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1 Introduction

The modern theory of integrable systems started with the discovery in 1967 that the Korteweg
de Vries (KdV) equation is integrable [7]. Such equation is an evolutionary partial differential
equation and corresponds to an integrable system with infinite degree of freedom. Before 1967 it
was believed that integrability as opposed to chaotic behaviour was a rare phenomena, restricted
to particular examples. Indeed there were few examples of known integrable systems and results
concerning integrability:

• two-body problem in celestial mechanics (Kepler, Newton 1600-1687);

• geodesics on ellipsoids and separation of variables in Hamilton-Jacobi equation (Jacobi 1837);
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• Liouville theorem about the integrability by quadratures of an integrable systems (Liouville
1838);

• harmonic oscillator on the unit sphere (Neumann 1859);

• Clebsh system (rigid body) 1871;

• Lagrange, Euler and Kovalevskaya (1888) tops;

• Noether theorem about the relation between symmetries and integrals of motion of a me-
chanical system (Emmy Noether 1915);

• global version of Liouville theorem (Arnold 1963).

In 1967 Gardner, Green, Kruskal and Miura realized that the spectrum of the Schrödinger equation

− d2

dx2
+ u(x, t) does not change with time if the potential u(x, t) evolves according to the KdV

equation
ut − 6uux + uxxx = 0,

where u = u(x, t) is a scalar function of x ∈ R and t ∈ R+ and ut =
∂

∂t
u(x, t) and ux =

∂

∂x
u(x, t).

With this observation it was realized that the KdV equation can be integrated by inverse scattering
that can be thought of as a nonlinear analogue of the Fourier transform used to solve linear partial
differential equations. Around 1974 there were finite-dimensional versions of the inverse scattering
transform that were applied to solve finite dimensional integrable systems like the Toda lattice
or the Calogero-Moser systems (Flaschka [6], Manakov [14], Moser [15]). The main goal of these
notes is to study integrable sytems with finite and infinite degree of freedoms. We will first study
the inverse scattering transform for the open finite Toda lattice. Then we will consider inverse
scattering for the KdV equation with rapidly decreasing initial data and periodic initial data. In
this latter case, when the periodic initial data is ”finite gap”, namely when the spectrum of the
Hill’s equation has only a finite number of open gaps, the evolution in time of the KdV solution
u(x, t) corresponds to a linear flow on a finite-dimensional tori.

2 A short review of the classical theory of finite-dimensional in-
tegrable systems

We review the basic definitions in the theory of finite-dimensional integrable systems.

2.1 Poisson manifolds

We start with the definition of Poisson bracket.

Definition 2.1. A manifold P is said to be a Poisson manifold if P is endowed with a Poisson
bracket, that is a Lie algebra structure defined on the space C∞(P ) of smooth functions over P

C∞(P )× C∞(P )→ C∞(P )

(f, g) 7→ {f, g}
(2.1)

so that ∀f, g, h ∈ C∞(P ) the bracket { . , . }
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• is antisymmetric:
{g, f} = −{f, g}, (2.2)

• bilinear

{af + bh, g} = a{f, g}+ b{h, g},
{f, ag + bh} = a{f, g}+ b{f, h}, a, b ∈ R

(2.3)

• satisfies Jacobi identity

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0; (2.4)

• it satisfies Leibnitz identity with respect to the product of function

{f g, h} = g {f, h}+ f {g, h}. (2.5)

A Poisson bracket defines an homomorphism from the space C∞(P ) to the space of vector fields
over P :

C∞(P )→ vect(P )

f → Xf = {. , f}

so that
[Xf , Xg] = −X{f,g},

where [., .] is the commutator of vector fields also known as Lie bracket: LXY := [X,Y ]. In order
to write the definition 2.1 in local coordinates x = (x1, . . . , xN ) let us introduce the matrix

πij(x) := {xi, xj}, i, j = 1, . . . , N = dimP. (2.6)

Theorem 2.2. [5] 1) Given a Poisson manifold P , and a system of local coordinates over P , then
the matrix πij(x) defined in (2.6) is antisymmetric and satisfies

∂πij(x)

∂xs
πsk(x) +

∂πki(x)

∂xs
πsj(x) +

∂πjk(x)

∂xs
πsi(x) = 0, 1 ≤ i < j < k ≤ N. (2.7)

Furthermore the Poisson bracket of two smooth functions is calculated according to

{f, g} = πij(x)
∂f(x)

∂xi
∂g(x)

∂xj
. (2.8)

2) Given a change of coordinates

x̃k = x̃k(x), k = 1, . . . , N,

then the matrices πij(x) = {xi, xj} e π̃kl(x̃) = {x̃k, x̃l} satisfy the rule of transformation of a tensor
of type (2,0):

π̃kl(x̃) = πij(x)
∂x̃k

∂xi
∂x̃l

∂xj
. (2.9)

3) Viceversa, given a smooth manifold P and an antisymmetric tensor (2,0) πij(x) such that (2.7)
is satisfied, then (2.8) defines over P a Poisson bracket.
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Proof. The matrix πij(x) is clearly antisymmetric. In order to derive (2.8) one observe that for a
fixed function f , the application

C∞(P )→ C∞(P )

g → {g, f}

is linear and satisfies Leibnitz rule (2.5), therefore it is a linear differential operator of first order,
namely

{g, f} = Xfg,

for a vector field

Xf = Xj
f

∂

∂xj
,

where we are taking the sum over repeated indices. In order to determine the components of the
vector field Xf one considers

Xj
f = Xf x

j = {xj , f}.

Now let us fix xj and consider the linear map

f 7→ {f, xj} = Xxjf = Xk
xj

∂

∂xk
f.

Since Xk
xj

= πkj by (2.6), it follows from the above relations that

Xj
f = πjk

∂

∂xk
f,

so that

{g, f} = Xfg = Xj
f

∂g

∂xj
= πjk

∂f

∂xk
∂g

∂xj
.

Using the same rule for the change of coordinates x̃j = x̃j(x) and x̃k = x̃k(x) one obtains the tensor
rule (2.9). Equation (2.7) follows from Jacobi identity.

To prove the sufficiency of the theorem one observe that given a (2, 0) antisymmetric tensor
πij(x), the map

(f, g) 7→ {f, g} := πij(x)
∂f

∂xi
∂g

∂xj

is bilinear, antisymmetric and satisfies Leibnitz rule. Furthermore it does not depend on the choice
of local coordinates

π̃kl
∂f

∂x̃k
∂g

∂x̃l
= πst

∂x̃k

∂xs
∂x̃l

∂xt
∂xi

∂x̃k
∂xj

∂x̃l
∂f

∂xi
∂g

∂xj
= πstδisδ

j
t

∂f

∂xi
∂g

∂xj
= πij(x)

∂f

∂xi
∂g

∂xj
.

In order to show validity of the Jacobi identity it is sufficient to observe that for any functions f ,
g, h and any antisymmetric tensor πij(x) the following identity is satisfied:

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f}

=
[
{{xi, xj}, xk}+ {{xk, xi}, xj}+ {{xj , xk}, xi}

] ∂f

∂xi
∂g

∂xj
∂h

∂xk
.

so that the Jacobi identity follows from (2.7).
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The Poisson bracket is said to be non degenerate if the rankπ = dim(P ). Clearly the antisym-
metry implies that only even dimensional manifolds can have a non-degenerate Poisson bracket.

Definition 2.3. Given a Poisson bracket the set of functions that commutes with any other func-
tions of C∞(P ), namely

{h ∈ C∞(P ) | {h, f} = 0,∀f ∈ C∞(P )}

are called Casimirs of the Poisson bracket.

For a nondegenerate Poisson bracket, the only Casimirs are the constant functions.

Definition 2.4. A 2n-dimensional P manifold is called symplectic manifold if it is endowed with
a close non degenerate 2-form ω.

In local coordinates one has

ω =
n∑

i,j=1

ωijdx
i ∧ dxj

where ∧ stands for the exterior product. We recall that the form ω is closed if dω =
n∑

ijk=1

∂

∂xk
ωijdx

k∧

dxi ∧ dxj = 0, which implies that

∂

∂xk
ωij +

∂

∂xi
ωjk +

∂

∂xj
ωki = 0, i 6= j 6= k.

Lemma 2.5. A Poisson manifold {P, π} with non degenerate Poisson bracket π, is a symplectic
manifold, with ωij = (πij)−1.

For a symplectic manifold (P, ω) one has the identies

ω(Xf , .) = −df

and
{f, g} = ω(Xg, Xf ) = Xg(f) = 〈df,Xg〉

where 〈., .〉 is the pairing between one form and vectors, i.e. for a one form α = αidx
i and a vector

v = vi
∂

∂xi
then 〈α, v〉 = αiv

i. In order to verify the above second identity let Xi
f and Xj

g be the

coordinates of the vector fields Xf and Xg respectively, then one has

ω(Xg, Xf ) =
∑
i,j

ωijX
i
gX

j
f =

∑
i,j

∑
k,l

ωijπ
il ∂g

∂xl
πjk

∂f

∂xk
=
∑
il

πil
∂g

∂xl
∂f

∂xi
= {f, g}.

The classical Darboux theorem says that in the neighbourhood of every point of a symplectic
manifold (P, ω), dimP = 2n, there is a local systems of co-ordinates (q1, . . . qn, p1, . . . , pn) called
Darboux coordinates or canonical coordinates such that

ω =

n∑
i=1

dpi ∧ dqi . (2.10)
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In such coordinates the Poisson bracket takes the form

{f, g} =
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
and the Hamiltonian vector field Xf takes the form

Xf =
n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi

)
and the Poisson tensor π is

π =

(
0 1
−1 0

)
.

The existence of Darboux coordinates is related to the vanishing of the second group of the so
called Poisson cohomology H∗(P, π). If the Poisson bracket is non-degenerate, the Poisson cohomol-
ogy coincides with the de-Rham cohomology and Darboux theorem is equivalent to the vanishing of
second de-Rham cohomology group in an open set. There are many tools for computing de Rham
cohomology groups, and these groups have probably been computed for most familiar manifolds.
However, when π is not symplectic, then H∗(P, π) does not vanish even locally [16] and it is is much
more difficult to compute than the de Rham cohomology. There are few Poisson (non-symplectic)
manifolds for which Poisson cohomology has been computed [8]. The Poisson cohomology H∗(P, π)
can have infinite dimension even when P is compact, and the problem of determining whether
H∗(P, π) is finite dimensional or not is already a difficult open problem for most Poisson structures
that we know of. In the case of linear Poisson structures, Poisson cohomology is intimately related
to Lie algebra cohomology, also known as Chevalley - Eilenberg cohomology, [18].

Given a Poisson manifold (P, π), dimP = N , and a function H ∈ C∞(P ), an Hamiltonian
system in local coordinates (x1, . . . , xN ) is a set of N first order ODEs defined by

ẋi = {xi, H},

with initial condition xi(t = 0) = xi0. For a symplectic manifold (P, ω), dimP = 2n, the Hamilton
equations in Darboux coordinates takes the form

q̇i = {qi, H} =
∂H

∂pi

ṗi = {pi, H} = −∂H
∂qi

, i = 1, . . . , n

(2.11)

with initial conditions qi(t = 0) = qi0, pi(t = 0) = p0
i .

Definition 2.6. A function F ∈ C∞(P ) is said to be a conserved quantity for the Hamiltonian
system (2.11) if

dF

dt
= {F,H} = 0.

Namely conserved quantities Poisson commute with the Hamiltonian. We remark that if F1, . . . , Fm
are conserved quantities, then any function of g = g(F1, . . . , Fm) is a conserved quantity.
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Let Φs
F be the Hamiltonian flow associated with F ∈ C∞(P ) and Φt

H the Hamiltonian flow
associated with the Hamiltonian H. The flow Φt

F (Φt
H(x)) indicates the integral curve obtained by

first applying the Hamiltonian vector field XH and then the Hamiltonian vector field XF . Viceversa
Φt
H(Φs

F (x)) indicates the integral curve obtained by first applying the Hamiltonian vector field XF

and then the Hamiltonian vector field XH . A natural question is to ask when Φs
F (Φt

H(x)) =
Φt
H(Φs

F (x)).

Lemma 2.7. Let (P, { . , . }) be a nondegenerate Poisson bracket. Consider the Hamiltonians
F,H ∈ C∞(P ), in involution {F,H} = 0 and the Hamiltonian flows Φt

H(x) and Φs
F (x) associ-

ated with the dynamical systems

dxi

dt
= {xi, H}, i = 1, . . . , N (2.12)

and
dxi

ds
= {xi, F}, i = 1, . . . , N. (2.13)

Then the flows commute, namely
Φt
H ◦ Φs

F = Φs
F ◦ Φt

H .

Proof. It is sufficient to prove that the time derivative with respect to t and s commute. We have

d

ds

dxi

dt
=

d

ds
{xi, H} = {dx

i

ds
,H} = {{xi, F}, H}

and
d

dt

dxi

ds
=

d

dt
{xi, F} = {dx

i

dt
, F} = {{xi, H}, F}

subtracting the above two relations and using Jacobi identity

d

ds

dxi

dt
− d

dt

dxi

ds
= −{{F,H}, xi} = 0

In order to introduce Liouville theorem, we first define the concept of Lagrangian sub manifold
and integrable system.

