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Chapter 1

Riemann surfaces

1.1 Definition of Riemann surface and basic examples

1.1.1 Complex manifolds. First examples of Riemann surfaces

Bernhard Riemann (1826-1866) introduced the concept of Riemann surface to make sense of multivalued
functions like the square root or the logarithm. For the geometric representation of multi-valued functions of
a complex variable w = w(z) it is not convenient to regard z as a point of the complex plane. For example,
take w = 4/z. On the positive real semiaxis z € R, z > 0 the two branches w; = + /z and w, = — /z of this
function are well defined by the condition w; > 0. This is no longer possible on the complex plane. Indeed,
the two values w,» of the square root of z = rett

. p+2m

wy = VreS, w, = —Jres = T, 1.1.1)

interchange when passing along a path
z(t) = re'W*,  te|0,2n]

encircling the point z = 0. It is possible to select a branch of the square root as a function of z by restricting
the domain of this function for example, by making a cut along the negative real semi-axis. The two functions
wi(z) and w,(z) defined as in (1.1.1) with —t < ¢ < 7 are single-valued on the cut plane C\(—o0, 0]. Riemann’s
idea was to combine the two branches of the function +/z to a single-valued fuction well-defined on a suitable
geometric object S. To do this observe that wq(z) — i+/r and w»(z) — —i+/r for z — —r from above the cut
(—0,0]. In a similar way w;(z) — —i+/r and wy(z) — i4/7 for z — —r from below the cut (—o0,0]. So, the rules
to construct the space S are as follows: one has to take two copies of the complex plane cut along the negative
real semi-axis and join the two copies of the complex plane along the cuts glueing the upper side of the cut on
one copy with the lower side of the cut on another one. In other words the two sheets have to be glued together
in such a way that the branch of the function +/z on one sheet joins continuously with the branch defined on
the other sheet. The result of this operation is a complex manifold S of complex dimension one (see below for
the precise definition). It can also be treated as a smooth real manifold of dimension two, that is, a surface. The
surface shown on figure 1.1 is the imaginary part of /z.

5
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Figure 1.1: The imaginary part of the function /z

A similar procedure of cutting and glueing can be repeated for other multivalued analytic functions. For
example the logarithm log z is a single valued function on C\[0, +) with infinite number of branches. Each
adjacent branch differs by an additive term 2mi. The infinite set of branches attached along the positive real
line is shown on the figure 1.2.

Figure 1.2: The Riemann surface of the function log z

In the theory of Riemann surfaces the techniques of working with complex manifolds or with complex
algebraic curves both played an important role.

Before doing this we remind that a complex function f : G — C where G is a domain in C, can be written
in the form f(z) = u(x, y) + iv(x, y), with z = x + iy, x, y € R and u(x, y) and v(x, y) real functions of (x, y). The
function f(z) is holomorphic in G if # and v are real differentiable in G and their derivatives satisfy the Cauchy
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Riemann equations
Uy =0y, uy,=-0, forzeG.

Alternatively introducing the operators 0/0z and 0/0z defined by

o 1,0 .0 o 1,0 .0
E=§<%—l@>, £—§(a+la—y>, (1.1.2)
the Cauchy Riemann equations can be written in the form
2f =0, forzeG
oz ’

We also recall that a holomorphic function f : G — C can be expanded in convergent power series. For this
reason it is often called analyic function.
We now introduce some basic properties of complex manifolds.

Definition 1.1.1. A complex manifold of complex dimension n is a second-countable Hausdorff ' topological space M
with a collection of charts {(Uy, Pa) }aea where U, < M is an open subset in M and ¢, : U, — C" such that

1. The sets U, are a covering of M

JUe=M (1.1.3)
aeA

2. ¢a(Uy) is open in C" and ¢o : Uy — ¢o(Uy) is a homeomorphism_onto an open subset in C".
3. IfUyp := Uy n Ug # I then both ¢o (U, ) and pg(U,p) are open sets in C" and

Gap = Ppody ' : Pa(Uap) = Pp(Uap) (1.1.4)
are holomorphic maps,
Gap(zi, v zn) = (W1(2),...,wa(2)) € Pp(Upp) < C", z=(21,...,21) € Pa(Uap) < C"

5w,-
(’)z]-

=0, ,j=1,...,n

The collection of charts is called an atlas for the manifold M. The image ¢po(P) = (z1(P),...,z.(P)) € C" of a point
P € U, defines local coordinates z1(P), ..., z,(P) of the point. The maps G, are called transition functions.

Note that the transition functions G, g are invertible and the inverse maps G;; = Gg,q are holomorphic.

Given two atlases {(Ua, Pa)}aca and {(Vg, ) }pes on M, we say that they are equivalent if their union is
still an atlas. An equivalence class of atlas defines a complex analytic structure on M.

The space C" is the simplest example of an n-dimensional complex manifold. One can also take an arbitrary
open subset M < C". In these cases it suffices to use atlases consisting just of one chart. Let us consider a less
trivial example.

Recall that a Hausdorff topological space is a topological space such that for any pair of distinct points there exist non-intersecting
open neighbourhoods. A topogical space X is second-countable if there there exists a countable family (V;);en such that any open subset
in X can be represented as a union | J,¢; V; for some I < IN.
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Example 1.1.2. Points of the complex n-dimensional projective space IP" are defined as equivalence classes of
(n + 1)-dimensional non-zero complex vectors € C"*1\0

(Z(),Zl,...,zn)NA(Zo,Zl,...,Z,,), 0+xAeC.

The equivalence class of vectors (Zy, Z1,...,Z,) is denoted by (Zy : Z; : - - - : Z,,). The complex numbers Z, are
called homogeneous cordinates of the point.

.....

Uy = {(ZOrZI/--~/Zn) € Cn+1 |Za * 0}

Zo Zn  Za 2,
Zo,Z1,..., 7)) = | 22,22, 22 . =
Pa(Zo, 21 ) (za Zd " Zy " Za

where the hat means that the corresponding term is omitted.
Let us consider the particular cases n = 1 and n = 2. On P! we have two charts Uy and U; with the local

coordinates 7 7
(PO(ZO/Zl) = 21 =Z on UQ, (;[)1(20,Z1) = 20 =w on Ul.
Zo 71

On the intersection Uy n U; we have z # 0, w # 0 and the transition functions are
w==- or z=—.
z w

The map ¢, establishes a one-to-one correspondence between Uj and the complex plane C. The complement
P"\Uj consists just of one point (0 : 1). It can be considered as the point at infinity in the complex plane.
Indeed, if a point P € Uy goes to (0 : 1) then z(P) — co. Thus

P! = Cu {0}

That means that topologically P! is a two-dimensional sphere. For this reason the manifold IP! is often called

Riemann sphere. Another name for P! is extended complex plane denoted by C.
In a similar way for IP? the chart Uy is identified with C? and

PA\Up = {(0,Z1,Z2) #0, | (0,Z1,Z2) ~ A(0,Z1,Z2) [0 # AeC} =P

Therefore
P? = C? U PL

Exercise 1.1.3: Consider the (21 + 1)-dimensional unit sphere $***! defined in the space C"! = R***2 by the
equation
Zol* +|Z1* + | Za =X+ YV X+ Y+ X2+ YR =1

where Z; = Xi + 1 Y. The group S' = {A € C | |A| = 1} acts on $*"*! by multiplication
(Zo,Z1, s Z0) ~ AZo, 70, ) Zn) -

Prove that the quotient manifold $*'+1/S! carries a natural structure of a complex manifold of complex dimen-
sion n. Prove that this manifold can be identified with IP”. As a corollary derive that the projective space IP" is
compact for any 7.
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Exercise 1.1.4: Prove that P! is diffeomorphic to the standard unit sphere S? in R®

P+ =1

To define a real Cf-smooth n-dimensional manifold, one has to replace C"* with R" and the transition
functions are Cf-smooth in their respective variables. An equivalence class of atlases defines a Cf-smooth
structure on the manifold. When k = oo the manifold is simply called smooth manifold or C*-smooth
manifold.

A complex n-dimensional manifold is also a real C*-smooth’ manifold of dimension 2n. A natural choice
of local coordinates on the real manifold is given by the real and imaginary parts of the complex coordinates

x;=Rez, yi=Imz, i=1,...,n

The transition function
z=1(z1,.-.,2y) — (W1(2), ..., wy(2))

is a holomorphic change of coordinates. In the new chart define the real coordinates
U =Rew;, vi=Imw;, i=1,...,n

Further the following identity between real and complex Jacobians holds true

au,-/axj ﬁu,’/a]/]' . 4 4 2
det< Coox coley) —‘det(awl/az])‘. (11.5)

We leave the proof of this identity as an exercise for the reader.
A real smooth manifold M is orientable if there exists an atlas such that all the transition maps G(x1, ..., x,) =
2G;(x)

8xk

(G1(x), ..., Gu(x)) have positive Jacobian determinant det < > > 0. A choice of such an atlas is called an

orientation on M.
From the relation (1.1.5) it follows that a complex manifold is always orientable.

We will be concerned with manifolds of complex dimension 1.
Definition 1.1.5. A Riemann surface S is a connected’ one-dimensional complex manifold.

As it was explained above S is also a two-dimensional smooth orientable manifold.
Let {(Ua, ¢a)}aca define a complex structure on S and suppose that P € U, n Uz # J. Hence the local
charts
z=¢a(P), w=y(P)
will be complex-valued functions.
The transition function ¢ o ;" : z > w = w(z) is bi-holomorphic, namely, holomorphic with holomorphic
inverse z = z(w)
ow 0z

— =0, =0,
0z

%

2It is even a real analytic manifold.
3In this book we use the word ‘connected’ for path-connected topological spaces. For manifolds these two notions are equivalent, see
eg. [?].
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where the operators J/0w and /0w are defined in a similar way as in (1.1.2). So, in a small neighbourhood of
any point Py € U, n Up with zg = ¢4 (Po) and wy = ¢g(Po) we have the power series expansion

w(z) = wy + 2 ax(z — zo)k, m +0,
k>0

and
z(w) = zp + Z be(w — wo)k, by #0.
k>0

Example 1.1.6. Elementary examples of Riemann surfaces

(@) The simplest examples of Riemann surfaces are those defined by one single chart. Any connected open
subset of the complex plane is clearly a Riemann surface. Other interesting examples include the complex
plane C, the unit disk ID = {z € C | |z| < 1} and the upper half space H = {z € C | Imz > 0}.

(b) The projective space IP!, the Riemann sphere or extended complex plane € = C U o and the sphere
S? = {(x,y,t) € R®| x* + y* + t* = 1} are Riemann surfaces. In this case the atlas consists of two charts.
For the sphere S? the two charts are

xX+1i
Uy = $\0,0,1), dalxyt) = T (1.1.6)
xX—1i 1-—t
U = $\0,0,-1), ol yt) = T = e (117)
(1.1.8)

On the intersection U; n Uz ~ C\{0} we have ¢ o ¢, Yz) = 1 where z = ¢1(x,y,t). It is let as an exercise
to show that C and P! are Riemann surfaces.

Example 1.1.7. Riemann surface of /z.
Consider the complex algebraic curve

C={(z,w) e C*|w* —z=0}.

A chart in a neighbourhood of a point (zp, wg) € C with zg # 0 is defined on the domain U = {(z,w = /z) €
C | |z — zo| < €} with € < |z9| where the branch of /z is uniquely defined by the condition /zy = wy. The
coordinate map U — C is given by the projection to the z-axis

(z,w) — z.

It remains to construct a chart in a neighbourhood of the point (0,0) € C. Define the domain V = {(z = w? w) €

C | |w| < €} for some € > 0. The coordinate map V — C is given by the projection to the w-axis
(z,w) — w.
On the intersection U n V we have holomorphic transition functions

z(w) =w? and w(z) = vz, w(zo) = wp.
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Example 1.1.8. Complex tori
Let w, ' be two complex numbers called half-periods satisfying

a)l

Im — > 0.
)
Define the lattice of points on the complex plane by
Ao = 22w + 270" = 2mw + 2na’ | m,n € Z.}. (1.1.9)

The half-periods w, @’ are linearly independent as vectors on the two-dimensional real plane C = IR?. Therefore
two vectors 2miw + 2n1w’ and 2mow + 2n,0’ of the lattice coincide iff m; = m, and n; = n,. In other words the
lattice A, = C as a subgroup of the additive group of complex numbers is isomorphic to the group Z @ Z.
Consider the quotient ,
T

oo = C/ Ao (1.1.10)
as the set of equivalence classes of complex numbers, where the equivalence relation is as follows: two complex
numbers z and Z are equivalentif Z — z € A ..

The claim is that

e As a real smooth manifold the quotient is diffeomorphic to the two-dimensional torus T? , ~ S x S!.

w,w" T

o It has a natural structure of compact connected one-dimensional complex manifold namely a compact
Riemann surface.

To prove the first statement introduce real coordinates on the complex plane by representing a given complex
number z in the form
z=2wx+2u'y.

Such a representation is unique. In these coordinates the quotient becomes equal to
C/A(u,m’ = ]R/Z X ]R/Z = Sl X Sl.

In particular this implies compactness of (1.1.10).

To prove the second statement one needs to construct a complex analytic structure on T2 - Letm: C — Tzw,
be the projection map. Endow Tzw, with the quotient topology, namely, a set U < T2 o 1s open if nH(U) is
open in C. This definition makes 7 continuous and since C is connected so is wa,. Furthermore, it is easy
to check that 7 is an open map. Indeed, let U be an open set in C. Then by definition the set 7(U) is open if
n—!(n(U)) is. But the latter is certainly open since 7! (n(U)) = U, yez(U + 20 m + 2w'n) is open.

In order to define a complex chart near a point p, € Tiw/ choose a representative z, € n~1(p,) and consider

the parallelogram

U(zg) = {za +20x+ 20"y |x, ye R, [x|,|y] <€}, 0<e<

N =

centered at z,. The restriction 7[y,) : U(za) — m(U(zs)) is a homeomorphism. So we will use the natural
complex coordinate on the parallelogram U(z,) < C for defining the homeomorphism ¢, on (U(z.)) < T2 .
The pair (11(U(za)), ¢o) defines a complex chart. For p € m(U(za)) N t(U(zp)) let ¢pu(p) = z and Pp(p) = z'so
that the transition function T(z) := ¢ o ¢, ' (z) = 2. Since z and Z are the image of the same point p on the torus,
it follows that

T(Z) —z= Q(Z)/ Q(Z) € Am,a)’-
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Since the map T is continuous and A, . is discrete, it follows that ()(z) independent from z. We conclude that
the map T is holomorphic. An important remark is to be done. Namely, although the complex tori (1.1.10)
are all diffeomorphic as real smooth manifolds they in general define different complex manifolds for different
pairs of half-periods.In the next Section more details are given.

1.1.2 Holomorphic maps of Riemann surfaces

We begin this section with the general definition of holomorphic maps between complex manifolds. Let M and
N be complex manifolds of complex dimensions m and n respectively. Let (Uy, $o)ac

¢a(P) = (z2(P),...,zy(P)) e C" for PelU,cM

and (VIS’ lpﬁ)lgegg
9p(Q) = @(Q),- -, w,(Q) €C" for Qe Vg N

be atlases on these manifolds.

Definition 1.1.9. (i) A map f : M — N is called holomorphic if for any Py € U, such that f(Po) € Vg the
superposition
Ypofodyliz=(z1,...,zm) = (wi(z),..., wn(2))

defined on a sufficiently small open neighbourhood of Py is a holomorphic map of an open subset in C"* to C™.

(ii) Holomorphic maps f : M — C are called holomorphic functions on M.

(iii) The holomorphic map f : M — N is called biholomorphic equivalence if it is one-to-one and the inverse map
f~1: N — M is also holomorphic. The notation M ~ N will be used for biholomorphically equivalent complex
manifolds.

We leave as an exercise for the reader to verify that the above definition depends only on the complex
analytic structures on the manifolds but not on the choice of atlases.

Example 1.1.10. The projective space IP!, the Riemann sphere C and the sphere 52 = {(x,y,t) €
R®|x* + i + t* = 1} are biholomorphic equivalent. The biholomorphic equivalence is given by

— 4 ifz #0 — iy 20 y#0
:P' - C, tzp] = 2 P2 5C, (nyt) - ’
f 21 : 22] {oo ifz,=0 f2 (e y.8) {oo ifx=y=0.

Straightforward computations shows that the maps f; and f, are biholomorphic.

Exercise 1.1.11: Prove that the superposition go f : M — L of two holomorphicmaps f : M — Nand g: N — L
between complex manifolds is holomorphic.

Exercise 1.1.12: Let M be a compact connected one dimensional complex manifold. Prove that any holomorphic
function f : M — C must be a constant. Hint: use the maximum modulus principle.

Meromorphic functions on a Riemann surface S are defined as follows.

Definition 1.1.13. Let S be a Riemann surface. Holomorphic maps f : 8 — P! = C are called meromorphic functions
onS.
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Denote by z the complex coordinate on the finite part of C and by Z = 1/z the complex coordinate near
infinity. Take a point Py € S and choose a local complex coordinate ¢(P) = t near this point such that ¢(Py) = 0.
Let f(Pg) = zp € C. Then we have a locally defined holomorphic function

z=fo¢ (1) =z + Y @t m>=1, a,#0.

k=m

If zg = 0 then the number m is the multiplicity of the zero at Py of the meromorphic function f. Consider now
the case f(Py) = {00} = {Z = 0}. In this case Z is a holomorphic function of 7

2= b1, n=1, b, #0.

k=n

Then for the function z = f o ¢~!(7) we obtain an expansion in Laurent series

-1
Z—foqb_l(’()—leka} :ZCT;kk, c_n:bl;ﬁo,

k=n k<n

valid on a punctured disk 0 < |7] < €, for a sufficiently small e. The point Py is called a pole of order # of the
meromorphic function f. The multiplicity of a zero and the order of a pole do not depend on the choice of local
parameter. An alternative definition of a meromorphic function on a Riemann surface is that the function f is
holomorphic in S outside a discrete subset of points that are poles of this function.

Exercise 1.1.14: Prove that, indeed, the set of poles of a meromorphic function must be discrete. In particular
prove that a meromorphic function on a compact connected one-dimensional complex manifold has only a
finite number of poles.

Exercise 1.1.15: Prove that any meromorphic function on the Riemann sphere C is a rational function.

Remark 1.1.16. The space of meromorphic functions on a Riemann surface S is a field. That means that the
product fg of two meromorphic functions is meromorphic; the same is true for the ratio f/g provided the
function g is not an identical zero. This field will be denoted by M(S). For example, according to the above

Exercise M(C) is isomorphic to the field of rational functions of one variable.

Example 1.1.17. Consider the Riemann surface
S={(zw)e C*|w? —z =0}.
The projections n; : S — C and 1y, : S — C defined as
m.(z,w) =z and Tu(z,w) =w
define holomorphic functions on S.
The map 7, establishes a biholomorphic equivalence S ~ C. Indeed, the inverse to the map 7, : S — Cis

given by
w— (w?,w) eS.
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Example 1.1.18. Let D = {|z| < 1} be the unit disk and H = {Imw > 0} the upper half-plane. The map

wfil_Z
14z

establishes a biholomorphic equivalence ID ~ H between the unit disk ID and the upper half-plane H. The
inverse map is given by
i—w
Citw
Example 1.1.19. Any holomorphic map from € — D must be a constant, due to the maximum modulus
principle. Therefore the complex plane and the unit disk are not biholomorphically equivalent. Nevertheless

C and D are diffeomorphic to each other by means of the smooth map ¢ : C — ID

z
P(z) = NvarE =w

w

VI-[wP
Remark 1.1.20. Clearly the Riemann sphere is not biholomorphically equivalent either to C or to H as it is

compact. Indeed combining the results of Examples 1.1.18 and 1.1.19 we conclude that there is no biholomorphic
equivalence between C and H.

with inverse ¢~ (w) =

The following fundamental result proven in 1907 by Henri Poincaré and Paul Koebe provides a complete
classification of simply connected Riemann surfaces.

Uniformization Theorem. Any simply connected Riemann surface is biholomorphically equivalent to one of these
three:

1. complex plane C;

2. Riemann sphere P! = C;
3. upper half-plane H.

For the definition of simply connected topological spaces see below Section 1.3.1. The proof of the Uni-
formization Theorem can be found in the book [27].

Example 1.1.21. Holomorphic maps of complex tori.
Recall (see Example 1.1.8 above) that a complex torus is a compact Riemann surface T? , defined as the
quotient of the complex plane over a two-dimensional lattice
T2

w,w’

=C/{2wom +2w'n|m, neZ}. (1.1.11)
Here w, o’ € C is a pair of half-periods of the lattice. They must satisfy the inequality
/

m< > o.
w

Vectors 2w m + 2a'n of the lattice are called periods. A natural basis in the lattice is given by the periods 2w,
2w'. All vectors of the lattice are linear combinations with integer coefficients of the basic periods. There are
other bases in the lattice that can be obtained in the following way.
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Lemma 1.1.22. Let 2@, 2@’ be another basis of the lattice satisfying the inequality Im % > 0. Then

O=dw+ca', @ =bw+ad (1.1.12)

a b
det(c d>=1'

Conversely, any matrix from the group SL(2, Z) defines a change of basis in the lattice according to eq. (1.1.12)

where the integers a, b, ¢, d satisfy

Recall that the group SL(2,Z) consists of 2 x 2 matrices with integer entries and determinant one.
Proof Since the vectors 2@, 2@’ belong to the lattice with the basis 2w, 2w’ they must have the form (1.1.12)
with some integer coefficients. Interchanging the roles of the bases we conclude that the inverse of the matrix

< LCI Z ) must also have integer entries hence det < Z Z ) = +1. Using the simple identity

~1 d—b 2 /
@ _ (ad—bojw” o (1.1.13)

Im— =
@& |ew' +dwl? 1)

we conclude that the determinant of the matrix must be positive. O

Let us proceed to studying functions on complex tori. First, we already know that any holomorphic
function on T2 .~ must be a constant, see Exercise 1.1.12 above. It is worthwhile to present the proof of the
statement about holomorphic functions on a complex torus in a slightly modified way. Namely, a function
f:C/{2wm + 2w'n} — C can be considered as a function on C satisfying

fz+2w) = f(z), fz+2')=f(z) (1.1.14)

for any z € C. Such functions are called doubly periodic. Any doubly periodic holomorphic function will be
bounded on the entire complex plane hence, due to Liouville theorem it must be constant.

Definition 1.1.23. Doubly periodic meromorphic functions on the complex plane are called elliptic functions.

We conclude that the set of holomorphic maps of the complex torus (1.1.11) to P! is the same as the set of
elliptic functions on the complex plane. In Section ?? we will construct some important examples of elliptic
functions.

Let us now consider holomorphic maps between complex tori. Any such map

f:T2 -T2, (1.1.15)

w,w’ @,0

can be considered as a holomorphic function f(z), z € C satisfying
fz+2w) = f(z) + 250+ 2rd', f(z+20")=f(z)+2q0+2pd', p,q 1,s€Z (1.1.16)

for any z € C. The derivative f’(z) will be a doubly periodic holomorphic function hence constant. So
f(z) = Az + zp for some A # 0, zp € C. Thus the holomorphic maps (1.1.15) correspond to pairs A # 0,

M = < ;; Z ) € Mat(2,Z). The matrix M must have positive determinant; this can be proven by using the

relation (1.1.13). Existence of such a map imposes the following constraint on the periods of the tori

{16
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The simplest case is M = < (1) (1) > . Then the lattice A is obtained from A, . by rescaling
@ =\, & = (1.1.18)
The map
f : TZ),(U’ - Tﬁm,}\(u’/ f(Z) =Az (1119)
is biholomorphic, f!(2) = Z/A. By chosing A = 5- it follows that the tori
f:T2 -T2 f(z)—iz T—ﬂ/ (1.1.20)
C o %,% - 2w ’ = ) A

are biholomorphic equivalent. For simplicity the torus T? | is denoted by T2. Combining the above observation

[NIE]

’

(NI

with lemma 1.1.22 we arrive to the following Theorem.

Theorem 1.1.24. Let T and T be two tori defined by the lattices {m + nt|m,n € IN} and {m + nt’ |m,n € N} with
I(t) > 0and 3(1') > 0. The tori are isomorphic if and only if

, at+b a b
=" SL(2,Z). 1121
v-I (0 D) ese2) (11.21)

The proof is left as an exercise.

Holomorphic maps between complex tori will be considered up to superpositions with rescalings. This
allows to freely choose A in a suitable way.

One can also use the freedom in the choice of bases in the lattices A, ., Ag,ev in order to reduce the matrix

M = ( ;Z Z ) to some canonical form. In this way the matrix M is considered up to transformations of the

form
M~ AMB, A,BeSL(2,7Z). (1.1.22)

The matrix A corresponds to a change of basis in A, s and B comes from a change of basis in the lattice Ag g .
The following algebraic statement describes the normal form of the matrix M wrt transformations of the form
(1.1.22).

Lemma 1.1.25. Any 2 x 2 matrix M with integer entries and det M > 0 by a transformation of the form (1.1.22) can
be reduced to the form

Mhormal = £ dl 0 s dl, d2 >0, dl |d2, (1123)
0 dp

where the symbol dy | d,, stands for dy divides dy. The numbers di and d, are determined uniquely.

The proof of Lemma is left as an exercise for the reader.
Summarizing the above arguments we arrive at the following

Proposition 1.1.26. Any holomorphic map between complex tori modulo biholomorphic rescalings can be reduced to the
following standard form

f'ﬂ : T{i,a)’ - T(i/n,w/ s fn(Z) =z (1124)

for some integer n > 0.
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Holomorphic maps of the form (1.1.24) play an important role in the theory of elliptic functions. For the
first nontrivial case n = 2 they are related to Landen’s transformations that we will explain in Example 1.4.11.

Exercise 1.1.27: Prove that the preimage of any point in the torus wrt the map (1.1.24) consists of n points.

Example 1.1.28. We conclude this section by constructing a meromorphic function on the torus T? with J(t) >
0.
The Jacobi theta function is defined by the series

0(z;7) = Z exp (nitn® + 2minz) . (1.1.25)

—00<n<o

The function 93(z; 7)) in the standard notation for 6(z; 1), see e.g.[4]. Since
lexp (mitn® + 2minz)| = exp (—nIn* — 2nnJz))

the series (1.1.25) converges absolutely and uniformly in the strips |J(z)| < const and defines an entire function
of z.
The series (1.1.25) can be rewritten in the form common in the theory of Fourier series:

0(z) = Z exp(mitn®)e* ™" (1.1.26)

—w<n<oo
The function 6(z; 7) has the following periodicity properties:
0(z+11)=0(2) (1.1.27)
0(z + mt; 1) = exp(—nim?t — 2nimz)0(z), meZ (1.1.28)
The equality (1.1.27) is obvious. The equality (1.1.28) is also easy to prove:

0(z+mt;7) = Z exp (nit(n — m)* + 2ni(n — m)(z + mt)) = exp(—nim?

nez

T — 27imz)0(z; 7).

The integer lattice with basis 1 and 7 is called the period lattice of the theta function. The remaining Jacobi
theta-functions are defined with respect to the lattice 1, T as

. 1\ . . 1 1
d(z; 1) = 700%]@0 exp [mv: (n + E) + 27ti (z + E) (n + 5)1

8(z;1) = ), exp lTliT (n + %)2 + 2miz (n n %)]

—o<n<wo
. . 1
uz;T)= ) exp [m’m2 + 2mi (z + —) n] .
—0O<n<0 2

The functions 92(z; 1), 93(z; T) and 94(z; 7) are even functions of z while 91(z; 7) is odd. For simplicity we
drop the 7-dependence and write only 6(z) for 6(z; 7).
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|

In the parallelogram I" defined by the lattice 1 and 7, namely

1
r:= {§+%+x+y’r|x,ye]R, x| <

N~

lyl <

N~

the function 6(z) has only one zero. Indeed let us consider the integral

1 d .
2l Jop 2 log O(z)dz = {# of zeros of O(z) in T’}

_ 1
2w

Using the periodicity properties (1.1.27) and (1.1.28) we obtain

1 0

(log O(1 + tt)) tdt — fl(log O(t + t))dt + J
0

1

r (log O(t))"dt + J

0 0

(log G(Tt))/’[di‘> :

2mi or dz 0

1[4 log 0(z)dz = 2Lm (f (log O(t)) dt — f (log O(t + t))/dt)

1 1
- ZLm (L (log 6(t))'dt —f [(logO(t))" — 2ni]dt> =1,

0

which shows that the number of zeros of 6(z) in the domain I' is equal to one. To determine this zero, we use
the parity and periodicity property of 0(z) so that

(N WA I O WA (NS S IR T S VS0 I W SN
9<2+2>—6< > 2>—9<2+2 T>—€ 129 2+2 = -0 2+2

which implies that £ + 1 is the only zero for the theta function 6(z) in the domain I'. Finally it is left as an
exercise to show that for 2m complex numbers vy, ...,v,, and ¢y, ..., ¢, such that Z]m:l vj = Z;ﬂzl ¢ the function

[1j2:16(z —v))
H;’nzl 0(z — ¢))

in meromorphic on the torus T? with zeros at the points z = v; + 3 + £ and poles at the points z = ¢j +  + £,
j=1,..., mwithv; #¢;,i,j=1,...,m.

fz) =

1.2 Algebraic curves and Riemann surfaces

1.2.1 Algebraic digression: resultant and discriminant

The resultant of two polynomials f(z) and g(z) in one variable is a polynomial in the coefficients of f and g
that provides a condition of compatibility of the system

flz) = 0}
g(z) = 0

of two algebraic equations. More precisely,
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Definition 1.2.1. Let f(z) = apz" + mz" ' + -+ + a, and ¢(z) = boz™ + byz" ! + - -+ + by, be two polynomials of
degree n and m respectively with a;, bj € C with ag # 0 and by # 0. The resultant R(f, g) is given by the determinant of
the (n + m) x (n + m) matrix

ag @ ... 4 0 0 0

0 a m ... a, 0 0 0

. 0 0o ... ... ) ay ap a,
RUf &) =det| oy . by be O oo (1.2.1)

0 by b ... ... buy1 b, O 0

0 ... by b ... bu_1 by

Lemma 1.2.2. R(f,g) = 0 if and only if f and g have a common zero. The co-rank of the matrix appearing in the
determinant is the number of common zeroes.

