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Abstract—Statistical anomaly detection techniques provide the
next layer of cyber-security defences below traditional signature-
based approaches. This article presents a scalable, principled,
probability-based technique for detecting outlying connectivity
behaviour within a directed interaction network such as a com-
puter network. Independent Bayesian statistical models are fit to
each message recipient in the network using the Dirichlet process,
which provides a tractable, conjugate prior distribution for an
unknown discrete probability distribution. The method is shown
to successfully detect a red team attack in authentication data
obtained from the enterprise network of Los Alamos National
Laboratory.

I. INTRODUCTION

A number of data sources are available for the discovery
and prevention of cyber-attacks and other nefarious network
activity. Whereas traditional systems of cyber-defence focus
on detecting strong signatures in the data, such as standard
antivirus software, there is a largely under-exploited oppor-
tunity to use more statistical, probabilistic techniques. The
potential advantage of such approaches is the ability to learn,
from historical data, normal patterns of network behaviour.
Anomalies can then be detected which would not stand out
otherwise, for example, network traversal using legitimate
credentials [1], [2].

One of the challenges of bringing this type of methodology
through to deployment is coping with the large data scales
and rates involved. A balance between statistical efficiency
and computational feasibility is typically needed. At the same
time, many classical statistical models, perhaps because of
their mathematical simplicity, seem to allow very efficient and
scalable implementations.

The present article seeks to model the normal patterns
of credential authentication on a computer network, when
viewed as a directed interaction network with authenticated
connection events between a source computer and a destination
computer (which validates or refuses the user credentials).
To limit the number of assumptions imposed on the model
and yet still achieve computational tractability, the Dirichlet
process [3] from Bayesian nonparametric statistics is used to
learn the source computers which most typically connect to
each destination computer. Using these destination computer
models, an algorithm is then developed for detecting source
computers which have connected to several unusual destination

computers. The method is demonstrated on real computer
network authentication data from Los Alamos National Labo-
ratory, where a subset of the data relating to a red team exercise
provide a surrogate for intruder behaviour.

The remainder of the article is structured as follows: Section
II presents some exploratory data analysis, which motivates
the model and algorithm developed in Sections III and IV
respectively. Section V describes a Hadoop MapReduce im-
plementation of the algorithm which enables deployment to
large-scale data problems. Section VI presents the results of
applying the algorithm to the authentication data, with some
exciting success at detecting the red team presence.

II. AUTHENTICATION DATA FROM LOS ALAMOS
NATIONAL LABORATORY

To aid research in applying data science methods to cyber-
security, [4] published a comprehensive data set summarising
58 days of (anonymised) traffic on the enterprise network of
Los Alamos National Laboratory (LANL). The data are freely
available online at http://csr.lanl.gov/data/cyber1, and contain
records of network flows, DNS look ups, user processes and
authentication events. This data resource is made particularly
interesting by the occurrence of a “red team” penetration
testing operation during the data collection period. As a
consequence, a subset of the authentication event data have
been labelled as representing known red team compromise
events, which according to the authors “may be used as
ground truth of bad behavior that is different from normal
user and computer activity”. It should be noted that the red
team labelling is not exhaustive, and it is very likely there
many more authentication events in the data caused by red
team behaviour which have not been labelled accordingly.

The methodology which will be presented in this article can
be applied to any directed interaction graph, and so the net-
work flow and authentication event data from the LANL col-
lection would be particularly appropriate. This work chooses to
focus on authentication events due to the presence of red team
labelling for this particular data source, which provide an ideal
target for anomaly detection testing. Each event is attributed to
the particular pair of source and destination computers used
in the connection, which will be colloquially referred to as
(src,dst) event modelling. There are 336,806,387 observed



authentication events in the data generated between 16,230
source computers and 15,417 unique destination computers.
Two example records from the authentication data are as
follows:
3 ,U31@DOM1,U31@DOM1, C663 , C457 ,Kerberos,...

30 ,C829$@DOM1,C829$@DOM1, C829 , C829 ,Kerberos,...

The relevant fields are boxed and respectively represent
time, source and destination computer. No other fields will be
used in the bulk data analysis presented here, although it would
be a trivial extension to incorporate any of the remaining fields
as part of the labelling scheme for connection events. For
example, analysis could focus on (src:user,dst) connections,
so that each source computer and user ID pairing are treated
as a separate network entity.

Considering authentication connections between source and
destination computers as a bipartite graph, Figs. 1 and 2
show the degree distributions of the source and destination
computers in the data. It can be seen that the average outdegree
exceeds the average indegree for computers in the network;
there are many destination computers that have a small number
of computers connecting to them. This is a factor we will
seek to exploit in the anomaly detection procedure, as unusual
connections to those machines have more potential to stand
out.
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Fig. 1: Log-log plot of outdegree distribution for source
computers in the LANL network, measured by the number
of unique destination computers receiving authenticated con-
nections.