Definition 2.8. Let P be a symplectic manifold of dimension 2n. A a sub-manifold G ⊂ P is
called a Lagrangian submanifold if dimG = n and the symplectic form is identically zero on vectors
tangent to G, namely

ω(X,Y ) = 0, ∀X,Y ∈ TG.

Definition 2.9. A Hamiltonian system defined on a 2n dimensional Poisson manifold P with non
degenerate Poisson bracket and with Hamiltonian H ∈ C∞(P ) is called completely integrable if
there are n independent conserved quantities H = H1, . . . ,Hn in involution, namely

{Hj , Hk} = 0, j, k = 1, . . . , n (2.14)

and the gradients ∇H1, . . .∇Hn are linearly independent.
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Let us consider the level surface

ME = {(p, q) ∈ P |H1(p, q) = E1, H2(p, q) = E2, Hn(p, q) = En} (2.15)

for some constants E = (E1, . . . , En).
We now introduce a special type of change of coordinates that leave the symplectic form invari-

ant.

Definition 2.10. A change of coordinates x → Φ(x) is defined by 2n functions. The change of
coordinates is a canonical transformation if Φ∗ω = ω where Φ∗ is the pullback of Φ.

Since ω = dW where the one-form W in canonical coordinates take the form

W = pidq
i

and the pullback commutes with differentiation, one has

0 = ω − Φ∗ω = dW − Φ∗(dW ) = d(W − Φ∗W ) = 0.

Namely the form d(W −Φ∗W ) is exact, so there is locally a function S such that W −Φ∗W = dS
and S is called the generating function of the canonical transformation.

Theorem 2.11. [Liouville, see e.g. [5]] Consider a completely integrable Hamiltonian system
on a non degenerate Poisson manifold P of dimension 2n and with canonical coordinates (q, p).
Let us suppose that the Hamiltonians H1(p, q), . . . , Hn(p, q) are linearly independent on the level
surface ME (2.15) for a given E = (E1, . . . , En). The Hamiltonian flows on ME are integrable by
quadratures.

Proof. By definition the system posses n independent conserved quantities H1 = H, H2, . . . Hn.
Without loosing generality, we assume that (q, p) are canonical coordinates with respect to the
symplectic form ω and the Poisson bracket {., .}.

The gradients

∇Hj =

(
∂Hj

∂q1
, . . . ,

∂Hj

∂qn
,
∂Hj

∂p1
, . . . ,

∂Hj

∂pn

)
are orthogonal to the surface ME . Since the vector fields XHj are orthogonal to ∇Hk because
{Hj , Hk} = 0, it follows that the vector fieldsXHj are tangent to the level surfaceME . Furthermore,
since the Hamiltonian Hj are linearly independent, it follows that the vector fields XHj , j = 1, . . . , n
generate all the tangent space TME . Therefore the symplectic form is identically zero on the tangent
space to ME , namely ω|TME

≡ 0 because

ω(XHj , XHk) = {Hk, Hj} = 0.

This is equivalent to say that ME is a Lagrangian submanifold. We also observe that since ∇Hj ,
j = 1, . . . , n are linearly independent, it is possible to assume, without loosing in generality that

det
∂Hj

∂pk
6= 0.

Then by the implicit function theorem we can define

pk = pk(q, E).
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Putting together the last two observations, we have for fixed E = (E1, . . . , En)

0 = ω|TME
=
∑
i

dpi(q, E) ∧ dqi =
∑
ij

∂pi
∂qj

dqj ∧ dqi

which implies
∂pi
∂qj
− ∂pj
∂qi

= 0, i 6= j.

The above identity implies that the one form W = pidq
i is exact, and therefore there exists a

function S = S(q, E) so that W |ME
= dS|ME

. The function S is the generating function of a
canonical transformation. (q, p)→ (ψ,E) where

Φ∗W = −
∑

ψidEi

and W − Φ∗W = dS implies∑
pidq

i − ∂S

∂qi
dqi − ∂S

∂Ei
dEi = −

∑
ψidEi

so that

pi =
∂S

∂qi
, ψi =

∂S

∂Ei
.

In the canonical coordinates (ψ,E) the Hamiltonian flow with respect to the Hamiltonian H1 = H
takes the form

ψ̇i = {ψi, H1} =
∂H1

∂Ei
= δ1i

Ėi = {Ei, H1} = −∂H1

∂ψi
= 0.

So the above equations can be integrated in a trivial way:

ψ1 = t+ ψ0
1, ψi = ψ0

i , i = 2, . . . , n Ei = E0
i , i = 1, . . . , n

where ψ0
i and E0

i are constants. Therefore we have shown that the Hamiltonian flow can be inte-
grated by quadratures. Furthermore

q = q(t+ ψ0
1, ψ

0
2, . . . , ψ

0
n, E), p = p(t+ ψ0

1, ψ
0
2, . . . , ψ

0
n, E).

In 1968 Arnold observed that if the level surface ME is compact, the motion takes place on a
torus and is quasi-periodic.

Theorem 2.12 (Arnold). If the level surface ME0 defined in (2.15) is compact and connected then
the level surfaces ME for |E − E0| sufficiently small are diffeomorphic to a torus

ME ' Tn = {(φ1, . . . , φn) ∈ Rn |φi ∼ φi + 2π, i = 1, . . . , n}, (2.16)

and the motion on ME is quasi-periodic, namely

φ1(t) = ω1(E) t+ φ0
1, . . . , φn(t) = ωn(E) t+ φ0

n (2.17)

where ω1(E), . . . , ωn(E) depends on E and the phases φ0
1, . . . , φ0

n are arbitrary.
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Proof. To prove the theorem we use a standard lemma (see [5]).

Lemma 2.13. Let M be a compact connected n-dimensional manifold. If on M there are n linearly
independ vector fields X1, . . . , Xn such that

[Xi, Xj ] = 0, i, j = 1 . . . , n

then M ' TN , the n-dimensional torus.

In our case the vector field XH1 , . . . , XHn are linearly independent and commuting, so, in the
case ME0 is compact and connected, it is also isomorphic to a n-dimensional torus. By continuity,
for small values of |E − E0| the surface ME is also isomorphic to a torus. The coordinates ψ =
(ψ1, ψ2, . . . , ψn) introduced in the proof of Liouville theorem 2.11 are not angles on the torus. In
the canonical variables (ψ,E) the vector fields

XHm = { . ,Hm} =
n∑
j=1

∂Hm

∂Ej

∂

∂ψj
=

∂

∂ψm
.

Let us make a change of variable φ = φ(ψ) so that the coordinates φ = (φ1, . . . , φn) are angles on
the torus and let I1(E), . . . In(E) be the canonical variables associated to the angles (φ1, . . . , φn).
By construction one has for any Hamiltonian Hm, m = 1, . . . , n

XHm = { ., Hm} =
∂

∂ψm
=

n∑
j=1

∂Hm

∂Ij

∂

∂φj
,

since Hm depends only on Em and φ depends only on ψ. It follows that φj and ψk are related by
a linear transformation

φj =
∑
m

σjmψm, σjm = σjm(E), detσjm 6= 0.

Comparing the above two relations one arrives to

σjm =
∂Hm

∂Ij
.

Let us verify that (φ, I) are indeed canonical variables:

{φj , Ik} = {
∑
k

σjmψm, Ik} =
∑
m

σjm{ψm, Ik} =
∑
m

σjm
∂Ik
∂Em

=
∑
m

∂Hm

∂Ij

∂Ik
∂Em

= δjk.

The equation of motions in the variables (φ, I) are given by

φ̇k =
∂H1

∂Ik
=: ωk(E)

İk =
∂H1

∂φk
= 0

therefore the motion is quasi periodic on the tori. In the variable (p, q), with p = p(φ, I), q = q(φ, I),
the evolution is given as

q = q(ω1t+ φ0
1, . . . , ωnt+ φ0

n, I)

p = p(ω1t+ φ0
1, . . . , ωnt+ φ0

n, I),

where (φ0
1, . . . , φ

0
n) are constant phases.
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3 Korteweg de Vries equation and direct/inverse scattering

The Korteweg de Vries (KdV) equation

ut + uux + uxxx = 0

is a nonlinear evolutionary partial differential equation for the function u = u(x, t), x ∈ R and
t ∈ R+. Here ut stands for the partial derivative with respect to t and ux for the partial derivative
with respect to x. This equation was discovered in 1877 by Boussinesq and in 1895 by D. Korteweg
ad G. de Vries. By the scaling x → αx, t → βt and u → γu one can normalised the equation to
the form

ut − 6uux + uxxx = 0. (3.1)

This equation has an exact travelling wave solution, namely a solution of the form u(x, t) = f(x−ct).
Plugging the ansatz into the KdV equation and putting the integration constants equal to zero,
one arrives to the ODE

df

f
√

2f + c
= dθ, θ = x− ct

u(x, t) = −1

2
c sech2

(√
c

2
(x− ct+ x0)

)
.

Such solution was called soliton by Zabusky and Kruskal (1965) and they observed quite remarkable
properties of the KdV solitons. In 1967 Gardner, Green, Kruskal and Miura discovered that the
KdV equation can be solved via inverse scattering transform method (ISTM). The rest of this
section will be devoted to explain this method. The key observation is the following result. Let us
introduce the operator

L := −∂2
x + u(x, t) (3.2)

A := 4∂3
x − 6u∂x − 3ux, (3.3)

and define Lt := ut.

Theorem 3.1. The equations
L̇ = [L,A] (3.4)

is equivalent to the KdV equation (3.1).

Proof. Let us compute the commutator [L,A] and show that is a multiplication operator.

[L,A] = [−∂2
x + u, 4∂3

x − 6u∂x − 3ux] = 6[∂2
x, u∂x] + 3[∂2

x, ux] + 4[u, ∂3
x]− 6[u, u∂x].

Calculating each single term one has

[∂2
x, u∂x]f = ufxxx + 2uxfxx + uxxfx − ufxxx

[∂2
x, ux]f = uxfxx + 2uxxfx + uxxxf − uxfxx

[u, ∂3
x]f = ufxxx − 3uxfxx − 3uxxfx − uxxxf − ufxxx

[u, u∂x]f = u2fx − u2fx − uuxf

11



so that

[L,A]f = 12uxfxx + 6uxxfx + 6uxxfx + 3uxxxx − 12uxfxx − 12uxxfx − 4uxxxf + 6uuxf

= −uxxxf + 6uuxf

The operator L is an operator acting on functions defined on R. Here we assume that u(x, 0)
is such that ∫ ∞

−∞
|u(x)|(1 + x2)dx <∞.

For functions ψ in the Hilbert space L2(R) with scalar product 〈. , . 〉 one has

〈ψ,Lψ〉 =

∫ +∞

−∞
ψ̄(x)(−∂2

x + u)ψ(x)dx =

∫ +∞

−∞
[(−∂2

x + u(x, t))ψ̄(x)]ψ(x)dx

where we have integrated by parts. It follows that the operator L is Hermitian or self-adjoint,
namely

〈ψ,Lψ〉 = 〈Lψ,ψ〉.

As a consequence of being Hermitian, the eigenvalues of L are real, since

〈ψ,Lψ〉 = 〈ψ, λψ〉 = λ〈ψ,ψ〉 = 〈Lψ,ψ〉 = 〈λψ, ψ〉 = λ̄〈ψ,ψ〉

so that λ̄ = λ.

Lemma 3.2. Let λ be an eigenvalue of L, then
dλ

dt
= 0.

Proof.

L̇ψ + Lψ̇ = λ̇ψ + λψ̇,

so that
LAψ −ALψ + (L− λ)ψ̇ = λ̇ψ.

Next taking the scalar product with respect to ψ one has

〈ψ,LAψ〉 − 〈ψ,ALψ〉+ 〈ψ, (L− λ)ψ̇〉 = λ̇〈ψ, ψ〉
〈Lψ,Aψ〉 − 〈ψ,Aλψ〉+ 〈(L− λ)ψ, ψ̇〉 = λ̇〈ψ, ψ〉
λ〈ψ,Aψ〉 − λ〈ψ,Aψ〉+ 〈(L− λ)ψ, ψ̇〉 = λ̇〈ψ, ψ〉

0 = λ̇〈ψ, ψ〉,

where we use the reality of the eigenvalues and the symmetry of the operator L.

The solution of KdV will be obtained by first study the Schrödinger operator L(t = 0). To
such operator we will associate the scattering data. This is called direct scattering problem. In the
scattering coordinates the time evolution is trivial if the potential u = u(x, t) evolves according to
the KdV equation and it is straightforward to obtain the scattering data at time t. The inverse

12



scattering aims at reconstructing the potential u(x, t) from the scattering data at time t. The
diagram below summarise the procedure just described.

{u(x, t = 0)} direct scattering−→ study −∂2
x + u(x, 0): scattering data at t = 0y KdV evolution

{u(x, t)} inverse scattering←− scattering data at t > 0.

Before starting the theory of scattering we will say few more words about integrability

3.1 Algebra of pseudo-differential operators

In the theory of evolutionary systems one of the most important issues is a systematic method
for construction of integrable systems. The crucial point of the formalism is the observation that
integrable dynamical systems can be obtained from the Lax equations on appropriate Lie algebras.
The greatest advantage of this formalism, besides the possibility of systematic construction of
the integrable systems, is the construction of bi-Hamiltonian structures and infinite hierarchies of
symmetries and conserved quantities.