Proof. The polynomials f(z) and g(z) have a common root z = zj if and only if they are divisible by r(z) = z—zo,
that is there exist polynomials 1(z) and ¢(z) such that f(z) = r(z)y(z) and g(z) = r(z)¢(z). Here 1 and ¢ are
polynomials of degree at most n — 1 and m — 1 respectively. This implies that

f@)o(z) = g(2)¥(2) (12.2)

where

9(z) = prz"™! + -+ fusz + i
and

V(z) = a2+ iz +ay

for some complex coefficients ay, ..., a;; and 1, . .., Bn.
To write the system in a matrix form we define the spaces V = span(z"~},...,1) @ span(z"~},...,1) and
W = span(z"t"~1,...,1). The space of solutions to the system (1.2.2) coincides with the kernel of the map
M:V — W given by
MP@Y) = fo—gpeW.

The matrix of the linear operator M in the indicated bases is (up to multiplication of the last n rows by (—1))
precisely the matrix appearing in (1.2.1). Hence the vanishing of the determinant is the necessary and sufficient
condition for the solvability of (1.2.2).
Note now that the smallest possible degrees of 1, ¢ amongst the possible solutions of (1.2.2) are precisely
m —s,n — s where s is the number of common roots of the polynomials f and g (exercise). Denoting (¢, ¢)
such a minimal solution we then observe that we have a s-dimensional freedom of multiplying both sides of
the equation f(z)$o(z) = g(z)¢o(z) by an arbitrary polynomial of degree < s — 1. This means that the kernel
of the matrix in (1.2.1) has dimension s.
O

Lemma 1.2.3.
R(f,8) = ayby | [(xj — we)

where x; and y are the roots of the polynomials f and g respectively.
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Proof. We have
f(z) = ag H(Z -xi), g(z)=b H(Z = Yi)-
i=1

j=1

So
a; = (—1)ia0 x i—th elementary symmetric functionof x1,...,x,, i=1,...,n

and a similar representation holds for the coefficients of the polynomial g(z).
The resultant can be considered as a polynomial in the coefficients of f and g,

R(f/g) € C[a()/al/- ..,Hn,b(),bl,.. -/bm]

homogeneous of degree m in ag,ay,...,a, and degree n in by, by,...,b,. Using the elementary symmetric
functions we can represent it as an element of the ring of polynomials

R(f/g) € a(r)nbgC[Xb. e X, Y1, - _.’ym]snxsm

symmetric in x1,...,x, and in yi, ..., y,. It vanishes if x; = y; for some i, j. Therefore it is divisible by x; — y;
foreveryi=1,...,nand j =1,...,m. We conclude that R(f, g) is divisible by the polynomial

Pi=ayby [ [(xi — y))- (1.2.3)
ij

The polynomial (1.2.3) can be represented in the following way

P=ay ] [g).
i=1

Hence it is a homogeneous polynomial of degree n in by, by, . . ., by,. Its coefficients are symmetric polynomials

inx,...,x, times ay’. So they can be represented, in a unique way, as polynomials in ag, a1, . .., a,. Alternatively

P can be written as follows .
P=(=1)"b5 [ [ f(w)).
j=1

Thus P is a homogeneous polynomial of degree m in ag, a1, .. .,a,. We conclude that
R(f, g) = constP.

In order to prove that const=1 we look at the terms of the highest degree in b,,. It is easy to see that they are
equal to a'by, both in R and in P. The lemma is proved. m]

Now we address the following question: how to check whether the polynomial
f(z) = apz" + mz" ' + -+ ap1z +ay (1.2.4)

has multiple roots? It is well known that z = zy is a mutiple root of f(z) if and only if it satisfies the system
f(z0) = 0 }
flzo) = 0 f°

Here f'(z) = df(z)/dz. The condition of compatibility of this system is the vanishing of the resultant R(f, f).
We arrive at
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Definition 1.2.4. The discriminant D(f) of the polynomial f(z) in (1.2.4) is equal to

D(f) = —(~1)“"R(f, f).

aop

From eq. (1.2.1) we obtain the following expression for the discriminant

ap ay ap cen Ap—1 ay 0
0 ao M ay_1 4y
1 n(n—1) 0 0 e
D(f) = %(_1) 7 det naggy (n—ag (n—2)ay ... a,; 0
0 naop (Tl — 1)611 Cen Zﬂn_z Ap—1 0
0 0

21
(1.2.5)
0
0
an
J (1.2.6)
0
an—1

We put the prefactor 1/a since the polynomial R(f, f’) is divisible by ay. In this way we can see that D(f) is a

homogeneous polynomial in ay, a4, . .., a, of degree 2n — 2.

For example, the discriminant of a degree two polynomial f = agz* + a1z + a, is equal to D(f) = aj — 4agas.

For a cubic polynomial f = agz® + 412> + ayz + a3 it is given by the formula

ap a ar as 0

1 0 a o a a3
D(f) = - det| 3ap 247 a 0 0 |= a%a% - 4a0ag — 4a?a3 + 18agayaa; — 27a3a§. (1.2.7)
0 0 3&0 2[11 (75 0

0 0 3ap 204 ap

Exercise 1.2.5: Prove that the discriminant as a symmetric polynomial in the roots z;,

written in the following form

D(f) = af)”*z H(Zj — zj)z.

i<j

1.2.2 Smooth affine plane curves as Riemann surfaces

..., zy of f(z) can be

Let us consider a polynomial F(z,w) = Y,/ ai(z)w"~" in two complex variables z and w, 4;(z) € C[z], i =
0, 1, ...,n. For simplicity let us assume” that a9(z) = 1. Then for any z € C the algebraic equation

F(z,w) =0

has n roots w1 (z), ..., wy(z) counted with multiplicities. We obtain a n-valued function w = w(z) of complex
variable. The basic idea of Riemann surface theory is to replace the domain of the multivalued function w(z)

4This can be achieved by a transformation

w
w— —, FHugz”*lF.
ao(z) ®
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by its graph that is nothing but the complex algebraic curve

C:={(zw) e C* | F(z,w) = Zn:ai(Z)w”‘i =0} (1.2.8)

i=0

and to deal with a single-valued holomorphic function (z, w) — w on C rather than with a multivalued function
on C. We have already considered above the example of the multivalued function w(z) = +/z. It becomes
single-valued on the algebraic curve w? — z = 0.

In the theory of functions of a complex variable one encounters also more complicated (nonalgebraic)
curves, where F(z,w) is not a polynomial. For example, the equation ¢ — z = 0 determines the Riemann
surface of the logarithm or sinw — z = 0 determines the Riemann surface of arcsine. Such surfaces will not be
considered here.

From the real point of view the algebraic curve (1.2.8) is a two-dimensional surface in C*> = R* given by the
two equations

RF(z,w) =0
IF(z,w) =0 } :

We will now formulate main conditions that guarantee that this surface is smooth and, moreover, it admits a
natural structure of a connected complex manifold of complex dimension one or, according to Definition ?? it
is a Riemann surface.

Definition 1.2.6. An affine plane curve C is a subset in C* defined by the equation (1.2.8 ) where F(z, w) is polynomial
in z and w. The curve C is non-singular if for any point Py = (zo, wo) € C the complex gradient vector

OF(z,w) JOF(z,w) )

4

grad F|p, = (
¢ ’ 0z dw (z=zp,w0=wy)

does not vanish. If the polynomial F(z,w) is irreducible’then the curve C is called irreducible affine plane curve.

In order to define a complex structure on C we need the following complex version of the implicit function
theorem.

Lemma 1.2.7. [Complex implicit function theorem] Let F(z, w) be an analytic function of complex variables z and w in
a neighbourhood of the point Py = (zo, wo) such that F(zo,wo) = 0 and 0,F(zo,wo) # 0. Then there exists a unique
function ¢(z) such that F(z, $(z)) = 0 and ¢(zo) = wo. This function is analytic in z in some neighbourhood of zy.

Proof. Letz =x +iyand w = u + iv, F = f + ig. Then the equation F(z, w) = 0 can be written as the system
fx,yu,v) = 0
g(x,y,u,v) = 0

The conditions of the real implicit function theorem are satisfied for this system: the matrix

of of
ou ov
g 08

ou  0v/ (zom)

5A polynomial F(z,w) is called irreducible if it cannot be factorized into a product F(z,w) = F;(z,w)Fa(z,w) of two nonconstant
polynomials.
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is non-singular because

of of
ou o 2
det = (7_F >0,
ag ag ow
ou ov

(here we use only analyticity in w of the function F(z,w)). Thus, in some neighbourhood of (z, wp) there
exists a unique smooth function ¢(z,z) = ¢1(x, y) + id2(x, y) such that F(z, ¢(z,z)) = 0, with ¢(zo,Z0) = wo.
Differentiating the identity F(z, ¢(z,Z)) = 0 with respect to z, we get that

o OF L F_EX
9z owdz  ow oz

op

due to analyticity of F(z,w). Using g—i # 0 we conclude that = 0. That means that ¢(z) is an analytic
function of z. O

We arrive to the following main result of this Section.

Theorem 1.2.8. Let C be the irreducible affine plane curve (1.2.8). If C is non-singular then it has a natural structure
of a Riemann surface. Restriction of the coordinates z and w onto the curve defines two holomorphic functions on the
Riemann surface.

Proof. Since F(z, w) is irreducible the curve C is connected, see Theorem 1.3.47 below for the proof. Let us define

a complex structure on C. Let Py = (2o, wp) be a non-singular point of the surface C. Suppose, for example,
)

F
that the derivative O—w is nonzero at this point. Then by the Lemma 1.2.7, in a neighbourhood U of the point
Py, the points of the curve C admit a parametric representation of the form

(zyw(z))eUp = C, w(zp) = wy, (1.2.9)

where the function w(z) is holomorphic. Therefore, in this case z is a complex local coordinate also called local
parameter on C in a neighbourhood Uy of Py = (2o, wy) € C. For a pair of charts with this type of local coordinate
the transition function is the identity.

o . . .. OF, .
Similarly, if the derivative — is nonzero at the point Py = (2o, wp), then we can take w as a local parameter

z
(an obvious variant of the lemma), and the curve C can be represented in a neighbourhood Uj of the point Py
in the parametric form
(z(w),w) e C, z(wo) = zo, (1.2.10)

where the function z(w) is, of course, holomorphic. Call Uy the domain of the second type. For a non-singular
surface it is possible to use both ways for representing the surface on the intersection of domains of the first and

F iy .
second types, i.e., at points of C where — # 0 and > # 0 simultaneously. The resulting transition functions

w = w(z) and, z = z(w) are holomorphic azgd invertible.

Let us prove that the projections (z,w) — z and (z,w) — w are holomorphic on the constructed Riemann
surface. Indeed, on a domain of the first kind the first projection is given by the identity function z — z while
the second one is given by the holomorphic function w(z). In a similar way on domains of the second kind we
have z(w) and w — w respectively. ]
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Remark 1.2.9. If the polynomial F(z, w) = Y./, a;(z)w"~" is not monic in w then the Riemann surface associated
with the algebraic curve F(z,w) = 0 can still be constructed but the function w will not be holomorphic but
meromorphic on this surface. Poles of this function can be located over zeros of the coefficient a(z).

Due to the above Theorem we will denote by S the Riemann surface corresponding to a non-singular
irreducible algebraic curve C = {(z,w) € C?>|F(z,w) = 0}. It is equipped with a pair of holomorphic functions
z, w that establish a one-to-one correspondence

S3Pw— (z(P),w(P)) € C.

The Riemann surface S associated to the curve (1.2.8) is realized as an n-sheeted branched covering of the
z-plane. The precise meaning of this is as follows: let 7 : S — C be the projection map from S to the complex
z-plane given by the function z that here will be denoted by

n(z,w) = z. (1.2.11)
Then for almost all z the preimage 1! (z) consists of n distinct points
(z,wi(2)), (z,wa(z2)), ..., (z,wu(2)) (1.2.12)

of the surface S where w;(z), ..., w,(z) are the n roots of (1.2.8) for a given value of z. For certain values of z,
some of the points of the preimage can merge. This happens at the ramifications points (zo, wo) of the Riemann
surface where the partial derivative F,(z, w) vanishes (recall that we consider only non-singular curves so far).
The point zg € C is called branch point and it is determined by the system of equations

F(zp,w) =0
Fo(z0, ) — 0 } . (1.2.13)
Let Ar(z) := D(F(z,.)) be the discriminant of F(z,w) considered as a polynomial in w depending on the
parameter z

Ap(z) = aoiz) (—1)" x (1.2.14)
ao(z) a1(z) ax(z) ap—1(z)  ay(z) 0 . 0
0 ao(z) a1(z) . a,-1(z) a,(2) . 0
det 0 O . . a,-1(2) a;, .(z)
nag(z) (n—1Dai(z) (n—2)ax(z) a,-1(2) 0 . .. 0
0 nap(z) (n—1)a1(z) 20, 5(z) ay,—1(z) O . 0
0 . 0 2a,_7(z) an:l.(z)

Proposition 1.2.10. If Py € S is a ramification point of the complex algebraic curve (1.2.8) with respect to its projection
onto the z-plane then its projection zo = 1(Py) € C satisfies Ap(zo) = 0. If the curve is smooth irreducible then also the

converse statement holds true.

The proof easily follows from the results of the previous section.

It follows that the Riemann surface associated with a smooth irreducible affine algebraic curve has a finite

number of ramification points.
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The choice of the variables z or w as a local parameter is not always the most convenient. We shall also
encounter other ways of choosing a local parameter 7 so that near the point (z, w) the curve S can be represented
locally in the form

z=12z(1), w=w(T) (1.2.15)

where z(7) and w(7) are holomorphic functions of 7, and

dz dw

—, = 121
(dT' dT) #(0.,0) (1.2.16)
on a sufficiently small neighbourhood of the point. We study the structure of the mapping m in (1.2.12) in a
neighbourhood of a ramification point Py = (2o, wo) of S defined in (1.2.8). Let 7 be a local parameter on Sin a
neighbourhood of Py such that 7(Py) = 0. Then

z =z + ;7 + O, a4 #0
; (1.2.17)
w = wo + gt + O(t1), ¢, #0,

where a; and ¢; are nonzero coefficients. Since w can be taken as the local parameter in a neighbourhood of Py
it follows that g = 1. We get a parametrization of the surface S in a neighbourhood of a ramification point:

z =29 + g7 + O(7"Y),
, (1.2.18)
w = wy + byt + O(17),

where k > 1. It is easy to check that the number k does not depend on the choice of the local parameter.

Definition 1.2.11. The number mult,(Py) = k is called the multiplicity and b,(Py) = k — 1 the ramification index of
the point Py € S wrt themap n: S — C, (z,w) = z.

So, if Py is not a ramification point then mult,(Py) = 1 and b,(Py) = 0.

Exercise 1.2.12: Let Py = (zp, wp) be a ramification point for the curve (1.2.8) with respect to the projection

(z,w) — z. Suppose that the local parameter in the neighbourhood of Py is of the form (1.2.18) with k > 1.

Show that 4
d'F(z,w)

=0, j=0,...,k—1.
dw! J

(zo,w0)

Exercise 1.2.13: Prove that the total multiplicity of all the ramification points on S over z = z is equal to the
multiplicity of z = zg as a root of the discriminant of the polynomial F(z, w).

Exercise 1.2.14: Recall that a partition u of an integer # is a collection of positive integers u = (y1, ..., ) such
that 2;21 pj = n. To every smooth algebraic curve C in (1.2.8) of degree n in w and a point zg € C, let I < n
be the number of pre-images 1 1(z9) = P; U --- U P, where 7t : C — C is the projection 11(z,w) = z. Assign
positive integers (ki, ..., k) by

k]' = multZ(Pj), ] =1,...,L

This collection of integers is called the ramification profile of the smooth curve over zg € C. Note that if zg
is not a branch point then the preimage 7~!(zo) consists of n distinct points of multiplicity 1. Show that the
ramification profile over any point of the complex plane is a partition of .
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Lemma 1.2.15. Let Py = (zo, wo) be a ramification point of the Riemann surface S defined in (1.2.8) with respect to the
projection (z, w) — z and let mult,(Py) = k be its multiplicity. Then there are k functions w1 (z), ..., wi(z) analytic on
a sector S, ¢ of the punctured disc

0<|z—zo| <p, arg(z—zp) <o

for sufficiently small p > 0 and any positive ¢ < 27 such that
F(z,wj(z))=0 for zeS,s, j=1,...,k
The functions w1 (2), . .., wi(z) are continuous in the closure S, and
w1(z0) = -+ = wr(20) = wo.

Proof. As Py is a ramification point we have Fy,(zo,wp) = 0. Therefore, by the non-singularity assumption
F.(zo,wg) # 0. So the complex curve F(z,w) = 0 can be locally parametrized in the form z = z(w) where the
analytic function z(w) is uniquely determined by the condition z(wy) = zo. Consider the first nontrivial term
of the Taylor expansion of this function

z(w) = zg + ax(w — wo)k + oo (w — wo)k+1 +..., k>1, ap #0,
or equivalently

z — 20 = ag(w — wo)* (1 + a;—“(w —wp) + O((w — w)z)) k>1, ap #0.
k

Introduce an auxiliary function

f(w) = B(w — wp) [1 + a};—ﬂ(w —wp) + O ((w — wo)z)]k
k (1.2.19)
= B(w — wp) [1 + %(w —wp) + O ((w — wo)z)] ,

where the complex number f is chosen in such a way that g5 = a;. The function f(w) is analytic for sufficiently
small |w — wy|. Observe that f'(wy) = B # 0. Therefore the analytic inverse function f~! locally exists. The
needed k functions w;(z), . .., wi(z) can be constructed as follows

2mi (j—1)

w(z) = f! (e F (z—zo)l/k) , j=1...k (1.2.20)
where we choose an arbitrary branch of the k-th root of (z — zg) forz € S, 4. m]

The statement of Lemma shows that near a ramification point Py € S of multiplicity k there are exactly k
sheets of the Riemann surface that all merge together at the point Py.

Example 1.2.16. Elliptic and hyperelliptic Riemann surfaces have the form

S = {(z,w) € C* |F(z,w) = w* — Qu(z) = 0}, (1.2.21)

where Q,(z) is a polynomial of degree n with leading coefficient 1. These surfaces are two-sheeted coverings
of the z-plane. The non-singularity condition implies that gradient vector grad.F = (—Q;(z),2w) # (0,0) at
any point of S. A point (zg, wp) € S is singular if

Wy = 0, Q; (Zo) =0. (1.2.22)
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Together with the condition (1.2.21) for a point (zo, wp) to belong to S we get that
Qu(z0) =0, Q(20) =0, (1.2.23)

i.e. zg is a multiple root of the polynomial Q,(z). Accordingly, the surface (1.2.21) is non-singular if and only if
the polynomial Q,(z) does not have multiple roots:

n

Qu(z) = n(z —zi), zi#zj fori#j. (1.2.24)
i=1

The surface S is called elliptic for n = 3,4 and it is called hyperelliptic for n > 4. The ramification points of the
surface with respect to the map (z, w) — z are determined by the two equations

w? = Qu(z), w=0,

which gives n ramification points P; = (z = zj,w = 0),i = 1,...,n. All the ramification points have ramification
index equal to one. In a neighbourhood of any point of S that is not a ramification point, one can take z as a local
parameter, and w = +/Q,(z) is a locally defined holomorphic function. In a neighbourhood of a ramification

point P; it is convenient to take
T=z—2z, (1.2.25)

as a local parameter. Then near the ramification point P;, the Riemann surface (1.2.21) has the local parametriza-
tion
z=z+7, w=r1 n(’cz + zi — zj) (1.2.26)
ji
where w = w(7) is a single-valued holomorphic function and dw/dt # 0 for sufficiently small values of 7.

Exercise 1.2.17: Consider the family of n-sheeted Riemann surfaces of the form

F(z,w) = Z a,-jziwj (1.2.27)

i+j<n

(the so-called planar curves of degree n) for all possible values of the coefficients 4;;. Prove that (1) the generic
surface of the form (1.2.27) is smooth; (2) there are n(n — 1) ramification points on the curve and they all have
ramification index 1. In other words, the conditions for the appearance of ramification points of index greater
than one are written as a collection of algebraic equations on the coefficients a;;.

We conclude this Section with a brief discussion of Riemann surfaces associated with singular curves. Let
C be the algebraic curve defined by an irreducible polynomial equation F(z,w) = 0. The goal is to construct
a Riemann surface S along with a map p : & — C that is biholomorphic away from the singular points of C
and their preimages on S. Here we will do it only locally near one singular point and, moreover, only for the
simplest case of a nodal singularity. The case of arbitrary singularities will be treated in the next Section.

Let (zo, wp) be a singular point of the curve that is,

F(zo,wo) =0, F.(z0,wo) =0, Fy(zo,wo) =0.

It is called a node if

Fzz (ZO/ wO) sz (ZO/ wO)
det # 0.
sz(ZOI wO) Fuw (ZO/ wO)
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Using Taylor formula rewrite the polynomial F in the form
1
F(z,w) = 5 [a(z — z0)* + 2b(z — z9) (w — wp) + c(y — yo)*| + AF(z, w)
where
a = F.(z0,wo), b= Fu(z0,w0), ¢ = Fuuw(zo,wo)
and

. , 1 0"™IF(zp, wy)
_ Ay i _ ] o=
AF(z, w) H}Z;”(Z N @ =0y i = G o

The quadratic term can be factorized into a product of two distinct linear functions. Near the point (zp, wp) the
term AF can be considered as a small perturbation of the leading quadratic term. Therefore, assuming ¢ # 0
one obtains two solutions of equation F(z, w) = 0 in the form of convergent series

_bi Vb? —ac
c

w4 (z) = wo (z—20) + O ((z — 20)?) .

We are now ready to describe the local structure of the Riemann surface $ and the map p : & — C near
the node Py = (z9, wp). The surface will consist locally of two small disks D, and D_ centred at points P
respectively. The complex coordinates 7+ on the disks can be chosen in such a way that 74 (P+) = 0 and the
map p(74+) = (2(74), w4 (14)) reads

-z
[

z(T4 Z0+ T+

wi(ty) = wy— V1, 1 0(72) }’

From the above calculations it follows that the map p : D, u D_ — C\Py of the punctured disks Dy = Dy\Py
is locally biholomorphic. But p(P;) = p(P-) = Py.

We did the calculations assuming that ¢ # 0. If ¢ = 0 but a # 0 then everything goes in a similar way
after interchanging the roles of z and w. The picture slightly changes in the case 2 = ¢ = 0. In this case the
polynomial F(z, w) takes the form

F(z,w) = b(z — z9)(w — wp) + Z rij(z — z0)' (w — wo) + Z rij(z — zo)' (w — wy)/.

T+ € Di-

i+j=3 i+j=4
The map p has the form
z(t4) = zo+ T4
wy(ty) = -2 +0(3)
on D, and
z(to) = zp— 22 +0(%)
w_(t-) = wo+T_

on D_. Observe that in the case the points P € S is a ramification point wrt the projection on the w-plane and
the z-plane respectively.

The above method for constructing the Riemann surface of an algebraic curve near a singular point of
the latter is a version of the procedure called resolution of singularities. The constructed Riemann surface is
called normalisation of the algebraic curve. The method is based on an efficient algorithm for computing series
expansions of all branches of the algebraic function near the singular point. In full generality the algorithm
will be explained in the next Section.
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1.2.3 Newton polygons and Puiseux series

In this section we explain the use of an algebraic tool for studying the local structure of the Riemann surface S
associated with an algebraic curve C defined by an irreducible polynomial equation

F(z,w) = ap(z)w" + a1 (z)w" ' + - +a,(z) =0 (1.2.28)

near a singular point Py = (2o, wp) of the curve. Here the problem will be treated only locally, near one singular
point; discussion of the global structure of the Riemann surface S is postponed till Section 1.3.

Recall (see the previous Section) that locally the Riemann surface S must consist of a finite number of open
disks S=D; u---uDrcentredat P;e D;,i =1,...,kand a map

p:8—C satistying p(P;)) =Py, i=1,...,k

that establishes a biholomorphic equivalence between D; U --- U Dy and a punctured neighbourhood of the
point Py € C. Here D; = D;\P;. On every disk D; one can choose a local parameter 7 such that 7(P;) = 0 and the
restriction of p on the disk

is given by a pair of holomorphic functions on D; of the form°

(

) = zog+ T
w(t

) = wpy+ apT’ + (X]Tp+1 + (Xz’l?p+2 e, oo %0 } (1.2.29)

for some integers p # 0, ¢ > 0. The integer p is positive unless zy is a root of the leading coefficient 4 (z) of the
polynomial F(z, w). It is understood that, in the second line of (1.2.29), the series is convergent for sufficiently
small |z|. In order to show that the map p is bi-holomorphic for 7 # 0, we build the inverse map by first
assuming the vanishing of the coefficients ay, ay, ... in (1.2.29). Let m and n be integers such that mq + np = 1.
Then the inverse map is p~!(z,w) = (z — 29)"(*52)" = 7 that is clearly holomorphic for w # wy and z # z.
In the general case (1.2.29) let us define the function /(t) by the relation w(t) = wy + 77h(7). Then h(7) is
holomorphic and invertible because /’(0) # 0. Next we define the function g(7) = t(h(7))" that is holomorphic
and invertible. We conclude that p~(z,w) = ¢7! ((z — z0)"(w — wp)") = 7.
If g = 1 then the expansion for w in (1.2.29) can be rewritten in the form of a convergent Taylor series

w=wy+ag(z—z) +ar(z—z0) T +....
1 . . .
In the general case g > 1 eliminating 7 = (z — zp)? one obtains an alternative representation of (1.2.29) as an

expansion in fractional powers of z — z

1
w(z) = wy +ao(z—zo)77 —s—aq(z—zo)% +.... (1.2.30)
In complex analysis the expansions of the form (1.2.30) are called Puiseux series. For p > 0 they can be

considered as power series in the variable (z — zp) g ; if p < 0 then they are Laurent series in the same variable.
We will present an algorithm of computing Puiseux expansions of all branches of the algebraic function w(z)

5The integers p, 7 as well as the coefficients ap, a1 certainly depend on the label i of the disk. We do not put this dependence explicitly
in the formulae in order to avoid too complicated notations.
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near a singular point of the curve. Clearly the branches of the algebraic function w(z) obtained one from
another by analytic continuation around the point zy on the complex plain are identified, namely:

2nimj

T y—p(z — 20)

Wo+ Y. amp(z—20)7 ~wo+ Y. e 0

m=p m=p

for j=0,1,...,q—1

It is understood that the numbers p, g are chosen in the minimal way i.e., there exists an integer m > p not
divisible by g such that a;,_, # 0.
Let the polynomial (1.2.28) have the form

F(z,w) = Z aijziwj. (1.2.31)

i,j=0
Without loss of generality we may assume that the singular point in question is the origin,
F(0,0) = F;(0,0) = F,(0,0) = 0.

It will be always assumed that the partial derivative F,(z, w) does not vanish identically at the points of the
curve F(z,w) = 0.

Definition 1.2.18. The Newton polygon of the polynomial (1.2.31) is the convex hull of the set of points (i, j) on the
(x, y)-plane defined by
{(i,j) € R*|ay; # 0}.

The Newton polygon is a convex set belonging to the first quadrant of the plane. Without loss of generality
we may assume that it touches the coordinate axes. In the opposite case we can factor out some powers of z or
of w. Actually, for the algorithm only the sides of the polygon looking towards the y-axis will be relevant, see

o

tanf == >0

Figure 1.3: Newton polygon
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Fig. 3.1 for an example.

To each side of the Newton polygon looking towards the i axis we associate two numbers, a positive integer
m that equals the length of the projection of the side onto the y-axis, and a rational number g that is equal to
the tangent of the angle between the side and the negative direction of the y-axis. With such a side we will
associate m convergent Puiseux expansions of the algebraic function w(z) of the form

w=az +a'z" + ... (1.2.32)
for rational numbers p < p’ < .... The exponent of the leading term is equal to the slope of the corresponding
side

p= g. (1.2.33)

The leading coefficient a # 0 is determined as a nonzero root of the polynomial

Plw)= ). ajol. (1.2.34)
(i,j)ethe side

Observe that the number of nonzero roots of the polynomial (1.2.34), counted with multiplicities, is equal to
m=lenght of the projection of the side onto the y-axis.

Remark 1.2.19. The number of solutions, counted with multiplicities, of the equation F(z, w) = 0 written in the
form of Puiseux series (1.2.32) is equal to n = deg, (F) (the degree of F with respect to the variable w). If the
Newton polygon has k sides that faces the y-axis and we denote by m;, ..., m; the lengths of their projections
onto the y-axis, since the height of the Newton polygon is equal to n we have my + - - - + my = n.

Choose a nonzero root w = « of (1.2.34). Further inspection shows that the set of nonzero roots of the
polynomial P(w) is invariant with respect to multiplication by the g-th root of unity (assuming the numbers p,
g to be coprime): this follows from the representation

P(w) = 0 Q (") (1.2.35)

for some polynomial Q and a nonnegative integer jj (see eq. (1.2.41) below).
In order to determine the next term w; = a’z?" of the expansion (1.2.32), consider the new polynomial

Fy(z1,w1) :=F (2], a2 + wy) (1.2.36)

and repeat the above procedure applying it to the side closest to the x-axis. And so on and so forth.
Before explaining the motivations for such an algorithm let us consider an example.

Example 1.2.20. Consider polynomial
F(z,w) = 27" — 28 — 2w + (42 + 2)w? + (22 — 2Hw® — dzw? 4+ 72°0° + (1 — 22)w® + 5207 + 22ub.  (1.2.37)

There are four sides in the Newton polygon of F looking towards the y-axis (see Fig. 1.4); only they will be
relevant for determining the Puiseux expansions of various branches of the solutions w(z) near z = 0. For the
first one with the vertices (7,0) and (3,1) one has m = 1, 5 = 4. The corresponding part of the polynomial

reads 2z” — z3w. Solving the equation 2z7 — z%w = 0 we obtain w = 2z*. This is the leading term of the branch of
solution corresponding to the first side of the polygon. In order to compute the first correction let us substitute
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Figure 1.4: Newton polygon of the polynomial (1.2.37).

w = 2z* + wy in F(z, w). Then w, is determined from the equation Fy(z,w;) := F(z, 2z* + w;) = 0. In the Newton
polygon of F; (see Fig. 1.5) take the edge connecting the points (8,0) and (3,1). The corresponding equation
—z8 —ZBw, =0 yields wy = —z%. So, the first two terms of expansion of the branch of w(z) associated with the
first side of the Newton polygon read w = 2z* — z° + O(z°). Higher order terms can be obtained by iterating
the above procedure. This is an ordinary point of the Riemann surface with respect to the mapz: S — C.