The authentication event data labelled as red team events
account for 48,079 of the total records. These events feature
just four source computers, and Table I shows how the event
data are distributed across those particular machines. For
each source computer, the middle column of the table shows
the number of associated authentication events, and then the
number of those which are labelled as red team events; the
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Fig. 2: Log-log plot of indegree distribution for destination
computers in the LANL network, measured by the number of
unique source computers making authenticated connections.

final column shows the outdegree of the four computers, across
both the full data set and then just the red team event data.

Source computer ID Frequency Unique destination IDs
C17693 701/1717 296/534
C18025 3/101 1/29
C19932 19/10,008 8/30
C22409 26/36,253 3/31

TABLE I: Numbers of records and unique destination com-
puters connected to by four source computers in the LANL
authentication data identified for hosting red team activity
(number of red team labelled events/total number).

Simply through consideration of Table I, the source ID
C17693 provides motivation for the methodology proposed
in the remainder of this article. This computer makes a rel-
atively moderate number of authenticated connections, but to
a significant number of different destination computers. Now,
without imposing unwanted, restrictive modelling constraints,
statistically monitoring the outward connections of C17693
would not reveal a strong anomaly detection signal, as it
simply behaves as a high degree computer that connects with
many different machines; instead, the proposed strategy is
to quantify the surprise according to each of the destination
computers at receiving each connection, and combine those
measures of surprise for the events of a source computer.
Each destination computer will find a connection from C17693
relatively anomalous, and combining the surprise scores of
different destination computers for that source should amplify
the signal.

In the next section, a statistical model is presented that
will be used for monitoring every destination computer in the
network. Scores quantifying the surprise in each sequential
connection to those destination computers will take the form
of predictive p-values.



III. MODELLING VIA THE DIRICHLET PROCESS

Consider a directed graph (V,E), where V is a set of K =
|V | vertices or nodes and E ⊂ V × V a set of directed edges
between the vertices. In the context of this article, the graph
will be a computer network with nodes denoting computers
and an edge (x, y) ∈ E representing the presence of directed
connections from source computer x to destination computer
y.

For each computer in y ∈ V , a separate statistical model
will be constructed for the identities of the sequence of source
computers x1, x2, . . . that connect to y as a destination. It will
be assumed that x1, x2, . . . is an exchangeable sequence of
random variables.

A. Dirichlet process model

Suppose x1, x2, . . .
iid∼ F , with F an unknown distribution

function on the node set V . Let α > 0, and F0 be some
specified distribution function on V , acting as a prior estimate
of F . It is said that F is a Dirichlet process with base measure
αF0, written F ∼ DP(αF0), if for any partition B1, . . . , Bp
of V ,

(F (B1), . . . , F (Bp)) ∼ Dirichlet(αF0(B1), . . . , αF0(Bp)).

The Dirichlet process provides a conjugate Bayesian model
for random discrete distribution functions. After observing n
elements of the sequence x1, x2, . . . sampled from F , the
posterior distribution for the unknown distribution F is again
a Dirichlet process,

F |x1, . . . , xn ∼ DP

(
αF0 +

n∑
i=1

δxi

)
.

Consequently, the predictive distribution for the next element
in the sequence has a very simple form:

pxn+1|x1,...,xn
(x) = α∗x/α

∗, (1)

where α∗x = αF0(x) +
∑n
i=1 Ix(xi) and α∗ = α+ n.

B. Predictive p-values

Given the predictive distribution (1) for [xn+1|x1, . . . , xn],
for anomaly detection it will be necessary to quantify the level
of surprise in the realised value of xn+1. Define the p-value
for the observation xn+1 to be

pn+1 =
∑

x∈V :α∗
x≤α∗

xn+1

α∗x/α
∗, (2)

which is the predictive probability of observing a node as
improbable as the realised value xn+1.

Note that the p-value (2) has a discrete distribution, and is
naturally conservative; whilst the model is assumed to hold, the
p-value will be stochastically larger than a standard uniform
random variable.

IV. SCORING EDGES AND NODES IN THE NETWORK GRAPH

Suppose a network-wide statistical scoring procedure is
carried out, where each connection received by a destination
computer is scored in sequence according to the Dirichlet
process model of Section III and equation (2). In this way,
all 336,806,387 events in the data set are assigned a p-
value score which, conditional on the destination computer,
measures the level of surprise at the identity of the generating
source computer.

Motivated by the discussion in Section II, attention now
switches to the connections along specific edges in the network
from a source computer x to a destination computer y.
Measures of surprise are obtained for each edge, and then
finally these edge scores are combined into a single score for
each source node.

A. Scoring edges

Let p1, p2, . . . be the sequence of p-values observed for
each connection event on the edge (x, y). To provide a first
reduction in the data, it is desirable to reduce these p-values
to a single score for that edge, measuring the highest anomaly
level observed on that edge.

To capture the maximum level of surprise observed on the
edge (x, y) after m connections, the minimum of the p-values
p1, . . . , pm is taken. Due to the discreteness of the p-values,
and some possible correlation, the minimum of m p-values
is only approximately distributed Beta(1,m). The lower tail
probability of this distribution evaluated at min{p1, . . . , pm}
provides the p-value score for that edge, denoted px,y .