The classical R-matrix formalism that originated from the pioneering article [23] by Gelfand
and Dickey, where they presented the construction of Hamiltonian soliton systems of KdV type by
means of pseudo- differential operators.

Let g be an algebra with respect to some multiplication, over R or C and let us assume that g
is endowed with a bilinear product given by a Lie bracket [, ] : g → g , which is skew-symmetric
and satisfies the Jacobi identity.

Definition 3.3. A linear map R : g→ g such that the bracket

[a, b]R = [Ra, b] + [a,Rb], ∀a, b ∈ g (3.5)

is another Lie bracket on g is called the classical R-matrix.

The map (3.5) defines a Lie bracket if it is skew symmetric and satisfies the Jacobi identity.
The skew symmetry of (3.5) is obvious. The fact that (3.5) satisfies the Jacobi identity is not
given for free, but some conditions on the map R have to be imposed. These conditions are called
Yang-Baxter equations that we promptly derive. To impose the Jacobi identity on (3.5) one finds
that

0 = [a, [b, c]R]R + cyclic permutation

= [Ra, [Rb, c]] + [Ra, [b, Rc]] + [a,R[b, c]R] + cyclic permutation

= [Rb, [Rc, a]] + [Rc, [a,Rb]] + [a,R[b, c]R] + cyclic permutation

= [a,R[b, c]R − [Rb,Rc]] + cyclic permutation

13



where the last equality follows from the Jacobi identity for [·, ·]. Hence, a sufficient condition for R
to be a classical R-matrix is to satisfy the following so-called Yang-Baxter equation

[Ra,Rb]−R[a, b]R + c[a, b] = 0 (3.3)

where c ∈ C.

3.2 An example of R-matrix

Assume that the Lie algebra g can be split into a direct sum of two Lie subalgebras g+ and g−,
namely

g = g+ ⊕ g− [g±, g±] ⊂ g± g+ ∩ g− = ∅

We denote the projections onto these subalgebras by P±, where

P+ + P− = 1.

Next we define a linear mapR : g→ g as

R =
1

2
(P+ − P−) = P+ −

1

2
=

1

2
− P− (3.13)

Let a± := P±(a) for a ∈ g. Then it is immediate to verify that the map R defines a R-matrix.
Indeed

[a, b]R = [Ra, b] + [a,Rb] = [a+, b+]− [a−, b−]

Further

R[a, b]R =
1

2
[a+, b+] +

1

2
[a−, b−]

[Ra,Rb] =
1

4
[a+, b+]− 1

4
[a+, b−]− 1

4
[a−, b+] +

1

4
[a−, b−]

so that

[Ra,Rb]−R[a, b]R = −1

4
[a+, b+]− 1

4
[a+, b−]− 1

4
[a−, b+]− 1

4
[a−, b−] = −1

4
[a, b]

namely the Yang-Baxter equation (3.3) are satisfied for c = 1
4 .

3.3 Algebra of pseudo-differential operators

The algebra of pseudo-differential operator (PDO) is the set of operators

g =

{
L =

N∑
i>−∞

ui(x)∂ix

}
(3.6)

where the smooth functions ui(x) depend also on the times t = (t1, t2, . . . ). The ∂x operator is
related to the total derivative with respect to x. Thus, the multiplication in g is defined through
the so-called generalized Leibniz rule

∂mu(x) =
∑
n>0

(
m
n

)
u(n)(x)∂m−n (3.7)
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where u(n)(x) := (∂x)nu(x) and

(
m
n

)
stands for the standard binomial coefficient. For m < 0

one has the relation (
m
n

)
= (−1)n

(
−m+ n− 1

n

)
From the above relation it follows that

∂xu = u∂x + ux

∂−1u = u∂−1
x − ∂−1

x ux∂
−1
x

= u∂−1
x − ux∂−2

x + u2x∂
−3
x − . . . ,

The algebra (3.6) with the multiplication defined through (3.7) is an associative and noncom-
mutative algebra. Therefore, we have a well-defined Lie algebra structure on g with the natural
commutator of operators, namely

[A,B] = AB −BA A,B ∈ g

Consider the following decomposition of g = g+ ⊕ g− where

g+ :=

{∑
i>0

ui∂
i
x

}
, g− :=

{∑
i<0

ai∂
i
x

}
. (3.25)

Then, g+ and g− are Lie subalgebras of g and P± : g → g± the projector operators. Consider an
element L from g of the form

L = ∂Nx + uN−1∂
N−1
x + uN−2∂

N−2
x + . . . u0 (3.27)

where N > 0. Then its N -th root

L
1
N = ∂x + a0 + a−1∂

−1
x + a−2∂

−2
x + . . . , (3.8)

where coefficients ai are differential function of ui, that are constructed by solving recursively the
identity (

L
1
N

)N
=

N︷ ︸︸ ︷
L

1
N · . . . · L

1
N = L.

In general one can take the fractional powers of (3.8) to obtain

L
n
N =

n︷ ︸︸ ︷
L

1
N · . . . · L

1
N .

Using the distributive property of the commutator one has that

0 = [L,L] = [
(
L

1
N

)N
, L] =

(
L

1
N

)N−1
[L

1
N , L] +

(
L

1
N

)N−2
[L

1
N , L]L

1
N + · · ·+ [L

1
N , L]

(
L

1
N

)N−1

so that one can conclude that
[L

1
N , L] = 0

and in general

[L
k
N , L] = 0 k ≥ 1.
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Definition 3.4. The fractional powers of L generate the following Lax hierarchies

Ltk =

[(
L
k
N

)
+
, L

]
, k = 1, . . . (3.9)

In order to investigate the type of equations obtained from (3.9) we analyse the properties of
the above commutator.

Lemma 3.5. The differential operator

[(
L
k
N

)
+
, L

]
has degree N − 2.

Proof. We have that

0 =

[(
L
k
N

)
+

+
(
L
k
N

)
−
, L

]
so that [(

L
k
N

)
+
, L

]
= −

[(
L
k
N

)
−
, L

]
.

On the other hand
(
L
k
N

)
−

= a−1∂
−1
x + l.o.t where l.o.t stands for lower order terms, so that

[a−1∂
−1
x , ∂Nx ] = a−1∂

N−1
x − ∂Nx (a−1∂

−1
x ) = −N(∂xa−1)∂N−2

x + l.o.t

and the statement follows.

Remark 3.6. From lemma 3.5 it follows that ∂tkuN−1 = 0 in (3.9). For this reason, we con-
sider only operators where uN−1 = 0 since this term does not contribute to the dynamic, namely
operators of the form

L = ∂Nx + uN−2∂
N−2
x + . . .+ u1∂x + u0 .

Example 3.7. [KdV hierarchy] Consider the case N = 2, then

L = −∂2
x + u,

where for normalization reasons we have inserted the minus sign in front of the second derivative.
One finds that

(−L)
1
2 =∂x −

1

2
u∂−1

x +
1

4
ux∂

−2
x −

1

8
(u2x − u) ∂−3

x +
1

16
(u3x − 6uux) ∂−4

x

− 1

32

(
u4x − 14uu2x − 11u2

x + 2u3
)
∂−5
x + . . .

The fractional power of L gives for example

(−L)
3
2 = −L · (−L)

1
2 = ∂3 − 3

2
u∂x −

3

4
ux + (. . .)∂−1

x + . . .

The Korteweg de Vries equation is recovered from

Lt1 = ut1 =

[
4 (−L)

3
2
+ , L

]
⇐⇒ ut3 − 6uux + uxxx = 0
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In general, from Lemma 3.5 the commutator

[
(−L)

2k+1
2

+ , L

]
is a differential operator of degree

zero, namely a differential polynomial in u, ux, uxx, . . . and it defines the KdV hierarchy

Ltk = utk = 22k

[
(−L)

3
2
+ , L

]
, k = 1, 2, . . . (3.10)

where we have changed slightly the numbering of the times with respect to the Definition 3.4. For
example

ut2 = uxxxxx + 10uuxxx + 20uxuxx + 30u2ux,

and in general the equation utk = u(2k+1) + · · ·+ cukux, where c is a constant. Namely the highest
derivative has order 2k + 1 and the highest nonlinearity is of order k + 1.

Example 3.8. [Boussinesq equation] When N = 3 the differential operator L takes the form

L = ∂3
x + u∂x + v

with u = u(x, t) and v = v(x, t). We have

L
1
3 =∂x +

1

3
u∂−1

x −
1

3
(ux − v) ∂−2

x +
1

9

(
2u2x − 3vx − u2

)
∂−3
x

− 1

9
(u3x − 2v2x − 4uux + 2uv) ∂−4

x

+
1

81

(
3u4x − 9v3x − 45uu2x + 36uvx − 45u2

x + 45uxv − 9v2 + 5u3
)
∂−5
x + . . .

Then, for (
L

2
3

)
+

= ∂2
x +

2

3
u,

one finds the Lax equation for the Boussinesq system

Lt2 =

[(
L

2
3

)
+
, L

]
⇐⇒

(
u
v

)
t2

=

(
−u2x + 2vx

−2
3u3x + v2x − 2

3uux

)
or equivalently

ut2t2 = (3uxxx −
4

3
uux)x,

that is called the Boussinesq equation.

Remark 3.9. The KdV equation and the Boussinesq equation are reductions (up to normalization)
of a 2-dimensional integrable equation called the Kadomtsev-Petviashvili equation

(ut + uux + uxxx)x = uyy .

t-independent solutions satisfy the Boussinesq equation, while y-independent solutions satisfies the
KdV equation.

The very important fact that determines integrability is that the hierarchy of equations (3.9)
commute, namely we have the following lemma.
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Lemma 3.10. The following relations are satified

∂

∂tj
Ltk =

∂

∂tk
Ltj , j 6= k = 1, 2, . . .

Proof. Let Ak := (L
k
N )+. From definition 3.4 we have

∂

∂tj
Ltk −

∂

∂tk
Ltj =

∂

∂tj
[Ak, L]− ∂

∂tk
[Aj , L] = [

∂

∂tj
Ak −

∂

∂tk
Aj , L] + [Ak,

∂

∂tj
L]− [Aj ,

∂

∂tk
L]

= [
∂

∂tj
Ak −

∂

∂tk
Aj , L] + [Ak, [Aj , L]]− [Aj , [Ak, L]]

=

[
∂

∂tj
Ak −

∂

∂tk
Aj , L

]
+ [L, [Ak, Aj ]]

that implies
∂

∂tj
Ak −

∂

∂tk
Aj − [Aj , Ak] = 0 . (3.11)

The above equation takes also the name of zero curvature equation. To show that such equation is
satisfied we first show the following identity:

∂

∂tj
L
k
N = [Aj , L

k
N ] .

To prove it let us start for k = 1,

∂

∂tj
(L

1
N )N =

N−1∑
i=0

(L
1
N )i

∂

∂tj
L

1
N (L

1
N )N−i−1

=
N−1∑
i=0

(L
1
N )i[Aj , L

1
N ](L

1
N )N−i−1 = [Aj , L]

as required. The equality for k > 1 can be proved by the same computations. Next we have

(
∂

∂tj
L
k
N )+ = [Aj , L

k
N ]+

where the underscore + stands for the projection on the subspace of positive and constant differ-
ential operators. We are ready to prove the zero curvature equation (3.11):

∂

∂tj
Ak −

∂

∂tk
Aj = [(L

j
N )+, L

k
N ]+ − [(L

k
N )+, L

j
N ]+

= [(L
j
N )+, (L

k
N )+]+ + [(L

j
N )+, (L

k
N )−]+ − [(L

k
N )+, L

j
N ]+

= [(L
j
N )+, (L

k
N )+]+ + [(L

j
N ), (L

k
N )−]+ − [(L

k
N )+, L

j
N ]+

= [(L
j
N )+, (L

k
N )+]+ + [(L

j
N ), (L

k
N )]+

= [(L
j
N )+, (L

k
N )+]+ = [Aj , Ak].

We can conclude that the Lax equations (3.4) and in particular the KdV hierarchy (3.10) are
an infinite dimensional set of commuting equations.
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3.4 Direct scattering

We look for solution of the Schrödinger equation for potentials u(x, t = 0) such that∫ ∞
−∞

(1 + x2)|u(x, t = 0)|dx <∞ (3.12)

The first step is to determine the Jost solutions of the equation Lψ = k2ψ, k ∈ R namely two sets
of independent and bounded solutions such that

φ(x, k)→ e−ikx, φ(x, k)→ eikx, x→ −∞ (3.13)

and
ψ(x, k)→ eikx, ψ(x, k)→ e−ikx, x→ +∞. (3.14)

Since the potential u(x) is real, if φ(x, k) is a solution of the Schrödinger equation then also
φ∗(x, k∗) is a solution, where ∗ means complex conjugation. For this reason φ̄(x, k) = φ∗(x, k∗).
We observe that for k real we also have φ̄(x, k) = φ(x,−k) and ψ̄(x, k) = ψ(x,−k). Let us define
w(x, k) := φ(x, k)eikx, and w̄(x, k) := φ(x, k)e−ikx. We observe that from (3.13) we have that

w(x, k)→ 1, w̄(x, k)→ 1, as x→ −∞.

Lemma 3.11. The following relation holds(
w′e−2ikx

)′
= uwe−2ikx (3.15)

where ′ denotes the derivative with respect to x.

Proof. Substituting φ into the Schrödinger equation we have

−
(
we−ikx

)′′
+ uve−ikx = k2we−ikx.