In a similar way to the second side (3,1)-(2,2) of the Newton polygon in Figure 1.4, with m = 1, %’ =1,
one associates the leading term w = 1z. From the side (5,0)—(3,1) of the Newton polygon of Fi(z,w;) :=
F (z, 1z + wy) (see Fig. 1.6) one finds the next correction etc. This gives the second branch of w(z) near another
ordinary point of the Riemann surface w = }IZ — 6%22 +O0(z%).

For the third side of the polygon in Figure 1.4, one has m = 4, £t = 1. It corresponds the equation

q
42202 — dzw* + w® = w?(w? — 2z)° = 0. So, at the leading order one has two pairs of double roots w() = w® =

V223 and w® = w® = — /227, We will see now that these double roots split at the next approximation.

Indeed, in order to treat the pair wD and w® we have to substitute w = /2 z & w; and obtain a new

polynomial in z; = zz and w;. For the side (7,0)—(4,2) of the Newton polygon (see Fig. 1.7) of such a new
1

polynomial it corresponds the equation — v/2z7 + 16z3w? = 0 that yields w; = + %z% . One obtains the following

1
pair of distinct expansions

NS

z4 4+ ...

|

1
w® — Vazh 4 %Z% . w® = V221 —
Similarly for w® and w™® one has

1 2&
—zi+ ...,

w(3):—\f22%+i%z%+... w(4):—\/§z%—i4
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Figure 1.6: Newton polygon of the polynomial F(z, }z + w1).

It can be shown that the higher order terms will contain integer powers of z/4; all four expansions z(V), . ... , z{

are four branches of the same algebraic function. These branches merge at z = 0. One obtains one ramification
point of multiplicity 4 of the Riemann surface (S, z).
The fourth side of the Newton polygon in Figure 1.4, with m = 2, s = —3 yields the equation w® + z*w® = 0

)

that is, w2 = +iz~2. At the next order one has to analyze the equation F (2,iz] > +w) = 0 (here, like

above we denote z; = z!/?). To obtain a polynomial equation one has to multiply the result by z1°, see the
corresponding Newton polygon on Fig. 1.8. For the first correction one obtains the equation z; — 2iw; = 0.
This gives a ramification point of multiplicity 2:

w(l)ziz—%_%z%+,._ w(2)=—iz_%+%z%+....

Actually, when z goes to zero these two branches tend to infinity. So, the last point is an infinite point of the
Riemann surface (S, z). Note that the leading term 4y(z) = z® vanishes at the singular point.

Remark 1.2.21. To compute the branches of w(z) at z — o0 one can use the above algorithm applied at the
right-looking sides of the Newton polygon. For the example (1.2.37) of an algebraic curve we obtain two
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Figure 1.8: Newton polygon of the polynomial zI°F(z3,iz; > + wy) .

expansions, namely, a Laurent series in 1/z

, 12, 1

=5z - = —z76 4.,
w(z) T + 52 +
for the side (3,8)—(6,7) and a Laurent-Puiseux series in z~1/7
27 2 1

ZU(Z) = W_§W+
ts, or points along with 6 other branches w(z) = w (ze*™*), k = 1,...,6 for the side (6,7)—(8,0). So we have two infinity

points Py, P, on the Riemann surface. The function z has a simple pole at P; and a pole of order 7 at P,. In other
words, P; is an ordinary point of the Riemann surface with respect to its projection onto the extended z-plane
C. The point P, is a ramification point of multiplicity 7. The function w has poles of order 3 and 2 at the points
Py, P, respectively.

In order to justify the above algorithm let us first make a digression about zeroes of families of analytic
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functions. Let f(x) be an analytic function in x with a simple zero at x = xo,

fx0) =0,  f'(x0) # 0.

Consider the perturbed equation
flx)=¢€ (1.2.38)

where € is a small parameter. The claim is that the solution to (1.2.38) remains close to xp. Moreover, such
a solution is an analytic function in € for sufficiently small |e|. Indeed, the inverse function f~! such that
f710) = xp is well defined due to the assumption f’(xp) # 0 and it is analytic on a neighborhood of 0. Then

x=f"'(e)=x+ +0(€?).

_£

f'(x0)

All terms of the expansion in powers of € are uniquely determined from eq. (1.2.38).
Consider now the case of a multiple zero. Let xq be a root of f(x) of multiplicity k,

fxo) = f/(x0) =+ = fEV(x0) =0, fP(xo) #0.

Then, after adding of a small perturbation the multiple root splits in k different roots that are analytic functions
in et. Indeed, the Taylor expansion of f(x) at x = xo starts from a term of degree k

(%)
Fx) = el = x0) + e (x —x0) M+, o= ! k(lxo_) #0.
Denote f the k-th root of f(x)
q Ck+1 ;
f(x) = bi(x —x0) [1+ C—k(x—xo) +..

1
for some choice of by = ¢;. This function is analytic and invertible on a neighborhood of x. Thus the equation

k
fx) =[f0)] =e
can be solved by a convergent Puiseux series
71( 1 11 2
x=f (ek) =X + b €~ +O(ek).
Choosing various branches of et one obtains expansions of all k distinct roots of the perturbed equation.

For more complicated perturbations the splitting of the multiple root of the equation f(x) = 0 may not take
place. Consider, for example, a more general perturbation of the form

where
g(e) = diel +di et ., d#0
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is analytic near € = 0. Then the deformation of a k-multiple root xy of the unperturbed equation f(x) = 0 will
be determined from an equivalent equation

If L = ,lc—‘l where k; and I; are coprime integers then solutions to the equation f(x) = g(e) are represented by

1
convergent Puiseux series in €. In the case k1 < k we conclude that the function x(¢) lives on a Riemann
surface with k/k; ramification points of order k;.
The above considerations can also be applied to the more general equations of the form

flx) = eglxe)

where the function g(x, €) is analytic near the point (xo,0). We leave the details as an exercise for the reader.
Let us apply the above ideas to the derivation of the Newton polygon algorithm. Let us fix a side of the
Newton polygon facing the y-axis with the lowest vertex (iy, jo) and the slope %. For simplicity we will only

consider the sides with positive slope p/g. Any point on the side can be written in the form

i= io — pl
j=jo+ql
(1.2.39)
for some integer [ = 0, 1, .... So, the terms of the polynomial F corresponding to the vertices on the side can

be written as follows

j

i o+ w dig+pio

Y, wFwl =2y %(:) =z 1 P(w) (1.2.40)
(i,j)€the side (i,j)ethe side z1

where we put

w =
y4l

and the polynomial P(w) was defined in (1.2.34). Observe that the polynomial Q in (1.2.35) is equal to

Q(x) = > ai,prjprqx- (1.2.41)

=0

We will now rewrite other terms of the polynomial F(z, w) in the variables z, w. In this way it will become
clear that the sum of other monomials in F(z, w) can be considered as a perturbation of the leading term (1.2.40).
The small parameter of the perturbation will be some fractional power of z.

Consider a monomial ayz/w/ in F for a point (I, ]) sitting inside the Newton polygon. The points on the side
of the Newton polygon satisfy the equation

ﬂ+m:0_
P q
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Hence the coordinates (I, ) satisfy

1_104—]_]0 =r>0,
P q

for some rational number r = r(I, J). Thus

]
. E. w . E,
2wl = Fotqlotpr <—p ) = ZOTgrPrl,
za

We arrive at the following representation of the polynomial F(z, w)
F(z,w) = P lp(w) + Z“U(Z’J)Y(I’D“ﬂ}

L]

where the sum is taken for (I, ]) inside the Newton polygon and the exponents (I, J) > 0 for all terms in the
sum. As there is a finite number of terms one can choose an integer ¢ such that the numbers

s(L]):=r(L])tp

are all integers. Introducing new variable € = z' we apply the above perturbative procedure to solve the
equation
P(w) + Zaljes(”)a)] =0
L]

in the form of a Puiseux series of the form
w=a+ae +..., 0>0

for every root w = « of a multiplicity k of the polynomial P(w). This gives a branch of the algebraic function
w(Z) 4 / 4 +9
w=azi +azi 4.

Summarizing the above considerations we arrive to the following.

Theorem 1.2.22. Let us consider the algebraic curve C described by the zero locus of the polynomial
F(z,w) = w" + a1 (z)w" ' 4 --- +a,(z) =0, (1.2.42)

where the coefficients a1(z), . . . a,(z) are polynomials in z. Let us suppose that (zo,wy) € C is a singular point such that
7 1(z0) = (20, wo) with T the projection to the z- plane. Then there exist positive integers my, . .., my satisfying

my+---+mg=n

and k functions fi, ... fi analytic on a neighborhood of zo such that all solutions w(z) to (1.2.42) for sufficiently small
|z — zo| can be written in the form

w(z) = wo +fj<(z—zo)”1’f), ji=1,...,k (1.2.43)
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Observe that, for m; > 1 the formula (1.2.43) defines m; series due to ambiguity up to conjugation

2mil. 1

w(z) ~ W(z) = wo + f; (e”‘f (z—zo)’”/), t=0,1,...,mj — 1.

Remark 1.2.23. It follows from the theorem that near the singular point (zo, wy), the polynomial equation (1.2.42)
can be written in the form

Faw) = [T1] (w-w0 5 (F e -207) ),

for |z — zo| sufficiently small.

Remark1.2.24. Let (zo, wy) € Cbeasingular point for the curve C. In the situation described in the theorem 1.2.22
weobtaink points Py, . . ., Py on the Riemann surface S of the algebraic curve C. The holomorphicmapp: S — C

1
with local structure near the point P; given by (1.2.29) is obtained from the Puiseux expansion f; | (z — zo)" > .
We conclude this Section with an elegant algebraic statement. Consider the space
«© 1
Czy = JeE)
q=1

of Puiseux Laurent series with arbitrary fractional exponents. It is easy to see that this is a field.
Theorem 1.2.25 (Puiseux). The field C{(z)) is algebraically closed.

That is, all solutions of a polynomial equation with coefficients in the field C{{z)) belong to the same field.
The theorem of Puiseux is a generalization of the fundamental theorem of algebra. The constructive proof is
obtained by extending the Newton-Puiseux method developed in this section to the case when the coefficients
a;(z) are not polynomials in z but Puiseux Laurent series with arbitrary fractional exponents. Details of the
proof can be found in [28].

1.2.4 Smooth projective curves as compact Riemann surfaces

In this subsection we define Riemann surfaces as algebraic curves in IP2.

Definition 1.2.26. Let Q(X, Y, Z) be a homogeneous non-zero polynomial of degree d in the variables X, Y and Z. The
locus

C={(X:Y:2)eP*|Q(X,Y,Z) =0} (1.2.44)
is the projective curve defined by the polynomial Q.

Remark 1.2.27. Observe that the curve C is well defined since the condition Q(X, Y, Z) = 0 is independent from
the choice of homogeneous coordinates due to Q(AX, AY, AZ) = AMQ(X,Y, Z). Furthermore C is a closed subset
of P? and therefore it is compact.
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Recall that the space IP? can be covered with three open subsets homeomorphic to C? :
Up={(X:Y:Z)eP?| X #0}
U ={(X:Y:Z)eP?|Y #0}
U ={(X:Y:Z)eP?| Z+#0}.
The homeomorphism on Uy is given by the map (X : Y : Z) — (Y/X, Z/X) € C? and similarly for the other open

subsets U; and Uo.
The intersection of C with any of the U, is an affine plane curve. For example

Co =Cn Uy = {(u,0) € C* | Q(1,u,0) = 0}.
Now we show that under non-singularity assumptions, C is a compact Riemann surface.

Definition 1.2.28. The curve (1.2.44) is non-singular if there are no non-zero solutions to the following system of four
equations

~0Q  0Q 0Q
C=x~w-az "

Exercise 1.2.29: Show that the projective curve C defined in (1.2.44) is non-singular if and only if its intersections

Ci = CnU;, i = 1,2,3 with the charts U, are all non-singular. Hint: use Euler identity for homogeneous functions

of degree d

XQx +YQy +ZQz = Qd. (1.2.45)

Suppose that C is a smooth projective curve. In order to define a complex manifold structure on C let us
recall that each C; is a smooth affine plane curve and hence a Riemann surface. The coordinate charts are given
by the projections onto coordinate axes. For example for the curve Cj the coordinate charts are Y/X or Z/X and
the transition functions are the same as those obtained for smooth affine plane curves. One needs to check that
the complex structures given on each C; are compatible.

Proposition 1.2.30. Suppose that the projective curve C in (1.2.44) is non-singular. Then C is a compact Riemann
surface.

Proof. We will show that the complex structures given on each C; are compatible. Let P € Cy n C; where
P=(X:Y:Z)and X # 0and Y # 0. Since each smooth affine plane curve is non-singular (see exercise 1.2.29),
we can assume without loss of generality that Qx and Qz are non-zero on C. Let ¢ : Co — C with ¢o(P) = Y/X
and with locally defined inverse ¢ Y(Y/X) = [1: Y/X : h(Y/X)] where I is a holomorphic function on some
open domain in C. Let ¢ : C; — C with ¢1(P) = Z/Y with locally defined inverse qbl_l = [¢(%),1,£] where
g(%) is holomorphic for Y # 0 and non-zero since we assume X # 0. Then ¢ o qbo_l(Y/X) = Xh(Y/X)/Y which
is holomorphic because Y # 0, X # 0 and k(Y/X) is holomorphic. In the same way ¢ o ¢ Yz/y) = m
which is holomorphic because Y # 0 and g is nonzero. Similar checks can be done with the other coordinate
charts. 0

Lemma 1.2.31. Let Q(X, Y, Z) and F(X, Y, Z) be two homogeneous polynomials of degree d and m respectively. Suppose
that Q(0,0,2) # 0and F(0,0,Z) # 0. Then the resultant

R(Q F)(X,Y)

is a homogeneous polynomial in X and Y of degree dm.
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Proof. According to the assumptions, Q(X,Y,Z) = oZ% + q1(X,Y)Z*! + -+ + q4(X,Y) where 4;(X,Y) are
homogeneous polynomials of degree jin Xand Y, j = 0,...,dand F(X,Y,Z) = foZ" + A(X,Y)Z" 1 + ... +
fu(X,Y) where f;(X,Y) are homogeneous polynomials of degree j, j = 0, ..., m.

Then according to the definition of resultant in (1.2.1)

9 91 9 ... 44 0 0
0 q ¢ ... qa 0 ... 0
RQF)XY) =det| O = o O @0 @ @ AL (1.2.46)
! ’ fo A fo v i fu-1 fm O
0 fo A oo oo oii fua fu O
0 .. fo A ... .. Fuct fn

We multiply the second row by A # 0, the third row by A? and so on till the m-th row that is multiplied by A"~1.
Then we multiply the (m + 2)-th row by A, the (m + 3)-th by A? and so on till the (m + d)-th that is multiplied
by A9~1 one has

1
R(Q,F)(AX,AY) =
(QF)( ) A3d=1)d ) im(m—1)

qo /\ql Ce /\dqd 0 0 e 0

0. 0 cee /\m—lqo Amql cee /\d+m_1qd
xdet| o ah L AmTf L AmEL O 0

0 A A%A A" fuq AL, 0

0 . /\d_lfo /\df1 . . Am+d_2fm_1 /\m+d_1fn,
— AMR(Q,F)(X,Y),

where we use the fact that and g;(AX, 1Y) = Ag;(X,Y) and f;(AX, AY) = A/fj(X, Y). The above relation shows
that the resultant R(Q, F)(X, Y) is a homogeneous polynomial in X and Y of degree mad. o

Theorem 1.2.32 (Bézout’s theorem). Let C and D be two projective curves defined by the homogenous polynomials
Q(X,Y,Z)and F(X, Y, Z) of degree d and m respectively. If C and D do not have common components then they intersect
in dm points counted with multiplicity.

Proof. By Lemma 1.2.3, C and D have a common component if and only if their resultant is identically zero.
Consider the case in which C and O do not have common components. Without loss of generality we assume
that [0 : 0 : 1] does not belong to both curves. With this assumption Q(X, Y, Z) = qo(X, Y)Z9+41(X, Y)Z¥ 1+ - -+
94(X,Y) where q;(X, Y) are homogeneous polynomials of degree jin Xand Y, j = 0,...,d and qo(0,0) # 0. In the
same way F(X,Y,Z) = fo(X,Y)Z" + fi(X,Y)Z" " + - - + fu(X,Y) where f;(X,Y) are homogeneous polynomials
of degree j, j =0,...,mand f,(0,0) # 0. Therefore the resultant is a homogeneous polynomial of degree md by
lemma 1.2.31 and it has md zeros counting their multiplicity. O

Lemma 1.2.33. If the projective curve C defined in (1.2.44) is non-singular, then the polynomial Q(X, Y, Z) is irreducible.
If C is irreducible, then it has at most a finite number of singular points.
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Proof. Let us suppose that the polynomial is reducible, namely Q = Q1Q, where Q; and Q. are homogeneous
polynomials in X, Y and Z of degree d; and d — d;. The condition of C being singular takes the form

Q201 =0, Q20xQ1 + Q10xQ2 =0, Q20yQ1 + Q1yQ2 =0, Q207Q1 + Q192Q2 = 0.

Such system of equations has always a solution as long as there is a point P in the intersection of the curves
defined by Q; = 0 and Q, = 0. But this is always the case. Indeed let us consider the resultant R(Q1, Q2)(X, Y)
of the polynomials Q1 (X, Y, Z) and Q»(X, Y, Z) with respect to Z. Assuming that Q;(0,0,1) # 0and Q»(0,0,1) # 0
the resultant R(Q1, Q2)(X,Y) is a homogeneous polynomial of degree d;(d — d;). Therefore the curves defined
by the equations Q1(X, Y, Z) = 0 and Q»(X, Y, Z) = 0 intersect by Bézout’s theorem in d; (d — d;) points counted
with multiplicity. We conclude that if Q is reducible, then C is singular. Suppose that C is irreducible and
defined by a polynomial Q of degree . Then Q and Q7 do not have a common component so that the resultant
R(Q,Qz)(X,Y) is a homogeneous polynomial of degree n(n — 1) not identically zero. Since the singular points
of C are contained among the zeros of the resultant, their number is finite. ]

Example 1.2.34. The simplest example of a projective curve is a projective line P! = IP? given by a linear
equation
aX+pY +yZ2=0

where (a,8,7) # (0,0,0). Every such line is uniquely specified by the homogeneous coordinates (« : f: 7). We
obtain an isomorphism
{lines in P?} ~ P2

A line in IP? is uniquely specified by a pair of points on it assuming the points to be in general position.
In this case “general position” simply means that the points are distinct. In the multidimensional case we say
that the points Py, ..., P, in IP" are not in general position if there exists a subspace P"~2 < P" containing all
these points.

Exercise 1.2.35: Prove that equation of the tangent line to a projective curve C defined by a homogeneous
polynomial Q(X, Y, Z) at a non-singular point (Xy, Yo, Zy) can be written in the form

X Qx(Xo, Yo, Zo) + Y Qy(Xo, Yo, Zo) + ZQz(Xo, Yo, Zo) = 0.

Example 1.2.36. The next example is a conic defined by a homogeneous equation of degree 2

a1 app a3\ (X
Cai=3(X:Y:Z)eP*||Qu(X,Y,2) = (X Y Z)|an an ax||Y]|=0

a3 axp az) \Z
11 a2 413
A= |amp ax ax3].
a13  az3  4as3

In order to spell out the condition of smoothness it suffices to observe that the three partial derivatives Qx, Qy,
X

Qz are equal to 2A (Y) so that the condition of smoothness is
Z

where the matrix

detA # 0.
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Now let O be a nonsingular 3 x 3 matrix. Then the matrix B = O'AQO is a non singular matrix that defines the
conic Cp as the zero locus of the polynomial equation

X
Q(X,Y,Z)= (X Y Z)oa0[Y]|=o.
V4

Clearly the conic C4 and Cg are isomorphic, the isomorphism is the linear map (X, Y, Z) — (X, Y, Z)O".

Exercise 1.2.37: Show that any conic is determined by five points belonging to it. Further show that five points
in IP? uniquely determine a conic if their images w.r.t the Veronese map

P2 -5 (X:Y:Z)— (X*:Y?:22:XY:YZ:ZX).

are in general position (see exercise 1.2.34).

Exercise 1.2.38: Prove that the tangent line to a smooth conic intersects with it only at the tangency point.

Exercise 1.2.39: Let Q(X,Y,Z) be an irreducible homogeneous polynomial of degree d defining a smooth
projective curve C. Suppose that the equation Q(X, Y, 1) = 0 locally defines Y as a holomorphic function of X.

(1) Show that

2Y(X 1 Qxx Qxr Qx
d}gz ) =— det | Qyx Qyy Qv . (1.2.47)
Qy Qx Qv 0
. o . . . L AY(X)
(2) A point (Xp : Y : 1) is an inflection point for the curve C if and only if el vanishes at Xy. Calculate

the number of inflection points of the cubic defined by the homogeneous polynomial Q(X,Y,Z) =
Y?Z — (X - Z)(X —aZ)X witha # 0, 1.

(3) Prove that a smooth point P of a projective curve is an inflection point iff it has multiplicity at least three
as the intersection point of the curve with its tangent line at the point P.

(4) Prove that the tangent line at a smooth inflection point of a cubic has no other intersections with the curve
but the tangency point.

(5) Prove that inflection points on the projective curve Q(X,Y,Z) = 0 can be determined by the hessian

equation
Oxx Qxy Qxz
det [ Qyx Qvy Qyvz |=0. (1.2.48)
Qzx Qzv Qzz

Derive that on any smooth plane cubic there are 9 distinct inflection points.

(6) Prove that the inflection points of the projectivization of the smooth elliptic curve w? = 4z — gz — g3 are
at the infinite point and at the points (z;, +w;), i = 1,...,4 where z; are the roots of the equation

48z* — 24¢,7* — 48g3z — g5 = 0.
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Exercise 1.2.40: Let C be a smooth plane cubic and Py € C a point on it. (1) Prove that there exists a unique
structure of an abelian group on C such that

e P+ Q + R = 0 for any triple of points in the intersection of C with a line.

e Py+ P =Pforany PeC.

(2) Let P € C be such that the line tangent to C at the point P passes via Py. Prove that P is an element of order
2 in the group.
(3) Prove that the inflection points of the curve have order 3 in the group.

Compactification of an affine plane curve

At the beginning of this Section we have seen that the intersection of a projective curve C in P? with any of the
open charts U; ~ C? is an affine plane curve. For example

C:=Cnl={(z,w)eC*| Q(z,w,1) = 0}.

Clearly we can proceed also in the opposite direction. Namely given an affine plane curve C; in C? defined by
the polynomial equation F(z, w) = 0,

C; = {(z,w) € C*|F(z,w) = 0},

we can compactify such a curve in the projective space P? in the following way. Let
F(z,w) = Z aijziwj.
i+j<k

Define the homogeneous polynomial of degree k by

XY
Q(X,Y,Z) = Z'F <Z’ Z) ) (1.2.49)

A complex compact curve C is given in P? by the homogeneous equation
C:={(X:Y:2)eP* | Q(X,Y,Z) =0}. (1.2.50)

The affine part of the curve C n U, (where Z # 0) coincides with C,. The projective curve C is compact and
thus we have compactified the affine plane curve C, by adding the points at infinity given by the equation

Q(X,Y,0) = 0. (1.2.51)

Remark 1.2.41. Even if the curve C; is non-singular, the projective curve C might be singular.

Example 1.2.42. C; = {(z,w) € C? | w? = z}. A local parameter at the branch point (z = 0,w = 0) is given by
T = +/z,i.e. z = 7%, w = 7. The compactification C has the form C = {(X : Y : Z) € P? | Y? = XZ}. The point at
infinity is given by solving the equation (1.2.51), that gives P* = [1: 0 : 0]. We determine the local coordinates
near the point P*. For X # 0 we introduce the coordinates u, v

, (1.2.52)
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which define the affine curve u?> = v. The point at infinity is given by (v = 0,u = 0) which is clearly a
ramification point for the curve defined by the equation #* = v and /v is a local parameter near this point.
Therefore a parametrization of the C in a neighbourhood of P* takes the form

Example 1.2.43. C, = {w? = z> —a?}, a # 0. The branch points are (z = +a,w = 0) and the corresponding local
parameters are T4+ = +/z £ a. The compactification is the conic C = {Y? = X? — a?Z?}. The points at infinity
are given by solving the equation (1.2.51), that gives PY = [1 : £1 : 0]. Making the substitution (1.2.52) we get
the form of the curve C in a neighbourhood of the ideal line: u> = 1 — a?v?. For v = 0 we get that u = +1. We
can take v = 1/z as a local parameter in a neighbourhood of each of these points. The form of the surface C in
a neighbourhood of these points P, is as follows:

1 1
, W= ig AV1—a2?2, v—0 (1.2.53)

z==
v

where V1 — a%0? is, for small v, a single-valued holomorphic function, and the branch of the square root is
chosen to have value 1 atv = 0.

Example 1.2.44. Let us consider the class of hyperelliptic Riemann surfaces
C2 = {(z,w) € C* | F(z,w) = w* — Px(2) = 0}, (1.2.54)

where Py(z) = H?’zl(z —aj),and a; # a; fori # j.
If we consider the projective curve defined by the zeros of homogeneous polynomial

QX Y,Z) = Y?ZN=2 — ZNPN(X/Z) = 0

one can check that the curve is singular at the point [0 : 1 : 0] if N > 4. Therefore, for N > 4, the embedding of
C» in P? results in a singular surface. For N = 3 the projective curve

Y?Z = (X — a1 Z)(X — 12 Z) (X — a3Z)
is a compact smooth elliptic curve. By a projective transformation such curve can be reduced to the form
Y?Z = X(X - Z)(X - AZ), AeC\{0,1}.

The point at infinity is given by P* = [0 : 1 : 0]. For Y # 0 the substitution u = X/Y and v = Z/Y gives the
curve
Qu,L,v)=v—u(u—ov)(u—Av) =0

The point (0,0) is a branch point for the above curve. Indeed for (1,v) # 0 the projection 7 : (u,v) — visa
local coordinate. The preimage 71 (v) consists of three points. At the point (0,0) one has Q,(0,1,0) = 0 and
Quu(0,1,0) = 0 so that the preimage of 7-1(0) consists of a single point. Therefore a local coordinate near the
point (0, 0) takes the form

u=11+o0(r)), v=1(1+0(1)).

We look for the holomorphic tail of the above expansions in the form
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with g(7) analytic and invertible in a neighbourhood of 7 = 0. Plugging the above ansatz in the equation
Q(u,1,v) =v —u(u —v)(u — Av) = 0 one obtains that

1

Since

w
Z v Z v
one has that a local coordinate near the point at infinity for the curve C is given by

1 1
z=—=, W=

2 = (1—12)(1— A1?).

The above examples show that a smooth affine plane curve can sometimes be made into a compact Riemann
surface by embedding the affine curve into the projective space. In general such embedding produces a singular
projective curve that can still be turned into a compact Riemann surface once the problems with the singular
points have been fixed. In the next Section we will show how to do it by using simple topological arguments
about covering spaces.

1.3 Compact Riemann surfaces: a topological viewpoint

1.3.1 Topological digression: coverings, fundamental group and monodromy

Let X, Y be two topological spaces and p : X — Y a surjective continuous map. We additionally assume the
space Y to be connected”.

Definition 1.3.1. The triple (X,Y,p) is called a covering if for any point P € Y there exists an open neighbourhood
Up > P such that the preimage p~' (Up) is a disjoint union of open subsets U, < X, a € F such that the restriction of p
onto U, is a homeomorphism p : U, — Up for any o € F. Here F is an at most countable discrete set.

X is called the covering space, Y the base of the covering, p the covering map. The set F can be naturally
identified with the preimage p~!(P) of the point P. It is called the fiber over P.

Our first claim is that the fiber over P does not depend on P. Indeed, let Q be another point in the base. If
the intersection of Up with U is not empty then there is an obvious one-to-one correspondence between the
fibers over P and over Q. In general we connect the points by a path

y:[0,1] =Y y(0)=P y(1)=0Q.

Due to compactness of the path there exists a finite sequence ; = 0 < f, < --- < ty = 1 such that the open
domains U, ), i =1,...,N cover the path y([0,1]). Then passing from U, to U, ., step by step we obtain
a one-to-one correspondence between the fibers over the end points.

If the fiber is a finite set of  points then we say that the covering is of degree 7 or also n-sheeted covering.

Example 1.3.2. The Cartesian product X = Y x F for an arbitrary discreet set F with the covering map p(P, a) = P
is an example of trivial covering.

7Recall that in this book ‘connected’ means ‘path-connected’, cf. footnote 3.

@
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Definition 1.3.3. Two coverings (X, Y,p) and (X', Y, p") are called equivalent if there exists a homeomorphism f : X — X’
such that p’' o f = p. A covering equivalent to the trivial one will itself be called trivial.

Exercise 1.3.4: Let (X, Y, p) be a covering of degree n # 1 with connected covering space X. Prove that it is not
trivial.

Example 1.3.5. Define a map of the punctured disk D = {z€ C | 0 < |z| < 1} to itself by

n

p(z) = 2"

This is a covering of degree 7.
Example 1.3.6. The map
p:C—>C* pz)=¢
is a covering. The fiber can be identified with the set of integers since > = 1 for any 1 € Z.
Before we proceed to further constructions from the theory of coverings we need to recall the notion of
homotopy. It formalizes the idea of deformations of continuous maps between topological spaces.

Definition 1.3.7. Let X, Y be two topological spaces and fy, fi : X — Y two continuous maps. These maps are homotopic
if there exists a continuous map F : X x [0,1] — Y called homotopy between fy and fi such that

F(P,0) = fo(P), F(P1)=fi(P) VPeX

We will use notation fy ~ f; for homotopic maps. Clearly it is an equivalence relation.

Example 1.3.8. A path on a topological space is a continuous map of the segment [0, 1] to this space. Let
0,1 : [0,1] — Y be two paths on the topogical space Y. A homotopy between these paths is a continuous map
of the squareI': [0,1] x [0,1] — Y such that

I(t,0) =yo(t), I(t1)=yi(t) VO<t<L1
In the particular case where the end points of the two paths coincide
70(0) =71(0) =P, yo(1) =1(1) =Q

for P, Q € Y it is convenient to consider homotopies with fixed end points imposing the following boundary
conditions

T(0,s) =P, T(l,5)=Q Y0<s<1.

