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Abstract—Network data is ubiquitous in cyber-security ap-
plications. Accurately modelling such data allows discovery of
anomalous edges, subgraphs or paths, and is key to many
signature-free cyber-security analytics. We present a recurring
property of graphs originating from cyber-security applications,
often considered a ‘corner case’ in the main literature on network
data analysis, that greatly affects the performance of standard
‘off-the-shelf’ techniques. This is the property that similarity, in
terms of network behaviour, does not imply connectivity, and
in fact the reverse is often true. We call this disassortivity. The
phenomenon is illustrated using network flow data collected on
an enterprise network. Improved procedures are proposed, that
take explicit account of this property, for spectral analysis and
link prediction.

I. INTRODUCTION

There is growing evidence that statistical, data-oriented
approaches to enterprise cyber-security can provide effective
additional protection over traditional techniques [1], [2], [3],
[4]. In such applications, data often have a network (or
‘graph-like’) structure, e.g. computers communicating on a
corporate network [1], buyers and sellers in the underground
economy [5], user authentication networks [2], and so on.
Understanding the patterns of connectivity is key to developing
many cyber-analytics for detecting, for example, nefarious
network traversal and/or recognaissance behaviour [1]. As a
result, statistical methodology for network data analysis is
of great importance to cyber-security. However, a property
that is ubiquitous in networks encountered in cyber-security
applications, yet relatively rare elsewhere, is that nodes seem
to organise into clusters such that connectivity between clusters
is stronger than within. Although network modelling is a
booming area of Statistics [6], [7], [8], and graph theory is
otherwise relatively mature in fields such as mathematics,
probability or computer science, many standard methods of
analysis are inadequate because of this phenomenon.

To make matters concrete, consider a large corporate or
institutional computer network. On this network, there are
workstations, Domain Name servers (DNS), web servers,
printers and much more. As a rule, printers do not commu-
nicate with each other; workstations rarely connect to other
workstations; web servers do not themselves browse the web.
In summary, nodes that are similar, e.g. in terms of their
role on the network, their behaviour, or their connectivity
patterns, are often relatively unlikely to connect. Drawing from
biological terminology (e.g., [9]), we call this disassortativity.

This phenomenon has important consequences for the in-
duced graph of connections. To illustrate, Figure 1 shows
two graphs of communications between computers on the
Los Alamos National Laboratory (LANL) network, observed
over one minute on the left, and five minutes on the right.
The graphs were constructed from the “network flow events”
dataset [10], [11], by assigning each IP address to a node, and
recording an edge if the corresponding two nodes are observed
to communicate at least once over the specified time period.
It is a common exploratory procedure to count the number
of triangles in a graph in order to gauge clustering as, by
transitivity, if similar nodes tended to communicate with each
other, triangles would occur. Here, remarkably, there are no
triangles in either graph.
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Fig. 1. LANL network flow graph. Left: first minute. Right: first five minutes

There are several reasons why disassortative behaviour
might be observed in cyber-related data more generally. Net-
works are often structured into client-server relationships,
where the clients are the instigators of communications, query-
ing different servers for different services. In this model,
client-to-client communications and server-to-server commu-
nications are more rare. Approximately bi-partite or k-partite
network structure is also often induced by data collection
mechanisms. Within a corporation, for example, most internal
traffic can be recorded, as well as traffic between the inside
and outside. However, obviously, outside-to-outside traffic is
not observed, inducing partially bi-partite structure. Similarly,
within the internal network, routers often do not record traffic
between nodes on the same subnet, inducing k-partite struc-
ture. The superposition of different approximately bi-partite
or k-partite network features results in a smoother continuum
of network behaviours, but a strongly disassortative network
structure remains.



Statistical literature on network data analysis is consider-
ably more focussed on modelling assortative behaviour. In a
seminal paper introducing ‘modularity’, Newman [12] writes
“One issue that has received a considerable amount of attention
is the detection and characterization of community structure
in networks..., meaning the appearance of densely connected
groups of vertices, with only sparser connections between
groups”. “A tutorial on spectral clustering” [13], a reference
for many data analysts and researchers worldwide (e.g. cited
almost 4000 times according to Google Scholar, May 2016),
considers only the first K eigenvectors of different types
of Laplacian. As these can in each case be interpreted as
solutions to relaxed min-cut problems [13] which, loosely
speaking, seek to partition the nodes into densely connected
clusters, they do not make good representations of (partly)
disassortative networks. For this, the last eigenvectors must
also be used, as we describe in the next sections.

II. SPECTRAL ANALYSIS OF NETWORK FLOW GRAPHS

We will consider only undirected, simple graphs. The ad-
jacency matrix of such a graph is denoted A, where Aij is
one if the nodes i and j share an edge, and zero otherwise.
Hence, A is a symmetric n × n binary matrix, where n is
the number of nodes. Its degree matrix is a diagonal matrix
D where Dii = di =

∑n
j=1Aij . Its normalized Laplacian is

L = I −D−1/2AD−1/2 [13], where I is the identity matrix
of order n. A common recommendation for representing the
nodes of a graph as points in a space is to compute the first K
eigenvectors of L, column-bind the vectors to form an n×K
matrix, and take the rows of that matrix to represent the K-
dimensional locations of the n nodes in space.

However, this is not entirely appropriate for graphs with a
strong disassortative structure. To see why, consider that the
eigenvectors e(k), k = 1, . . . , n of L minimise

∑
i,j

Aij

(
ei√
di
− ej√

dj

)2

,

under the constraint that the vector e = (e1, . . . , en)T satisfies
‖e‖ = 1. The actual minimum is achieved at the first
eigenvector, e(1); the second eigenvector e(2) provides the next
best solution that is orthogonal to e(1), and so on. The first
K eigenvectors therefore embed the nodes into a space where
nodes that are close are likely to connect.