Taking the second derivative and re-arraging the terms one arrives to the statement of the lemma.

Lemma 3.12. The function w(x, k) satisfies the following integral equations

w(x, k) = 1−
∫ x

−∞
u(ξ)w(ξ, k)

1− e2ik(x−ξ)

2ik
dξ. (3.16)

Proof. We first integrate the equation (3.15) once obtaining

w′e−2ikx =

∫ x

−∞
u(ξ)w(ξ, k)e−2ikξdξ

Next we integrate another time from −∞ to x and use the fact that w(x, k) → 1 as x → −∞
obtaining

w(x, k) = 1 +

∫ x

−∞
dx′e2ikx′

∫ x′

−∞
u(ξ)w(ξ, k)e−2ikξdξ.

Exchanging the order of integration we arrive to

w(x, k) = 1 +

∫ x

−∞
dξu(ξ)w(ξ, k)e−2ikξ

∫ x

ξ
dx′e2ikx′ = 1 +

∫ x

−∞
dξu(ξ)w(ξ, k)e−2ikξ e

2ikx − e2ikξ

2ik

which is equivalent to the statement of the lemma.
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In a similar way one has

w̄(x, k) = 1 +

∫ x

−∞
u(ξ)]w̄(ξ, k)

1− e−2ik(x−ξ)

2ik
dξ. (3.17)

Lemma 3.13. The integral equation (3.16) has a solution.

Proof. We give a sketch of the proof (see Lemma 1, Sect. 2.1 in [?]). We consider an iteration
scheme with w0(x, k) = 0, w1(x, k) = 1 and

wj+1(x, k) = 1 +

∫ x

−∞
u(ξ)wj(ξ, k)Dk(x− ξ)dξ

where Dk(x) =
1− e2ikx

2ik
. For |k| > 0 one has the estimate |Dk(x− ξ)| <

1

|k|
uniformly in x, ξ ∈ R.

Here | . | stands for the modulus of a complex number. We claim that for all j ≥ 0 and |k| > 0 one
has the estimate

|wj+1(x, k)− wj(x, k)| ≤ 1

j!

(
1

|k|

∫ x

−∞
dξ|u(ξ)|

)j
<

1

j!

(
1

|k|

∫ +∞

−∞
dξ|u(ξ)|

)j
. (3.18)

Such estimate can be easily proved by induction. From the above estimate it follows that wj(x, k) is
a Cauchy sequence and therefore there exists the limit w(x, k) in L∞(R). Using the above estimate
we also have that

|wN (x, k)| =

∣∣∣∣∣∣
N−1∑
j=0

wj+1 − wj

∣∣∣∣∣∣ ≤
N−1∑
j=0

1

j!

(
1

|k|

∫ +∞

−∞
dξ|u(ξ)|

)j
that shows that the limit w(x, k) is uniformly bounded by

|w(x, k)| ≤ exp

(
1

|k|

∫ +∞

−∞
dξ|u(ξ)|

)
, |k| > 0. (3.19)

In order to prove the existence of a solution of the integral equation (3.16) for k near zero, we need
the estimate |Dk(x− ξ)| < |x− ξ| for all real x, ξ. In this case we can prove that wj(x, k)/(1 + x)

converges for all real x provided that
∫ +∞
−∞ |u0(ξ)||c1ξ + c2|dξ < ∞ for some constants c1 and c2.

Namely a stronger decay at infinity of the function u is required for the case k near the origin.

Remark 3.14. For proving the existence of the first derivative with respect to k of the function
w(x, k) one has to prove the existence of the solution of the integral equation

F (x, k) = 1−
∫ x

−∞
u(ξ)F (ξ, k)Dk(x− ξ)dξ +

∫ x

−∞
u(ξ)w(ξ, k)

∂

∂k
Dk(x− ξ)dξ.

and show that the function F (x, k) coincides with ∂kw(x, k). For proving the existence of F (x, k)
one must have that the function u0(x) decays at infinity in such a way that the condition (3.12)
is satisfied. In general the smoothness of the function w(x, k) with respect to the parameter k
depends on how fast the function u decays at infinity, [19].
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Regarding the Jost function normalised at +∞ we define

p(x, k) := ψ(x, k)e−ikx, p̄(x, k) := ψ(x, k)eikx

In a similar way as done before, one can obtain an integral equation for the function p and q, that
is

p(x, k) = 1−
∫ +∞

x
dξu(ξ)p(ξ, k)

1− e−2ik(x−ξ)

2ik
,

p̄(x, k) = 1 +

∫ +∞

x
dξu(ξ)p̄(ξ, k)

1− e2ik(x−ξ)

2ik
.

(3.20)

Remark 3.15. From the formula (3.15) and (3.17) it is immediate to see that the function Dk(x−

ξ) =
1− e2ik(x−ξ)

2ik
for x > ξ is exponentially small for Im k > 0 while Dk(x− ξ) for x > ξ is

exponentially small for Im k < 0. On the other hand Dk(x − ξ) for x < ξ is exponentially small
for Im k < 0 while Dk(x− ξ) for x < ξ is exponentially small for Im k > 0. From this simple
observation it follows from (3.15) and (3.17) and (3.37) that

• the functions φ(x, k) and ψ(x, k) or p(x, k) and w(x, k) have an analytic continuation in the
upper half space Im k ≥ 0.

• the functions φ(x, k) and ψ(x, k) or p̄(x, k) and w̄(x, k) have an analytic continuation in the
lower half space Im k ≤ 0.

Next we consider the Wronkstian W (f, g) = fxg − gxf .

Lemma 3.16. The following relation is satisfied

W (φ, φ̄) = W (ψ̄, ψ) = −2ik.

Proof. First of all let us observe that

d

dx
W (φ , φ̄) = φxxφ̄+ φxφ̄x − φφ̄xx − φxφ̄x = 0,

because φ and φ̄ satisfy the Schrödinger equation. Namely the Wronkstian of two independent
solutions of the Schrödinger equation is equal to a constant. In order to evaluate the constant, we
evaluate the Wronkstian with respect to φ and φ̄ at x = −∞ and the Wronkstian with respect to
ψ̄ and ψ at x = +∞ obtaining the statement of the lemma.

Since the Jost functions φ and φ̄ and ψ and ψ̄ are two independent sets of solutions of the
Schrödinger equation that is an ODE of second degree it follows that they are related by a linear
transformation

(φ, φ̄) = (ψ̄, ψ)

(
a b̄
b ā

)
(3.21)

for some constants a = a(k) and b = b(k). The matrix

S =

(
a b̄
b ā

)
(3.22)

is called scattering matrix.
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Lemma 3.17. The matrix S has determinant equal to one.

Proof. It is enough to evaluate the Wronkstian

−2ik = W (φ, φ̄) = W (aψ̄ + bψ, āψ + b̄φ̄) = −2ik(aā− bb̄).

Lemma 3.18. The following identities are satisfied

a(k) = 1− 1

2ik

∫ +∞

−∞
u(ξ)p(ξ, k)dξ,

b(k) =
1

2ik

∫ +∞

−∞
u(ξ)p̄(ξ, k)e−2ikξdξ.

(3.23)

Proof. For the first relation we evaluate W (ψ, φ) obtaining

W (ψ, φ) = W (ψ, aψ̄ + bψ) = aW (ψ, ψ̄) = 2iak.

On the other hand one also has that

W (ψ, φ) = W (peikx, we−ikx) = ikpw + p′w − pw′ + ikpw = (p′ + 2ikp)w − pw′.

Evaluating the last relation at x = −∞ one obtains

W (ψ, φ) = (p′ + 2ikp)w − pw′ = 2ik −
∫ +∞

−∞
u(ξ)p(ξ, k)dξ

which combined with the first identity gives the statement of the lemma. Regarding the derivation
of b, we consider the Wronkstian

W (ψ̄, φ) = W (ψ̄, aψ̄ + bψ) = bW (ψ̄, ψ) = −2ikb.

On the other hand we also have

W (ψ̄, φ) = W (p̄e−ikx, we−ikx) = (p̄′w − p̄w′)e−2ikx = −
∫ +∞

−∞
u(ξ)p̄(ξ, k)e−2ikξdξ,

where the last identity has been obtained by evaluating the Wronkstian at x = −∞. Combining
the last two equations one obtains the statement of the lemma.

Lemma 3.19. The function a(k) is analytic on the upper half plane and it has at most a finite
number of zeros on the positive imaginary axis. The zeros are all simple and

i
da

dk
|k=iκj =

1

βj

∫ +∞

−∞
φ2(x, iκj)dx = βj

∫ +∞

−∞
ψ2(x, iκj)dx. (3.24)

Remark 3.20. The linear spectral problem can have a point spectrum where the function a(k)
has higher order zeros, but the corresponding potential u(x) is not in L2(R).
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Proof. The function a(k) has an analytic extension for Im k > 0 because of formula (3.23) and
the fact that the function p(x, k) has an analytic continuation on the upper half space. Since the
function p(x, k) is uniformly bounded for |k| > 0, ( see relation (3.19) for the equivalent function
w(x, k)), one also has that

a(k)→ 1, |k| → ∞, Im k > 0.

Therefore a(k) is analytic on the upper half space and bounded at infinity. It follows that a(k) has
at most a finite number of zeros. To prove that the zeros lie on the complex imaginary axis, let us
suppose that kj = ξj + iκj , κj > 0 is a zero of a, namely a(kj) = 0. Then W (ψ(x, kj), φ(x, kj)) = 0,
which implies that the functions are proportional to each other

φ(x, kj) = βjψ(x, kj). (3.25)

We also observe that
ψ(x, kj) ' eikjx = eiξjxe−κjx, as x→ +∞

and
φ(x, kj) ' e−ikjx = e−iξjxeκjx, as x→ −∞.

It follows that the function f(x, kj) = φ(x, kj) = βψ(x, kj) is in L2(R) and Lf = k2
0f where k2

j is
an eigenvalue of the operator L. Since the eigenvalues of L are all real, it follows that k0 is equal
to ξj or to iκj . The first possibility has to be excluded because otherwise the functions ψ and φ
cannot be proportional. Hence kj = iκj , κj > 0. In order to show that the zeros of a(k) are all
simple we consider the W (ψ, φ) = 2ika and differentiate with respect to k. Under the assumption
(??) and remark 3.14, the Jost functions ψ and φ are differentiable and we obtain

W (ψk, φ) +W (ψ, φk) = 2ia+ 2ik
da

dk
,

so that evaluating the above relation at iκj we obtain

2κj
da

dk
|k=iκj = W (φ, ψk)|iκj +W (φk, ψ)|iκj .

Using the relation φ(x, iκj) = βjψ(x, iκj) we can reduce the above relation to the form

2κjβj
da

dk
|k=iκj = β2

jW (ψ,ψk)|iκj +W (φk, φ)|iκj . (3.26)

In order to evaluate the above Wronkstians we consider the sum of the equations (φxx − uφ +
k2φ)φk = 0 and (−φxxk + uφk − 2kφ− k2φk)φ that gives

(φxkφ− φxφk)x = −2kφ2

so that
d

dx
W (φk, φ) = −2kφ2

or

W (φk(+∞, k), φ(+∞, k))−W (φk(−∞, k), φ(−∞, k)) = −2k

∫ +∞

−∞
φ(x, k)2dx.
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Evaluating the above relation at iκj and subtracting equation (3.26) evaluated at x = +∞ we
obtain

[W (φk(−∞, k), φ(−∞, k)) + β2
jW (ψ(+∞, k), ψk(+∞, k))]|iκj

= 2iκj

∫ +∞

−∞
φ(x, iκj)

2dx+ 2κjβj
da

dk
|k=iκj . (3.27)

Since the left hand size is equal to zero, because φ(x, k) ' e−ikx as x→ −∞ and ψ(x, k) ' eikx as
x→ +∞, we have that

da

dk
|k=iκj = − i

βj

∫ +∞

−∞
φ(x, iκj)

2dx. (3.28)

Setting k = iκj in the integral equation (3.16) shows that w(x, iκj) is real which implies that
φ(x, iκj) is real, therefore, the integral in the r.h.s. of the above equation is real and non zero. This
shows that the zeros of a(k) are simple at iκj .

Now let us consider the function φ(x, k)

φ(x, k) = a(k)ψ̄(x, k) + b(k)ψ(x, k) =


a(k)e−ikx + b(k)eikx, x→∞

e−ikx x→ −∞
(3.29)

then

1

a
φ(x, k) =


e−ikx +

b(k)

a(k)
eikx, x→ +∞

1

a(k)
e−ikx x→ −∞

(3.30)

Looking at the first row of the above equation, we can consider e−ikx as incident wave arriving

from +∞ and
b(k)

a(k)
eikx as reflected wave, while in the second row we can consider

1

a(k)
e−ikx as

transmitted wave.

Definition 3.21. The quantities

r(k) :=
b(k)

a(k)
, t(k) :=

1

a(k)
(3.31)

are called reflection and transmission coefficients from the right of the Schrödinger equation.

We observe that since |a(k)|2 − |b(k)|2 = 1 for k real one has

|r(k)|2 + |t(k)|2 = 1, k ∈ R (3.32)

which expresses the conservation of the wave flux. One can also define the reflection coefficient
from the left by considering

1

a
ψ(x, k) =


eikx − b̄(k)

a(k)
eikx, x→ −∞

1

a(k)
eikx x→ +∞

(3.33)
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and defining rL(x) = − b̄(k)

a(k)
and tL(k) =

1

a(k)
the reflection and transmission coefficients from the

left.