In the more specific case P = Q we are dealing with loops on the space Y with the base point P. In this case I
is a homotopy between the two loops with fixed base point.

We now return to coverings.

Lemma 1.3.9. Let (X,Y,p) be a covering and y : [0,1] — Y be a path on the base of the covering.

1. Then for any P € p='(y(0)) there exists a unique path y : [0,1] — X on the covering space with prescribed initial

point (0) = P such that p((t)) = y(t) for all t € [0,1]. The path y is called the lift of y with prescribed initial point.
2. Let o : [0,1] — Yand y1 : [0,1] — Y be two homotopic paths on the base with the same initial and end points.

Denote 9o : [0,1] = X, 9o : [0, 1] — X their lifts with the same initial point P(0) = 91(0).Then
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Proof Let us first assume that the entire path y belongs to the open domain Up < Y from the definition of a
covering where P = y(0). Denote Up = X the component of the preimage p~!(Up) containing P. Then the lift
is obtained by

P = (pla,)” 0(0). (13.1)
In the general case we split [0,1] in small segments [t;_1,t], i = 1, ..., N, tp = 0, ty = 1 such that y; :=
VIt © Uy~ Such spltting always exists due to compactness of the segment [0, 1]. Then, following the
above procedure we construct the lift of y; with the initial point P, the lift of y, with the initial point = the end
point of y1 etc.
Let us now consider a homotopy I'(t,s) between the paths y¢ and y; with fixed end points

['(t,0) =yo(t), TI(t1)=yi(t), T0,s)=P T(1,5)=Q.
We represent it as a family of curves depending on the parameter s € [0, 1]
ys(t) =T(t,s), te]0,1].

All these curves have their initial point at P and the end point at Q. Denote 75 : [0,1] — X the lift of the path
y, with the initial point P and define a map I": [0,1] x [0,1] — X by

['(t,s) = Ps(t).

By definition it satisfies

pol =T
Let us prove continuity of this map. First, it is continuous for sufficiently small t. Indeed, since I'(0,s) = P
there exists € > 0 such thatI'(t,s) € Up for 0 < t < eand any s € [0, 1]. So the lift of the curves y,(f) for0 <t < e
can be obtained by

P68 = (plg,) " (rs(t)

(cf. eq. (1.3.1)) hence the continuity on [0,€) x [0, 1].

Suppose that the set of points (t,s) € [0,1] x [0, 1] where I fails to be continuous is non-empty. Denote t; the
lower bound of those values of ¢ for which [ is not continuous for some s = s,. We already know thatty > € > 0.
Denote R = F(Ato,so) = Y5 (to), R = f(to,so) = 7750(1?0); Let Ug Y and U = X be open neighbourhoods of the

points R and R respectively such that the map p : Ug — Ug is a homeomorphism. Choose €’ > 0 such that
[(t,s) € Ug for |t — to| < €, |s — so| < €. As the curve Y (t) passes through the point R it must have the form

Polt) = (Pla,) " (s (1)

for |t — ty| < €. Take ty — € < t; < tg so that P, (t1) € Ug. The map [ is continuous at the point (,59). So there
exists 6 > 0 such that P5(t1) = I'(t1,s) € Ug for |s — so| < 6. Assume additionally that 6 < €’. Then

f(t,s) = (plg,) " (T(Ls))

for [t — to| < €', |s — so| < 6 hence it is continuous in this region. This contradicts the assumption about (to, o).
Thus I is continuous everywhere on [0,1] x [0, 1].

It remains to prove that ['(1,s) = Q for s € [0,1]. Indeed, f(1,s) is a continuous path but it must belong to
p~1(T(1,5)) = p~1(Q). The latter set is discrete hence I'(1,s) = 7¢(1) = Q that implies that I'(1,1) = y1(1) =
Po(1). O
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Remark 1.3.10. The above Lemma is a particular case of the Covering Homotopy Theorem. Namely, given a
covering (X, Y, p) and two continuous maps f : Z — Y and f : Z — X of a topological space Z in a suitable class
satisfying p o f = f and, moreover, a homotopy

F:Zx[0,1] =Y, Flzxo=f

then there exists a unique covering homotopy
F:Zx[0,1] - X satisfying Flz.0) = f.

For the proof see e.g. [26].

Using the operation of lifting paths from the base of a covering to the covering space we now define
monodromy transformations acting on the fiber over a given point in the base.

Definition 1.3.11. Let (X, Y, p) be a covering and Py € Y a point on the base. Monodromy transformations are bijections
oy of the fiber F = p~1(Py) defined for any loop y : [0,1] — Y with y(0) = y(1) = Po. Namely, for any given point
Qe p~1(Po) we put 0,,(Q) = Q" € p~1(Po) if Q' = P(1) is the end point of the lift  of the loop y with the initial point
7(0) = Q.

Due to Lemma the monodromy transformation o, depends only on the homotopy class of the loop y with
the base point Py. To put this observation into a proper algebraic setting we need to recall the definition of
fundamental group of a topological space.

Elements of the fundamental group 71 (Y, Py) are equivalence classes of loops y : [0,1] — Y, y(0) = y(1) = P
wrt homotopies with fixed base point Py. The product of two loops 1, y» is the loop that we denote y1)»
defined in the following way

y1(28) for0 <t <
(ray2)() = { ya(2t—1) ford<t<

The inverse of a loop y is the same loop run in the opposite direction

yl(t) :=y(1—1t), tel0,1].

The unit of the group is the homotopy class of the constant loop y(t) = Py.

According to the definition the fundamental group depends on the choice of the base point. But for a

connected space Y the fundamental groups 711 (Y, Py) and 71 (Y, Qp) are isomorphic for any pair of points Py, Qo.
An isomorphism 71 (Y, Qo) — m1(Y, Py) is established by choosing a path from Py to Qp. It depends only on the
homotopy class of the path with fixed end points.
Example 1.3.12. The fundamental group of the unit disk D = {|z| < 1} is trivial, 771 (ID, {0}) = 1. A homotopy
of a loop with the base point 0 to the trivial one can be obtained by using the contraction z — tz, t € [0,1]
of the unit disk to the central point. In a similar way the complex plane can be contracted to one point so
71 (€, {0}) = 1.

Contractions appear as the simplest example of homotopy equivalence between topological spaces.

Definition 1.3.13. Two topological spaces X and Y are homotopy equivalent if there are two continuous maps f : X — Y
and g§:Y — Xsuchthat fog ~idyand go f ~ idx.

Homeomorphic spaces are homotopy equivalent but not vice versa. The simplest example is the unit disk
an the space consisting of one point. The map f : ID — pt maps the disk to the point and g : pt — {0} e D is
an embedding of the point in the disk. The superposition f o g is the identity map of the point to itself. The
homotopy F : D x [0,1] — ID between g o f and the identity map ID — ID can be constructed as F(z,t) = tz.
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Exercise 1.3.14: Prove that the punctured plane C* is homotopy equivalent to the unit circle S! = {|z| = 1}.

Exercise 1.3.15: Let f : X — Y be a continuous map of topological spaces. Choose a point Py € X and let
Qo = f(Py). Define a map

fe (X, Po) = (Y, Qo) fuy(t) = f(y(b)).

Prove that the map f, is well defined and it is a group homomorphism.

Exercise 1.3.16: Let (X, Y,p) be a covering. Choose a point Py € Y in the base and let Qp € p~!(Py). Prove that

ps - (X, Qo) — 71 (Y, Po)

is a monomorphism.

Exercise 1.3.17: Let the maps f : X — Y and g : Y — X establish a homotopy equivalence between the spaces
X and Y. Prove that the fundamental groups 7t1(X, Pg) and 7t1(Y, Qo) where Qp = f(Py) are isomorphic.

Definition 1.3.18. A connected topological space is called simply connected if its fundamental group consists only of the
unit element.

In other words, every loop on a simply connected space is homotopic to the constant one.

The Riemann surfaces C, ID, H are all simply connected. More generally, if a space is homotopy equivalent
to a point then it is simply connected. The Riemann sphere P! is an example of simply connected space that is
not homotopy equivalent to a point, see [26] for the proof.

Example 1.3.19. The simplest example of a non-simply connected space is the circle S! = {z € C| |z| = 1}. Take
the loop

y:[01] =8, y(t) =™, y(0) =y(1) =1
The homotopy classes of this loop and of its powers
)/n(f) _ eZm’nt’ ne?z
are pairwise distinct and any other loop on S! is homotopic to one of these. Thus

m (S, {1}) ~ Z.

Proofs of the above statements using universal coverings will be given below, see Example 1.3.29.

Let us return to monodromy transformations. Recall that for any loop ) on the base Y of the covering
(X, Y,p) with the base point Py we have constructed a bijection of the fiber F = p~!(Pp) onto itself. Denote it
u(y) € Aut(F). The monodromy transformation p(y) depends only on the homotopy class of the loop y with
fixed base point Py. We obtain a map

p o 11(Y, Py) — Aut (F). (1.3.2)

Here and below Aut(F) is the set of bijections F — F. It has a natural group structure defined by superposition
of bijections.

Proposition 1.3.20. The map (1.3.2) is an anti-homomorphism of the groups that is, for any a, b € 11(Y, Py) we have

u(ab) = p(b)u(a). (1.33)
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Proof easily follows from the above definitions. O

We will often omit “anti” if there is no confusion.

Definition 1.3.21. The (anti)homomorphism (1.3.2) is called the monodromy of the covering (X, Y, p).

Example 1.3.22. To compute the monodromy of the covering p : D — D of the punctured disk D = {0 < |z| < 1}
toitself, p(z) = z" (see Example 1.3.5 above) we have to study the behaviour of branches of the algebraic function
p~Y(z) = {/z under analytic continuation along the loop y(t) = re?™, 0 <t < 1 for some 0 < r < 1 thatis a
generator of the fundamental group 71;(D, {r}) = Z. Choose the first branch in such a way that

2mit

(P (1)), = rMe .

Passing from t = 0 to t = 1 we obtain the second branch

2mi(t41)

(P (1)), = r'/me

and so on up to the n-th branch
1/71 2mi(t4+n—1)

P r®)), =r'"e
One more step in the analytic continuation takes us back to the first branch. We conclude that, with the chosen
labelling of the branches the monodromy p(y) is the cyclic permutation1 — 2,2 — 3,...,n—1—n,n— 1. In
the theory of symmetric group S, such a permutation is called a cycle of length n. Itis denoted by (12...1) € S,,.

Example 1.3.23. For the covering p : C — C*, p(z) = ¢* over the punctured complex plane (see Example
1.3.6 above) we have p~1(z) = logz. Using the well known formula log(ze?™) = logz + 27ti we conclude that
monodromy u(y) along the generator y(t) = €™ of the fundamental group 7;(D, {1}) = Z acts on the fiber
F=Zbyshiftsn—»n+1VneZ.

Definition 1.3.24. The monodromy representation (1.3.2) is called reducible if there exists a nonempty subset in the fiber
p~1(Po) different from the fiber itself and invariant wrt to the image of u. Otherwise it is called irreducible.

It is easy to see that reducibility/irreducibility of monodromy does not depend on the choice of the point Py
in the base of the covering.

Remark 1.3.25. Irreducibility of the monodromy representation u implies that the bijections from the image of
u act transitively on the fiber, and vice versa. Recall that action of a group on a set is called transitive if for any
pair of points x, y in the set there exists an element of the group that maps x to .

Let (X, Y, p) be a covering of finite degree 1 and u its monodromy representation.
Lemma 1.3.26. The covering space X is connected if and only if the monodromy (1.3.3) is irreducible.

Proof. Assuming irreducibility of the monodromy let us prove the connectivity of X. It suffices to prove that
any point Qp € p~!(Py) can be connected with any other point Q € p~!(P) for an arbitrary P € Y. To this end let
us choose a path y < Y in the base from P to Py. Denote 7 the lift of y to the covering space X with the initial
point Q. Denote Q € p~!(Py) the final point of 7. Due to transitivity of the monodromy there exists a loop
6 c Y starting and ending at Py such that its lift § that begins from Q has Qj as its end point. The composition
)4 $ connects Q with Q.

Conversely, assume that X is connected. Choose a pair of points Qp, Qf € p~'(Pp). Let ¢ < X be a path
connecting Qo with Qf. The projection p(0) is a loop on Y such that the monodromy u (p(0)) interchange Qo
with Q. O
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Definition 1.3.27. A covering (X, Y, p) is called universal if the covering space X is connected and simply connected.

Let (X, Y, p) be a universal covering. We will now establish a one-to-one correspodence between points of
its fiber and elements of the fundamental group of the base.

Proposition 1.3.28. Choose a point Py € Y on the base of the universal covering and another point Qo € X satisfying
p(Qo) = Po. For any loop y € m1(Y, Py) define a point Q, € p~'(Py) by the monodromy action on Qo

Qy = p(»)(Qo)-

The map
(Y, Po) = p~'(Po), ¥—Q (1.3.4)

is one-to-one. It satisfies

H()/l)(Q)’z) = Q)/z)/l' (135)

Proof Let Q € p~1(Py) be any point. It can be connected with Qp by a path p, (0) = Qo, (1) = Q. The
projection y = p(7) is a loop on the base with the base point Py. Then Q = Q,.. So the map (1.3.4) is surjective.
Let us now prove injectivity of the map (1.3.4). Suppose Q, = Qo for some y € (Y, Py). That means that
the lift < X of the loop y with the initial point Qg returns to Qo, i.e. it is a loop. As the covering space X
is simply connected the loop 7 is homotopic to the constant one. Projecting this homotopy to Y we obtain a
homotopy between y and the constant loop. Thatis, y ~ e.
Thelast pointisabouteq. (1.3.5). Iteasily follows from the property (1.3.3) of the monodromy representation.
0

Example 1.3.29. The covering

p:R—S, xe™

of the real line over the unit circle {|z| = 1} < C is universal. The fiber over the point z = 1 consists of all
integers Z — IR. Use this point as a marked point Py on the base and choose the point x = 0 as the marked
point Qy in the fiber over Py. For the loop y(t) = ¥, t € [0,1] we have p~1(y(t)) = t as the lift starting at Q.
Hence Q, = 1. In a similar way for the n-th power of the loop y

)/n(f) _ eZTu’nt’ ned

we have Q,» = n. This gives a one-to-one correspondence between the infinite cyclic group generated by the
loop y and the fiber over the point z = 1. According to Proposition this implies that the fundamental group of
the circle coincides with this infinite cyclic group i.e., 71 (S!, {1}) ~ Z.

Exercise 1.3.30: Compute the fundamental group of the n-dimensional torus T" = S! x S! x - -+ x S! (n times).

Example 1.3.31. The covering p : C — C*, p(z) = €* over the punctured complex plane (see Example 1.3.6) is
universal. Repeating the arguments from the previous Example we conclude that 71 (C*, {1}) ~ Z. This is not
a big surprise as the punctured complex plane is homotopy equivalent to the unit circle; we leave as an exercise
for the reader to construct explicitly such a homotopy equivalence.

The story becomes much more involved for the complex plane with two or more punctures. The funda-
mental group of the complex plane with K punctures is the free group with K generators. We will denote it by
Fx. Elements of the group are words made of symbols a1, . .., ax and a;° 1., alzl. The product of two words
is defined by concatenation: we write the first word on the left then continue with the second one on the right.
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One rule is to be imposed: having in a word two neighboring symbols a; a:l or a:lai we just erase them. For
example,

alaz_lal X al_lazal = aqay.

The unit is the empty word and the inverse to the word af L.atisal . .af. For K = 1 one obtains the infinite
cyclic group ¥1 ~ Z. For K > 2 the group Fk is non-abelian.
So, the claim is that

m (C\({z1} v -~ U {zk}), z4) ~ Fi (1.3.6)

where z; # zj fori # j, z4 # ziforanyi = 1,...,K. To establish the isomorphism (1.3.6) we choose loops a4, . . .,
ak on the punctured plane as follows. The loops must have no pairwise intersections either self-intersections
except for the common point z,; the loop a; has inside only one puncture z; it goes around it in the anticlockwise
direction. The homotopy classes of these loops correspond to the generators of the free group

1 (C\({z1} U --- U {zx}), 24) 2 @ < a; € Fx.

To justify the above statement for K > 2 we will construct a universal covering over the complex plane with
K punctures and describe the action of the fundamental group on the fiber. We will do like it was done above
for the case of complex plane with one puncture, namely, we replace the complex plane with K punctures by a
homotopy equivalent space that is bouquet of K circles, see Figure 1.9 for the case K = 2. Construction of the
homotopy equivalence is left as an exercise to the reader. The fundamental groups of the punctured plane and
of the bouquet are isomorphic so we will be computing the latter.

Figure 1.9: Generators of the fundamental group of complex plane with two punctures

The bouquet is not a manifold for K > 2. Nevertheless Proposition 1.3.28 remains valid also in this case.
The universal cover of the bouquet of K circles is an infinite graph with no cycles (such graphs are called trees)
with all vertices of valency 2K, see Figure® 1.10 for K = 2. The edges of the graph are oriented and labelled by
symbols ay, ..., ax (on Figures 1.9 and 1.10 for K = 2). At every vertex there are K incoming edges labelled
by a1, ..., ax and K outgoing edges with the same labels. The covering map from the graph to the bouquet
of oriented circles acts as follows: the vertices of the graph go to the common point z,, any edge labelled by
a; goes to the i-th circle according to the orientation. Choose a vertex of the graph. Then the lift of a product
“f s af of s loops with the initial point at the marked vertex will be a walk of length s on the graph that starts

from the marked vertex and goes successively along the edges a:f, cee aii in positive or negative directions
according to the signs +. The isomorphism (1.3.6) readily follows from this description of the lift.

Exercise 1.3.32: Compute the fundamental group of the Riemann sphere with K punctures.

8This graph is perhaps the most known example of Cayley graphs. There are many ways to draw this graph; we have chosen the one
found in the book by W.Fulton [26] as the most appropriate one to illustrate ideas of topology of coverings.



1.3. COMPACT RIEMANN SURFACES: A TOPOLOGICAL VIEWPOINT 53

A4
Ye
=

Figure 1.10: Universal covering of figure-eight

Remark 1.3.33. From Theorem 1.3.34 it follows that the universal covering of the complex plane with K punctures
is a simply connected Riemann surface. So, according to the Uniformization Theorem (see Section 1.1.2 above)
it must be biholomorphically equivalent to the one of three: P!, C or the upper half plane H. For K = 1 we
already know that the universal covering of the punctured complex plane is C. It turns out that the universal
covering of the complex plane with K > 2 punctures is IH. For more details see below Section ??.

Theorem 1.3.34. Let M be a smooth connected manifold. Then there exists a smooth manifold M and a smooth locally
diffeomorphic map p : Ml — M such that the triple (M, M, p) is a universal covering. Such a covering is unique up to an
equivalence in the sense of Definition 1.3.3. A similar statement holds true for connected complex manifolds M. Then the
covering space M is a complex manifold as well and the covering map p is holomorphic and locally biholomorphic.

Proof Let Py € M be an arbitrary point. We define M as the set of equivalence classes of paths y : [0,1] — M
such that y(0) = Py. Two paths y and 7 are called equivalent if 77(1) = y(1) and they are homotopic with fixed
end points. Denote [y] the equivalence class of a path y. The map p : M — M is defined as follows

p(lyl) =y@).

Observe that the preimage p~!(P) of the point Py can be naturally identified with the fundamental group
111 (M, Py). Therefore it is at most countable as it follows from the following Lemma.
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Lemma. The fundamental group of any manifold is at most countable.

For the proof see e.g. [21].

We now continue the proof of Theorem 1.3.34 by introducing a topology on the set M. For any point P € M
we define a family of admissible pairs (U, €) where U is a chart of an atlas on M with local coordinates xi,. ..,
x, such that P € U and a positive number € satisfies the following condition: the ball B.(P) of radius € centered
at P

Be(P):={>.(xi —x)? <€}, 2 =x(P), i=1,..,n
i=1

is entirely contained in U. Here n is the dimension of the manifold M. Now, let y be a path on M with
7(0) = Pg and let (U, €) be an admissible pair for the point y(1). Define a subset V(i) ()) = M consisting of the
equivalence classes of the paths of the form yp where p is a radial path inside the e-ball centered at y(1) with
the initial point y(1). Here the product of the paths y and p is defined like it was done above for the product
of loops, namely, we first go along y from y(0) = Py to (1) = p(0) then proceed along p till p(1). Clearly the
subset V(¢ () depends only on the equivalence class of the path . For any pair (U, €) admissible for y(1) the
subset V(;¢) () will be considered as an open neighbourhood of the point [y]. We leave as an exercise for the
reader to verify that this collection of open subsets defines a base’ of topology on M.
For any pair (U, €) admissible for a point P € M the full preimage of the e-ball centered at P is equal to

P BP)= | Vueo® (1.3.7)
[ylep=1(P)

where by definition p~}(P) = {[y] | ¥(0) = Py, y(1) = P}. Itis easy to see that

Ve (r1) n Ve (y2) = & it 1] # [r2]-

Thus the full preimage (1.3.7) is a disjoint union of open subsets V() (y) with y € p~!(P). Finally we observe
that the map

P Ve (y) — Be(y(0))

is one-to-one and, therefore it is a homeomorphism. We conclude that (M, M, p) is a covering indeed.

Let us now prove that the space M is connected. We have to show that any pair of points [y1], [12] can be
connected by a path. It suffices to prove it for the particular case of constant path y; = yig where yiq(t) = Po.
Then the needed path T : [0,1] — M has the form T'(s) = [y2(st)].

It remains to prove that M is simply connected. A loop with the base point at the constant path yiq can be
considered as a map of the square to M

I'(t,s)eM, (t5s)e[0,1] x[0,1] satisfying I'(t,0)=T(t,1)=Py and TI(0,s)=Py.
Take the map of the unit cube with the coordinates (¢,s,r) given by
I'(t,s,r) =T(rt,s), rel0,1].

It provides a homotopy between the original loop (for r = 1) and the constant loop I'(t,s,0) = Py. Thus
(M, [yial) = 1.
Uniqueness of the universal covering follows from

% A base of topology on a set X is a collection of subsets V,, = X covering X such that for any pair V,, Vg with non-empty intersection
and any point x € V4, n Vj there exists Vy, such that x € V), = V,; n Vj. Using a base one can introduce topology on the set X defining the
open subspaces as unions of arbitrary families of elements of the base. We refer the reader to the book [?] for further details.
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Lemma 1.3.35. Let (Ml,M, p1) and (Mz,M, p2) be two universal coverings. Fix a point Py in the base and choose points
Py € My and Py € M such that p1(P1) = p2(P2) = Po. Then there exists a unique map f : My — M, satisfying
p2 o f = p1 such that f(P1) = P,. Moreover, this map is a homeomorphism.

Proof LetP e M; be an arbitrary point. Choose a path y; < M, connecting Py with P and lety = p1(y1) € M be
its projection to the base. Its initial point is y(0) = Py. Denote > — M) the lift of y to M, with the initial point
¥2(0) = Py. Put f(P) := y2(1). The choice of the lift y; is unique due to the condition f(P;) = P».

Due to connectedness and simply-connectedness of M; the construction of f works for any point P € M;
and it does not depend on the choice of the path y;. Observe that p1(P) = p2(f(P)). That is the map
f: M, — M, satisfies the condition p2 o f = p1 from Definition 1.3.3 of equivalence of coverings. The inverse
map f~!: My — M; can be constructed in a similar way. Therefore the map f is one-to-one. Let us now prove
that it is continuous.

Let U, < M, be an open neighbourhood of f(P). For a sufficiently small € > 0 we can find an open e-ball
B:(Q) = M centered at the point Q := p1(P) = p2(f(P)) and two open neighbourhoods V; M and V, = M,
containing the points P and f(P) respectively such that the projections

p1: V1 ad BE(Q) and p2: V2 i BE(Q)

are homeomorphisms. Put
U1 = V1 N pl_l(pz(lb)) C Ml.

It is an open subset in M;. Obviously it contains the point P. We will now prove that f(U;) < U,.

Let P’ € U be an arbitrary point. In order to compute f(P’) we choose a path y; = M; connecting P; with
P’ in the following way

Vi = 1P
where p; < V7 is the lift of the radial path p in B(Q) from Q = p1(P) to p1(P’) with the initial point P. Recall
that p1(P') € p2(Uz). Now we have to lift the path p;(y}) = yp to M, with the initial point P,. The resulting lift
has the form
vh =202 where p,=p,'(p) N Va.

Hence the end point p,(1) = f(P’) belongs to Vo n U,.

The continuity of the inverse map f~! can be proved in a similar way. This completes the proof of Lemma.

0

We have completed the construction of the topological space M of the universal covering as well as of the
covering map p : M — M that is a local homeomorphism. We have now to prove that the universal covering
space over a smooth manifold is a smooth manifold itself. Similarly if the base is a complex manifold then so
is the universal covering space. This follows from

Lemma 1.3.36. A covering space X over a complex' manifold Y inherits a structure of complex manifold. With respect
to the constructed complex structure the covering map p : X — Y becomes locally biholomorphic.

Proof Let (V,¢g)pep be a complex atlas on Y. For any point P € Y and any f € B such that P € V; denote
Upg = Up n V. We obtain a new complex atlas (Ugﬁ, ¢ﬁ|um>P Y pep on Y. The components of the preimages
cY, pe

p~! (Upg) with the coordinate maps Q — ¢plups (P(Q)) provide a complex atlas on X. This structure is second-
countable since the fiber of the covering is at most countable. The Lemma and, therefore the Theorem 1.3.34 is
proved. O

10Needless to say that the construction works for smooth real manifolds as well.
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Exercise 1.3.37: Let G < m1(M, Py) be a subgroup of the fundamental group of a connected manifold M. Prove
that there exists a covering (Mg, M, p) such that 7 (Mg, Qo) ~ G where Qg € p~!(Py).

We will now define an action of the fundamental group of the base on the universal covering space. Let us
first recall some basics about group actions.
Let G be a group and X a topological space.

Definition 1.3.38. 1. We say that the group G acts on the space X if for any g € G there is a homeomorphism
T,: X — X satisfying Ty 0T, =Tgyq, Vg1, $2€G. (1.3.8)

In particular T,=id. Here e is the unit of the group.

2. A point x € X is fixed for the map T if T¢(x) = x. The action (1.3.8) is called fixed points free if T, has no fixed
points for g # e.

3. The group G acts discontinuously on the space X if for any x € X there exists an open neighbourhood V, 3 x such
that To(Vy) n'Vy = I forany g # e.

Exercise 1.3.39: Let the group G act discontinuously and fixed points free on the space X. Define the quotient
space X/G in the following way. Points of X/G are orbits

O, = | Ty

geG

To introduce a base of topology on X/G define subsets

V=|J0o,cX/G

yeVy

for any x € X. Here the open neighbourhood V, of the point x is as in the part 3 of the above Definition. Prove
that the triple (X, X/G, p) where the map p : X — X/G is given by

p(x) = Oy

is a covering.

Example 1.3.40. Define an action of the group of integers on the real line by
Rax—x+n neZ. (1.3.9)

Clearly this group action is fixed point free. For any interval I of the length less than 1 and any nonzero integer
nwehave I nI+n = . So the group Z acts on R discontinuously. The quotient of the real line over this
action coincides with the quotient R/Z of the additive group of real numbers over the subgroup of integers.
As a real one-dimensional manifold it can be identified with the unit circle |z| = 1 on the complex z-plane by
the map
7 = eZm‘x.

So the factorization map R — R/Z coincides with the covering of Example ??.

Another way for the identification of the quotient IR/Z with the circle is the following one. Consider
the segment [0,1]. In the equivalence class of any non-integer real number there is a unique representative
belonging to the inner part of the segment. Integers have two equivalent representatives at the end points of



1.3. COMPACT RIEMANN SURFACES: A TOPOLOGICAL VIEWPOINT 57

the segment. Thus to obtain the set of equivalence classes wrt the action (1.3.9) one has to identify the end
points of the segment resulting in a circle.

The above construction is the simplest example of a fundamental domain for a group action on a topological
space X. Roughly speaking a fundamental domain is a subset D — X of unique representatives of all orbits of
the group action. For the group action (1.3.9) the choice D = [0, 1) is fine. In many cases however it is more
convenient to slightly modify the definition assuming that D is a closed subset containing representatives of
all orbits containing no equivalent pairs of points in the internal part of D but some repetitions allowed on the
boundary. The segment D = [0,1] fits into this modified definition. In sequel all examples of fundamental
domains will also be treated according to the modified version of the definition.

Example 1.3.41. An action of the group Z @ Z on the real plane R? will be defined by
(x,y)— (x+my+n), mneZ. (1.3.10)
The quotient R?/Z @ Z can be identified with the two-dimensional torus T? = S! x S! by
(x, y) > (27, ¢2TiY),

For the fundamental domain (see the previous Example) one can choose the unit square [0,1] x [0,1] = R2.
The points on the opposite sides of the square must be identified as

(x,0) ~(x,1), 0<x<1, Oy ~(Ly), 0<y<l

in order to obtain the set of all orbits of the action (1.3.10). After gluing together the opposite sides of the square
we again obtain a torus.
The above construction can be easily generalised to multidimensional tori.

We will now explain an important construction of an action of the fundamental group of a manifold on its
universal covering space.

Theorem 1.3.42. Let M be a connected smooth manifold and (M, M, p) its universal covering. Then the fundamental
group of M acts on M by diffeomorphisms

Ty MHM Vy € 7'(1(M,P0)

discontinuously and fixed points free. Here Py € M is an arbitrary point. If M is a complex manifold then the maps T,
are biholomorphic.

Proof Choose a point Qy € M such that p(Qp) = Py. Connect Qo with a given point Q € M by a path 4. Let
vo = p(Po) be its projection to M. For any loop y € 7t1(M, Py), define a new path

Yo =77Ye
Let y{, be the lift of y, with the initial point Qp. Denote Q' the end point of 7, and put
TV(Q) = Q/-

As the space M is simply connected the resulting point T, (Q) does not depend on the choice of the path Y.
It depends only on the homotopy class of the loop y. The superposition T, (T,,(Q)) for two loops y1, y2 in
111(M, Py) can be obtained by lifting the path y1y,yq. Therefore

T, 0Ty, =Ty,
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In particular T,— = (T,)~*. Thus for any y € 71;(M, Py) the map T, : M — M is a bijection. Contiinuity of this
map as well as of the inverse map can be proved in the way similar to the proof of continuity of the map f
in Lemma 1.3.35. If Q is a fixed point of T), then the paths yg and y yo are homotopic with fixed end points.
Hence y is homotopic to the constant loop. This implies that the action of the fundamental group 71 (M, Py) on
the universal covering space M is fixed points free.