For partially disassortative graphs, we have found the mod-
ified Laplacian L̃ = D−1/2AD−1/2 [14] to have an easier
interpretation. While the eigenvectors of L and L̃ are the
same, the eigenvalues of L̃ are reversed and shifted down
by one. These lie between -1 and 1, with negative values
indicating disassortative network behaviour [14]. The sequence
in decreasing order is hereafter referred to as the graph
spectrum.

Figure 2 shows the spectra of different graphs generated
from network flow data on the LANL network. Ten one-
minute intervals were selected uniformly over the first day,
and the graph of communications over each interval was
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Fig. 2. Spectral analysis of LANL network flow graphs. The graph of com-
munications between computers over a one-minute interval was constructed,
for ten uniformly selected intervals in the first day. Top: the computed spectra.
Bottom: three representative datasets (selected at random from the ten).

constructed. Only the largest connected component of each
graph was analysed. The spectrum of each is displayed as a
line in the top panel. Because each has a different number of
nodes (n ≈ 1000), percentiles rather than raw indices for the
sequences are used. Three representative network flow graphs
are shown in the bottom panel.

The spectra are distinctive. First, they are each almost
perfectly anti-symmetric about 50%. This would not be ex-
pected for an arbitrary graph and in fact suggests that the
network flow graphs are almost bipartite (although they are not
exactly). More generally, the significant presence of negative
eigenvalues is evidence of disassortative network behaviour.
Second, a high number of eigenvalues are identically zero.
This is due to a large number of nodes having exactly the
same connectivity patterns. All of this information about the
graph is ‘hidden away’ in the higher eigenvalues of L (zeros
become ones and negative values now fall between 1 and 2),
and would be lost if only the first K eigenvectors of L (e.g.
K = 10) were computed, as is common for large graphs.

III. APPLICATION: LINK PREDICTION

Discovering and explicitly handling the disassortative prop-
erties of computer networks is likely to improve the accuracy
of network data analyses for cyber-security applications. We
illustrate this with a link prediction example.

As a computer network is monitored in real time, it is
natural to pay specific attention to the occurrence of new
edges. They are, by definition, inconsistent with historical
behaviour, and also indicative of nefarious activity such as
network traversal or scanning [15]. On the other hand, over
a large network such events occur regularly enough that it
is useful, when shown a new edge, to be able to report its



‘anomalousness’ according to a predictive model. The value
of such an approach depends strongly on the accuracy of
the model. In a real application, a number of additional data
sources could be brought to bear on this problem. However,
here, for demonstration purposes, we use only graph infor-
mation, and compare a link prediction algorithm that takes
explicit account of the disassortative properties of the network
to one that does not.

Given a graph of communications G, we consider two
link prediction algorithms. The first, naı̈ve, approach uses
only the positive side of the spectrum, ignoring disassortative
components. We compute the first K eigenvectors of L̃,
corresponding to the highest eigenvalues, λ1, . . . , λK . The
vectors are bound columnwise to form an n×K matrix, and
node i is then represented by row i, denoted vi. We form a
diagonal matrix Λ containing the K highest eigenvalues in
descending order. Finally, the probability of i and j sharing
an edge is modelled as (a monotonic function of) viΛvTj .

In the second approach, we use the first K eigenvectors
corresponding to the highest K eigenvalues, in magnitude. In
our data, this always results in using K/2 eigenvectors from
the negative side of the spectrum, but this would not be true
in general. We proceed as in the previous algorithm, so that
each node i is represented by a row v′i, formed by column-
binding eigenvectors from the positive and negative sides
of the spectrum. This construction is theoretically justified
since, for example, it generates consistent (i.e. asymptotically
correct) clusterings under the stochastic block model [14].
The edge probability is modelled as v′iΛ

′v′j
T , where Λ′ is

diagonal, containing the K eigenvalues with their original sign,
in decreasing order of magnitude. In both models, K = 10.

For three one-minute intervals, uniformly selected over a
day, we constructed network flow communication graphs from
LANL data, as described previously, and fit both types of
predictive models on each. For each interval, we then selected
edges occurring within the next minute that were not in the
original graph, but that did involve two nodes that had been
active (so that each has at least one edge in the original graph).
Every such edge is scored according to both predictive models.
A similar number of pairs of nodes that did not communicate
were selected, at random, as negative test-cases. In Figure 3,
Receiver Operating Characteristic (ROC) curves are shown for
the link prediction performance of both models, with each
subfigure corresponding to one of the three time intervals. (For
readers unfamiliar with this performance measure, the higher
the curve, the higher the classification performance.) A false
positive event is recorded whenever an edge is predicted but
does not occur. A false negative event is recorded if an edge
occurs when it was predicted not to. In all but the highest
false positive regions (which are usually of lesser interest),
the predictive model that uses both sides of the spectrum
dominates.

IV. CONCLUSION

Graphs encountered in cyber-security applications, and es-
pecially network flow data, can exhibit strongly disassortative
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Fig. 3. Link prediction performance for new edges using only the positive
side of the spectrum, versus both.

behaviour. We have shown that, because of this phenomenon,
applying off-the-shelf statistical methodology to analyse such
graphs can yield suboptimal results, both from the perspective
of network characterisation and prediction. In a spectral ap-
proach, the solution is to consider both ends of the spectrum.
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