Lemma 3.22. The reflection coefficient has the following properties

1. |r(k)| ≤ 1 for all k ∈ R;

2. r∗(k) = r(−k), for all k ∈ R;

3. r(k) ' 1

|k|
as |k| → ∞;

4. r(k) ∈ L2(R) and r′(k) ∈ L2(R) if the initial data satisfies (3.12).

Proof. The relation 1. follows from (3.32). The relation 2. follows from the symmetry property of
the Jost solutions. Indeed for real k one has ψ∗(x, k) = ψ(x,−k) so that by (3.23) one has that
a∗(k) = a(−k) and b∗(k) = b(−k), k real.

Regarding relation 3. since p(x, k) is uniformily bounded for |k| > 0 it follows from the definition
of a(k) and b(k) in (3.23) that |a(k)| → 1 and |b(k)| = O(1/|k|) as |k| → ∞. The relation 4. follows
from the remark 3.14 and some norm estimates of the derivative of p(x, k) with respect to k.

Remark 3.23. It is proved by Beals and Coifmann [3] that if u(x)xj ∈ L1(R) then r ∈ Cj(R) and
r(`)(k) → 0 as |k| → ∞ with ` = 1, . . . , j and j ≥ 2. Here r(`)(k) is the partial derivative with
respect to k. Further, if u(x)x` ∈ L1(R) ∩ L2(R) then r(`) ∈ L2(R) ` = 1 . . . , j.

The scattering data for the potential u(x, 0) is the following set

S(0) = {r(k), {κj , βj}nj=1}

where r(k) = r(k, t = 0) and βj = βj(t = 0). The eigenfunction fj with respect to the eigenvalue
−κ2

j is defined as

fj(x, κj) =

{
eκjx, as x→ −∞
βje
−κjx, as x→∞.

If the function u(x, t) evolve according to the KdV equation the scattering data at time t can be
obtained in a straightforward way.

Theorem 3.24.

dr

dt
= 8ik3r, or r(k, t) = r(k, 0)e8ik3t (3.34)

dβj
dt

= 8κjβj or βj(t) = βj(0)e8κ3j t. (3.35)

Proof. Let us consider the equation Lψ = λψ where ψ is either a Jost function or an eigenfunction.
Taking the derivative with respect to time of this equation and using the Lax equation L̇ = [L,A]
we obtain (here dot denotes time derivation)

L(Aψ + ψ̇) = λ(Aψ + ψ̇).
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It follows that there are constants c1 = c1(k) and c2 = c2(k) such that

Aψ + ψ̇ = c1ψ + c2ψ̄. (3.36)

In order to evaluate these constants, we evaluate the above relation at +∞. We assume that
the KdV dynamics does not change the boundary conditions of u(x, t) at infinity. Recall that
ψ(k;x, t) ' eikx and ψ̄(k;x, t) ' e−ikx as x→ +∞ and using (3.37) we obtain

ψ(k;x, t) = eikx −
∫ +∞

x
dξu(ξ, t)ψ(ξ, t; k)

eik(x−ξ) − e−ik(x−ξ)

2ik
. (3.37)

Therefore taking a derivative with respect to x we obtain

ψ′(k;x, t) = ikeikx −
∫ +∞

x
dξu(ξ, t)ψ(ξ, t; k) cos(k(x− ξ)) = ikeikx + o(1), as x→ +∞

In a similar way

ψ′′′(k;x, t) = (ik)3eikx + k2

∫ +∞

x
dξu(ξ, t)ψ(ξ, t; k) cos(k(x− ξ)) = (ik)3eikx + o(1), as x→ +∞

and

ψ̇(k;x, t) =

∫ +∞

x
dξ[u̇(ξ, t)ψ(ξ, t; k) + u(ξ)ψ̇(ξ, t; k)] sin(k(x− ξ)) = o(1), as x→ +∞

Substituting the above relations in (3.36) one obtains

4(ik)3eikx = c1e
ikx + c2e

−ikx + o(1), as x→ +∞,

that gives c2 = 0 and c1 = −4ik3 so that

Aψ + ψ̇ = −4ik3ψ. (3.38)

In a similar way we obtain
Aφ+ φ̇ = 4ik3φ

and analogous relations hold for the Jost function φ̄ and ψ̄. Since φ = aψ̄ + bψ we obtain that

4ik3(aψ̄ + bψ) =A(aψ̄ + bψ) +
d

dt
(aψ̄ + bψ)

= a(Aψ̄ + ˙̄ψ) + b(Aψ + ψ̇) + ȧψ̄ + ḃψ

= 4ik3aψ̄ − 4ik3bψ + ȧψ̄ + ḃψ

(3.39)

which gives
ḃ = 8ik3b, ȧ = 0.

Since the reflection coefficient is r = b
a it follows from the above relation that

dr

dt
=

d

dt

(
b

a

)
= 8ik3 b

a
= 8ik3r.
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In order to obtain the evolution of the norming constants we recall the notation

φ(x, t; iκj) = βj(t)ψ(x, t; iκj).

Using the relation Aφ+ φ̇ = 4ik3φ we obtain

A(βj(t)ψ(x, t; iκj) +
d

dt
(βj(t)ψ(x, t; iκj)) = 4i(iκj)

3ψ(x, t; iκj)

which is equivalent to

βj(t)(Aψ(x, t; iκj) + ψ̇(x, t; iκj)) + β̇(t)jψ(x, t; iκj) = 4κ3
jβj(t)ψ(x, t; iκj).

Using the relation (3.38) evaluated at iκj the above relation gives β̇j = 8κ3
jβj .

So the integration of the KdV equation is obtained by the following diagram

{u(x, t = 0)} direct scattering−→ S(0) = {r(k), {βj , κj}Nj=1}y KdV evolution

{u(x, t)} inverse scattering←− S(t) = {r(k)e8ik3t, {βje8κjt, κj}Nj=1}

The inverse scattering is the problem to determine the potential u(x, t) from the spectral data
S(t).

Remark 3.25. For the inverse problem Beals and Coifmann [3] proved that if r(k)kn ∈ L2(R)
then the distributional derivative of u(`) ∈ L2(R) ∪ L∞(R), ` = 0 . . . , n. If further r(`) ∈ L2(R) for
` = 0, . . . , n+ 1 then also

[u(x)xn+1] ∈ L2(R) ∩ L∞(R).

Comparing with remak 3.23 one can see that there is no bijective map between the physical space,
where u(x) is defined and the scattering space. In order to obtain such a bijective map a substantial
analytical work has been done by X. Zhou [19] that proved the bijectivity between

u(x) ∈ L2((1 + x2n)dx) ∩Hj(R)

and
r(k) ∈ Hn(R) ∩ L2((1 + k2j)dk).

3.5 Inverse spectral problem as a Riemann-Hilbert problem

We define the vector function

m(k;x, t) :=



(
1

a(k)
φ(k;x, t)eikx, ψ(k;x, t)e−ikx

)
Im k ≥ 0

(
ψ̄(k;x, t)eikx,

1

ā(k)
φ̄(k;x, t)e−ikx

)
Im k ≤ 0

(3.40)
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Observe that m(k;x, t) is analytic for k ∈ C\(R ∪ {±iκj}nj=1); Furthermore let us define m± =
limε→0m(x, k ± iε). Then we have the following lemma

Lemma 3.26. The following relation is satisfied

m+(k;x, t) = m−(k;x, t)v(k;x, t), k ∈ R

where

v(k;x, t) =

(
1− |r(k)|2 −r̄(k)e−θ(k;x,t)

r(k)eθ(k;x,t) 1

)
, θ = 2ikx+ 8ik3t (3.41)

and r(k) is calculated at t = 0.

Proof. We consider the r.h.s. of the above relation and using (3.21)(
ψ̄eikx,

1

ā(k)
φ̄e−ikx

)
v(k) =

(
((1− |r|2)ψ̄ +

r

ā
φ̄)eikx, (

φ̄

ā(k)
− r̄ψ̄)e−ikx

)
=

(
((1− |r|2)ψ̄ +

r

ā
(b̄ψ̄ + āψ))eikx, (

b̄

ā(k)
ψ̄ + ψ − r̄ψ̄)e−ikx

)
.

Using the time evolution of the reflection coefficient r(k) in (3.34), one obtains the statement of
the Lemma.

Further as k → iκj using the fact that a(k) has simple zeros at κj

Resk=iκjm(k;x, t) =

(
φ(x, t; iκj)

a′(iκj)
e−κjx, 0

)
=

(
βj(t)ψ(x, t; iκj)

a′(iκj)
e−κjx, 0

)
(3.42)

where a′(iκj) =
da

dk
|k=iκj . Using (3.24) and definining

icj :=
βj(t = 0)

a′(iκj)
=

i∫ +∞
−∞ ψ2(x, t = 0; iκj)dx

∈ iR+

we can recast the condition (3.42) as a limit, namely

Resk=iκjm(k;x, t) = lim
k→iκj

m(k;x, t)

(
0 0

icje
−2κjx+8κ3j t 0

)

and similarly

Resk=−iκjm(k;x, t) = Resk=−iκj

(
ψ̄(k;x, t)eikx,

1

ā(k)
φ̄(k;x, t)e−ikx

)
=

(
0,

1

ā′(−iκj)
φ̄(x, t;−iκj)e−κjx

)
= lim

k→−iκj
m(k;x, t)

(
0 −icje−2κjx+8κ3j t

0 0

)
.

Summarizing we arrive to the following Riemann-Hilbert boundary value problem for the
vector m(k;x, t)
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Theorem 3.27. Let S = {r(k); (κj , βj)
N
j=1} be the (right) scattering data of the Lax operator

L(0). Then m = m(k;x, t) defined in (4.7) is the solution of the following Riemann-Hilbert
problem.

• m(k;x, t) is analytic for k ∈ C\(R∪{±iκj}nj=1) with simple poles at ±iκj, with κj > 0,
j = 1, . . . , n;

• the boundary values m± = limε→0m(x, k ± iε) satisfy the jump condition

m+(k;x, t) = m−(k;x, t)v(k;x, t), k ∈ R ; (3.43)

• the residus conditions at the poles ±iκj, j = 1, . . . , n,

Resk=iκjm(k;x, t) = lim
k→iκj

m(k;x, t)

(
0 0

icje
θ(iκj ,x,t) 0

)
(3.44)

and

Resk=−iκjm(k;x, t) = lim
k→iκj

m(k;x, t)

(
0 −icje−θ(−iκj ,x,t)
0 0

)
where cj ∈ R+;

• for |k| → ∞
m(x, k)→ (1, 1) +O(

1

|k|
).

• Further the symmetry of the Jost solutions implies the symmetry

m(−k;x, t) = m(k;x, t)

(
0 1
1 0

)
.

Analyzing the integral equations (3.16) and (3.37) for the functions w(k;x, t) and p(k;x, t) we
see that expanding for large k we have

w(x, k) = 1−
∫ x

−∞
u(ξ)w(ξ, k)

1− e2ik(x−ξ)

2ik
dξ = 1− 1

2ik

∫ x

−∞
u(ξ)dξ

p(x, k) = 1−
∫ +∞

x
dξu(ξ)p(ξ, k)

1− e−2ik(x−ξ)

2ik
= 1− 1

2ik

∫ +∞

x
u(ξ)dξ

(3.45)

we deduce that
u(x, t) = −2i∂x lim

k→∞
k(m1(k;x, t)− 1) . (3.46)

3.6 Reflectionless potentials and N-soliton solutions

When r(k) = 0, the Riemann-Hilbert problem for m(k) is solved by a vector m(k) rational in k.
Indeed in this case m(k) = (m1(k),m2(k)) is a meromorphic function of C and m1(k) has a

simple pole at iκj while m2(k) has simle poles at −iκj . Keeping track of the symmetry of the
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solution in (4.7) we look for a solution that has the form

m(k;x, t) =

1 +

N∑
j=1

iαj
k − iκj

, 1−
N∑
j=1

iαj
k + iκj


where the constants (in k) αj = αj(x, t) ∈ R 1 are to be determined from the residue conditions of
the Riemann-Hilbert problem. Notice that m2(k) = m∗1(k∗). From the constants αj the solution of
KdV is obtained from (3.46)

u(x, t) = −2∂x

N∑
j=1

αj(x, t).

Plugging the ansatz for m(k) into the residue conditions (3.43) gives the equations

α` =

1−
N∑
j=1

αj
k` + kj

 c`e
θ(iκ`) ⇔ α`e

− 1
2
θ(iκ`)

√
c`

=

1−
N∑
j=1

√
cje

1
2
θ(iκj)

k` + kj

αje
− 1

2
θ(iκj)

√
cj

√c`e 1
2
θ(iκ`)

∀ k = 1, . . . N . Let α̃, c̃ ∈ RN and (α̃)` = α`√
c`
e−

1
2
θ(iκ`), (c̃)k =

√
cke

1
2
θ(iκ`), and

(K)j` =

√
cj
√
c`e

1
2
θ(iκ`)+

1
2
θ(iκj)

k` + kj
.

Then the linear system of equations for αj can be recast in the form

(IN +K) α̃ = c̃, α̃ = (IN +K)−1c̃.