It remains to prove that it acts discontinuously. To this end for a given point Q € M we choose an open
neighbourhood V/(q) of its projection p(Q) such that the full preimage p~" (V/(g)) is homeomorphic to V,,q) x F.
Points of the fiber F of the universal covering can be identified, via the monodromy action, with elements of
the fundamental group. Let Ug be the component of the preimage p~' (Vo)) containing the point Q. Then
the images T, (Up) for y € (M, Py) will have no intersections. O

We will return to these constructions in Section ?? considering universal coverings of Riemann surfaces.

1.3.2 Riemann surface of an algebraic function: the general case

Let us return to the study of Riemann surfaces of algebraic functions. For an irreducible monic polynomial
F(z,w) = w" + a1 (2)w" ' + -+ - + a,(z) (1.3.11)
of degree n in w introduce a finite set of critical points Crit = C taking zeros of the discriminant of F

Crit = {z e C| Ap(z) = 0}.

Denote )
C =C\n ! (Crit) (1.3.12)
where C is the complex algebraic curve
C = {(z,w) € C* | F(z,w) = 0} (1.3.13)
and
n:C—C, mn(zw)=z (1.3.14)

is the projection. The punctured curve C has a natural structure of a one-dimensional complex manifold.

Lemma 1.3.43. C is a n-sheeted covering space of C\Crit with respect to the projection
n:C — C\Crit. (1.3.15)

The map Tt is defined in (1.3.14).

Proof Let z be a point in C\Crit. Then for every point P € 77!(z) one can use z as a local coordinate. In other
words, there exists a positive number ep and a neighbourhood Up of P such that the map

TU : Up — {‘Z—Zo| < €p}
is biholomorphic. Put

€= min e€p
PETl_l(Z(])
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and denote U = {|z — zo| < €}. Order the points Py, ..., P, in w~!(zp). Then the preimage 7~!(U) has the form

=

ntU) =\ U, U= U{(eri(z))}

i=1 zel

where w;(z) is the branch of the algebraic function w(z) near P;. The biholomorphic map
p:n N U) - Ux{1,2,...,n}, (z,wi(z)) — (z,i)

is the needed homeomorphism. O

Choose a complex number z, € C\Crit.
Definition 1.3.44. The monodromy (anti)homomorphism
iy (C\Crit, zy) — Aut (17 (z4)) (1.3.16)

of the covering (1.3.15) (see the Definition 1.3.21) is called the monodromy of the algebraic function w(z) defined by the
polynomial equation F(z, w) = 0.
The preimage 7!(z,) consists of n distinct points. Ordering them in an arbitrary way

(e, W1 (24)), o (22, W (24))
we can rewrite (1.3.16) as a homomorphism into symmetric group
p = 11 (C\Crit, zy) — Sp. (1.3.17)
Recall that a change of the base point z. gives rise to an equivalent representation.
Example 1.3.45. For the hyperelliptic curve

k
C={(z,w)eC2|w2=n(z—a,~)}, aj#a; for i#j

i=1

the set Crit consists of the branch points
k
Crit = | J{ai}.
i=1
The punctured curve
k
¢ =\t 0}
i=1
is a two-sheet covering of C\Crit.
For a loop y < C\Crit encircling just one branch point the monodromy along y changes the sign of
w(z) = Hile(z — a;). Thus

p(y) = (12) € 5,

is the permutation between 1 and 2. For a loop encircling two branch points the monodromy is trivial. More
generally, for a loop y encircling m branch points

) = { (12) € S,, m = odd

ide S,, m = even.
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Let f = f(z,w) be a function on C. Restricting it at the points of the preimage 7~ (z) ordered in some way
we obtain n numbers f(z., w1(zx)), - .., f(2+, Wu(24)). We say that f is monodromy invariant over z, if, for any
loop y € m1(C\Crit,z,) we have

f(za, Wu) ) (25)) = f(ze,wi(z4)) Vie{l,2,...,n}.

For example the symmetric functions
w1 (z*)k + et wy, (z*)k

for any integer k are always monodromy invariant. If f(z, w) is locally holomorphic near the points in 7171 (z)
then the above invariance holds true over z in some neighbourhood of z,. Finally, if f(z, w) is meromorphic on
C and monodromy invariant over z,, then, applying analytic continuation we obtain monodromy invariance
over any point z € C\Crif. In this case we will simply say that the meromorphic function f is monodromy
invariant.

Proposition 1.3.46. Assume irreducibility of the monodromy (1.3.16). Let f = f(z,w) be a meromorphic function on C
growing at most polynomially at the punctures in 7= (Crit) as well as at infinity. Suppose f is invariant with respect
to the monodromy representation. Then f = f(z) and this is a rational function of the complex variable z.

Proof Because of the monodromy invariance and transitivity of the monodromy, the function f(z, w) depends

only on z. Therefore it is a meromorphic function on C\(Crit U {c0}). Due to the assumptions about the
polynomial growth, it has removable singularities (See e.g. []) at the points of the set Crit U {o0}. Hence it can

be extended to a meromorphic function C. So it must be a rational function. O

We will now prove connectedness of C.
Theorem 1.3.47. For an irreducible polynomial F(z,w) the manifold C is connected.

Proof Suppose C is not connected. According to Lemma 1.3.26 it implies that the monodromy action is not
transitive. That means that there exists a partition

(1,2,...n}=Iu]

into two nonempty sets I = {i1,...,i,} and | = {j1,..., js}, p + g = n such that, for a given point z € C\Crit after
a suitable ordering of the points in the preimage 711 (z) the subsets

{(zwi(2),...,(zwi(2)} and {(z,w;(2)),...,(zw;(2))}
are both invariant with respect to the monodromy
711 (C\Crit, z) — Aut (n~1(2)) .
Let us assume the action of the monodromy on both subsets I and ] to be irreducible. Consider two polynomials
Fi=(w—w;y(z)...(w—-w;,(z)) and Fj=(w—-wj(z))...(w—wj(z)).

They are locally well defined and monodromy-invariant. We will now extend them onto C\Crit. Let z’ ¢ Crit
be another point. Connect it by a path y = C\Crit with z. The n lifts of y establish a one-to-one correspondence
between the sets 7~1(z) and 7~!(z'). Denote I’ and |’ the images of the subsets I and | with respect to this
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correspondence. They have the same cardinalities p and g respectively. These subsets are monodromy-invariant
with respect to the representation
i1 (C\Crit, z') — Aut (n~1(2)).

Analytically continuing the roots w;, (z), . . ., wj, (z) of the polynomial F; along the lifts of y that start at the points
of I we obtain the needed extension of F; to the point z’. In a similar way we extend the polynomial F;. Due
to the above arguments about monodromy-invariance the resulting extensions do not depend on the choice of
the path y. So, according to Proposition 1.3.46 the coefficients of these polynomials are rational functions in z.
Clearly F = ag(z)F;F;. This contradicts irreducibility. In the more general case where the action of monodromy
on I and/or ] is reducible we split them into smaller subsets such that the monodromy acts irreducibly on each
of them. Repeating the above arguments we arrive at a factorization of F(z, w) into a product of more than two
factors. |

We now pass to the main point of this Section: to the construction of Riemann surface of an algebraic
function. We do it in the following way. Start from the open manifold C as in eq. (1.3.12). Then add to it a
finite number of points and introduce local coordinates on neighbourhoods of these points. The last step is to
compactify the resulting Riemann surface. To this end we add a finite number of points at infinity. Remarkably

all prescriptions for this construction are encoded in the monodromy of the covering C — C\Crit.

Theorem 1.3.48. Let C be the complex algebraic curve F(z,w) = 0 defined by an irreducible monic polynomial of degree

n in w. Then there exists a compact Riemann surface S and two holomorphic maps 2 : S — C,and @ : S — C,, onto the
extended complex z- and w-plane respectively such that

(i)
F((P),w(P))=0 VPeS;
(ii) the map .
p:8\&7(Crit u{w}) - C, P+ (z=2(P),w=w(P))
is biholomorphic;

(iii) if the algebraic curve C is smooth then S\2~1({0}) = C.

Let us begin with constructing the finite part Sgnite Of the Riemann surface; the infinite points will be
added later. We will follow the notations introduced in the beginning of this section. Let z be a zero of the
discriminant Ap(z). Choose a point z,, close to zy but away from Crit. Order in an arbitrary way the points in
the preimage 7t !(z,). Consider the monodromy transformation ¢ € S,,

01 Yzy) = 1 (zy)
generated by lifting the anticlockwise loop around zy. Decompose the permutation o into product of cycles

o = (il,...,ip)(jl,...,jq)"'(l],...,ls)

of thelengths p, g, ..., s,

ptq+-+s=n
corresponding to a partition of the set {1,2,...,n} into disjoint union of subsets {i1,..., 3}, {ji,...,jg}, ---,
{l1,...,1s}. Such a decomposition always exists and is unique [3]. For every such cycle we add to C a point.



62 CHAPTER 1. RIEMANN SURFACES

It will be a ramification point with respect to Z of the new Riemann surface Sgnite of the ramification index =
length of the cycle - 1. We will explain the construction for the first cycle (iy, ..., ).

In a sufficiently small neighbourhood of z, we have p branches w;, (z), ..., wj,(z). Anticlockwise analytic
continuation around zy permutes them cyclically

wi (20 + (z—20)e*™) = w;, (2)
wy, (20 + (2= 20)™) = w; (2)

wi,_, (20 + (z — z0)e®™) w;, (2)
wi, (20 + (z —20)e*™) = w; (2)

Take a punctured disk
D={teC|0<|t| <€}
for a sufficiently small € and consider the function

w(t) = wy (20 + ")

on D. Since w;, (zo + (z — 20)e¥™) = wj, (z) we conclude that @(1) is a single valued holomorphic function on
D. We obtain a holomorphic map
D—-C, t— (2047, @(1)). (1.3.18)

Dy={zeC|0<|z—z] <€}

and-the-degree-of the-through-map

D — Dy
equalsp— It remains to observe that w; (z) — wy when z — zj along radial directions, forany k =1, ..., p.
Here wy is a root of the equation F(zo, w) = 0. Therefore 7 = 0 is a removable singularity for the function @(7).
We define it as the new point Py € Sinite added to C. The map

. { (zo + 7, @(7)), T#0

D={teC||t|<e} - S, Py, -0

provides a chart on a neighbourhood of Py. Put
i(PO) = 20, ‘LD(P()) = Wy, 2 (Z() + Tp,ZT)(T)) =zo+ 1, @ (Zo + Tp,ﬂ)(T)) = "LT)(T)

It is easy to see that all properties of these maps formulated in the Theorem hold true. This completes the
construction for the first cycle in the decomposition of the monodromy o . For other cycles the construction is
identical, so we obtain a new point P; € Sginite for the second cycle etc. Then we proceed to other zeros of the
discriminant.

The last step is in compactification of the Riemann surface Sgnite. Denote C = 1/z the local coordinate near
the infinite point of C,. Let us rewrite the algebraic equation F(z, w) = 0 in the variables C, w taking

E(C,w) = NF (%,w)
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where N = max{degay(z),...,dega,(z)}. This polynomial is not monic in w so we do one more substitution
(cf. footnote 4 above) by introducing a new variable

w

N
w=wl = —
N

and define a new polynomial

(C ﬂ)) _CN(n 1)F <C C_N> CnNF (Z C_N> ; jN =]

monic of degree n in w. We can now proceed with analysis of the local monodromy o, € S, interchanging
the branches of the algebraic function w(C) as the result of the anticlockwise analytic continuation along a
small loop around the point C = 0. Factorizing o, into a product of cycles we obtain the prescription for
adding to Sinire SOMe points over the infinite point { = 0 of the extended complex plane C.. One important
observation about the local monodromy o, has to be taken into account. Namely, to the small loop |C| = €
around infinity running in the anticlockwise direction it corresponds the big loop |z| = 1/e running in the
clockwise direction. Hence the monodromy o, describes the clockwise analytic continuation of the branches
of the algebraic function w(z) along such a big loop. Let € be so small that the circle |z| = 1/e contains inside
all zeros z, ..., zx of the discriminant. Choose a point z, on the circle such that the segments connecting z..
with zg, ..., zx do not have common internal points. Order the zeros of the discriminant in such a way that
the segments follow in the anticlockwise direction, looking from their common point z,. . Running along the
i-th segment from z.. to a point close to z; then along a small loop around z; in the anticlockwise direction and
finally returning back to z, along the same segment we obtain a loop y; € m1(C\Crit, z,). Denote g; = u(y;) the
monodromy along the loop y;. Our claim is that

O = [UKGK,1 e 00]71 . (1319)

Indeed, the loop given by the circle |z| = 1/e run in the anticlockwise direction is homotopic to the prod-
uct yxyk—1...Yo. Inverting the direction we obtain the inverse of this element in the fundamental group
111 (C\Crit, z). This proves eq. (1.3.19).

We are now to prove that the constructed one-dimensional complex manifold S is connected and compact.
Connectednes immediately follows from Theorem 1.3.47. Let us prove compactness.

Let Q1, Qy, ...be an infinite sequence of points in S. Due to compactness of the Riemann sphere there
exists a subsequence Q;;, Qj,, . . . such that 2(Q;.) converges to some point z,inC for s — oo (it may happen that
z4 = 0. Let us first consider the case where z, is not a branch point wrt the map 2 that is at all points P}, P},

., P¥ of the preimage 27!(z,) the derivative of £ wrt the local parameter does not vanish. Then £ is locally
biholomorphic near every point P}, ..., P;. There exists at least one point P}“ such that its neighbourhood
contains an infinite number of points Q; . This subsequence of subsequence converges to P;‘.

Consider now the case where z,. is a branch point. Then the preimage consists of m < n points Py, ..., Py,
of multiplicities ki, ..., ky, respectively. Therefore for every j = 1,...,m there exists a neighbourhood u; of P i
such that the map

U\P; — {0 < |z — z0| < €}

for some € > 0 is a covering of degree k;. Repeating the above arguments we obtain a subsequence of

subsequence of points Q; € S convergent to P; for some j = 1,...,m. This completes the proof of compactness
of S.
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It remains to consider the case of smooth algebraic curves C. Let (2, wy) € C be a ramification point of the
ramification index p — 1. One can use the w-coordinate as a local parameter near this point. Another coordinate
is a holomorphic function of the local parameter on some neighbourhood of wy

zZ=12zy+ Z cr(w — wo)k.
k=1

Due to our assumptions the first nonzero coefficient is ¢,. Introduce a holomorphic function

1

Ck+
T(w) = c:,/p(w —wp) |1+ Z C—p(w — wp)¥
k=1 P

The inverse function is also holomorphic for sufficiently small |7|; denote it @(7). We have
z=z0+1, w=wy+P(1). (1.3.20)

So in this case we do not need to add new points as the function @(7) is holomorphic at t = 0 and @(0) = 0. As
the projection (z, w) — z has degree p near (29, wo) the local monodromy around z of the function w(z) defined
by (1.3.20) is a cycle of length p. The Theorem is proved. O

Example 1.3.49. Consider the algebraic function w(z) defined by equation
w? = z%(z + 1).

The discriminant is equal to 4z%(z + 1), so Crit = {0} U {—1}. The point (z = —1,w = 0) is a smooth point
of the corresponding algebraic curve C; it is a ramification point of the ramification index 1. Another point
(z = 0,w = 0) is a singular point of C. Near z = 0 the function w(z) has two branches wq2(z) = +zvz + 1.
The analytic continuation along the circle |z| = r, ¥ < 1 does not interchange these two branches. Therefore the
corresponding monodromy is the identity

id = (1)(2) € Ss.

So we have to add two points Py, P, to the punctured curve
Stinite = (C\{(0,0)}) U {P1} U {P2}
ft(P12) =0€C, p(P12)=(0,00eC

and these points are not ramification points of S with respect to 7t : S — C.
As we have only one branch point on C then, due to (1.3.19) there is also a branch point at infinity. The
monodromy around infinity interchanges the two branches of the algebraic function () defined by equation

w* =C+
Here
o e

Observe that this curve has a cuspidal singularity at ({ = 0,w = 0). According to the constructions of the
Theorem we have to add one point Py, to Sgnite and introduce a local parameter 7 near this point by

=12
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We obtain a function
@(1) = /1 4 12
holomorphic for |7| < 1. In the original coordinates we have

1

z=—=
2

and the function w has a pole of order 3 at P,

w=%\/1+12.

Itis easy to find a realization of the Riemann surface Ssinite as a smooth algebraic curve. To this end consider
the curve defined by the equation
W =z+ 1.

Obviously it is smooth. It has two points P;, = (z = 0,@ = +1) above z = 0. Define a map
P : Stinite = C,  p(z,@) = (z,z0).

It is biholomorphic for z # 0, co and it maps both the points P; and P to (0,0). Adding, like above a point P,
to Stinite We obtain a realization of S.

Example 1.3.50. Consider the hyperelliptic curve

2n+1
w? =2 a2 ap = H (z—2z), zi#z; for i#].

i=1
It has 2n + 1 branch points z = zi, ..., z = zp,41. The monodromy around every of these points is the
permutation (12) € S;. From eq. (1.3.19) using the obvious identity (12)> = id it follows that the monodromy
around infinity is the same permutation (12). Therefore the Riemann surface of the algebraic function w(z) has
one infinite point Py, and it is a ramification point of the ramification index 1. Like in the previous example we
introduce the local parameter near P, by

1
z = ;
The function z has a pole of order 2 at P, and the function
w=L\/1+a12+a T4n+2
] 1 2n+1

has a pole of order 21 + 1.

Example 1.3.51. Consider now a hyperelliptic curve with even number of branch points

2n+2
w? = 22" 2 f ., = H (z—2z), zi#z; for i#]
i=1
Applying again eq. (1.3.19) we conclude that the monodromy around infinity is trivial. Therefore the Riemann
surface of the algebraic function w(z) in this case has two infinite points P% and these are not ramification
points. That means that the local parameter 7 near this points coincides with = 1/z or
1

zZ=—.
T
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Thus the function z has two simple poles at the infinite points P and w has two poles of order 1 + 1

1
w=+ \/1+a11+ C Aoy T2, (z,w) HP}O.

—n+l

We conclude this section with three remarks.

Remark 1.3.52. The constructions we used in the proof of Theorem 1.3.48 are close to the Riemann’s original
approach to the idea of Riemann surface. Taking n copies of complex plane with cuts between the critical
points he glues the copies along the cuts where the rules of glueing are prescribed by the action of monodromy.
The simplest example of this procedure was already considered above in Section 1.1.1 in the construction of
Riemann surface of /z. Further examples will be considered below in Section ?2.

On this way Riemann arrived at the following important result.

Riemann Existence Theorem. Let z;, . . ., zx be distinct points of complex plane and
w: TK - Sn

an (anti)homomorphism of the free group with K generators to the symmetric group S, such that the image acts transitively
on the set {1,2,...,n}. Then there exists a n-sheeted Riemann surface with branch points at z1, . . ., zx and, possibly, at
infinity (see eq. (1.3.19) above) with the monodromy .

Exercise 1.3.53: Prove Riemann Existence Theorem for n = 2 and arbitrary K.

Exercise 1.3.54: Prove Riemann Existence Theorem for K = 1 and arbitrary n.

Remark 1.3.55. In this Section we have started from an irreducible polynomial equation F(z, w) = 0 to construct
what was called compact Riemann surface of the algebraic function w(z) defined by this equation. It turns that
any compact Riemann surface can be obtained in this way. The precise statement is given by the following
theorem.

Theorem. Let S be a compact Riemann surface. Then there exist two meromorphic functions z, w : 8 — C satisfying
the identity

F(z(P),w(P)) =0 YPeS

for some irreducible polynomial F(z,w). S coincides with the Riemann surface of the algebraic function w(z) defined by
the equation F(z,w) = 0.

The Theorem will be proven in Section 3.1.5 below.

Remark 1.3.56. The most powerful tool for computing the local monodromy of an algebraic function around a
critical point uses Newton polygons to obtain expansions of the branches of this function in Puiseux series. Let
us illustrate this procedure using the results of Example 1.4 above. Namely, we will describe the local structure
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of the Riemann surface associated with the algebraic curve (1.2.37) near the branch point z = 0. There were
obtained 8 different Puiseux expansions

1 23 23
wl(z):224+...,wz(z)zzz—k...,w?,(z): ﬁz%+z42%+ , wa(z) = \fZZ%—Z423+. ,
2i 2i
1 . 3 1 . 3
ws(z) = — V222 +IZZZ+...,W6(Z):_\/§ZE—ZZZZ+...,
.3 l 1 .3 1 1
wy(z) =iz P52 + ..., wg(z) = —iz 2+§ZZ +...

of solutions w(z) to the equation F(z,w) = 0 of degree 8 in w. They correspond to 8 sheets of the Riemann
surface. Label the branches of w(z) according to the order they were written above. The local monodromy
z + ze*™ around z = 0 is given by the permutation

1 23 45 6 7 8
1 2 6 53 48 7))

It factorizes into product of four cycles
(1)(2)(3645)(78).

Thus there are four points on the Riemann surface over z = 0, two of them regular i.e. of multiplicity 1, one
point of multiplicity 4 and one of multiplicity 2.

Exercise 1.3.57: Prove that the monodromy group of the Riemann surface of the algebraic function defined
by a generic polynomial equation of the form (1.2.27) coincides with the complete symmetric group S, . Hint.
Show that the branch points of such a surface can be labeled by pairs of distinct numbersi # j, (i,j = 1,...,n) in
such a way that a circuit about the images of the points P;; and Pj; gives rise to a transposition of the i-th and
j-th points of the fiber ( when these points are suitably numbered).

1.3.3 Meromorphic functions on compact Riemann surfaces and branched coverings of
H)l

Recall that a meromorphic function on a Riemann surface S is nothing but a holomorphic map
f:8— P!

of the surface to the Riemann sphere. The points in the preimage of the infinite point {c0} € P! = C U {o0} are
called poles of f, other points on S will be called ordinary points. If P € S is a pole of f then the function can
be expanded in a Laurent series

f= Z at, m>0, c_n,#0

i=—m

convergent on some punctured neighbourhood of the point P. Here 7 is a local parameter near P € S such that
T(P) = 0. The positive number m is called the order of the pole. Near an ordinary point the function can be
expanded in a convergent power series

f=fP)+ ) et

i=1
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The number
mIIT'[;'{I{HCiiO}

1=

is called the multiplicity mult;(P) of the ordinary point P wrt the map f : S — P!, cf. Definition 1.2.11. If Pisa
pole of f of order m then we put mults(P) = m. It is easy to see that the multiplicity of a point is independent
of the choice of local parameter. Moreover, one can always choose a local parameter 7 near a point P € S, either

an ordinary one or a pole, and a local parameter { near f(P) € C such that the map f is locally written as
C=1", m=mults(P). (1.3.21)

The points of multiplicity one will be called regular points of the meromorphic function. All other points in S
will be called ramification points of f.

Example 1.3.58. Let S be the compact Riemann surface of an algebraic function w(z) defined by an irreducible
polynomial equation F(z,w) = w" + a1 (z)w"~! + - - + a,(z) = 0. From the construction of Theorem 1.3.48 we
have two holomorphic maps

z2:8>C, w:S—C
(we now omit hats over z and w used in the Theorem) satisfying the identity

F(z(P),w(P)) =0 VYPeS.

Let us look at regular points and ramification points on S wrt the map f = z. First, let Crit < C be the finite
subset in the Riemann sphere consisting of all zeros of the discriminant Ar(z) plus the infinite point. Denote
S = S\z7!(Crit). Then any point in S is a regular point wrt the map z. Moreover, the holomorphic map
z: 8 — C\Crit is a covering of degree 1.

So, the ramification points can be found only in the finite set z~(Crit). Let zy be a point in Crit. We associate
with it a partition of n

zo € Crit = apartition (my,...,m;), m;>0, my+---+m=n (1.3.22)

called the ramification profile of S over z € Crit. Namely, choose a point z.. close to zyp and order the n points
in the preimage z~!(z,). Denote i € S, the permutation generated by a small anticlockwise loop around zg
wrt the monodromy representation

u: nl(E\Crit,z*) — S,

of the covering (S, C\Crit, z). The permutation i can be factorized, in a unique way, into a product of [

cycles of the lengths m1, ..., m;. This is the partition in question. Now we are ready to describe the preimage
z7Y(z0) € S of the point zg € Crit. It consists of [ points Py, ..., P; of multiplicities m;, . .., m; respectively. Since
the preimage of any point away from Crit consists of n regular points in S we assign (1,1,...,1) (n times) as
the ramification profile over zy ¢ Crit.

Exercise 1.3.59: Describe the ramification points of the holomorphic map f : C — C given by a polynomial of
degree n
fz) =apz" + mz" '+ +a,, ag#0, for zeC.

The above Example is a brief summary of the constructions and results of Section 1.3.2. Our nearest goal is
to extend them to arbitrary non-constant meromorphic functions on arbitrary compact Riemann surfaces.
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Proposition 1.3.60. Let f : S — C be a non-constant holomorphic map of a compact Riemann surface S. Then

o The map f is surjective.
e The preimage of any point in C is a finite subset of S.
o The number of ramification points on S is finite.

Proof For any open subset U c S its image f(U) c C is open. This can be easily proven by using (1.3.21). So

£(S) is an open subset in C. Since S is compact its image is also a closed subset. Therefore f(S) = C as C is a
connected Hausdorff topological space.

Let us now consider the preimage f~'(z9) = S of a given point zy € C. Suppose it consists of an infinite set
of points Py, P, .... By definition f(P;) = zo for any i. Due to compactness of the Riemann surface one can
choose a convergent subsequence P;, — Py € S (the so-called accumulation point of the infinite set). Using the
following uniqueness statement from complex analysis

Lemma 1.3.61. Let fi, f, be two functions holomorphic on an open connected domain U < C taking equal values at the
points of an infinite subset with an accumulation point in U. Then fi = f.

along with connnectedness of S we conclude that f = zg. Such a contradiction proves the second part of
Proposition.

Proof of the third statement of Proposition is quite similar. Namely, if P; € S is a ramification point then
df(P;)/dt = 0 where 7 is a local parameter near P;. If the set of such points is infinite then, using again the
above Lemma and connectedness of S we conclude that f is a constant map. O

Definition 1.3.62. Lef f : S — C be a non-constant holomorphic map of a compact Riemann surface. A point zy € C
is called a branch point wrt this map if zo = f(Po) for some ramification point Py € S. The finite set of all branch points

will be denoted Branch c C.

Remark 1.3.63. If S is the compact Riemann surface of an algebraic function w(z) then the set of all branch
points wrt the map f(z, w) = z belongs to the set Crit (see above) but not necessarily coincides with it.

Theorem 1.3.64. 1. Let f : S — C be a non-constant holomorphic map of a compact Riemann surface. Denote
S=f1 (E\anch). Then the triple

(S, C\Branch, f | 3) (1.3.23)

is a covering of a finite degree n for some n > 1.
2. Let zg € C be a branch point and {P1} U - -- U {P;} = f~(z9). Denote

m; = multfPi, i=1,...,L
Then the ramification profile over zo wrt the covering (1.3.23) equals (my, ..., m;). In particular
my+ -+ m = n.

Proof Let {P1} U --- U {P,} = f(20) = S be the full preimage of a point zy € C\Branch. All the points Py, ...,
P, are regular. So for every i = 1,...,n there is an open neighbourhood P; € U; < S such that the restriction

f:U; —V; forsome open neighbourhood V;c C\Branch of z
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is biholomorphic. Put V = (._; V;. Then f~!(V) is biholomorphically equivalent to V x {1,2,...,n}. This
proves the first part of Theorem since C\Branch is a connected complex manifold.

Let us proceed to the second part. Choose local parameters 71, . . ., 7; near the points P, . .., P; respectively
and a local parameter C near the branch point zg in such a way that 74(Px) = 0 and the map f near Py has the
form

C=1"

Note that the local parameter C is chosen independently of k; this always can be done. Near P; the points in
the preimage f~1(C) for small |C,| have the form

2mi

1 1 1
k e k 7 k 1,7 2
Qi)zc*k, é):wc*k, e, ,(nk)=a)mk 1C*" where w =e".

Replacing C, ~— ¢*™(, we obtain the action of the monodromy around the branch point z of the covering

(1.3.23)
k k k 3 k k
(0,00,....0%) (... a2, a%).
This is a cycle of the length my, k =1,...,1 O

The following corollary of the Theorem has a particular importance.

Corollary 1.3.65. Let f be a holomorphic map of a compact Riemann surface to the Riemann sphere. Then

> multy(P)

{PeS | f(P)=z0}

does not depend on z, € C.

Definition 1.3.66. The number of sheets of the covering (1.3.23) is called the degree of a meromorphic function f on a
compact Riemann surface. It will be denoted by deg f.

According to Corollary 1.3.65 the degree of a meromorphic function is equal to the number of points,
counted with multiplicities, in the preimage of any point in C.
Example 1.3.67. The meromorphic function f on C defined by a polynomial of degree 1 has a single pole at

infinity of order n. Thus deg f = n. Applying Corollary 1.3.65 we arrive at the Main Theorem of Algebra
saying that the number of roots, counted with multiplicities of a polynomial of degree n is equal to #.

Exercise 1.3.68: Let f be a meromorphic function on a compact Riemann surface S having only one pole of
order 1. Prove that f : § — C is a biholomorphic equivalence.

Definition 1.3.69. A compact Riemann surface is called rational if it is biholomorphically equivalent to the Riemann
sphere.

Exercise 1.3.70: Prove that a compact Riemann surface is rational if and only if there exists a meromorphic
function of degree 1 on it.

Exercise 1.3.71: Prove that the field of meromorphic functions (see Remark 1.1.16) on a rational Riemann
surface is isomorphic to the field C(z) of rational functions of one variable.
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To conclude this section we briefly discuss more general holomorphic maps between Riemann surfaces. Let
f : 81 — 8, be anon-constant holomorphic map between compact Riemann surfaces S and S,. The following
general propertes of such maps can be established in a way similar to the particular case S, = IP! considered
above. Namely,

o the number of ramification points in S; is finite;
o the number of branch points in S; is finite;

e the number of points in the preimage f~'(Q) = S; counted with multiplicities does not depend on the
choice of the point Q — S;. This number is called degree of the map f and denoted deg f.

