
Filtering automated polling traffic in NetFlow data

Nicholas Heard
Imperial College London &

Heilbronn Institute, University of Bristol
n.heard@imperial.ac.uk

Patrick Rubin Delanchy
Heilbronn Institute,

University of Bristol
pr12244@bristol.ac.uk

Daniel Lawson
Heilbronn Institute,

University of Bristol
madjl@bristol.ac.uk

Abstract—Detecting polling behaviour in a computer network
has two important applications. First, the polling behaviour can
be indicative of malware beaconing, where an undetected software
virus sends regular communications to a controller. Second, the
polling behaviour may not be malicious, and correspond to
regular automated update requests permitted by the client; to
build models of normal host behaviour for signature-free anomaly
detection, this polling behaviour needs to be understood. This
article presents a simple Fourier analysis technique for identifying
polling behaviour, and focuses on the second application: mod-
elling the normal behaviour of a host, using real data collected
from the computer network of Imperial College London.

I. INTRODUCTION

Monitoring computer network traffic for intrusion events
is of growing importance in industry, academia and govern-
ment, as dependence upon technology increasingly underpins
capability. Standard rule-based computer network monitoring
tools screen the traffic for matches with known malicious
behavioural signatures; for example, the internet protocol (IP)
addresses of internet connections can be matched against
blacklists of known malicious hosts. Signature-based methods
rely upon efficient updating of blacklists and have limited
applicability for detecting zero-day malware behaviours that
were previously unseen.

Monitoring for generically unusual activity offers a promis-
ing complement to signature based anti-virus tools [1] . The
aim is to build models of the normal behaviour of each host on
the network, and then monitor to detect significant deviations
from the model. A common difficulty is that the analyst will be
swamped with traffic for each host, much of it automatically
generated. The focus of this article is on detecting automated
polling behaviour.

Evenly time-spaced beaconing or polling behaviour from
a host on a computer network can indicate that host has
been infected with malware, and the regular connections are
communications with a command and control server. The con-
nections can be directed to one or many internet protocol (IP)
addresses, and can go undetected amongst the bulk of other
traffic flowing through that host. Not all polling behaviour
in a computer network will correspond to malware. Hosts
will also periodically connect to legitimate servers to query
the presence of new content and keep long term connections
alive. When present, legitimate polling traffic will typically
account for a large proportion of a host’s network connections.
Understanding polling behaviour, and separating this from
user-driven traffic, is therefore an important part of the model-
building process when proposing statistical models of normal
behaviour of hosts.

The approach presented here for detecting periodic be-
haviour is to sequentially apply a Fourier analysis to the
counting process martingale of the events process for each IP
to IP edge associated with a given host. A dominant frequency
in the calculated periodogram for an edge indicates polling.
The edges showing polling behaviour are separated out from
the bulk data, so that the remaining data should have the
characteristics of human behaviour and would admit suitable
modelling. The approach is demonstrated on real data from
Imperial College London’s computer network, separating out
the automatically generated traffic emanating from what is
believed to be an uninfected host.

II. IMPERIAL COLLEGE NETWORK DATA

The analysis in this paper will focus on a single IP address
within the computer network of Imperial College London,
referred to from this point as IP X . Imperial has a range
of 345,098 IP addresses, of which approximately one seventh
are typically active. The average level of traffic flow on the
network equates to approximately 1.3 billion NetFlow records
per day. For this analysis, 97 days of NetFlow router data
were collected between November 2013 and February 2014.
Figure 1 plots the distribution of the time of day of the NetFlow
events, and shows a typically strong sinusoidal diurnal pattern.

In contrast to this global pattern from the network, the
corresponding distribution of client connection events for IP X
is shown in Figure 2. This is a relatively active node, acting as
the client in 2,644,780 NetFlow events within the 97 day data
collection period. As such, this IP was likely to be responsible
for a large amount of automated traffic. This observation is
reflected by the distribution in Figure 2 which is much flatter
than Figure 1 and has unusual peaks which are not consistent
with diurnal human behaviour.

III. DETECTING PERIODICITY

For two IP addresses X and Y , and for t ≥ 0, let NXY (t)
be the counting process of NetFlow events with source IP
X and destination IP Y occurring by time t. If the internet
is regarded as a graph with IP addresses as nodes, then
NXY (t) monitors the activity on one edge of that graph.
NXY (t) will be treated as a discrete time process: although
the underlying event process may operate in continuous time,
the recorded data will be rounded to some fixed level of
accuracy and coincidental values will be possible. For the
data analysed in this article, all event times were originally
recorded to the nearest millisecond, but for computational
tractability they were further rounded to the second. Given



0 5 10 15 20

0.
00

20
0.