Proposition 3.28. The matrix IN +K is invertible and the N soliton solution takes the form

u(x, t) = −2
∂2

∂x2
ln det (IN +K) . (3.47)

Proof. We follow the same argument as in [?, Proposition B1].
The matrix K is symmetric and (even better) it is positive definite, as it can be seen as an

inner-product type of matrix:

Kkj =

∫ ∞
x

√
cj
√
c`e
−s(k`+kj)e8t(k3`+k3j )ds =

〈
e8tk3`
√
c`e
−sk` ,

√
cje
−skje8tk3j

〉
(3.48)

and the functions fk(s) =
√
cke
−sk` are linearly independent in L2(x+∞) (∀ x), since k` 6= kj by

assumption. Therefore for any verctor v = (v1, . . . , vN ) ∈ RN we have

〈v,Kv〉 =
∑
j,`

Kj`v`vj =
∑
j,`

〈
v`
√
c`e

8tk3` e−sk` , vj
√
cje
−skje8tk3j

〉
= 〈w,w〉 > 0,

where w = (w1, . . . , wN ) and wj = vj
√
cje
−skje8tk3j . We conclude that the matrix K is positive

definite.
1In principle the constants αj should be taken complex, but to simplify the presentation we take them real, as

this fact is derived from solving the linear system obtained from the residue conditions.
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Notice now that

αj =

N∑
`=1

(IN +K)−1
j`

√
cj
√
c`e

1
2
θ(iκ`)+

1
2
θ(iκj), (3.49)

therefore

N∑
k=1

α` = −Tr

(
(IN +K)−1 ∂

∂x
K

)
= − ∂

∂x
ln det (IN +K) (3.50)

where we used the fact that ∂
∂xKk` = −√cj

√
c`e

1
2
θ(iκ`)+

1
2
θ(iκj) and the formula ∂

∂x ln detA =

Tr
(
A−1 ∂

∂xA
)

for a generic matrix-valued function A(x). Therefore, our KdV N -soliton solution
looks like (3.51).

Example 3.29. In the case N = 1 we obtain the 1-soliton solution with spectral data (κ0, c0) in
the form

u(x, t) = −2
∂2

∂x2
ln det

(
1 +

c

2κ0
e−2κ0x+8κ20t

)
. (3.51)

which gives

u(x, t) = −2κ2
0sech2(κ0(x− 4κ2

0t− x0), x0 =
1

2κ0
log

c0

2κ0
.

4 Cauchy Operators

In this section we will show the existence of solution of the Riemann-Hilbert problem 3.27 for all
t ≥ 0. For the purpose we need to introduce the concept of Cauchy operator.

4.1 Cauchy operator

Let Γ be a close contour oriented anticlockwise in C and D+ the interior of Γ and D− is the
complement to D+ and Γ in C. We have the following result, using the Cauchy theorem:

1

2πi

∫
Γ

1

µ− z
dµ =

{
1 , if z ∈ D+

0 if z ∈ D−.

When λ ∈ Γ, the integral is defined as a principal value by the limit

p.v.

∫
Γ

dµ

µ− λ
dµ := lim

ε→0

∫
Γε

dµ

µ− λ
dµ

where Γε := Γ\γε and γε = {µ ∈ Γ | |µ − λ| ≤ ε} for some ε > 0. Performing the integral and
choosing the phase of the logarithmic to be equal to zero on the orthogonal direction with respect
to the contour at the point λ we obtain

lim
ε→0

1

2πi

∫
Γε

dµ

µ− λ
dµ = log(εe

iπ
2 )− log(εe

−iπ
2 ) =

1

2
.
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Next, for a function f(z) defined on Γ we aim to study the Cauchy integral

Φ(z) :=
1

2πi

∫
Γ

f(µ)

µ− z
dµ (4.1)

which is analytic in C\Γ and it has a jump discontinuity across Γ. To study such a jump disconti-
nuity we start by making the assumption that that f(z) is Hölder continuous on Γ, namely

|f(z1)− f(z2)| ≤ c|z1 − z2|α, 0 ≤ α ≤ 1, c > 0.

The function

ψ(z) :=
1

2πi

∫
Γ

f(µ)− f(z)

µ− z
dµ

is clearly continuous across Γ and therefore

lim
z→λ+

ψ(z) = ψ+(λ) = lim
z→λ−

ψ(z) = ψ−(λ) = ψ(λ)

where λ± denote the limit to Γ from the left/right with respect to the oriented contour Γ in non
tangential directions with respect to Γ. On the other hand we have

ψ+(λ) = lim
z→λ+

[
1

2πi

∫
Γ

f(µ)

µ− z
dµ− f(z)

2πi

∫
Γ

1

µ− z
dµ

]
= Φ+(λ)− f(λ)

ψ−(λ) = lim
z→λ−

[
1

2πi

∫
Γ

f(µ)

µ− z
dµ− f(z)

2πi

∫
Γ

1

µ− z
dµ

]
= Φ−(λ)

and for λ ∈ Γ

ψ(λ) =
1

2πi

[
v.p.

∫
Γ

f(µ)

µ− λ
dµ− f(t)

2πi
v.p.

∫
Γ

1

µ− λ
dµ

]
= Φ(λ)− 1

2
f(λ)

Since the function ψ(z) is continuous for z ∈ C it follows that ψ+(λ) = ψ−(λ) = ψ(λ) for λ ∈ Γ
and therefore we have

Φ+(λ)− Φ−(λ) = f(λ), Φ±(λ) = ±1

2
f(λ) + Φ(λ)

or equivalently

Φ±(λ) = ±1

2
f(λ) +

v.p.

2πi

∫
Γ

f(µ)

µ− λ
dµ, λ ∈ Γ

The above relation is called the Plemelj-Sokhotskij formula. The second term of the r.h.s. coincides
with the the Hilbert transform

(Hf)(λ) :=
v.p.

2πi

∫
Γ

f(µ)

λ− µ
dµ

so that we can re-write it

Φ±(λ) = ±1

2
f(λ)− (Hf)(λ), λ ∈ Γ (4.2)
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It can be proved that if f(λ) is Hölder continuous with coefficient 0 < α < 1, then functions Φ±(λ),
λ ∈ Γ, are Holder continuous with the same index α. In general, given a function or a n×n matrix
f defined on Γ, the map f → ±1

2f(λ)− (Hf)(λ) defines the Cauchy integral operators C±

[C±f ] (λ) =
1

2πi

∫
Γ

f(µ)

µ− λ±
dµ, (4.3)

where as before λ± denote the limit to Γ from the left/right with respect to an oriented contour Γ
in non tangential directions with respect to Γ.

The operators C± enjoy several important properties, among which we will use the following:

• If f ∈ Lp(Γ, |dz|,Mat(Cn)), 1 ≤ p <∞, then [C±f ] (λ) exists for λ ∈ Γ almost everywhere.

• Let f ∈ Lp(Γ, |dz|,Mat(Cn)), 1 < p <∞.

Then C± are bounded operators in Lp(Γ, |dz|Mat(Cn)), i.e. there exists such a constant cp
that

‖C±f‖Lp(Γ) ≤ cp‖f‖Lp(Γ) (4.4)

where ‖f‖Lp(Γ) is the norm of the matrix whose entries are |fij |Lp(Γ)

• As operators in Lp(Γ), 1 < p < ∞, the Cauchy operators satisfy the Plemelj-Sokhotskij
formula

C± = ±1

2
Id− 1

2
H,

where Id is the identity operator in Lp(Γ) and H is the Hilbert transform,

[Hf ](λ) =
1

πi
v.p.

∫
Γ

f(µ)

λ− µ
dµ. (3.27)

Note that the map f → Hf is not bounded in L1. The formula (3.26) implies that

C+ − C− = Id, C+ + C− = −H. (3.28)

• One has H2 = Id so that C± are orthogonal projectors, namely

C2
+ = C+, C2

− = C−, C+C− = 0.

The proof of these properties can be found in [1]. We describe an example that is sufficient for our
purposes.

Example 4.1. Let Γ = R and f ∈ L2(R). In this case the Fourier transform f̂(s) =
∫
R f(µ)e−2πiµsdµ

is well defined and we have the Parseval identity.∫
R
|f(µ)|2dµ =

∫
R
|f̂(s)|2ds.
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We show that [C±f ] (λ) ∈ L2(R). This is obtained by using the residue theoerm.

[C+f ] (λ) =
1

2πi
lim
ε→0

∫
Γ

f(µ)

µ− (λ+ iε)
dµ

=
1

2πi
lim
ε→0

∫
R

∫
R

e2πisµf̂(s)ds

µ− (λ+ iε)
dµ

=

∫ +∞

0
e2πiλsf̂(s)ds ∈ L2(R)

(4.5)

and similarly

[C−f ] (λ) =
1

2πi
lim
ε→0

∫
Γ

f(µ)

µ− (λ− iε)
dµ

=
1

2πi
lim
ε→0

∫
R

∫
R

e2πisµf̂(s)ds

µ− (λ− iε)
dµ

= −
∫ 0

−∞
e2πiλsf̂(s)ds ∈ L2(R)

(4.6)

On the other hand the Hilbert transform

[Hf ](λ) =
1

πi
v.p.

∫
R

f(µ)

λ− µ
dµ

is the convolution of f with the kernel K(µ) = 1
πiµ and the Fourier transform

K̂(s) =
1

πi
v.p.

∫ ∞
−∞

e2πisµ

µ
dµ = sign(s)

so that

[Hf ](λ) = −
∫
R

sign(s)e2πiλsf̂(s)ds

that combined with (4.5) and (4.6) gives (3.28).
Furthermore we observe that

H2 = Id

so that the Cauchy operators C± are orthogonal projectors, namely

C2
+ = C+, C2

− = C−, C+C− = C−C+ = 0.

4.2 The Riemann-Hilbert problem as a Fredholm integral equation

In order to show existence of solutions to the Riemann-Hilbert problem (3.27) we need first to write
it for a matrix function by taking the first derivates with respect to x of the Jost functions. Namely
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we define

M(k;x, t) :=




1

a(k)
φ(k;x, t)eikx ψ(k;x, t)e−ikx

1

a(k)
φ′(k;x, t)eikx ψ′(k;x, t)e−ikx

 Im k ≥ 0

 ψ̄(k;x, t)eikx
1

ā(k)
φ̄(k;x, t)e−ikx

ψ̄′(k;x, t)eikx
1

ā(k)
φ̄′(k;x, t)e−ikx

 , Im k ≤ 0.

(4.7)

For simplifying the derivation we also assume that there is no discrete spectrum. Then the matrix
M(k) is analytic in C\R and satisfies the boundary problem

M+(k) = M−(k)v(k), k ∈ R

and

M(x) =

[
1 1
−ik ik

]
+O(k−1), as k →∞.

We define

N(k) :=

[
1 1
−ik ik

]−1

M(k)

then {
N+ = N−v(k) k ∈ R
N

k→∞−−−→ I +O(k−1)
(4.8)

Now the solution of the KdV equation is recovered from

u(x, t) = −2i∂x lim
k→∞

(N11 +N21 − 1)k.

Lemma 4.2. If the solution of the Riemann-Hilbert problem (4.8) exists, it is unique.

Proof. Since det v = 1, we have that (detN)+ = (detN)− so that detN is analytic in C and
detN(k)→ 1 as k →∞. By Liouville theorem detN = 1.

The Riemann Hilbert problem (4.8) can be reduced to an integral equation observing that

N+(k)−N−(k) = N−(k)(v(k)− I)

and using the Cauchy integral we obtain

N(k) = I +
1

2πi

∫
R

N−(s)(v(ks− I)

s− k
ds

In particular the − boundary value gives

N−(k) = I +
1

2πi

∫
R

N−(s)(v(ks− I)

s− k−
ds (4.9)
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Introducing the Cauchy operator

[CvF ](k) := [C−(F (v − I))](k) =
1

2πi

∫
R

F (s) (v(s)− I)

s− k−
ds, (4.10)

the equation (4.9) becomes
[(Id− Cv)N−](k) = I. (4.11)

We have thus associated to the di RH problem (4.8) the operator Id−Cv. The goal is to show that
such operator is invertible. For the purpose we show that such operators is a Fredholm operator
with trivial kernel and co-kernel. A Fredholm operator K : X1 → X2 between two Banach spaces
X1, X2 is a linear bounded operator with finite dimensional kernel and co-kernel. The index of the
operator

indK = dim kerK − dim cokerK.

To show that Id− Cv is Fredholm we follow closely [19].

Lemma 4.3. Id− Cv is Fredholm operator in L2(R).

Proof. In order to prove that such operator is Fredholm we show that the operator Id− Cv has a
compact pseudo-inverse. Let us define the operator

[Cv−1F ](k) := [C−(F (v−1 − I))](k) =
1

2πi

∫
R

F (s)
(
v−1(s)− I

)
s− k−

ds, (4.12)

then we show that Id− Cv−1 is a pseudo-inverse of Id− Cv

(Id− Cv−1)(Id− Cv)F = F − [CvF ]− [Cv−1F ] + [Cv−1 [CvF ]] =
= F − [CvF ]− [Cv−1F ] + [C−([C−F (v − I)])(v−1 − I)] =

= F − [CvF ]− [Cv−1F ] + [C−
(
([C+F (v − I)]− F (v − I)) (v−1 − I)

)
] =

= F − [CvF ]− [Cv−1F ]− [C−F (v − I)(v−1 − I)] + [C−
(
[C+F (v − I)](v−1 − I)]

)
=

= F + [C−
(
[C+F (v − I)](v−1 − I)]

)
=: F + [KF ] = (Id +K)F

(4.13)

It remains to show the compactness of the operator K defined above. Let Fj be a sequence in L2(R)
convergent weakly to zero. We have to show that

‖[KFj ]‖L2(R)
j→+∞−−−−→ 0. (4.14)

This is easily obtained by applying (4.4) where the L2 norm is now the matrix norm. In the same
way it can be checked that (Id − Cv)(Id − C−1

v ) is compact. It follows that Id − Cv is Fredholm
operator.