We leave as an exercise to the reader to formulate the precise definitions of a ramification point, branch
point, multiplicity of a point.

Example 1.3.72. The holomorphic map (1.1.24) between complex tori has degree n. The sets of ramification
points and branch points both are empty.

Exercise 1.3.73: Let f : S§ — S, be a non constant holomorphic map of Riemann surfaces. Prove that if S; is
compact then so is S».

Given a holomorphic map f : §; — S; of compact Riemann surfaces and a meromorphic function ¢, on S
one can construct a meromorphic function ¢; by using the pullback ¢ = f*¢;

fra2(P) = @a(f(P)).

One obtains a homomorphism

[ M(S2) = M(Sh)
of the fields of meromorphic functions. It is an isomorphism iff f is a biholomorphic equivalence.
Proposition 1.3.74. A holomorphic map f : S1 — S» of compact Riemann surfaces is biholomorphic iff deg f = 1.
Proof of Proposition is left as an exercise for the reader.

Exercise 1.3.75: Consider the compact Riemann surface S of the algebraic function defined by equation w" =
P,,(z) where P, (z) is a polynomial of degree m in z with distinct roots. Consider the group of automorphisms
of S of the form

J: (zw) — (2, "w), j=0,1,...,n—1

and define the equivalence relation (z1,w;) =~ (z2, ws) if 21 = zp and wy = €¥™1/"w, for some j. Show that the
quotient surface S/J is well defined and it is biholomorphic to P'. Determine the ramification points of the
projection map

n:8S—S8/]

Example 1.3.76. Consider the hyperelliptic Riemann surface S of w? = Pg.5(z). We show that any such surface

is biholomorphically equivalent to some surface S of the form @? = ﬁ2g+1(i). Let zy be one of the zeros of the
polynomial P 5(z), and let
1 & w

3 _ S —
z—1z9 (z — zp)8H1
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The point (z0,0) € S goes to the infinite point of S. The two infinite points P+ € S where z — o and
w/z8*! — +1goto (0, +1) € S. The inverse mapping has the form

1 w
zfzo—kz, wagH.

If Paga(z) = (z — 20) [T51 1 (z — 21), then Pag i1 (3) = TT51' (1 + (20 — 21)2).

1.3.4 Rational versus meromorphic functions on compact Riemann surfaces

Let S be the compact Riemann surface of an algebraic function w(z) defined by an irreducible polynomial
equation F(z,w) = 0. How can we construct meromorphic functions f : S — P! on it? We already have two
meromorphic functions denoted by the same symbols z and w satisfying the identity F (z(p), w(p)) = 0 for any
p € S. More generally we can take a rational function of two variables

P(z,w), Q(z,w) € Clz, w] (1.3.24)

and restrict it on S, i.e., define

f(p) = R(z(p),w(p)), peS. (1.3.25)

The following simple statement says that, under a natural assumption about the denominator the above
construction produces a meromorphic function on the Riemann surface.

Proposition 1.3.77. Assume that the restriction on S of the polynomial Q(z,w) does not vanish identically. Then the
rational function (1.3.24), (1.3.25) is meromorphic on S.

Proof Any algebraic combination of the meromorphic functions z, w is a meromorphic function on S. So the
functions P(z(p), w(p)), Q(z(p), w(p)) are meromorphic and the latter one is not an identical zero. The ratio of
these meromorphic functions is also meromorphic. O

We will now prove the converse statement.
Theorem 1.3.78. Let S be the compact Riemann surface of the algebraic function w(z) defined by an irreducible equation
F(z,w) = ap(z)w" + a1 (2)w" ' + - +a,(z) =0 (1.3.26)
Let f be a meromorphic function on S. Then f can be represented as a rational function of z and w.

Proof Within this proof it will be convenient to redenote by 7 : S — C the function p — z(p). Take a generic
point z on the complex plane such that its preimage 777(z) = S consists of 1 distinct points. Ordering them in
an arbitrary way we obtain two n-tuples of locally well defined functions w1 (z), ..., w,(z) and fi(2), ..., fu(2).
Consider the following combinations

bhi(z) = A+ + ful2)
bz(z) = w1 (Z)f1 (Z) +oe+ wn(z)fﬂ (Z) (1327)

be(z) = )" AE) + -+ w2 fo().
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They do not depend on the choice of the order of points in the preimage hence they are monodromy invariant.
Due to the monodromy invariance of b (z), ..., b,(z) they are rational functions in z. We now look at (1.3.27)
as at a system of linear equations for fi(z), ..., f.(z). The determinant D(w;(z),...,w,(z)) of the matrix of
coefficients of the system is nothing but the Vandermonde determinant

D(wy(2),..., wa(z)) = [ [ (wi(z) — wj(z)).

i>j

According to Exercise 1.2.5 it is equal to

D(wi(z),...,wu(2)) = 1

where Ar(z) is the discriminant of the polynomial F(z, w). So it is not an identical zero.
Using Kramer rule write an explicit formula for the solution of the linear system. For f;(z) we have

D(b(z), wa(2), ..., wy(z))
D(w1(z), wa(z),..., wy(2))
where D(b(z), wy(z), ..., ws(z)) is obtained from the Vandermonde determinant by replacing the first column

(Lwi(z),...,w1(2)""1) by (b1(z),...,bu(z)). Multiplying both the numerator and denominator by the Vander-
monde

fi(z) =

_ A ()2

filz) = A

we obtain a polynomial in wi(z) whose coefficients are rational functions in z combined with symmetric
polynomials in w5 (z), ..., w,(z). These symmetric polynomials can be expressed via the coefficients of

D(b(z),wa(2), ..., wy(2))D(w1(2), w2(2), ..., wy(z))

(0= 03(2) - (0= 10,)) = = s a0+ () @) + ()

-2

+...].

The coefficients of this polynomial are rational functions in z and w; (z). We finally arrive at an expression of
the form

fi(z) = R(z,w1(2))
where R(z, w) is some rational function in two variables. For other functions f;(z) we obtain similar expressions

fi(z) = R(z,ux(2)), k=2,...,n

with the same R(z, w). Therefore f = R(z, w). O

Example 1.3.79. Let S be the hyperelliptic Riemann surface

2n+1

w* = P2n+1(z), P2n+1(Z) = 1—[ (Z — Ll,'), a; #a; for i+ ]
i=1

The functions z and w are holomorphic in the finite part of S. These functions have poles at the infinite point
of S, namely, z has a double pole and w has a pole of order 21 + 1. The function z has on S two simple zeros
at the points z = 0, w = + /P2,41(0) that merge into a single double zero if P;,41(0) = 0. The function w has
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2n + 1 simple zeros on S at the branch points. The function 1/(z — 4;) has a unique second order pole at the i-th
ramification point on S and a double zero at infinity. More general rational functions on S have the form

_ Po(z) + Pi(z)w
 Qu(z) + Qi(z)w

for some polynomials P 1(z), Qo,1(z). Multiplying both the numerator and the denominator by Qo (z) — Q1(z) w
we can rewrite the function in the form

R(z,w)

R(z,w) = Ro(z) + Ri(z) w
where R, 1(z) are rational functions of z.
Exercise 1.3.80: Describe poles and zeros of the meromorphic function
w
[Tz —a)

on the hyperelliptic Riemann surface of the above example.

R(z,w) =

Exercise 1.3.81: On the same hyperelliptic surface, consider n points p1 = (z1,w1), ..., pn = (24, wy) in the finite
part of S satisfying z; # z; for i # jand w; - --w, # 0. Construct a meromorphic function f on S with simple
poles atpy, ..., p, and at infinity. Prove that such a function is unique up to a transformation f — af +b,a # 0,
beC,

Exercise 1.3.82: Prove that any meromorphic function on the Riemann surface of the algebraic function w(z)
defined by eq. (1.3.26) can be represented in the form

f=Ro(z)+ Ri(z)w+ -+ Rn_l(Z)w"ﬂ

where Ry(z), ..., R,—_1(z) are rational functions of z.

Exercise 1.3.83: Let S be a compact Riemann surface represented as a smooth projective curve in IP2. Prove
that any meromorphic function f on S can be represented in the form

P(X,Y,2)

Here (X : Y : Z) are homogeneous coordinates of a point on S, P and Q are homogeneous polynomials of the
same degree such that Q does not vanish identically on the curve.

Exercise 1.3.84: Let S be a compact Riemann surface and f a degree n meromorphic function on it. Let g be
another meromorphic function on S. Prove that these functions are algebraically dependent that is, there exists
a polynomial F(z, w) of degree n in w such that

F(f(p).glp)) =0 VpeS.

Example 1.3.85. Let S and S be two compact Riemann surfaces realized as smooth projective curves in P>
defined by homogeneous polynomial equations Q(X, Y, Z) = 0and Q(X, Y, Z) = Orespectively. Amap f: S — S
is called rational if it can be represented in the form

FX:Y:Z) = (AX,Y,Z): B(X,\,Z) : C(X,Y,Z))
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where A, B, C are three homogeneous polynomials of the same degree such that none of them vanishes
identically on § and satisfying

(A(X,Y,Z),B(X,Y,Z),C(X,Y,Z)) # (0,0,0) V(X:Y:Z)eS

and

Q(A(X,Y,Z),B(X,%,2),C(X,Y,Z)) =0 Y(X:Y:Z)eS.
Let us prove that the map f is holomorphic. Consider a point p € S belonging to the chart Uz = {(X : Y :
Z) | Z # 0} on the projective plane and assume that j = f(p) € S belongs to the same chart. Then locally, near p
the map f in the coordinates x = X/Z, y = Y/Z is given by a pair of rational functions

(x,y,1) B(x, yﬂ))
(xy,1) Clxy1)/)

Due to smoothness of the curve S one of the coordinates x or y can be used as a local parameter near p; let it be
x =: T then y = y(7) is a locally defined holomorphic function. In a similar way near fj assume that, say,  =: %
works as a local parameter on S. Then the map f is locally given by the holomorphic function

B(t,y(0),1)
Clz,y(1), 1)

In a similar way one can consider other combinations of charts on IP? and other choices of local parameters on
the curves.

Let us now prove the converse statement saying that any holomorphic map between smooth projective
curves is rational. To this end take two meromorphic functions ¥ = X/Z, §j = Y/Z on S. Their pullbacks f*
and f*j are meromorphic functions on S. Hence, according to Theorem 1.3.78 they are rational functions on
the curve S

Fitwn - - (2

T =

a(x, ) . b(x, y)

c(x,y)’ c(x, y)

where a(x, y), b(x, y), c(x,y) are polynomials; we have reduced the two fractions to a common denominator
c(x,y). Let p, g, r be non-negative integers such that

X =

7°a(X/Z,Y/Z) = A(X,Y,Z), Z'(X/Z,Y/Z) =B(X,Y,Z), Z'¢(X/Z,Y/Z)=C(X,Y,Z)

with some homogeneous polynomials A, B, C. Denote m = max(p,q,r). Then f coincides with the rational
map
fX:Y:2)= (Z"’_”A(X, Y,Z2): Z"1B(X, Y, Z) : Z"'C(X, Y,Z)) .

Exercise 1.3.86: Let S be a non-singular projective curve defined as S := {(X : Y : Z) € P?|Q(X,Y,Z) = 0}
where Q is an irreducible homogeneos polynomial of degree n> 2. Show that the map

(X:Y:Z) - (Qx:Qy:Qz)

from S to P? is well defined. The image of such a map is called the dual curve S to S. Find the dual curves
for a conic and for the Fermat cubic x* + 1° + z* = 0. Show that the map is holomorphic but it does not have a
holomorphic inverse if n > 3.
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Example 1.3.87. Let C be the algebraic curve defined by an irreducible polynomial equation F(z, w) = 0. Denote
by S the compact Riemann surface of an algebraic function w(z) defined by the same equation. The surface is
equipped with a pair of meromorphic functions £, @ that define a map

p:S—C, p(P)=(2(P),D(P))

biholomorphic outside a finite number of points, see Theorem 1.3.48 above. We want to compare rational
functions on C and on S especially for the case when the curve has singularities. More precisely, we have a
natural pullback map

p* : {rational functions globally defined on C} — {meromorphic functions on S} (1.3.28)

p*(f)(P) = f(p(P)), PeS, forarational function f onC.

What is the image of this map?
Let us begin with a simple example of the curve

C: w*=2°+22

The Riemann surface S is rational. It can be described by the equation @* = Z + 1, see Example ?? above. The
map p has the form''
p(Z, @) = (z,w) where z=2%2 w=2z.

The two points P+ = (Z = 0,@ = £1) € S go to the same point p(P+) = (0,0) on C. Thus the pullback p* of any
rational function globally defined on the curve C consists of meromorphic functions on S taking equal values
at the points P.. It remains to observe that, due to the rationality of S the space of meromorphic functions on
it is isomorphic to the space of rational functions of the variable @. Therefore the image of the map (1.3.28)
consists of rational functions f (@) satisfying f(1) = f(—1).

In a similar way one can deal with rational functions globally defined on an irreducible algebraic curve
with n nodal singularities assuming rationality of the corresponding compact Riemann surface (as an example
one can take the curve w? = z [[_;(z — z;)?). Then the image of the pullback map (1.3.28) consists of rational
functions of one variable satisfying

flai) = f(b;), i=1,...,n

for some pairwise distinct complex numbers ay, ..., ay,,b1, ..., b,.

1.4 Example: complex tori and elliptic functions

Let T2 = T2 be a complex torus
T? = C/Awwr (1.4.1)

where
Aww = {2mw + 2nw’ | m,n € Z} (1.4.2)

10ne can formally invert p in the class of rational maps

Pz w) = (zw/2).

That means that S and C are birationally equivalent. Observe that the function w/z is not defined at the singular point (0, 0) of the curve C.
We leave as an exercise to the reader to prove birational equivalence between an arbitrary irreducible algebraic curve and the corre-
sponding compact Riemann surface constructed in Theorem 1.3.48.
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be the period lattice defined by a pair of complex numbers w, o’ satisfying
I(a'Jw) > 0.

We already know that there are no non-constant holomorphic functions on the torus and any meromorphic
functions on T? can be considered as doubly periodic meromorphic function on the complex plane

f(z+2w) = f(z), f(z+2')=f(z) VzeC.

Such functions will be called elliptic for the reasons that will be explained later.
Values of an elliptic function at any point of the complex plane are uniquely determined by its restriction
onto the fundamental parallelogram consisting of complex numbers z of the form

z=2z0+2xw+2yo’, 0<x,y<1 (1.4.3)

for a given zy € C. There is only finite number of poles of an elliptic function inside the parallelogram or on its
boundary. Choosing appropriately the vertex zg we can free the boundary of (1.4.3) of the poles of the function.

Proposition 1.4.1. Let zy,. . ., zx be the poles of an elliptic function f inside a fundamental parallelogram (1.4.3). Assume
that there are no poles on the boundary of the parallelogram. Then

k
ZResf(z) dz = 0.
im1

Proof According to Cauchy theorem
k
ZResf(z)dz = — jgf(z)dz
=177

where C is the boundary of the parallelogram oriented in the anti-clockwise direction. On the opposite sides
of the boundary the function takes equal values. So the contour integral in the above equation vanishes. [

Corollary 1.4.2. There is no elliptic functions with only one simple pole in the fundamental parallelogram.

Remark 1.4.3. According to Exercise 1.3.25 the above Corollary implies that the complex torus is not biholo-
morphically equivalent to the Riemann sphere. In Section 2.1 below we give another proof of this statement
based on simple topological arguments.

Exercise 1.4.4: For a given elliptic function f(z) of degree n choose a fundamental parallelogram containing
neither zeros nor poles of f on its boundary. Denote gy, ..., 4, the zeros and by, . .., b, the poles of f inside the
parallelogram repeated according to their multiplicities. Prove that

n n
Z a; — b,‘ € Aw,w"
i=1 i=1
Hint: consider the integral
l ’
-~ Pz f (Z) dz
2mi f(z)

over the boundary of the parallelogram.



78 CHAPTER 1. RIEMANN SURFACES

We now construct the first example of an elliptic function with one double pole in the parallelogram. The
Weierstrass elliptic function, p(z) is defined by

9(z) = p(z|w, ') =Zl—2+ > [(Z_; — i ] (1.4.4)

m2+n2#£0
Here and below we use the notation
Wy = 2mw +2nw’, m,neZ (1.4.5)

for the points of the lattice. It is not difficult to verify that the (1.4.4) converges absolutely and uniformly on
compact sets not containing points of the period lattice. Therefore, it defines a meromorphic function of z
having double poles at the lattice nodes. This function is obviously doubly periodic: p(z + 2kw + 2lw’) = 9(z),
k,1 € Z. It is an even function p(—2z) = 9(z).

Exercise 1.4.5: Let f be a meromorphic function on the complex torus (1.4.1) having only one pole of order two
atz = 0. Prove that
f(z) =ap(z) +b, a beC.

The Laurent expansions of the functions ¢(z) and ¢’(z) have the following forms as z — 0

1, 82 g2

= + = +... 1.4.
P(z) 72 20 28 ’ (14.6)
! = — — iz 3_‘Z?’
© (z) 3 + 10 + - +..., (1.4.7)

where

(1.4.8)

(verify!). This implies that the Laurent expansion of the function (p’)* — 49> + g2¢ + g3 has the form O(z) as
z — 0. Hence, this doubly periodic function is constant, and thus equals zero. Conclusion: the Weierstrass
function p(z) satisfies the differential equation

(9') =49° — g2p — &3 (1.4.9)
Let us now map the torus T?(w, ') to the elliptic curve C, where
C: Y?Z =4X® — 9X7% — g37° (1.4.10)
by setting f : T*(w, ') — C with

fz) = { (SO(Z)""/(Z)Z’D’ 270 (14.11)

(0,1,0), z=0
Theorem 1.4.6. 1. The elliptic curve (1.4.10) is non-singular.
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2. The map (1.4.11) of the complex torus (1.4.1) to the Riemann surface (1.4.10) is a biholomorphic isomorphism.

3. Any non-singular elliptic curve of the form (1.4.10) is biholomorphically equivalent to a complex torus of the form
(1.4.1)

Proof As the Weierstrass function has on the torus only one pole of order two, the degree of the holomorphic
map ¢ : T? — Cis equal to two. That means that for a given u € C the equation ¢(z) = u has two solutions
counted with multiplicities. If z is a solution then so is —z since the function is even. These two solutions are
distinct iff 2z ¢ A, . Therefore the ramification points of the holomorphic map coincide with the half-periods
of the lattice. All of them have multiplicity two.

Modulo the lattice there are four half-periods: wy = 0 and

W =w, w=-w-, w3=duv. (1.4.12)

The point wy makes the preimage of the infinite point in C. Denote
ei=p(w), i=1,23. (1.4.13)
Lemma 1.4.7. 1. The complex numbers e, e, e3 are pairwise distinct.

2. They are roots of the cubic equation 4u> — gou — g3 = 0 where », g3 are defined by egs. (1.4.8).

Proof Suppose, for example that e; = e,. Then the full preimage 9~ 1(e1) consists of two points w; and w; of the
total multiplicity four — a contradiction.
To prove the second part of Lemma we observe that ¢’ (z) is an odd function. So

9 (wi) = —¢'(~wi) = —9'(~wi + 2w;) = —9'(wi)) = ¢'(w)=0, i=123.
Substituting z = w; in eq. (1.4.9) we obtain
0=4e —gei—g3, i=1,23.
0

The first statement of Theorem readily follows from Lemma. To prove the second statement it suffices to
prove that the degree of the map (1.4.11) is equal to one. That is, for a given point (X, Y, Z), Z # 0, of the curve
(1.4.10) we have to solve the system of equations

If v # 0 then the first equation has two distinct solutions z and —z. The second equation selects only one of
them since ¢’ (z) # ¢’(—z) in this case. Let us now consider the case v = 0. Then, we have u = ej, e; or e3. We
already know that the equation ¢’(z) = 0 has three distinct solutions z = w1, w; and w3. Since ' is a degree
three meromorphic function on the torus there are no other solutions. So we have uniqueness of the solution to
the system also in this case. Finally for the point at infinity (0,1, 0) of (1.4.10) the unique point in the preimage
isz=0.

The proof of the third part of Theorem follows from the following lemma.
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Lemma 1.4.8. Consider the affine curve v* = 4u® — gou — g3 and defined the integrals

i=1,23

f" du
w; = ’
w0 A/ 4ud — gou — g3

for a suitable choice of the square root. The solution to the differential equation

du\?
(E) =4’ — qu—g3 (1.4.14)
satisfying
u(z):zl2 O(%), z—0

has the form
u(z) = p(z|w,@")

where w = w1, ' = w;s.

Proof The differential equation (1.4.14) can be solved by quadratures. Indeed we can write it in the form

du s
VAud — gu — g3
so that ) o .
u 5
z(u) = J , z(u) =+—=+0(u"?)
o A/AW)? — U — g3 Vi
It is more convenient to use the notation
P /
z(P) = d—bf, P = (u,v).
o U
For P — P + y where y is a loop in C we have
d '
2(P) — 2(P) + Ui

Y

The inverse m
e Inverse map z+— P(z) = (u(z),v(z))

satisfies

du’ du’
u z+3€7 =u(z), v|lz+d— |=0(2)
Y Y

Choose y; the path from o to ¢; on the first sheet and back to the second sheet so that
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S0
u(z + 2w;) = u(z), v(z+2w;)=0v(z), i=123.

One has w1 + wz + w3 = 0. So we choose 2w := 2w, and 2w’ := 2w3. Then u(z) and v(z) are elliptic functions
on the torus T?w o) Further

u(z) + = +0(z™), vz =-=+0(z) z—0

We conclude that u(z) = p(z) and v(z) = ¢'(z).
Namely, the inverse function to the solution in question can be written as elliptic integral

z
Z
z(Z) = f d .
['e] 473 — gzz — &3
For sufficiently large |Z| the function

1 _
22) == +0 (Z 5/2) (1.4.15)

is well defined up to a sign. We can extend it to a (multivalued) function z(P), P = (Z, W) on the elliptic
Riemann surface (1.4.10) by the integral

P dz
z(P) = —
®=|
along some path from the infinite point of the surface to the point P. For a given P it depends only on the
homotopy class of the path with fixed endpoints. A change of the homotopy class changes the integral as

z(P) — z(P) + dWZ

Y

for a loop y on the Riemann surface. Therefore the inverse map
2 P(z) = (Z(2), W(2))

satisfies

V4 z+j€dWZ =Z(z), W z+§>dWZ = W(z)

Y Y

for any loop y. Take the following particular loops y;, i = 1, 2, 3 as follows: choose a path from infinity to e; on
one sheet of the Riemann surface then return back along the same path on another sheet. Then

az .
J;WZZO)I'/ 121,2,3,

see eq. (??). We obtain
q. (2?)
Z(z+2w;) =Z(z), W(Ez+2w;)=W(z), i=1,2,3.
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It is easy to see that, under a suitable choice of orientations on the loops one has w; + w; + w3 = 0. So we
choose 2w := 2w; and 2w’ := 2ws3 as two independent periods. It remains to prove that Im(«’/w) > 0. To this

end consider the following integral
az a dZ
IS =3

over the Riemann surface. Applying Stokes theorem rewrite it as a contour integral

i az
3§70 5y
over twosides of the loops y; and y3. The latter is equal (cf. the proof of Lemma 3.1.16 below) to 2i(w o’ —@'@) =
4| Tm <
We conclude that Z(z) and W(z) are elliptic functions on the complex torus Ti/w,. They have poles only at
z = 0. From (1.4.15) it follows that

z5)= 510, wa=-2106 for 20
Hence
Z(z) =p(z|w,o'), W) =g'(z|od).
This completes the proof of Lemma and, therefore of Theorem. O

Exercise 1.4.9: Prove that any elliptic function f(z) with period lattice {2mw + 2nw'} can be represented in the

form
f(z) =Plp(z)] + Qlp(2)] 9'(2)
where P and Q are rational functions.

Exercise 1.4.10: Prove the following addition theorem for the Weierstrass function

1 pu ' (u)
det| 1 9(v) 9'(v) =0 VYu,o. (1.4.16)
1 pu+v) —p'(u+0)

Derive that the map (1.4.11) is an isomorphism of the group of points on the torus T? = C/{2wZ @ 2w'Z} to
the group of points on the cubic (1.4.10) with the marked point at infinity, see Exercise 1.2.40 above.

Example 1.4.11. Let us briefly consider behaviour of elliptic functions under holomorphic maps between
complex tori. Take the first nontrivial case of the degree two map

2
f2 ww/ i T%,w/ 7

see eq. (1.1.24) above. To compute the pullback of the Weierstrass function ¢(z| %, «’) on the torus T2 we

/2.0
have to express it via 9(z) = 9(z| w, @"). Proof of the resulting expression

0 (215.0) = 9@ +pE-w) -a

(the so-called Landen transformation for Weierstrass functions) is left as an exercise to the reader.
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Exercise 1.4.12: Prove that

2 2, , (2 2,
(go <§ma)+§nw>,go <§ma)+§nw>>, 0<mn<?2
are the inflection points of the cubic (1.4.10), see Exercise 1.2.39 above.
Exercise 1.4.13: Let p(z) be the Weierstrass function with a rectangular lattice of periods
weRyg, @ €iRsy.
(1) Prove that p(z) takes real values on the lines of four types
Rez = 2mw, or ilmz=2nw’

and
Rez= (2m+1)w, or ilmz= (2n+1)o’

withm, n € Z.
(2) Prove that the coefficients g», g3 given by egs. (1.4.8) are real.
(3) Prove that the roots (1.4.13) of the cubic polynomial 473 — ¢,Z — g3 are real and satisfy the inequalities

e1 > ey > e3.

Observe thate; > 0 and e3 < 0.

(4) Prove that ¢(z) restricted onto the line iImz = (2n + 1)«’, n € Z satisfies
3 < p(z) <e
and its restriction onto the line Rez = (2m + 1)w, m € Z satisfies

er < p(z) <er.

(5) Prove that any elliptic Riemann surface (1.4.10) with real branch points is biholomorphically equivalent
to a complex torus with a rectangular lattice of periods.

Define the Weierstrass C- and o-functions useful in the theory of elliptic functions by quadratures

C(z) = —9(2), 7@ _ (z) (1.4.17)

a(2)

assuming that the integration constants are chosen in such a way that, for z — 0

U(z) = % +0(2%), oz)=z+0(2). (1.4.18)
They are given by the following expansion
n_ 1 1 1 z
@ -telow) -+ ¥ ot ot (1419)

m24+n2#0
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and infinite product

o(z) = oz|w,a) =z [] {(1—win)exp[win+ il ]} (1.4.20)

2
m?+n2#0 2Winn

The Weierstrass C-function has simple poles at the points of the period lattice. The function o(z) is an entire
function on the complex plane. It has simple zeros at the points of the period lattice. These functions satisfy
a'(2)
'(z) = — = . 1.4.21
0 = —o(2), T =) (14.21)
The functions ((z) and o(z) are not elliptic; under a translation of the argument by a vector of the period lattice
they transform according to

((z42w) =C(z) + 21, C(z+20') =C(z) +21 (1.4.22)
0(z 4 2w) = —o(z) exp[2n(z + w)], 0(z +2w') = —0(z) exp[21) (z + &')] (1.4.23)
where 17 and 17’ are constants depending on the period lattice.

Exercise 1.4.14: Prove that
n=_w), 71 =) (1.4.24)
Exercise 1.4.15: Prove the transformation law (1.4.23).

Exercise 1.4.16: Integrating ((z) over the fundamental parallelogram centered at the origin, prove Legendre
relation

i

no' —n'ew = > (1.4.25)
Exercise 1.4.17: Prove that the sum .
Z cC(z — zx) + o (1.4.26)
k=1
is an elliptic function in z iff the coefficients cy, .. ., ¢, satisfy
c1+--+c, =0.
Prove that any elliptic function with only simple poles can be represented in the form (1.4.26).
Exercise 1.4.18: Derive the following expression for the elliptic function C(u + v) — C(u) — C(v)
19'(u) — ¢'(v)
C(u+v)—Cu) —Cv) = z———=. 1.4.27
(u+0) — Clw) — Cfo) = 37— (1427)
Exercise 1.4.19: Prove that the function
g ) (1.4.28)
o(z —by) o

is an elliptic function in z iff

k=1 k=1
Prove that any elliptic function can be represented in the form (1.4.28), up to a constant factor.
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Exercise 1.4.20: Prove the following identity:

o(u+v)o(u—o)
a(u)a?(v)

= (v) — p(u). (1.4.29)

Exercise 1.4.21: Prove the following generalization of the previous identity

1 o) ¢'(uo) ... 9" D(up)

1 o) ¢w) ... 9" V(u) wn=1) o(uo +ur + -+ +up) [ [icjo(ui — u))
det O (I

. Gn+1(u0)an+1(u1) ”.Gn+1(un)

1 p(un) 9 (un) .. So(n_l)(”n)

for any n > 1 and arbitrary ug, u1, ..., Uy.
Exercise 1.4.22: Show that for an arbitrary A # 0
P(Az]| Aw, Aw') = A729(z | w, )

C(Az] Aw, A’) = A7 (z| w, @) (1.4.30)
o(Az| Aw, A’) = L o(z|w, @)

Exercise 1.4.23: Consider the Korteweg—de Vries (KdV) equation
1= 6uu’ —u"” (1.4.31)

(here u = u(x,t), the dot stands for the derivative with respect to ¢, and the prime stands for the derivative with
respect to x). Show that any (complex) periodic solution of KdV in the form of a traveling wave u = u(x — ct)
has the form

u(x, t) = 2p(x — ct — xo) — %, (1.4.32)
where the Weierstrass function g corresponds to some elliptic curve (1.4.10), and the velocity ¢ and the phase
Xo are arbitrary.

Exercise 1.4.24: (see [8]). Look for a solution of the KdV equation in the form
u(x, t) =2p(x — x1(t)) + 29(x — x2(t)) + 2p(x — x3(t)). (1.4.33)

Derive for the functions x;(t) the system of differential equations

¥ =12 0(xj—x), j=12.3, (1.4.34)
k#j

(a particular case of Calogero-Moser system and its integrals

D —x) =0, j=1,23. (1.4.35)
k]

Integrate this system by quadratures.
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Exercise 1.4.25: (see [?]). For the elliptic curve (1.4.10) construct a new elliptic curve w? = 4P;(z) with the
third-degree polynomial
P3(z) = (z* —3¢2) (z + 9?) : (1.4.36)
2
Denote by ¢ the corresponding Weierstrass function. Let &;; = p(xi(t) — xj(t)), i # j, where the quantities x;(t)

are defined in the previous Exercise. Show that the functions &12(t), &23(#), and &13(t) are the roots of the cubic
equation

11 .
483 — gr& — 383+ 5820(611/3g:) = 0 (1.4.37)

Other properties of the functions, ¢, C and o and of other elliptic functions as well, can be found, for
example, in the texts [2] and [?], or in the handbook [4].