00
30

0.
00

40
0.

00
50

Time of day (hours)

P
ro

ba
bi

lit
y

0 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

Fig. 1. The distribution of daily arrival times of NetFlow events across the
whole network, estimated to five minute bins using the data obtained over 97
days, shown on [0,24] hours (top) to demonstrate the sinusoidal nature, and
correctly as a circular distribution (bottom).

that NXY (t) is a discrete-time process, define the increment
dNXY (t) = NXY (t)−NXY (t− 1).

Consideration of node (rather than edge) level activ-
ity would require a simple extension of this notation. Let
NX·(t) =

∑
Y NXY (t) be the counting process of all

recorded NetFlow events with source IP X , and similarly let
N·Y (t) =

∑
X NXY (t) be the counting process of all events

with destination IP Y . These counting processes monitor the
connection activity of a node in the internet graph, either
from a client or server perspective respectively. Finally, let
NX(t) = NX·(t) + N·X(t) count all of the events involv-
ing IP X . All of these quantities are potentially worthy of
consideration when looking to detect anomalous behaviour,
depending upon the nature of the actual anomaly. However,
in the subsequent analysis here attention is restricted to edges
(X ,Y ) from the fixed client IP X of interest.

0 5 10 15 20

0.
00

25
0.

00
35

0.
00

45

Time of day (hours)

P
ro

ba
bi

lit
y

0 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

Fig. 2. The distribution of unfiltered client event times for IP X , estimated
to five minute bins using the data obtained over 97 days.

After observing NXY (t) for T units of time of length ∆t
seconds, the periodogram at frequency f > 0 is defined via
the discrete Fourier transform [2],

SXY (f) =

∣∣∣∣ T∑
t=1

(dNXY (t)−NXY (T )/T )e−i2πft
∣∣∣∣2/T. (1)

Strong periodic behaviour at frequency f will correspond to a
large value of S(f). The fast Fourier transform allows S(f) to
be calculated efficiently for the Fourier frequencies f ∈ F =
{0, 1/(T∆t), 2/(T∆t), . . . , (T/2− 1)/(T∆t)}.

For testing simple periodicities of a single frequency,
Fisher’s g-test [3] provides a p-value of significance based on
the test statistic

gXY = max
f∈F

SXY (f)

/∑
f ′∈F

SXY (f ′), (2)

and this provides the basis for classifying the edge (X ,Y ) as
periodic or non-periodic. Full details are given in [4], in the



different context of identifying periodicity in gene expression
time series data.

IV. PRACTICAL CONSIDERATIONS

The first week of data in which each edge from client
IP X occurs are used to assess periodicity. With a sampling
frequency of one second, this equates to series of length
T = 604,800 which makes computation simple and provides
a window in which the edge behaviour might be expected to
be fairly stationary. Similar results were also achieved using
the first two weeks of data for each edge.

In practice, rather than counting the actual number of
connections observed in each interval, it proved more useful
to treat the increments of the discrete time counting process
NXY (t) as binary variables, with each increment dNXY (t) ∈
{0, 1} according to the presence or absence of connections
from X to Y at time interval t. This way, high activity levels
at a small number of time points are not able to strongly
influence (1); the aim of this analysis is to detect long term
periodic behaviour. As an illustrative example, the IP address
64.238.147.53 (dl.acm.org, the ACM Digital Library) appeared
as the server in 176 connections from IP X in the data, but all
of these connections occurred over three very short sessions of
length approximately one or two seconds. The three sessions
were 64 seconds and 48 seconds apart. Without taking a binary
perspective, this behaviour translated to a small number of
very large increments at these time points, and the frequency
of 1/(16 seconds) appeared strongly represented and highly
statistically significant.

The method in Section III can be readily implemented
using standard software packages. Here, the fast Fourier
transform calculation of (1) was performed using the python
library scipy.fftpack (http://docs.scipy.org/doc/scipy/reference/
fftpack.html) and the p-value of Fisher’s g-statistic (2) was
calculated using the function fisher.g.test from the R library
GeneCycle (http://cran.r-project.org/web/packages/GeneCycle/
GeneCycle.pdf).