Lemma 4.4. The Fredholm operator Id− Cv has zero index.

Proof. Let us consdier the family of operators

Id− C(t)
v t ∈ [0, 1] (4.15)

where C
(t)
v is defined:

[C(t)
v F ] := C+[F (v − I)t] (4.16)
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There is a continuous map O : [0, 1] → B(L2(R), L2(R)). Furthermore, from the previous lemma

the operator Id − C(t)
v is Fredholm for every t ∈ [0, 1]. In particular C

(1)
v = Cv e C

(0)
v = 0. Using

the continuity property of the index of an operator and the continuity of the map O we obtain

ind[Id− Cv] = ind[Id] = 0, (4.17)

which gives the result.

We conclude that the operator associated to the problem (4.8) is a Fredholm operator with zero
index. Next we want to show that the kernel is only the zero element. For the purpose we consider
the same Riemann- Hilbert problem (4.8) with vanishing conditions at infinity, namely{

N+ = N−V (k) k ∈ R
N

k→∞−−−→ O(k−1)
(4.18)

Theorem 4.5. The RH problem (4.18) has only the trivial solution.

Proof. Let us define
H(k) := N(k)N̄ t(k̄). (4.19)

Then clearly H̄t(k̄) = H(k). Further we observe that H(k) is analytic for Im k > 0 and

H(k) = O(k−2) for k →∞ (4.20)

It follows by Cauchy theorem that ∫
R
H+(s)ds = 0. (4.21)

Hence

0 =

∫
R
N+(s)N̄ t

−(s)ds =

∫
R
N−(s)V (s)N̄ t

−(s)ds =
1

2

∫
R
N−(s)

(
V (s) + V̄ t(s)

)
N̄ t
−(s)ds (4.22)

Since

V (s) + V̄ t(s) = 2

(
1− |r(s)|2 0

0 1

)
is positive definite N−(k) mus be identically zero. In the same one can show that N+(k) ≡ 0, and
it follows that N(k) ≡ 0.

Lemma 4.6 (Vanishing lemma). The RH problem (4.8), admits a solution if and only if the solution
to the homogenoeus RH (4.18) has only the trivial solution.

Proof. The RH (4.18) is equivalent to the integral equation

[(Id− Cv)N−](k) = 0 (4.23)

We proof only ⇐. By theorem 4.5, the only solution of (4.23) is the zero solution. It follows from
lemma 4.3 and 4.4 that Id − Cv is a Ferdholm operator with zero index and trivial kernel, and
therefore it is invertible. This guarantees the solvability of the RH problem (4.8).
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5 Fredholm Determinant

We start with the definition of a standard determinant, first in the conventional form and then in
Fredholm’s form which is specially adapted to the passage of the limit d → ∞. Let K be d × d
matrix with values in C and consider det(I − λK) that is different from zero for |λ| < |K|−1 and
λ ∈ C,

det(I − λK) =
∑
π∈Sd

sign(π)
d∏
i=1

(
Iiπ(i) − λKiπ(i)

)
where Sd is the permutation group of d elements and sign(π) is the sign of the permutation. We
can expand in λ the above product and by denoting with Ip = (i1 < i2 < · · · < ip), i1 < i2 < . . . , ip,
a subsets of the d integers (1, 2, . . . , d) and Jp its complement we obtain

det(I − λK) =

d∑
p=1

(−λ)p
∑
Ip

∑
π fixing Jp

χ(π)
∏
i∈Ip

Kiπ(i) =

d∑
p=1

(−λ)p
∑
Ip

det [Kij ]i,j∈Ip

= 1− λ
∑

1≤i≤d
Kij + λ2

∑
1≤i<j≤d

det

[
Kii Kij

Kji Kjj

]
− λ3

∑
1≤i<j<k≤d

det

Kii Kij Kik

Kji Kjj Kjk

Kki Kkj Kkk

+ . . .

The above expression can be slightly changed if we allowed an unordered set of indices in the sum,
namely

det(I − λK) =
d∑
p=1

(−λ)p

p!

∑
|Îp|=p

det [Kij ]i,j∈Îp

= 1− λ
∑

1≤i≤d
Kij +

λ2

2!

∑
1≤i≤j≤d

det

[
Kii Kij

Kji Kjj

]
− λ3

3!

∑
1≤i≤j≤k≤d

det

Kii Kij Kik

Kji Kjj Kjk

Kki Kkj Kkk

+ . . .+

where now Îp is an unordered set of distinct p integers in the set {1, 2, . . . d}. The goal is to give a
sense to the limit d→∞ of the above series that takes the name of Fredholm series.
Properties of determinants.
Below we summarise the properties of determinants that will be useful to us.

• Let k1, . . .kd be the rows or columns of the matrix K. Then

det(K) = signed volume of the parallelepiped spanned by the vectors k1, . . .kd

• The following relation is satisfied:

log det(I − λK) = Tr log(I − λK) . (5.1)

To prove the identity we consider first the matrix B defined as I − λK = eB. Then the
following identities are satisfied:

det eB = det
(
e
B
N . . . e

B
N

)
=
(

det e
B
N

)N
= lim

N→∞

(
det e

B
N

)N
= lim

N→∞

(
det(1 +

B

N
+O(N−2))

)N
= lim

N→∞

(
1 +

TrB

N
+O(N−2)

)N
= eTrB .

Taking the log of both sides one obtains the statement.
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• Let A be a m ×m matrix, D a n × n matrix, B a m × n matrix and C a n ×m matrix. If
detA 6= 0 and detB 6= 0 we have

det

[
A B
C D

]
= det(D) det(A−BD−1C) = detAdet(D − CA−1B) .

To prove the statement we first factor the determinant of A:

det

[
A B
C D

]
= det(A) det

[
A B
C D

]
det

[
A−1 −A−1B

0 In

]
where we assume that detA 6= 0. Taking the product of matrices we obtain

det

[
A B
C D

]
= det(A) det

[
Im 0

CA−1 −CA−1B +D

]
= detAdet(D − CA−1B)

and similarly if detD 6= 0 one obtains

det

[
A B
C D

]
= det(D) det(A−BD−1C) .

When A = Im and D = In we have the equality

det(Im −BC) = det(In − CB) (5.2)

• Derivative of a determinant. Let us supposed that the matrix K depends on a parameter x,
then

∂

∂x
log det(I − λK) = −λTr

(
(I − λK)−1 ∂

∂x
K

)
. (5.3)

• Matrix inverse of a n× n invertible matrix A:

(A)−1 =
adjA

det(A)
=

((−1)i+jMji)
n
i,j=1

det(A)
(5.4)

where adj stands for adjugate matrix and where Mij is the ij minor of A, namely is the
determinant of the matrix obtained from A by delating the i− th row j − th column.

5.1 Extension of the notion of determinant to operators

Let us consider a smooth function K : [0, 1] × [0, 1] → R and for φ ∈ C1([0, 1],R) let us consider
the integral operator

(Kφ)(y) =

∫ 1

0
K(y, w)φ(w)dw

The Fredholm integral equation is defined as

φ(y)− λ
∫ 1

0
K(y, w)φ(w)dw = f(y), (5.5)

or
(I − λK)φ = f
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where I is the identity operator. If the operator (I−λK) is invertible the solution of the Fredholm
integral equation is given by

φ = (I − λK)−1f

As in the finite dimensional case (5.4) the inverse of the integral operator can be build from the
ratio between its determinant called Fredholm determinant and another quantity, that takes the
role of the adjugate matrix. The goal of the section is to define the Fredholm determinant of the
operator I − λK and then construct the inverse of this operator.

We first start by discretising the function φ(y), 0 ≤ y ≤ 1, by the d-dimensional vector
φ(k/d), 1 ≤ k ≤ d and similarly the integral operator K becomes the d× d matrix

[K(i/d, j/d)/d]1≤i,j≤d

so that the integral ∫ 1

0
K(x, y)φ(y)dy

is approximated by
d∑
j=1

K

(
i

d
,
j

d

)
1

d
φ

(
j

d

)
The Fredholm’s series for the determinant of [I +K(i/d, j/d)/d]1≤i,j≤d is

1 +
d∑
p=1

λp

p!

∑
|Ip|=p

det

[
K

(
i

d
,
j

d

)
1

d

]
i,j∈Ip

, (5.6)

where Ip an unordered set of distinct p integers in the set {1, 2, . . . d}.

Lemma 5.1. The series (5.6) converges in the limit d→∞ for all λ ∈ C.

Proof. A finite-dimensional determinant is the signed volume of the parallelepiped spanned by the
rows/columns of the matrix in hand so setting m = max{|K(x, y)| : 0 ≤ x, y ≤ 1} we have

det

[
K

(
i

d
,
j

d

)
1

d

]
i,j∈Ip

≤
∏
i∈k

√√√√∑
j∈Ip

∣∣∣∣K ( id , jd
)∣∣∣∣2 × d−2 ≤ pp/2

(m
d

)p
and

1

p!

∑
|Ip|=p

det

[
K

(
i

d
,
j

d

)
1

d

]
i,j∈Ip

is dominated by

1

p!
d(d− 1) . . . (d− p+ 1)pp/2

(m
d

)p
.

pp/2mp

pp+
1
2 e−p
√

2π
by Stirling’s approximation

< (me)pp−p/2
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independently of d. we conclude that∣∣∣∣∣∣
d∑
p=1

λp

p!

∑
|Ip|=p

det

[
K

(
i

d
,
j

d

)
1

d

]
i,j∈Ip

∣∣∣∣∣∣ ≤
d∑
p=1

(λme)pp−p/2

and in the limit d→∞ it has radius of convergence R equal to

1

R
= lim

p→∞

(
me)pp−p/2

) 1
p

= 0,

that shows that the radius of convergence is infinity.

The Fredholm determinant of the operator K is defined as

det(I − λK) = 1 +
∞∑
p=1

(−λ)p

p!

∫ 1

0
. . .

∫ 1

0
det [K (xi, xj)]1≤i,j≤p dx

p (5.7)

and it is an entire function of λ. The second term of the above series coincides with the trace of
the operator K, namely

TrK =

∫ 1

0
K(x, x)dx . (5.8)

5.2 Construction of the resolvent

The goal is to solve the Fredholm integral equation

φ(y)− λ
∫

Γ
K(y, w)φ(w)dw = f(y), (5.9)

where Γ is in general some interval of the real line. If the modulus of λ is small enough one can
consider the so called Neumann series

φ(y) = f(y) + λψ1(y) + λ2ψ2(y) + . . . (5.10)

where

ψ1(y) =

∫
Γ
K(y, w)f(w)dw

ψ2(y) =

∫
Γ
K(y, w)ψ1(w)dw =

∫
Γ
K2(y, w)f(w)dw

ψ3(y) =

∫
Γ
K(y, w)ψ2(w)dw =

∫
Γ
K3(y, w)f(w)dw

. . . . . .

and

K2(y, w) =

∫
Γ
K(y, s1)K(s1, w)ds1

K3(y, w) =

∫
Γ

∫
Γ
K(y, s1)K(s1, s2)K(s2, w)ds1ds2

. . . . . .

Kn(y, w) =

∫
Γ
Kj(y, s1)Kn−j(s1, w)ds1,

(5.11)
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with j any value from 1, . . . , n− 1 and K1 = K. If we expand formally the inverse

(I − λK)−1 = I + λK + λ2K ◦ K + λ3K ◦ K ◦ K + . . .

we see that the corresponding kernel of the opertator K+λK◦K+λ2K◦K◦K+ . . . takes the form

K + λK2 + λ2K3 + . . . (5.12)

where Kj are the kernels of the Neumann series (5.11). Introducing the L2 norm of the kernel K
as

||K||2 =

∫
Γ

∫
Γ
K2(y, w)dydw < m2

for some constant m, it is quite straightforward to check that the series (5.12) converges for |λ| <
||K||−1. The series (5.12) is exactly the kernel R(y, w;λ) of the resolvent operator R defined as

(I + λR)(I − λK) = (I − λK)(I + λR) = I. (5.13)

At the same time, using the above equation we can see that the resolvent satisfies

R−K − λR ◦ K = R−K − λK ◦ R = 0

that implies that the kernel R satisfies the integral equation

R(y, w;λ)−K(y, w)− λ
∫

Γ
R(y, s;λ)K(s, w)ds = 0 (5.14)

or

R(y, w;λ)−K(y, w)− λ
∫

Γ
K(y, s)R(s, w;λ)ds = 0 (5.15)

The goal is to show that the resolvent kernel R(y, w;λ) has an expansion in ratio of determinants
of the form

R(y, w;λ) =
1

det(I − λK)

∞∑
p=0

Cp(y, w;λ)
(−λ)p

p!

where the coefficients Cp are obtained recursively from the above integral equations (5.14)-(5.15).
Plugging the abose ansatz into (5.14)-(5.15) gives

∞∑
p=0

Cp(y, w;λ)
(−λ)p

p!
− det(I − λK)K(y, w) =

{
λ
∫

Γ dsK(y, s)
∑∞

p=0Cp(s, w;λ) (−λ)p

p!