Chapter 2

Topological properties of Riemann
surfaces

2.1 Genus of a compact Riemann surface

An arbitrary Riemann surface is also a real smooth oriented two-dimensional manifold. What can be said
about the topology of this manifold? From the topological point of view, Riemann surfaces are quite simple as
the following theorem shows.

Theorem 2.1.1. [18] Any compact connected orientable smooth two-dimensional manifold (= surface) is homeomorphic
to a sphere with ¢ > 0 handles. The number of handles is called the genus of the surface. Surfaces of different genera are
not homeomorphic.

Each surface of genus g can be obtained from a genus g — 1 surface by removing two discs and connecting
the resulting holes with a cylinder. The surface of genus 0 is the usual sphere. See Figure 2.1 for examples of
surfaces of positive genus.

Let us compute the genus of the surfaces in the examples 1.2.42-1.2.44. We begin with example 1.2.43
namely the curve C = {(z,w) € C? | w? = z%> —a?},a # 0. Let S be the compactification of C obtained by adding
two points co* at infinity. We want to show that the genus of S is equal to zero. For the purpose let us consider
S as a two sheeted branched covering of the Riemann sphere 7 : S — C, m(z,w) = z. Delete the segment
[—a,a] with endpoints at the branch points from the z-plane C. Off this segment it is possible to distinguish
the two branches w; = + v/z2 — a2 of the two-valued function w(z) = v/z2 — a2. The preimage ! (C\[—a,a])
on S splits into two pieces, with the mapping n an isomorphism on each of them. The branches w (z) and
w_(z) are interchanged in passing from one edge of the cut [—4, a] to the other. Therefore, the surface is glued
together from two identical copies of spheres with cuts according to the rule indicated in the figure 2.2

After the gluing we again obtain a sphere, i.e., the genus g is equal to zero. Example 1.2.42 is analogous
to Example 1.2.43, but the cut must be made between the points 0 and oo, i.e. the point at infinity must be
considered as a branch point. Again the genus is equal to zero.

Remark 2.1.2. Tt is not difficult to prove that the compact Riemann surface S of the algebraic function w(z) =

87
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Figure 2.1: A sphere with five handles

‘ I

Figure 2.2: The cuts of the algebraic function vz — a2

vz? — a? is biholomorphically equivalent to the Riemann sphere. Indeed, consider a family of parallel lines
w=z-—as

depending on a complex parameter s. For s # 0 every such line intersects the curve C in a unique point with

the coordinates
1+ ¢? 1—s2
z(s) =a 7 w(s) =a TP

We obtain a one-to-one map
C\{0} =S, s (z(s),w(s))

For s — 0 both z(s) and w(s) go to infinity but the ratio w(s)/z(s) — 1. That means that the image of the point
s = 0 coincides with the point co* € 8. In a similar way for s — o both z(s) and w(s) go to infinity but the ratio
w(s)/z(s) — —1. That means that the image of the point s = 0 coincides with the point co~ € S. So we have a
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one-to-one holomorphic map from C to S. The inverse map is given by

a

s(z,w) = pesrapn

In Example 1.2.44 for the curve described by the equation w? = ]_[;-;1 (z — zj) it is necessary to split up the

branch points arbitrarily into pairs and make cuts (arcs) in C joining the paired branch points. If 7 is odd one
of the branch points is at co. The surface S is glued together from two identical copies of a sphere with such
cuts, with the edges of the corresponding cuts glued together in “cross-wise” fashion (see figure 2.4 for n = 4).

o0

Figure 2.3: Opening of the cuts of the two branches of the function +/(z — z1)(z — 2z2)(z — 23)(z — z4)

Z4

Z3

29
21

Figure 2.4: The Riemann surface of w? = (z—a1)(z—a2)(z —a3)(z — a4) is glued from two copies of the extended
complex plane cut along the intervals [z1,z;] and [z3,z4]. The resulting surface topologically is a torus.

24

<3

Z9

21

It is not hard to see that in the case #n = 4 one obtains a sphere with one handle, and, in the general case one
obtains a sphere with 1/2 — 1 handles for n even and (n — 1)/2 for n odd.
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2.1.1 Genus of a Riemann surface and the Riemann-Hurwitz formula

We derive a formula for the computation of the genus of a compact Riemann surface by computing first the
Euler characteristic of the surface.

A triangulation of a two-dimensional compact surface M is a decomposition of M into closed subsets
homeomorphic to triangles such that each pair fits in one of the following three types

o disjoint
e meet at a vertex
e meet at an edge.
We state the following theorem.
Theorem 2.1.3. [18] Every compact connected orientable 2-dimensional manifold M can be triangulated.

Given a 2-dimensional compact manifold M (possibly with boundary) and a triangulation of the manifold
with

e ¢ = #of edges;
e v = # of vertices;
o t = # of triangles,
we can associate to such triangulation the Euler characteristic.

Definition 2.1.4. The quantity
EM)=v—e+t (2.1.1)

is called the Euler characteristic of the manifold M with respect to the given triangulation.

Proposition 2.1.5. The Euler number is independent from the choice of the triangulation. For a compact Riemann
surface S of genus g the Euler number is
E(S) =2 —2g. (2.1.2)

Proof. We consider compact surfaces with no boundaries. Given a triangulation, one can refine the triangulation
by adding a vertex inside a triangle and three edges. This operation replaces one triangle with three triangles
an it is easy to check that the Euler number remains unchanged. Another way to refine the triangulation is to
add a point on an edge, so that two triangles are replaced by four triangles. Also in this case the Euler number
remains unchanged. These operations define elementary refinements. A general refinement is obtained by
making a sequence of elementary refinements. Therefore a given triangulation and any of its refinement have
the same Euler number. Now the main point is to show that two triangulations have a common refinement. It
is sufficient to superimpose two triangulations and add the necessary number for points to make the union of
these two triangulations a triangulation. Then the triangulation obtained in this way is a refinement of both the
triangulations. This is enough to show that the Euler number does not depend on the triangulation. Now let
us make the computation of the Euler number for a compact Riemann surface of genus g. We use an inductive
argument. For the sphere Sy, choosing a triangulation as shown in the figure 2.1.1, with 4 vertices, 4 triangles
and 6 edges, one obtains that the Euler number is equal to 2. For the disc D = {z € C||z| < 1}, the Euler
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U2
(' | vs

Vg v2

Figure 2.5: Triangulation of the sphere with 4 vertices, 6 edges and 4 triangles. Triangulation of the disc with
3 vertices, 3 edges and one triangle.Triangulation of the cylinder with 6 vertices, 12 edges and 6 triangles.

number is equal to E(D) = 1 and for the cylinder Ceyinger of finite length the Euler number E(Ceytinger) = 0, (see
figure 2.5).

The torus can be obtained from the sphere by removing two discs and connecting them with a cylinder. It
is simple to check that the Euler number of the torus S can be obtained as

E(Sl) = E(SO) - ZE(D) + E(Ccylinder) =2-2 + 0 = 0 (213)

Indeed removing two disks from a genus zero surface, the Euler number decreases by two, because it is just
sufficient to subtract from the Euler formula the two discs that are homeomorphic to two triangles. Next we
add a cylinder to connect the two discs. In order to compute the Euler number of the resulting surface, it is
sufficient to add the contribution of the cylinder (8 edges and 6 triangles for a triangulation like in figure 2.1.1).
The resulting Euler characteristics then can be written as in (2.1.3).

This procedure can be iterated. Indeed the surface S, of genus ¢ can be obtained from the surface of genus
S;_1 by removing two discs and connecting them with a cylinder. Therefore one has

E(Sg) = E(ngl) — ZE(D) + E(Ccylinder>

which implies
E(Sg) =2—2g.

We apply this result to calculate the genus of a branched covering over the Riemann sphere.

Proposition 2.1.6. Let S be a compact Riemann surface and f : S — C a non-constant holomorphic map of degree n.
Let Py, ..., Py € S be the ramification points with respect to the map f with multiplicities my, . .., my respectively. Denote
bi=m;—1,i=1,..., kthe ramification indices of these points and let

k
b= )b
j=1
be the total ramification index. Then the genus of S is equal to

g= g —n+1 (2.1.4)
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Proof. Consider a triangulation of C such that the set of vertices of the triangulation contains the points
f(P1),..., f(Py). Suppose that, for each triangle T on C the restriction of f onto every connected component of
the preimage of the interior part of T is a homeomorphism onto the interior of T. In this way the triangulation
of C can be lifted to a triangulation of S. Let the triangulation of € have v vertices,  triangles and e edges.
Then the triangulation of S has

o [ = nt triangles

N

e ¢ = needges

nv — b vertices.

<
Il

[ ]
So the Euler characteristic of the surface S equals
2-2¢9=nv—b—ne+nt=n(v—e+t)—b=2n—>b.
The Proposition is proved. m]

The equation (2.1.4) is the celebrated Riemann-Hurwitz formula. A generalization of it to holomorphic
maps between compact Riemann surfaces will be given below.
As an application of the proposition 2.1.6 we calculate the genus of a smooth projective curve

S={(X:Y:Z2)eP*|Q(X,Y,Z) =0}

where Q is a homogeneous polynomial of degree n. Suppose that (0:0: 1) ¢ S so that Q(0,0,Z) = cZ" # 0
with ¢ # 0. Then the map
$:S—P, HXYZ)=(X:Y)

realises S as a n-sheeted covering of P!. Let us calculate the total ramification number of this map. The
ramification points are obtained by solving the equations

The solution of the above two equations are given by the zeros of the resultant R(Q, Qz) with respect to Z.
Since R(Q, Qz) is a homogeneous polynomial of degree n(n — 1) in X and Y, the total number of ramification
points counting their multiplicity is n(n — 1).

Recall that the ramification number of a ramification point Py = (Xo : Yo : Zo) indicated as by(Po) is the
order of the zero of Q(Xo, Yo, Z) at Z = Zy minus one. We can write

Q(Xo, Yo,Z) = H (Z—Z;)m

0<j<s

where Z]‘ m; = n and Zy,...,Zs are distinct complex numbers, Z; = Z;(Xo, Zo). With the above notation the
branching number of each branch point P; = (X : Yy : Z;) is by(P;) = m; — 1. So a regular point is simple zero
of Q(Xo, Yo, Z) a ramification point with ramification number one is a double zero, and in general a ramification
point with ramification number m — 1 is a zero of order m of Q(Xo, Yo, Z). So if the number of distinct roots of
the discriminant is n(n — 1) it means that the curve has n(n — 1) branch points with multiplicity one, so that the
total ramification number is n(n — 1). If the discriminant has for example n(n — 1) — k distinct roots, k > 0, it
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means that some of the branch points have branching number bigger than one. However the total ramification
number remains equal to n(n — 1). Then we can apply formula 2.1.4 to obtain

g=%(n—1)n—n+1.

We summarise the above discussion with the following Lemma.

Lemma 2.1.7. The genus of a smooth projective curve of degree n is given by

g= %(n —2)(n—1). (2.1.5)
Exercise 2.1.8: Calculate the genus of the normalisations of the following curves
e w=(z-1)(z-2)(z-3)(z—4),
o w'=z"+4", a+0.
Exercise 2.1.9: Let us consider the reducible curve
Co = {(z,w) € C | (w — p1(z)(w — p2(2)) (w — p3(2)) = 0}

with
pi(z) =aiz+b;, i=1,23

and a; and b; i = 1,2,3 complex constants such a;b; — a;b; # 0 for i # j. Furthermore let us assume that the
polynomials p;(z) satisfy the relation

pi(2) + pa(2) + paz) = 0.
Consider the curve
Ci={(zw) € C|w’ + wlp1(2)p2(2) + p1(2)ps(2) + p2(2)p3(2))] — P1(2)p2(2)ps(2) (1 + h) = O} (2.1.6)
where /1 is a small complex constant. Let S be the normalisation of C. Determine
e how many points have been added to C to obtain S;
o the genus of S;
e the branch points (only in the form of the expansion in &, namely z;(h) = z;(0) + hz}(0) + ...);

e the monodromy of S considered as a degree 3 branched covering of the z-plane.

Exercise 2.1.10: Let us consider the curve
C:={(z,w) e C*| (w—2*)(z — w?) + hzw = 0},
where i is a small non-zero constant. Determine
o the normalisation S of C and the genus of S;

e the monodromy of S with respect to the projection to the z plane.
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Exercise 2.1.11: Calculate the genus of the normalization of the singular curves
1w =(z—m)*(z—a2)(z —a3)*(z — as),
2. wd =23z —a3)%(z — ay).
For each singular point calculate the number of points in the preimage of the map ¢ defined in theorem ??.
Exercise 2.1.12: For which value of A the following curves are non-singular?
L X+ Y +Z° +3AXYZ =0,
2. X+ Y+ 28+ AX+Y+2Z)P=0.
Describe the singularities when they exist and calculate the genus of the corresponding Riemann surface.

Exercise 2.1.13 (Pliicker’s formula): . Let C be a projective curve of degree n with k nodes and no other
singularities. Show that the genus of the Riemann surface S obtained by resolving singularities on the curve is
equal to

g:%(n—l)(n—2)—k.

2.2 Homology

In this section we define the homology of a compact Riemann surface S. Given a triangulation of the Riemann
surface S, we define the verteces as O-simplex, the edges as 1-simplex and the triangles as 2-simplex. The
orientation on the manifold induces an orientation on the triangles that can be used to orient the edges
bounding each triangle.

Definition 2.2.1. A (simplicial) 0,1, 2-chain is a formal sum of vertices P, edges S or triangles T

Co :Zn]-P]- C1 :Zm,-Sj Co :Zk]'T‘, nj,m]-,k]-eZ.

The element —c; is the edge with opposite orientation and —t is the triangle with opposite orientation. The
vertices Py, Py, P3, ... can be used to identify edges and triangles. For example (P1P,) is the oriented edge
from P; to P, and (P, Py, P3) is the oriented triangle with sides the oriented edges (P1P,), (P2P3) and (P3P1).
The sets of p—chains C, have the (natural) structure of free abelian groups (just by formal sums). A closed curve
¥ can be homotopically deformed to a chain of edges in the triangulation 7~ thus defining a cycle (Exercise:
prove that it is a cycle!); this can be called a simple cycle.

With this notation we define the boundary operator 0.

Definition 2.2.2. The boundary operator 6 : C, — C,—1 withn = 0,1, 2 is defined as follows:
6C0 = 0, Co € Co

(P1Pyy =P, — Pq
6<P1,P2,P3> = <P1P2> + <P2P3> + <P3P1>

The above relation defines 6 on 1 and 2-simplex and it can be extend to 1 and 2-chain by linearity.
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The fundamental property is that 6> = 0: indeed (we need to check this only for C,)
56(T) =0 (<P1P2> + <P2P3> + <P3P1>) =P, —Py+P3—P,+P;—P3=0. (2.2.1)

Definition 2.2.3. A p—chain c, such that 6c, = 0 € Cy is called a p—cycle. A chain which is the boundary of another
chain is called a p-boundary. Clearly any p-boundary is a p-cycle, but not viceversa.

In our case, being the manifold of real dimension 2, all the interesting information is contained in C;; the
1-cycles and 1-boundaries are the following subgroups of C;:

Zn = {Cn € Cn |5Cn = 0}/ Bn = {Cn € Cn | ch-&-l € Cn+1/ Cp = 6Cn+1}-

From the above definition it is clear that
B Zn<sCh.
Definition 2.2.4. The first homology group of S is denoted by H1(S, Z) and is

_Zi(S)
CBI(S)

Hqi(S,Z): (22.2)
This homology group can be shown to be independent of the choice of triangulation 7~ (more precisely the
homology groups corresponding to two triangulations are isomorphic).
Remark 2.2.5. The other homology groups are defined similarly: in particular Hy(S, Z) is made of the classes
of points that cannot be joined by cycles. It is simple to show that Hy(S,Z) = Z* where k is the number of
connected components of S (hence for connected Riemann surfaces k = 1). The generator is the class of any
vertex. Regarding H, (S, Z) we have that if S is compact, then C; consists of one 2-chain, namely the chain that
covers all the surface and B, = ¢J. Therefore H, (S, Z) = Z.

Therefore the only nontrivial group is H (S, Z). One has

Proposition 2.2.6. Let S be a connected compact Riemann surface of genus g. The first homology group H1(S, Z) is
isomorphic to the Abelianization of the first homotopy group, namely

m(S)
[m(S), m(S)]
where [ ., .] is the standard commutator. The group Hy1(S, Z) is a free Abelian group with 2g generators and hence it

is isomorphic to Z*8. These generators can be chosen as (classes of) simple cycles.
Any cycle can be written as sum of simple cycles (with coefficients in Z.).

Hi(S,Z) ~ (2.2.3)

Let Sbe a compact Riemann surface of genus g and let [y1], ..., [y2,] be the set of generators of 711(S). Then
any element [y] € 11(S) can be uniquely written as

Wle = v o vdio o i, ke kue {1,228}

with ji,...,j, € Z and we use the subscript 711 to denote the elements of the homotopy group. Then the
corresponding element [y ], in the homology class is obtained as

]y, = jl[ykl]Hl + jZ[sz]H1 + -+ jn[an]Hu ki,...k, € {1,2,...,2g}.

This in particular also shows that the homology is independent from the triangulation.
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Figure 2.6: The blue contour is not homotopic to the trivial loop but it is homologous to zero because it separates
the surface.

Remark 2.2.7. A cycle may be Homologous to the trivial cycle but not homotopic to a point, for example the
one in Fig. 2.6.

In the rest of this section we simply denote as y an element in the homology. Letay, ..., ae,by,...,bs be a
basis in H (S, Z). Then any cycle y is homologous to a linear combination of the basis with integer coefficients:

8 8
Y ~ 2 m;a; + Zi’lib,‘, m;, n; € Z.
i=1 i=1

Intersection number

The notion of intersection number is more general than the one given here as it applies to any two submanifolds
of complementary dimensions. In our case of complex one-dimensional manifold (i.e. real surface) two
submanifolds of complementary dimension must have both dimension 1 (i.e. they must be curves) or 0 and 2
(points and domains). The latter case is rather degenerate (although not meaningless) and we focus only on
the first case.

Given two simple cycles y and n we represent them as smooth closed curves and we consider their
intersection: again, possibly by a small deformation of one or both contours we can reduce to the situation that
(a) the intersection is finite and
(b) all intersections occur transversally, i.e. the tangents to y and 7 at the point of intersection are not parallel.

Given p € y n 1 one such point of intersection, we associate a number v(p) € {+1,—1} as follows. Let z
be a local coordinate at p: the two (arcs) of y and n now are arcs in a neighbourhood of z(p) = 0 crossing
each other transversally. We denote by y, and 1o the two tangent vectors at z(p) = 0; if the determinant of
their components is positive we set v(p) = 1, if it is negative we set v(p) = —1. In other words the number
v(p) indicates the orientation of the axis spanned by y¢ and 7 (in this order!) relative to the orientation of the
standard R(z), J(z) axes.

Definition 2.2.8. The intersection number between y and 1 is then defined by

yEni= Y v(p). (2.2.4)
peYNn
It follows immediately from the definition that y * 7 = —n *  and the intersection number is an integer.

One can also prove that:

Proposition 2.2.9. The intersection number is invariant under smooth homotopy deformations of y and 1.
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Therefore the intersection number depends only on the homotopy classes of y and 1, which we then denote

by [y] = [n].

In particular it makes sense to compute the self-intersection of a cycle

[y1=[y]=0. (225)

This makes sense because in the actual computation one chooses two different representatives in the same class
of y which intersect transversally: the fact that the result is zero then follows from the antisymmetry.

Note also that the intersection number depends on the orientation of the contours: if we reverse one contour
the intersection number changes sign

][] = =[]+ [n]. (2.2.6)

Moreover:

Lemma 2.2.10. The intersection number of any boundary B with any cycle y vanishes y * = 0.

Proof. A boundary f is a collection of simple cycles that bound a domain. if y is a symple cycle it must traverse
the boundary of this domain an even number of times, and two consecutive crossing count with opposite sign,
hence cancel out. ]

This lemma implies that the intersection number is well defined as a pairing on the first homology group.
More in fact is true

Theorem 2.2.11. The intersection pairing
x:Hi(S,Z) x Hi(S,Z) > Z (2.2.7)

is a bilinear skew-symmetric map. If S is a compact Riemann surface then it is nondegenerate.

Figure 2.7: Intersection of y1 and y».
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2.2.1 Homology of a compact Riemann surface of genus g

We have said that H; (S, Z) is isomorphic to Z* and that the intersection pairing is antisymmetric and nonde-
generate. It can be shown that there are simple cycles

{allﬁll aZIﬁZI‘ . .,(Xg,ﬁg} (228)
that generate H1(S, Z) and such that
0(1‘*0(]‘20, ‘Bi*ﬁjzo, ai*ﬁ]‘=67‘j. (2.2.9)

Definition 2.2.12. A basis of H1(S, Z) satisfying (2.2.9) is called a canonical basis.

A canonical basis exists but it is not unique. Let & = (ay, ... ,ozg)t and B = (By,..-, ,Bg)’ denote the column
vectors of the 2¢ generators and let us suppose we make a transformation

()~ 0)(5) 2210

where the 2¢ x 2¢ matrix S = <Ié g) is integer valued and non-singular. The basis a/, 8’ will be a set of

generators provided that S~ is also integer-valued and hence the determinant of S must be +1.
Moreover if we want that the new basis is also canonical this forces

(8, 4)- )= §)on

IEEIE (2.2.12)

so that

Matrices of dimension 2g x 2g¢ satisfying (2.2.12) form a group, the symplectic group, denoted by Sp(g, Z).

Figure 2.8: Homology basis.

Example 2.2.13. Let us construct a canonical basis of cycles on the hyperelliptic surface w? = lei ;Ll (z—zi), §=

1. We represent this surface in the form of two copies of C (sheets) with cuts along the segments [z1, z2], 23, z4],
..., [z2¢+1,0]. A canonical basis of cycles can be chosen as indicated in the Figure 2.8 for ¢ = 2 (the dashed
lines represent the parts of a; and a, lying on the lower sheet).
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2.2.2 Canonical dissection of a compact Riemann-surface and Poincare polygon

We take a basepoint Py and consider the homotopy group m1(S, Py) of loops based at Py. Amongst these there
are 2¢ generators ay, f1, ..., g, B, whose homology classes form a canonical basis. Although these loops are
only identified by their homotopy classes, we will think of them as concrete choices of (smooth) closed curves
on the surface with basepoint Py.

Definition 2.2.14. The canonical dissection of S, called the Poincare’ polygon of S, is the simply connected domain S
obtained by removing the 2g generators identified above.

B1

B1

Figure 2.9: Dissection of a surface of genus one and two.

The boundary 08 of this domain consists of both sides of each generator and hence consists of 4g arcs.
We show inductively how to get the domain S from the surface S. In figure (2.9) each torus is cut along its
cycles so that the simply connected domain S is the rectangle. One can repeat this operation inductively in

the following way. The surface of genus 2 is cut along the line y which decomposes the surface is two tori
with boundary. Then each torus is dissected along its canonical basis of cycles and the polygons obtained are

identified along the side y so that S coincides with the 8-gone (see Figure 2.9 and 2.10). In the general case
one can repeat the dissection by cutting out of a sphere g disks bounded by curves y1, ..., y,. By flattening the
resulting surface, one obtains a polygon with g sides with symbol y1, ..., y,. We then attach to each side y; the

handle a8 ja],_l ‘Bj_l)/j for j = 1,..., g, thus obtaining the normal form of genus g ( see Figure 2.10) for the case
of genus one and two).
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-1
aj

BrY A B

Figure 2.10: Poincaré polygon for surfaces of genus one and two.



Chapter 3

Differentials on a Riemann surface.

3.1 Holomorphic differentials

We consider a complex-one dimensional manifold M with with an atlas of charts {U,, ¢,} with
Gp: Uy —V,cC

and ¢, (P) = z, € V, and P € U,. Here we are identifying C with R? by writing z, = x, + iy, with x, and y,
standard coordinates on R2.

Definition 3.1.1. A smooth one 1-form (also called differential) w on M is an assignment of a collection of two smooth
functions uy(Xa, Yo) and v4(Xa, Yo ) to each local coordinate z, = xo + iy, in U, such that

w = ua(xa/ ya)dxa + va(xar y(x)dya (311)

transform under change of coordinates as a (1,0)-tensor. Namely if zg = xg + iyp is another local coordinate such that
U, n U # O then

P OYa
(”ﬁ(’%%)) _ | 0% (“a(xwya))
vp(Xp, Yp) 0% OYa | \Va(Xa, Ya)
oyg  Oyp

with x, = Xa(xp, Yp) and Yo = Ya(xp, yp).
Using the basis dz, = dx, + idy,, dz, = dx, — idy,, we can rewrite w in the form
W = ho(2a,20) Az + §0(Za, Za) 424, (3.1.2)
where
1 ) 1 )
h, = E(ua —i0y), Qo= E(ua +iv,).
The two parts h(z4, Za) dzo and §(za, Zo) dZ, of the expression (3.1.2) will be called (1,0)- and (0, 1)-forms

respectively. The above expression shows that the decomposition of w in (1,0) and (0,1) form is invariant
under local change of coordinates, if and only if the change of coordinates is holomorphic, namely

0Z, 024

(32;; ! 6_2,3 B

101
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The above conditions in real coordinates are equivalent to the Cauchy-Riemann equation. For a one-complex
dimensional manifold M that has a complex structure ( namely a Riemann surface), the decomposition of a
one form in (1,0) and (0, 1) form is invariant under local change of coordinates. From now on we will consider
only holomorphic change of coordinates.

Definition 3.1.2. A one form w is called holomorphic is the functions h,(z4,Z,) in (3.1.2) are all holomorphic functions
and g, = 0, namely
w = h(z,)dz,.

A one form w is called antiholomorphic if
w = g(Z4)dzar.

In a similar way to one form we can define two-forms.

Definition 3.1.3. A smooth two form 1 on M is an assignment of a smooth function f,(zq,Z,) such that
N = fo(Za,Za)dza A dZg
is invariant under coordinate change.
The exterior multiplication satisfies the conditions
Az, Andzy, =0, dz, ndz, =0, dz, ndz, = —dZ, A dz,.
Under holomorphic change of coordinates zg = zg(za), Zg = Zg(Z4) one has
n = fp(zp, 2p)dzp A dZg = fu(Za,Za)dZa A dZa

where
2
dz,

fﬁ(z}g’zﬁ) = fa(za/ Za) dZ/;

We define QF for k = 0,1,2 as the set of smooth functions, smooth one forms and smooth two-forms on M
respectively. We define the exterior derivative

d: Q0 -0, k=012
as follows. For f € Q°,
df(z,z) = fodz + fzdzZ,

For one forms w € Q!, with w = h(z,z)dz + g(z,2)dz in a given coordinate chart, the exterior derivative takes
the form
dw =dh ndz +dg A dz

and for two forms, n € Q*(M)
dn=0.

Clearly the fundamental property of the exterior differentiation is

d*> = 0.
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We can decompose the exterior derivative operator d according to the decomposition of 1-form in (0,1) and
(1,0) forms

d=0+0
so that for h € Q%0 := Q0 in a local chart
0:Q% - QY 0h(z,2) = h,dz,

and
0:Q% - Q%, Oh(z,2) = h.dz.
In general we get the diagram
Qo1 2 0?2
b
QO i Ql,()
where Q2 = Q1. Also in this case ¢ = 0 and ¢% = 0.

Definition 3.1.4. A one form w is called exact if there is a function f € Q° such that df = w. A one form w € Q' is
called closed if dw = 0.

Lemma 3.1.5. A (1,0)-form w = h(z,z) dz is closed if and only if the function h(z, z) is holomorphic.

It follows that all the holomorphic differentials, locally can be written in the form w = h(z)dz where h(z) is a
holomorphic function. Holomorphic differentials are closed differentials.

Definition 3.1.6. The first de Rham cohomology group is defined as
- _ Closed 1-forms  ker(d : Q' — Q?)
dernan () = Exact 1-forms ~— Im(d : Q0 — Q1)

A similar definition can be obtained for the Dolbeault cohomology groups H?(S) and H%!(S) with respect
to the operator 0:
 ker(0: 0" - 0Q?)
S (0:Q0 - Q1)
po1 ) o Ker@ O O) o |
(0:Q0 - QO1) Image(0 : Q0 — QO1)

HY(S) : = ker(d: QY0 — ?),

A non trivial result shows that there are isomorphisms among the above three groups [17]. By denoting H%!(S)
the complex conjugate of the group H*!(S), one has the following theorem.

Theorem 3.1.7. The Dolbeault cohomology groups H°(S) and HOY(S) are isomorphic

HY(8) ~ HO(S) (3.1.3)
and the first de-Rham cohomology group is isomorphic to
Hj g (S) = HY(S) @ H*'(S). (3.1.4)

The relation (3.1.3) shows that the complex vector spaces H'?(S) and H*!(S) have the same dimension. The
relation (3.1.4) shows that the dimension of the complex vector space H'?(S) and H!(S) is half the dimension

of the complex vector space H} ., (S).
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3.1.1 Integration

We can integrate one forms on curves of the Riemann surface S, two-forms on domains of S and 0-forms on
zero dimensional domains of S, namely points. Let ¢y be a 0-chain,

Co :ZniP,-, PiES
i

then for f € Q°(S) the integral of f over a 0-chain ¢y is
J f=Ymf(P)
Co i

A one form w can be integrated over a one-chain c. If the piece-wise differentiable path ¢ : [0,1] — S'is
contained in a single coordinate disc with coordinates z = x + iy, then the integral of w over the one-chain c
takes the form

dz(t)

1 1
ch :JO h(z(t),Z(t))Z—jdt+L 8(=(t),z(t)) — ~dt

By the transition formula for w the above integral is independent from the choice of the coordinate chart z. In
a similar way a two-form 1 can be integrated over two chains D. Again restricting to a single coordinate chart

one has JL n= ffD f(z,2)dzdz.

The integral is well defined and extends in a obvious way to an arbitrary two-chain.