V. RESULTS

Table I gives details of the edges from client IP X which
showed significant automated periodic behaviour according to
the method from Section III, along with the corresponding
periodicities. The periodic connections were largely a mixture
of: connections to Imperial College administrative servers;
polling requests for file updates from a running Dropbox client;
and regular automatic refreshing of a live.com page in a web
browser.

To illustrate the strength of the periodicity present in these
edges, a typical example is displayed in Figure 3 which shows
the periodogram (1) calculated for connections from IP X to a
server at dropbox.com. Note the sharp peak in the periodogram
at f = 0.018 = 1/55.56, the reciprocal of the dominant
periodicity noted in Table I.

Connections from IP X to the servers identified as periodic
in Table I accounted for 2,163,936 NetFlow events in the data,
which was over 80% of the total client connections made by X .
Figure 4 shows the time of day distribution for the remaining
480,844 client events from IP X after filtering out the periodic

TABLE I. DETECTED PERIODIC BEHAVIOURS

Domain/description IP addresses Periodicities (s)

IC DNS 155.198.142.{7,8} 30.0, 30.0
IC NFS 155.198.63.{17,99} 4.00, 30.05

IC Dropbox LAN sync 155.198.199.255 31.88
IC UnixLDAP 155.198.142.5 280.00
dropbox.com 108.160.163.35 55.65

108.160.162.98 55.66
messenger.live.com 157.56.116.202 7.71

157.56.192.{34,48} 15.52,15.52
157.56.126.150 15.56
157.56.126.89 20.70
157.56.192.160 31.18
157.56.126.90,157.56.126.73 62.00,62.06
157.56.192.{63,82,146} 62.03,62.26,62.26
157.56.126.55 66.03
157.56.126.199 119.96
157.56.126.136 4045.20
157.56.192.{83,95,96} each 4086.49
157.56.126.134 5018.00

microsoft 157.56.52.34 20.00
157.56.52.{27,26} 136.75,604.70
157.55.130.165 304.03

mail.live.com 213.199.179.174 307.63

connections from Table I. This filtered distribution gives a
picture much more consistent with human behaviour compared
to Figure 2, with activity levels fairly flat outside the working
hours of 9am and 6pm. It is clear that much (although not all)
of the automated behaviour has now been extracted.

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Frequency(s−1)

P
er

io
do

gr
am

Fig. 3. Periodogram of connections from IP X to 108.160.162.98 (drop-
box.com), showing strong periodicity at the frequency 1/(55.56s) (see Table
I).

VI. CONCLUSION

A simple method using Fourier analysis has been presented
for filtering automated polling behaviour from bulk NetFlow
data. The method has been successfully demonstrated on real
data from a client machine within an organisational computer
network. Implementation was straightforward, using freely
available software libraries.

The purposes of adopting this technique are two-fold.
The first application is modelling normal behaviour of an IP
for anomaly detection. Normal connectivity is a mixture of



0 5 10 15 20

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

Time

P
ro

ba
bi

lit
y

0 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

Fig. 4. The revised daily distribution of client event times for IP X after
filtering out the polling behaviour from Table I.

automated and human behaviours, and separating the two will
improve the analyst’s ability to model both components. The
second application is detecting beaconing behaviour which
cannot be explained by legitimate reasons, as this potentially
provides compelling evidence of the presence of malware.

REFERENCES

[1] A. Lazarevic, A. Ozgur, L. Ertoz, J. Srivastava, and V. Kumar, “A
comparative study of anomaly detection schemes in network intrusion
detection,” in Proceedings of the Third SIAM International Conference
on Data Mining, 2003, pp. 25–36.

[2] D. Halliday and J. Rosenberg, “Time and frequency domain analysis of
spike train and time series data,” in Modern Techniques in Neuroscience
Research, U. Windhorst and H. Johansson, Eds. Springer Berlin
Heidelberg, 1999, pp. 503–543.

[3] R. A. Fisher, “Tests of significance in harmonic analysis,” Proceedings
of the Royal Society of London. Series A, vol. 125, no. 796, pp. 54–59,
1929.

[4] S. Wichert, K. Fokianos, and K. Strimmer, “Identifying periodically

expressed transcripts in microarray time series data,” Bioinformatics,
vol. 20, no. 1, pp. 5–20, 2004.