λ
∫

Γ dsK(s, w)
∑∞

p=0Cp(y, s;λ) (−λ)p

p!

or (assuming it is possible to exchange the sum with the integral)

Cp(y, w)−DpK(y, w) =

{
−p
∫

Γ dsK(y, s)Cp−1(s, w;λ)
−p
∫

Γ dsK(s, w)Cp−1(y, s;λ)
p = 1, 2, . . . (5.16)

where

Dp =

∫ 1

0
. . .

∫ 1

0
det [K (xi, xj)]1≤i,j≤p dx

p,
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and C0(y, w) = K(y, w). We make an ansatz for Cp(y, w) by defining

C∗p(y, w) =

∫
Γ

∫
Γ

· · ·
∫
Γ

K

(
y, s1, s2, . . . , sp
w, s1, s2, . . . , sp

)
ds1ds2, . . . dsp

where

K

(
s0, s1, s2, . . . , sp
y0, y1, y2, . . . , yp

)
= detK(si, yj)

p
i,j=0 (5.17)

Expanding the determinant along the first row we obtain

C∗p(y, w) =

∫
Γ

∫
Γ

· · ·
∫
Γ

K(y, w)K

(
s1, s2, . . . , sp
s1, s2, . . . , sp

)
ds1ds2, . . . dsp

+

∫
Γ

∫
Γ

· · ·
∫
Γ

p∑
j=1

(−1)jK(y, sj)K

(
s1, s2, . . . , sj . . . sp
w, s2, . . . , ŝj . . . sp

)
ds1ds2, . . . dsj . . . dsp

= K(y, w)Dp −
∫
Γ

∫
Γ

· · ·
∫
Γ

p∑
j=1

K(y, sj)K

(
sj , s1, . . . , ŝj . . . sp
w, s2, . . . , ŝj . . . sp

)
ds1ds2, . . . dsj . . . dsp

= K(y, w)Dp −
p∑
j=1

∫
Γ
K(y, sj)C

∗
p−1(sj , w)dsj

where ŝj means that the variable has been dropped. Since this last integral does not depends on
sj we can rewrite it in the form

C∗p(y, w) = K(y, w)Dp − p
∫

Γ
K(y, s)C∗p−1(s, w)ds (5.18)

and C∗0 (y, w) = K(y, w). In a similar way expanding C∗p(y, w) along the first column we obtain

C∗p(y, w) = K(y, w)Dp − p
∫

Γ
C∗p−1(y, s)K(s, w)ds, (5.19)

Comparing (5.16) with (5.18) and (5.19) we obtain C∗p(y, w) = Cp(y, w) and we have the elegant
power expansion of the resolvent

Theorem 5.2. The resolvent kernel R(y, w;λ) of the operator I − λK takes the form

R(y, w;λ) =
1

det(1− λK)

∞∑
p=0

(−λ)p

p!

∫
Γ

∫
Γ

· · ·
∫
Γ

K

(
y, s1, s2, . . . , sp
w, s1, s2, . . . , sp

)
ds1ds2, . . . dsp (5.20)

where K

(
y, s1, s2, . . . , sp
w, s1, s2, . . . , sp

)
is defined in (5.17). The kernel R(y, w;λ) is a meromorphic

function of λ ∈ C.

Proof. The only point that remains to be proved is the fact that R(y, w;λ) is a meromorphic
function of λ. This can be achieved recalling that det(1 − λK) is an entire function of λ by
Lemma 5.1 and showing (along the same lines of the proof of Lemma 5.1 ) that the infinite sum in
(5.20) is convergent for all λ in C.
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Now we consider a very specific case of integral equation called Gelfand-Levitan-Marchenko
equation that is derived in the context of inverse scattering (see below). It is an equation of the
form

G(x, y) + F (x+ y) +

∫ +∞

x
G(x, z)F (z + y)dz = 0 (5.21)

where the function F and G have some suitable decay at infinity. We introduce the integral operator
of Hankel type F : L2(x,∞)→ L2(x,∞)

Ff(y) =

∫ ∞
x

F (y + z)f(z)dz (5.22)

and we set φ(y;x) = G(x, y) so that the Gelfand-Levitan-Marchenko equation takes the form

φ(y;x) + F (x+ y) + (Fφ)(y) = 0 (5.23)

or
φ = −(I + F)−1F = −(I +R)F.

Using the resolvent kernel R(y, z;x) of the operator F we have

G(y;x) = φ(y;x, t) = −F (x+ y; t) +

∫ ∞
x

R(y, z;x)F (z + x)dz. (5.24)

Further introducing the Fredholm determinant det(I + F) we have the following lemma.

Lemma 5.3. Let F be the integral operator (5.22). Then the solution G(x, x) of the Gelfand-
Levitan-Marchenko equation (5.21) on the diagonal x = y is given by

G(x, x) =
∂

∂x
log det(I + F). (5.25)

Proof. We use the property (5.3) so that

∂

∂x
log det(I + F) = Tr((I + F)−1Fx) = Tr((I −R)Fx)

and we observe from the definition (5.22) that

∂

∂x
(Ff(y)) = −F (y + x; t)f(x)

namely the operator Fx is a multiplication operator. Further Tr(Fx) = −F (2x) and

−Tr(RFx) =

∫ ∞
x

R(x, z)F (z + x)dz

so that one obtains

∂

∂x
log det det(I + F) = −F (2x) +

∫ ∞
x

R(x, z;x)F (z + x)dz (5.26)

that coincides with (5.24) when y = x.

In the next section we show how to relate the derivative of the above Fredholm determinant to
the solution of the KdV equation.
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5.3 τ-function of the solution of KdV as Fredholm determinant

The concept of τ -function in integrable systems has been introduced by Jimbo-Miwa-Ueno in the
context of isomonodromic deformation equations. At the same time, Hirota [10] introduced a new
formulation of KdV and in general of integrable systems. He introduced the following operator

Dm
x D

n
t f · g = (∂x − ∂x′)m(∂t − ∂t′)nf(x, t)g(x′t′)|x=x′,t=t′ (5.27)

Then by straighforward algebra it is immediate to check that if τ(x, t) is a nowhere vanishing
function satisfying

(DxDt +D4
t )τ · τ = 0 (5.28)

then w = τx
τ solves the equation

wt + 6w2
x + wxxx = 0 (5.29)

and u(x, t) = −2∂2
x log(τ(x, t)) solves the KdV equation. The goal of this section is to show that

the τ function of the KdV solution for initial data vanishing at infinity is a Fredholm determinant.
This goal was first achieved by Dyson [2] for the specific case of data vanishing at infinity. Later
Poppe [17] introduced a more general class of initial data.

Theorem 5.4. Let F be a solution of the linearized KdV equation

Ft + 8Fxxx = 0 (3.8)

decaying sufficiently fast for |x| → ∞ such that F and its derivatives up to order 4 in x and order
2 in t are are decreasing sufficiently fast.

Let F be the integral operator

Ff(y) =

∫ ∞
x

F (y + z; t)f(z)dz (5.30)

Then
τ(x, t) = det (1 + F)

is a tau-function for the KdV equation, namely

u(x, t) := −2
∂2

∂x2
log det (1 + F) (3.10)

is a solution of the KdV equation.

The proof of this theorem was obtained in [17] by making x and t derivative of the Fredholm
determinant. We follow Dyson’s work that obtained the formula by solving the Gelfand-Levitan
Marchenko integral equation (5.21) where the function F is related to the scattering data by

F (x; t) :=
1

2π

∫ +∞

−∞
r(k)eikx+8ik3tdk +

n∑
s=1

bse
−ksx+8k3st

ia′ (iks)

and we assume that r satisfies the assumption of Lemma 3.22. Now let us recall the definition of
Jost solutions

φ(x, k)→ e−ikx, φ(x, k)→ eikx, x→ −∞ (5.31)
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and
ψ(x, k)→ eikx, ψ(x, k)→ e−ikx, x→ +∞ (5.32)

where φ(x, k) and ψ(x, k) are analytic in the upper half plane and φ and ψ are analytic in the
lower half plane. The following general statement from the theory of Fourier integrals is useful for
establishing the triangularity.

Lemma 5.5. If f(k) is analytic in the lower half plane and behaves like O
(

1
k

)
for |k| → +∞, then

the Fourier transform

f̂(x) =
1

2π

∫ +∞

−∞
f(k)eikxdk

is zero for x < 0, and viceversa.

Proof. The shift k 7→ k − ia with a > 0 changes the exponential from eikx to eikx+ax. Such a shift
does not change the integral. Therefore the modulus |f̂(x)| for negative x admits an upper estimate
as small as we want.

The Jost solution ψ admits an analytic continuation into the upper half plane Im k > 0.

p(x, k) := ψ(x, k)e−ikx

an asymptotic expansion of the form

p(x, k) ∼ 1 +O

(
1

k

)
, |k| → ∞, Im k > 0

Denote by

A(x, y) :=
1

2π

∫ +∞

−∞
e−iky (p(x, k)− 1) dk

the Fourier transform of p(x, k)− 1 with respect to k. Due to Lemma 5.5

A(x, y) = 0 for y < 0

Now taking the inverse transform we get

p(x, k) = 1 +

∫ +∞

0
A(x, y)eikxdy

where the integral starts from 0 thanks to the lemma. Finally,

ψ(x, k) = eikx +

∫ +∞

0
A(x, y)eik(x+y)dy =

= eikx +

∫ +∞

x
A(x, ỹ − x)eikỹdỹ

changing variable (ỹ := y + x). Denoting G(x, y) := A(x, y − x), we get

ψ(x, k) = eikx +

∫ +∞

x
G(x, y)eikydy, (5.33)

where G(x, y) = 0 for y < x.
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Theorem 5.6. The function G(x, y) satisfies the Gelfand-Levitan-Marchenko equation (5.21). The
solution of the KdV equation is recovered from the relation

u(x, t) = −2∂xG(x, x) = −2
∂2

∂x2
log det(I + F). (5.34)

Proof. The second relation in (5.34) follows from Lemma 5.3. We first derive the Gelfand-Levitan-
Marchenko equation for the kernel G(x, y) and then we prove the first identity in (5.34).

From φ(x, k) = a(k)ψ̄(x, k) + b(k)ψ(x, k), muliplying by eiky

a(k) and integrating with respect to k,
we obtain ∫ +∞

−∞

φ(x, k)

a(k)
eikydk =

∫ +∞

−∞

(
ψ̄(x, k) + r(k)ψ(x, k)

)
eikydk

Since these integrals will be not well defined, we need to subtract something:∫ +∞

−∞

(
φ(x, k)

a(k)
− e−ikx

)
eikydk =

∫ +∞

−∞

(
ψ̄(x, k)− e−ikx + r(k)ψ(x, k)

)
eikydk (5.35)

We perform the first integral, using contour deformation and Cauchy theorem and the fact that(
φ(x, k)

a(k)
− e−ikx

)
is O

(
e−ikx

k

)
when Im k > 0 and we obtain when y − x > 0

∫ +∞

−∞

(
φ(x, k)

a(k)
− eikx

)
eikydk = 2πi

N∑
j=1

φ(x, iκj)

a′(iκj)
e−κjy = 2πi

N∑
j=1

βjψ(x, iκj)

a′(iκj)
e−κjy

= 2πi

N∑
j=1

βj(e
−κjx +

∫ +∞
x G(x, s)e−κjsds)

a′(eκj)
e−κjy

(5.36)

where the constants βj have been defined in (3.25) and in the last relation we used (5.33). The
second integral ∫ +∞

−∞

(
ψ̄(x, k)− e−ikx

)
eikydk = 0

using contour deformation and Cauchy theorem. The third integral gives∫ +∞

−∞
r(k)ψ(x, k)eikydk =

∫ +∞

−∞
r(k)eik(y+x)dk +

∫ +∞

−∞
dkeiky

∫ +∞

x
G(x, s)eiksds. (5.37)

Substituting (5.36), (5.37) into (5.35) one obtains the Gelfand-Levitan-Marchenko equation (5.21).
To show that the solution of KdV is recovered from the kernel G(x, y) it is enough to observe that
from the integral equation (3.37) for p(x, k) we have

p(x, k) = 1− 1

2ik

∫ +∞

x
dξu(ξ) +O(k−2), (5.38)
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while from (5.33) we have

p(x, k) = 1 +

∫ +∞

x
G(x, y)eik(y−x)dy = 1− 1

ik
G(x, x)− 1

ik

∫ +∞

x
∂yG(x, y)eik(y−x)dy

where we assume that G(x, y) is differentiable in y. Comparing the above two relation one obtains

G(x, x) =
1

2

∫ +∞

x
dξu(ξ)

which is equivalent to (5.34).

The proof of Theorem 5.4 follows from the proof of Theorem 5.6.
We have thus shown that the inverse spectral problem is reduced to a linear Fredholm integral

equation with Hankel type kernel. The solution of this integral equation is obtained via Fredholm
determinant. This is a very general feature in the theory of integral systems. The nonlinear
problem is linearized in the scattering variables, the solution of the inverse problem is obtained
via Fredholm determinant in the infinite-dimensional setting, or via the usual determinant in the
finite-dimensional setting.
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