
∫

∞

cotα

2

f (2sinθ)dx1 =
∫

α

0

f (2sinθ)

sin2
θ

dθ

(by the change of variable x1 =
cotθ

2 ).

We conclude that

E0(limit cross-tie wall) = f (2cosα)+ cotα f (2sinα)+
∫

α

0

f (2sinθ)

sin2
θ

dθ .

As f is a cubic function, a final computation yields

E0(limit cross-tie wall) = f (2) = E0(limit 1D symmetric wall).
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[24] Döring, L.; Ignat, R.; Otto, F. A reduced model for domain walls in soft ferromagnetic films
at the cross-over from symmetric to asymmetric wall types. J. Eur. Math. Soc. (JEMS) 16
(2014), no. 7, 1377–1422.

[25] Farina, A. Some remarks on a conjecture of De Giorgi. Calc. Var. Partial Differential Equa-
tions 8 (1999), 233–245.

[26] Farina, A. Symmetry for solutions of semilinear elliptic equations in RN and related conjec-
tures. Ric. Mat. XLVIII (1999), 129–154.

[27] Farina, A.; Soave, N. Monotonicity and 1-dimensional symmetry for solutions of an elliptic
system arising in Bose-Einstein condensation. Arch. Ration. Mech. Anal. 213 (2014), no. 1,
287–326.

[28] Farina, A.; Sciunzi, B.; Soave, N. Monotonicity and rigidity of solutions to some elliptic
systems with uniform limits. arXiv preprint, 2017.

[29] Fazly, M.; Ghoussoub, N. De Giorgi type results for elliptic systems. Calc. Var. and Partial
Differential Equations 47 (2013), no. 3-4, 1–15.

[30] Galdi, G.P. An introduction to the mathematical theory of the Navier-Stokes equations. Vol.
I. Springer Tracts in Natural Philosophy, Springer-Verlag, New York, 1994.

[31] Ghoussoub, N.; Gui, C. On a conjecture of De Giorgi and some related problems. Math.
Ann. 311 (1998), no. 3, 481–491.

[32] Ghoussoub, N.; Gui, C. On De Giorgi’s conjecture in dimensions 4 and 5. Ann. of Math.
157 (2003), no. 1, 313–334.

[33] Giaquinta, M.; Hildebrandt, S. Calculus of Variations I. The Lagrangian formalism. Springer
Berlin Heidelberg, 1996.

[34] Goldman, M.; Merlet, B. Phase segregation for binary mixtures of Bose-Einstein Conden-
sates. SIAM J. Math. Analysis 49 (2017), no. 3, 1947–1981.

[35] Hubert, A.; Schafer, R. Magnetic domains : The Analysis of Magnetic Microstructures,
volume 21. Springer-Verlag, 1998.

[36] Ignat, R.; Merlet, B. Lower bound for the energy of Bloch walls in micromagnetics. Arch.
Ration. Mech. Anal. 199 (2011), no. 2, 369–406.

[37] Ignat, R.; Merlet, B. Entropy method for line-energies. Calc. Var. Partial Differential Equa-
tions 44 (2012), no. 3-4, 375–418.

[38] Ignat, R.; Moser, R. A zigzag pattern in micromagnetics. J. Math. Pures Appl. 98 (2012),
no. 2, 139–159.

[39] Ignat, R.; Otto, F. A compactness result in thin-film micromagnetics and the optimality of
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