B. Scoring nodes

For a source node of interest x, let Ex = {(x, y)|y ∈
V ∩ (x, y) ∈ E} be the set of edges in the network graph with
that source node on which connections have been observed.
For each edge (x, y) ∈ Ex, a p-value px,y has been obtained
in Section IV. Since we are interested in finding strongly
anomalous behaviour on each edge emanating from the same
source node, these p-values are combined into a single score
using Fisher’s method,

sx,y = −2
∑

(x,y)∈Ex

log px,y.

Under the null hypothesis of the model being true and be-
haviour normal, sx,y has an approximate χ2

2|Ex| distribution,
and so the upper tail probability of sx,y according to this
distribution is taken to be the p-value score for source node
x, denoted px.

After obtaining the score for each source node in the
network, the nodes can then be ranked in their anomalousness
based on these doubly combined p-values, to provide a list of
the most interesting source nodes down to the least interesting.

V. HADOOP MAPREDUCE IMPLEMENTATION OF SCORING
ALGORITHM

There are several steps in the preceding sections which are
required to arrive upon the eventual p-values for each source



node. Since independent statistical models are built for each
destination computer, and scores are combined locally across
first edges and then nodes, the method is highly parallelis-
able. For this reason, a streaming Hadoop implementation is
developed, with python mapper and reducer programmes.

A description of the MapReduce steps performed is given
below, and an example python programme for calculating
the significance of the minimum p-value from data from
a Dirichlet process can be obtained at https://github.com/
naheard/dirichlet.git.

Algorithm 1 Sequence of MapReduce tasks for scoring source
computers

Input: Entire authentication data.
1: A mapper with primary key of destination computer

and a secondary sort on timestamp; reducer calculates
sequential p-values for every single record, obtained from
the Dirichlet process model. The source, destination and
p-value are written to file.

2: A mapper applied to previous output with key given by
the source and destination computer pair, and value the
p-value. In the reducer, the minimum p-value is found
for each source/destination key, along with the number of
records for that edge. The significance of this minimum
p-values is calculated according to the corresponding Beta
distribution, and the source, destination and combined p-
value are written to file.

3: A mapper applied to previous output with key given by
the source computer of the scored source/destination edge
and value the p-value. The reducer calculates the Fisher
combined p-value for the sum of log p-values for each
source computer key and writes the source computer and
final p-value to file.

VI. RESULTS

The proposed anomaly detection method was run on the
entire LANL authentication data set using Hadoop MapRe-
duce. The base measure F0 for the Dirichlet Process in Section
III was assumed to be the discrete uniform distribution on
the node set V ; the parameter α was chosen to be equal to
the eventual indegree of each destination computer, as it is
assumed that such information could be readily obtained prior
to running the method, and higher degree computers should
register less surprise at forming new edges. The network-wide
distributions of the combined and doubly-combined p-values
for respectively scoring edges and nodes are shown in Fig.
3. Recall that the p-values are discrete, and by construction
from (2) it follows that 1 will be the most probable outcome.
The presence of small p-values near zero correspond to the
anomalies according to the Dirichlet process model.

The source computers were then ranked in anomalous-
ness according to the node p-values from Fig 3. From the
16,230 source computers on the LANL enterprise network,
the four computers known to be used in the red team attack
{C17693,C18025,C19932,C22409} are respectively ranked
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Fig. 3: Distribution of discrete p-values for nodes (top) and
edges (bottom) in the LANL computer network.

as shown in Table II. In particular, the computer C17693
discussed in Section II is ranked fifth out of 16,230, which
corresponds to a p-value of approximately 3 × 10−4. Addi-
tionally, another known red team source computer, C18025 is
also ranked in the top hundred, with a p-value of 0.006. These
two entries in Table II are tentatively highlighted as successful
intrusion detections found by the algorithm.

Furthermore, the computer ranked first by the algorithm as
the most anomalous source computer in the data, C15244, is
very possibly another useful detection; as although C15244
does not appear as a source computer in the red team labelled
data, it does appear as a destination computer in the labelled
data. And so it is very possible that, having been compro-
mised as a destination computer, this machine was also used
anomalously as a source computer but not labelled.



Source computer ID Anomaly ranking Ranking p-value
C17693 5 3× 10−4

C18025 94 0.006
C19932 5347 0.329
C22409 7172 0.442

TABLE II: Anomaly ranking of destination computers in
the LANL authentication data labelled as relating to red
team events. The p-values indicate the significance of those
rankings.

VII. CONCLUSION

A scalable method has been proposed for performing
network-wide statistical anomaly detection on a computer
network. The scalability of the method stems both from the
simplicity of the probability model and the fact that the
algorithm is fully parallelisable. To exploit this, the method has
been deployed using a “Big data” computational framework,
namely Hadoop MapReduce.

Most importantly, the method was found to perform inter-
estingly well, successfully detecting two maliciously acting
source computers based only on their unusual connectivity
patterns. This performance was achieved on perhaps the most
simple view of the data; other fields in the data set describing
the authentication or network flow events could be exploited,
such as the identity of the user for authentication data and
the server port in network flow data. Such fields could, for
example, be appended to the source or destination computer
identity, allowing the algorithm to then be deployed in an
identical manner.
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