Theorem 3.1.8 (Stokes theorem). Let D be a domain of S with a piece-wise smooth boundary 0D and let w be a smooth

one-form. Then
J dow = f w. (3.1.5)
D oD

As a consequence of Stokes theorem, the integral of closed forms w on any closed oriented contour (cycle)
y on S does not depend on the homology class of y. Recall that two cycles y1 and y; are said to be homologous
if their difference y1 — 2 = 1 U (—)2) (Where (—)7) is the cycle with the opposite orientation) is the oriented
boundary of some domain D on S with dD = y; — y». Then for a close differential w and from Stokes theorem

we obtain
0=fda)zf wzf wzfa)ff .
D oD Y1—)2 71 V2

In addition, the integral of a close differential w on a close cycle y is independent from the cohomology class.
Let o' = w + df for some smooth function f, then

J;’a) = L(a)’ —df) = L(u’.

We summarise the above discussion with the following proposition.

Proposition 3.1.9. The integration is a paring between the first homology group H1(S,Z) and the first cohomology
group H S,0)

eRham (

J : Hi(S,Z) x H}yom(S,€) — C

The pairing is non-degenerate.
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Proof. We need to prove that the pairing is non-degenerate. Consider a smooth one-form w such that

szO
y

for all y € Hi(S, Z). It follows that the function
P
)= w
Py

is well defined and it does not depend on the path of integration between Py and P. Therefore df = @, namely

the equivalent class of w in the de-Rham cohomology is zero, [w] = 0in H} ., (S, C). |

As a consequence of the above proposition we have the following lemma.

Lemma 3.1.10. The dimension of the space H,
Riemann surface S.

oriam (S C) 18 less then or equal to 2¢ where g is the genus of the compact

Proof. Supposeby contradiction, that thereare w, ..., ws, s > 2gindependent closed differentialsin H} ., (S, C).

Then let us consider a basis of the homology S;, j = 1...,2¢ and construct the matrix with entries
Cik = J wr, j=1,...2¢, k=1,...s.
j

Such matrix has rank at most equal to 2g, and therefore one can find nonzero constants a5, .. ., as such that the
differential w = Y;_; ayws has all its periods equal to zero, namely

J w=0 j=1,..2g.
Sj
By proposition 3.1.9 it follows that [w] = 0 and we arrive to a contradiction. |

As a consequence of the above lemma we have the following corollary for the dimension of the space of
holomorphic differentials.

Corollary 3.1.11. The space of holomorphic differentials on a Riemann surface of genus g is no more than g-dimensional.
Actually the number of independent holomorphic differentials is indeed equal to g.
Theorem 3.1.12. The space of holomorphic differentials on a Riemann surface S of genus g has dimension g.

We do not give a proof of the above theorem that is constructive (see [18] or [17]). However for a Riemann
surface given as the zeros of a polynomial equation one can determine explicitly the holomorphic differentials.

Example 3.1.13. Let us consider holomorphic differentials on a hyperelliptic Riemann surface

2¢+1

S = {w? = Pag1(2)}, Pag1(z) = [[(z—z)

k=1
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of genus ¢ > 1. Let us check that the differentials

k—1 k—1
O SR R (3.1.6)

w Pagy1(z)

are holomorphic. Indeed, holomorphicity at any finite point but branch point is obvious as the denominator
does not vanish. We verify holomorphicity in a neighbourhood of the i-th branch point P; = {z = z;, w = 0}.
Choosing the local parameter 7 in a neighbourhood of P; in the form 7 = /z —z;, we get from (1.2.26) that
Nk = Yr(1)d7, where the function

2(z; + 2)1

AT 42— 2))

Yi(T) =

is holomorphic for small 7.

At the point at infinity the differentials r; can be written in terms of the local parameter T = z~2 in the form
Nk = ¢r(7)dt, where the functions

2¢+1

Oi(T) = —272(8=k) lH (1 —zi’()] , k=1,...,g

i=1
are holomorphic for small 7.

In the same way it can be verified that the differentials 7, = Z=1dz /w, k=1,...,g are holomorphic on the
Riemann surface of the curve w? = Pay5(z) with Pyg;2(z) an even polynomial with 2g + 2 distinct roots.

Newton polygon and holomorphic differentials

In general let us consider the non-singular irreducible affine plane curve C := {(z,w) € C? |F(z,w) =
Z?:o aj(z)w"~ 7}, where aj(z) are polynomials in z. Let S be the Riemann surface of the curve C. The one
form

Z lwi=ldz
= - = ii=1, 3.1.7
©“=Fmw (3.1.7)
is clearly holomorphic for all values where z and w are holomorphic. Indeed the only other possible points
where such differential might have poles are the zeros of F,, namely the branch points with respect to the
projection 71, : S — C, m,(z,w) = z. At these branch points, one needs to take w as local coordinate. Since
F.,dz + F,dw = 0 one has

b dw
Fy F.
it dw
Therefore at the branch points where F,, = 0 one can write the differential @ in the form w = S
z

Since we assume that the curve C is non-singular, F, # 0 at the points where F,, = 0.

In order to determine for which coefficients (i, j) the differential w in (3.1.7) remains holomorphic when z
and w go to infinity, we exploit again the Newton polygon.

We recall that the Newton polygon N of the polynomial F(z, w) = %, i~ a;jz'w’ is the convex hull of the set
of points (i, j) of the (x, y)-plane defined by

N = Convex Hull{(i, j) € Z* | a;j # 0}.
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We define N = N \ON where JN is the boundary of N. We have the following theorem

Theorem 3.1.14. Suppose that the affine plane curve C = {(z,w) € C? |F(z,w) = Z?:o M aijz'w = 0} is connected
and non singular and let S be the compact Riemann surface of the curve C. Then the basis of holomorphic differentials of
Sis
i—1,,j—1 ~
w="-""4dz (i,j)eN. (3.1.8)
Fo
Proof. The Riemann surface S has two meromorphic function z and w. Therefore we need to show that @ in

(3.1.8) remains holomorphic at the poles of z and w when (i, j) € N. We assume, without loss of generality, that
ag, # 0 and agg # 0. Further let

my, = max {i|a; #0}, my= max {i]|ap # 0}
i=0,...M i=0,...,M

In this way the Newton polygon takes the form depicted in the figure. Suppose that the total number of edges

1| L; (mm n)

Figure 3.1: Example of Newton polygon
of the Newton polygon is £. We divide the edges of the Newton polygon in two subsets:
e the edges that face the y axis, including the horizontal edges.

e the remaining edges.
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We number each edge starting from the rightmost edge that does not face the y axis and we proceed numbering
the edges anti-clockwise as in Figure 3.1. For each edge that does not face the y axis we associate the line that
contains it

Li(x,y)=xqs+yps—ms =0, xyeR, s=12,...,6,

while for the remaining edges, including the horizontal edges we associate the lines
Lf(x,y) =xqs +yps —ms =0, x,yeR, s=0,6+1,...¢
where we assume in both cases that g, m; € IN U {0}, and ps € Z. We define the set of integer lattice points

D ={(i,j) e Z?|L; (i,j) <0}, s=1,2,...,0,

o (3.1.9)
Ds={(i,j)e Z*|IL{ (i,j) >0}, s=&,6+1,...L

Then clearly the interior of the Newton polygon is given by

N = mleDs.
Since the function z has degree n the number of its poles counting multiplicity is equal to n. The local coordinate
of the function z at each of its poles is obtained from the slope of each line L; s = 1,... ;. Indeed to each line
Ly we associate the expansion in the local coordinate ¢

1 Cos
z=—, ~ Er

o s=1,...,6, (3.1.10)

where we assume that (ps,gs) # (0,0). We substitute the above expansion into the equation of the curve to
obtain

F(z(t), w(t)) = D aych =7 =™ N gy +O(F)).
(i))eN (i,j))eNALy

The coefficient cys is obtained from .
Z aifcés = 0.
(i,)eENAL;
The number of distinct solutions of the above equation corresponds to the length of the projection of the
corresponding edge of the Newton polygon on the y axis. In order to study the behaviour of the differential

(3.1.8) near the poles of the function z we first consider the expansion of each term using the local coordinate
(3.1.10):

dt

dz = —qsi%—_l (3111)
Fulz(t), w(t)) = Y jayc) e — gm0 N gyt 4 O(t)) (3.1.12)
iLjeN i,jeENALT

so that the differential w in (3.1.8) takes the form

Si~1gpi-1 f—(=D)ge— (= Dpe g0 +14p
i =
w B (X jen i ijcos + O(F))

= cons t~iETIEmAL (] L O(1))dt,
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where the constant factor is not important for our purposes. In view of (3.1.15), for (i,j) € N one has
igs + jps —ms < 0fors = 1,...,6; so we conclude from the above expansion that w is holomorphic near the
poles of z.

Finally, we need to study the behaviour of w near the set of poles of w. The local behaviour of the function
w near its poles is described by the slope of the edges that are not facing the positive x-axis. For the example
in the Figure 3.1 this corresponds to the edges L, and L. In the general case the edges Ly, fors = r..., £
correspond to poles of both the functions z and w and the computation has already been performed above.
The edges Lf,s=6+1,...0; + kwithk >0 correspond only to poles of the function w while the function z
assumes finite values that are the zeros of the polynomial >, ; ,;)cn a;,z'. In this case the local coordinate near
such points is described by

in)e

z=rcot?, w~thr, s=6+1,...60 +k (3.1.13)

Plugging the above local coordinate in F(z(t), w(t)) one can determine the constant cp; and the number of
solutions corresponds to the length of the projection of the corresponding segment onto the x axis. Then
plugging the local coordinate (3.1.13) in @ one obtains

@ = cons tETPTTY T L O())dE, s=64+1,...0 +k

In view of (3.1.15), for (i, ) € N one has igs + jps —ms = 1fors = €, +1,... 61 + k, so we conclude from the
above expansion that @ is holomorphic near the poles of w.
o

Example 3.1.15. Consider the algebraic curve C := {(z,w) € C? | F(z,w) = w® + zw* + 25w + zw? + 2>w? + 1 = 0}.
Using Maple, it is possible to verify that the curve is non singular since the system of equations F = 0, F,, = 0
and F, = 0 does not have solutions. The Newton polygon is given in the Figure 3.2. The edges L and

ar+
Ly
34
Ly
2 L L]
_|_
L4
1
: Ly
0 1 2 3 4 5

Figure 3.2: Newton polygon

L, describe the poles of the function z, with total multiplicity equal to 4 which is equal to the length of the
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projection of the edges onto the y-axis. The edges L, and L; describe the poles of the function w with total
multiplicity equal to 5 which is equal to the length of the projection of these edges onto the x-axis. The edges
LY and L] facing the y axis describe the behaviour of the function z near z = 0 while the side L that is facing

the x axis describes the behaviour of the function w near w = 0. The corresponding lines are

Ly(x,y)=x—5y=0, L;(x,y)=3x+4y—19=0

1 (X
(3.1.14)
LI (x,

y)=x—y+3=0 L (x,y)=x=0.

e Edge L ; it corresponds to the local parameter of the form

z=-, W= TS(CO + E cka)
T
k>1

Plugging the above ansatz into the equation of the curve one obtains F(z(f), w(f)) = ¢+ 1+ O(t) = 0
which implies ¢) = —1 . We denote this point as P*? = (o0,0). It is a first order pole for z while it is a
zero of order five for the function w.

e Edge L, ; it correspond to a local parameter of the form

1
z=—, w=—(co+ ch’[k)
T T4
k=1

Plugging the ansatz into the equation of the curve we obtain F(z(t), w(t)) = # (co(cy +1) +O(1)) =050

that ¢y = €™/ for j = 1,2,3. Since locally the function w ~ —23, the corresponding point P that needs
to be added to make C a compact Riemann surface is a branch point of multiplicity 3 with respect to the
projection 71t,(z, w) = z and of multiplicity 4 with respect to the projection 7, (z, w) = w. The point P* is
a pole of multiplicity 3 for the function z and it is a pole of multiplicity four for the function w.

e Edge L. ; it corresponds to a local parameter of the form

1 K
z=1 w==(co+ Y T
T(o Ek KT")

3
which implies ¢g = —1. We denote this point as P**. It is a simple zero for z and a first order pole for w.

1
Plugging the ansatz into the equation of the curve we obtain F(z(7), w(T)) = T—(CS(CO +1)+0(1)) =0

e Edge L ; it correspond to a local parameter of the form

z=1, w=(cy +2ckrk)
k

Plugging the above local coordinate into the equation of the curve one obtains F(z(t),w(7)) = ¢} + 1 +

o(t) = 0, so that ¢y = .(lz”if/ 3 with j = 1,2,3. Namely the meromorphic function z has three simple zeros at
the points P} = (0,e™/°), j =1,2,3.
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Let us define the domains
D ={(i,j) e Z*|L; (i,j) <0}, s=1,2,
Ds = {(i,j) e Z*|L{ (i,j) > 0}, s=3,4.

Then the interior of the Newton polygon N is equal to

4
N = (D
s=1
i—1,,j-1 .
Let us check that the differential © = F—dz is holomorphic for (i, j) € N. For example let us consider

w
the the differential w in the local coordinate the point P“?. We have

a@mmm»=%u+owm ﬁ:f%m

so that 4 , o
w = —t 421+ O(1))dt = —~ 4D (1 + O(n))d
which is holomorphic for small T when (i, j) € Dy. In a similar way writing the differential w in local coordinates
Zi—1gpi—1

near the other points, one concludes that w = F—dz is a holomorphic differential for (i, j) € ﬂ;l:l Ds=N.
w

3.1.2 Riemann bilinear relations

In this section we prove several technical assertions regarding the periods of close differential and holomorphic
differentials. Such relations are known as Riemann bilinear relations

Lemma 3.1.16. Let wq and w, be two closed differentials on a surface S of genus g = 1. Denote their periods with respect
to a canonical basis of cycles a1, ..., aq, B1,...,Bg, by Aj, Bi and A;, Bi:

A, =J w, B; =J w, A =J @', B; =f . (3.1.15)
Qi i a; i

Denote by f = §w the primitive of w, then
8
JJwAd:§ﬂd:ZMﬂ—A%) (3.1.16)
S a i=1
a8

Proof. The first of the equalities in (3.1.16) follows from Stokes’ formula, since d(fw') = w A «’. Let us prove

the second. We have that
3 g
3@fw/_g(j+j )fwf+g<j+j )f
iz1 \Jai Jai! o1 \Jp JB

0

U
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To compute the i-th term in the first sum we use the fact that f(P) = Sgo @ where P is a point in the interior of

S:

Pi P P;
f(Pi) = f(P) = Jw - Jw = Jw = —B; (3.1.17)
Py Py P!

since the cycle PiP;, which is closed on §, is homologous to the cycle B; (see the figure; a fragment of the
boundary 08 is pictured). Similarly, the jump of the function f in crossing the cut §; has the form

Qi
£Q) - F(Q) = j w= A (3.1.18)
Qi

since the cycle Q!Q; on § is homologous to the cycle a;. Moreover, '(P;) = «'(P;) and «'(Q}) = @’(Q;) because
the differential ' is single-valued on S. We have that

| smaw e+ | e = | feoa ey - | (5P + B (P

i

= —B; J @' (P;) = —BA!
a;i

where the minus sign appears because the edge ai_l occurs in 08 with a minus sign. Similarly,

([ ] )=

Summing these equalities, we get (3.1.16). The lemma is proved. o

We derive some important consequences for periods of holomorphic differentials from the lemma 3.1.16.
Everywhere we denote by ay, ..., aq, f1,..., B the canonical basis of cycles on S.
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Corollary 3.1.17. Let w be a nonzero holomorphic differential on S, and Ay, ..., Ag, By, ..., By its corresponding periods
with respect to the canonical homology basis ay ..., ag and Py ..., Be, then

8
g (Z AkBk> <0. (3.1.19)

i=1

Proof. Take @' = @ in the lemma 3.1.16. Then A! = A; and B! = B; fori = 1,..., 8. We have that

1ijAa)’:1JJ|f\2dZAdZ:JJ |fPdx A dy > 0.
2)Js 2 S

Here z = x + iy is a local parameter, and w = f(z)dz. In view of (3.1.16) this integral is equal to
i 8 ~ _ 8 ~
5 ;AkBk — A¢By = -3 (gjl AkBk> :
The corollary is proved. ]
Corollary 3.1.18. If all the a-periods of a holomorphic differential are zero, then w = 0.
This follows immediately from Corollary 3.1.17.

Corollary 3.1.19. On a surface S of genus g there exists a basis w1, . .., wq of holomorphic differentials such that
%a)k:(ﬁﬂ(, j,k:1,...,g. (3.1.20)
aj

Proof. Let 1y, ..., 1, be an arbitrary basis of holomorphic differentials on S. The matrix

Ajp = ffnk (3.1.21)
aj

is non-singular. Indeed, otherwise there are constants ¢, ..., cg such that >}, Ajci = 0. But then Y}, come = 0,
since this differential has zero a-periods. This contradicts the independence of the differentials 7, ...,7,.
Consider

g
wj= > Ay, j=1,...,8 (3.1.22)
k=1
where the matrix (Akj) is the inverse of the matrix (Aj), > AikAk]- = 0jj. Then the differentials w; define the
desired basis. O

Abasis wy, . .., w, satisfying the conditions (3.1.20) will be called a normal basis of holomorphic differentials
(with respect to a canonical basis of cycles ay, ..., &g, B1,...,Bg)

Corollary 3.1.20. Let ws, ... wg be a normalized basis of holomorphic differentials, and let

Bjk = §C‘)k1 ]/k = 1/- - 8- (3123)
Bj

Then the matrix (Bjx) is symmetric and has positive-definite imaginary part.
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Figure 3.3: Homology basis.

Proof. Let us apply the lemma 3.1.16 to the pair = w; and @’ = wy. By (3.1.16) we have that
0= Z(éijBik — 0iBij) = (Bjx — Byj)

The symmetry is proved. Next, we apply Corollary 3.1.17 to the differential Z;Z:l xjw; where all the coefficients
x1,...,Xg are real. We have that Ay = x, By = Z]' xByj which implies

S(Zkaijkj) = Z S(Bkj)xkxj < 0.
koo

kj
The lemma is proved. o
Definition 3.1.21. The matrix (Bj) is called a period matrix of the Riemann surface S.

Example 3.1.22. We consider a surface S of the form w? = P5(z) of genus ¢ = 1 (an elliptic Riemann surface).
Let P3(z) = (z — z1)(z — z2)(z — z3) and choose a basis of cycles as shown in the figure 2.7. We have that

© © adz “_3[> dz B
1 9 \Jvm@E )

Note that

SZ3 dz
adz “ /Ps(z)
B- jg - P 9(B) > 0. (3.1.24)
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Figure 3.4: Homology basis.

Example 3.1.23. . Consider a hyperelliptic Riemann surface w? = Pyg.1(z) = lei ;rl (z—2z;) for genus g > 2, and

choose a basis of cycles as indicated in the figure 3.4 (there ¢ = 2). A normal basis of holomorphic differentials

has the form > g 1
cixz"tdz
P e e S TS (3.1.25)
P2g+1(z)

Here (cj) is the matrix inverse to the matrix (Aj) where

2 gl
AijZJ :1,...,g. (3126)
Z2j—1

- ]/k
A/ P2g+1(z)

3.1.3 Meromorphic differentials, their residues and periods

Meromorphic (Abelian) differentials on a Riemann surface differ from holomorphic differentials by the possible
presence of singularities of pole type. If a surface is given in the form F(z, w) = 0, then the Abelian differentials
have the form w = R(z, w)dz or, equivalently, w = R;(z, w)dw, where R(z, w) and R (z, w) are rational functions.
For example, on a hyperelliptic Riemann surface w? = P5.1(z) the differential w~!z*~'dz has for k > g a unique
pole at infinity of multiplicity 2(k — g) (see Example 3.1.13). Suppose that the differential @ has a pole of
multiplicity k at the point Py i.e., can be written in terms of a local parameter z, z(Py) = 0, in the form

C_k C_1
o= (Z—k b Sy 0(1)> iz (3.127)

(the multiplicity of the pole does not depend on the choice of the local parameter z).
Definition 3.1.24. The residue Resp_p, w(P) of the differential w at a point Py is defined to be the coefficient c_;.

Lemma 3.1.25. The residue Resp_p, w(P) does not depend on the choice of the local parameter z.

Proof. This residue is equal to

c — L
- 2mi
C
where C is an arbitrary small contour encircling Py. The independence of this integral on the choice of the local

parameter is obvious. The lemma is proved. ]
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Theorem 3.1.26 (The Residue Theorem). . The sum of the residues of a meromorphic differential w on a Riemann
surface, taken over all poles of this differential, is equal to zero.

Proof. Let Py, ..., Py be the poles of w. We encircle them by small contours Cj, ..., Cy such that

1
R = — i=1,...,N
gsw 2m.§a), ] seee s N,

(the contours C; run in the positive direction), and cut out the domains bounded by Cy, ..., Cy from the surface
S. This gives a domain &’ with oriented boundary of the form 0§’ = —C; — - - - — Cy (the sign means reversal
of orientation). The differential @ is holomorphic on §'. By Stokes’ formula,

N
; T 2mi Zi; 2711 2mi f S dw =0,

oS’

since dw = 0. The theorem is proved. m]

We present the simplest example of the use of the residue theorem: we prove that the number of zeros of
a meromorphic function is equal to its number of poles (counting multiplicity). Let Py, ..., Py, be the zeros of
the meromorphic function f, with multiplicities m;, ..., m, a nd let Q, ..., Q; be the poles of this function, with
multiplicities ny, ..., 1. Consider the logarithmic differential d(Inf). This is a meromorphic differential on S
with simple poles at Py, ..., Py with residues my;, ..., m; and at the points Qy, ..., Q; with residues —n;, ..., —n;.
By the residue theorem: my + --- + my —ny — --- — 1 = 0, which means that the assertion to be proved is
valid. One more example. For any elliptic function f(z) on the torus T?> = C/{2mw + 2n«'} the residues at the
poles are defined with respect to the complex coordinate z (in C). These are the residues of the meromorphic
differential f(z)dz, since dz is holomorphic everywhere. Conclusion: the sum of the residues of any elliptic
function (over all poles in a lattice parallelogram) is equal to zero. We formulate an existence theorem for
meromorphic differentials on a Riemann surface S (see [?] for a proof).

Theorem 3.1.27. Suppose that Py, ..., Py are points of a Riemann surface S and z1, . . ., zy are local parameters centered
at these points, z;(P;) = 0, and the collectlon of principal parts is

0 N0
1

_k + -+ ; dz;, i=1,...,N. (3.1.28)
z;! Zj
Assume the condition
N
i =0 (3.1.29)
i=1

Then there exists on S a meromorphic differential with poles at the points Py, ..., Py, and principal parts (3.1.28).

Any meromorphic differential can be represented as the sum of a holomorphic differential and the following
elementary meromorphic differentials.
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1. Abelian differential of the second kind ()} has a unique pole of multiplicity 7 + 1 at P and a principal part
of the form

" 1
Qp = (Zn+1 + O(l)) dz (3.1.30)
with respect to some local parameter z, z(P) = 0,n = 1,2,....

2. An Abelian differential of the third kind Qpg has a pair of simple poles at the points P and Q with residues
+1 and —1 respectively.

Example 3.1.28. We construct elementary Abelian differentials on a hyperelliptic Riemann surface w? =

Pe41(z). Suppose that a point P which is not a branch point takes the form P = (a,w, = ,/Pag41(a)).
An Abelian differential of the second kind Ql(al) has the form

P q(a)
(1) w + Wy 2g+1 dz
Q) = — 1.31
P ((z—a)2+2wa(z—u)> 2w (3-131)
(with respect to the local parameter z-a). The differentials QI(,") can be obtained as follows:
n 1 dnil 1
2 ada”*1 P (3132)
If P = (z;,0) is one of the branch points, then
. dz . dz
QP = W for n = 2k, QP = m for n =2k + 1. (3133)
Finally, if P = oo, then
m _ 1 _ w1 oeadz _
Q)7 = —5% dz for n =2k, Qf = —Ezg““ - for n =2k + 1. (3.1.34)

We now construct differentials of the third kind. Suppose that the point P and Q have the form P = (a,w, =
Pygy1(a)) and Q = (b,wp = 4/Pag+1(b)). Then

w+w, w+wy)\ dz
_ _ fad 1.
Lr (z—a z—b)Zw (31.35)
If Q = +oo then
w+w, dz
Qpg = P (3.1.36)

Accordingly, we see that for a hyperelliptic Riemann surface it is possible to represent all the Abelian differentials
without appealing to Theorem 3.1.27.

Exercise 3.1.29: Deduce from Theorem 3.1.27 that a Riemann surface S of genus 0 is rational. Hint. Show
that for any points P, Q € S the function f = exp { Qpg is single valued and meromorphic on S and gives a
biholomorphic isomorphism f : S — P
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The period of a meromorphic differential w along the cycle y is defined if the cycle does not pass through
poles of this differential. The period SV w depends only on the homology class of y on the surface S, with the
poles of w with nonzero residue deleted. For example, the periods of the differential (pg of the third kind
along a cycle not passing through the points P and Q are determined to within integer multiples of 2mi. In
speaking of the periods of meromorphic differentials we shall assume that the cycles do not pass through the
poles of the differential.

Lemma 3.1.30. Suppose that the differentials 1 and (), on a Riemann surface S have the same poles and principal
parts, and the same periods with respect to the cycles ay, ..., ag, P1,...,Pq. Then these differentials coincide.

Proof. The difference w1 — w, is a holomorphic differential that has zero a-periods. Therefore, it is identically
zero (see Lecture 3.1.2). The lemma is proved. O

Definition 3.1.31. A meromorphic differential w is said to be normalized with respect to a canonical basis of cycles
a,..., &, B1,...,Bg if it has zero a-periods.

Any meromorphic differential w can be turned into a normalized differential by adding a holomorphic
differential Zle cxwy. Indeed the condition that Q = w + ) cxwy is normalised, namely

8
JerZCkJ wr =0, j=1,...,g,
a k=1 @j

defines the constants cy, ..., cg uniquely.

By Lemma 3.1.30, a normalized meromorphic differential is uniquely determined by its poles and by the
principal parts at the poles. In what follows we assume that meromorphic differentials are normalized. We
obtain formulas that will be useful for the f-periods of such differentials by arguments like those in the proof
of Lemma 3.1.16.

j

Lemma 3.1.32. The following formulas hold for the p-periods of normalized differentials QI(,") and Qpg

1t
éQI()n) = anm%QDk(Z”Z:(), k= 1,. a8 n= 1,2,- “ey (3137)
Br

where z is a particular local parameter in a neighbourhood of P, z(P) = 0, and the functions Yy (z) are determined by
the equality wy = Yx(z)dz and wy, ..., wg is a normalized basis of holomorphic differentials with respect to the canonical
homology basis a, ..., aq,B1,. .., B,

P
Qpg = 27‘(1'J wp, 1=1,...,8 (3.1.38)
Q
Pr

where the integration from Q to P in the last integral does not intersect the cycles ay, ..., ag, p1, ..., Pg.

Proof. We encircle the point P with a small circle C oriented anticlockwise; deleting the interior of this circle
from the surface S, we get a domain &’ with 08’ = —C. Let us apply the arguments of Lemma 3.1.16 to the

pair of differentials w = wy, @’ = Ql(,”). Denote by u; the primitive

Q
uk(Q) = J Wi (3.1.39)

Py
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which is single-valued on the Poincare’ polygon S of the surface S. We have that

8
OZJJwAd:J~WQP:ZMﬂf%&%§qu (3.1.40)

oS’ P
j=1 C

(the boundary 08’ differs from the boundary 68 by (—C)). Here the a and p-periods of wy and QY have the
form

Aj =0, Bj= By A' %Q(n
From this,
%Ql(j") = §qu1(3") = ZniRgs(qu( )y = 27'(1Res [(LO f (7 dT> z””] (3.1.41)
B c

Computation of the residue on the right-hand side of this equality leads to (3.1.37).

We now prove (3.1.38). Let C and C’ small circles around P and Q respectively. Deleting the interior of this
circles from the surface S, we get a domain &’ with 0§’ = —C — C’. Let us apply the arguments of Lemma 3.1.16
to the pair of differentials w = wy, @’ = Qpg. Denote by u; the primitive of w;. By analogy with (3.1.40) and
(3.1.41) we have that

%QPQ = 27 § qupQ + 2mi § qupQ
Bi C cr

Since the differential Qpg has a simple pole in P and Q with residue +1 respectively, the above integrals are

equal to
P Q p
fﬁQPQ = we(P) —uk(Q) = J o —J W = f Wk
Po Py Q
Bk
where we assume that the point Py lies in the interior of S’. The lemma is proved. ]

Exercise 3.1.33: Prove the following equality, which is valid for any quadruple of distinct points Py, ..., P on

a Riemann surface:
Py P3

Qp,p, = Qp,p,. (3.1.42)
P, P,

Exercise 3.1.34: Consider the series expansion of the differentials QI(,") in a neighbourhood of the point P
() LR S
n n /
Q7 = e + Z(:ch 7! |dz. (3.1.43)
j:

Prove the following symmetry relations for the coefficients cﬁk):

kel =jel, kj=12.... (3.1.44)
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Exercise 3.1.35: Prove that a meromorphic differential of the second kind w is uniquely determined by its poles,
principal parts, and the real normalization condition

Fpw=0 (3.1.45)
J

for any cycle S. Formulate and prove an analogous assertion for differentials of the third kind (with purely
imaginary residues).

3.1.4 The Jacobi variety, Abel’s theorem

Letey, ..., e, be the standard basis in the space C8, ¢; = (0,...,1,...,0), with one on the j-entry. Given 2¢ row
vectors Ay € €8,k =1,...,2¢g, with Ay = Z}gzl Akjej, we construct the 2¢ x ¢ matrix A having in the k-row the
vector A

Ayj = (A)j. (3.1.46)
The matrix A generates a lattice in C$ of maximal rank, if its row vectors are linearly independent over the real
numbers.

Consider in C$ the integer period lattice L generated by the vectors (3.1.46). The vectors in this lattice can
be written in the form ,
g
L={oeCs o= mhA, (m,...,my)eZ*} (3.1.47)
k=1
We assume that L generates a lattice of maximal rank in C&. Then the quotient of C8 by this lattice is the
2g-dimensional torus
T% = C8/L (3.1.48)

namely a g-dimensional complex manifold. Changing the basis in C¢, namely ¢x — eM, with M € GL(g,C),
the matrix A — AM. Furthermore, the same lattice is given by vectors (A4, ..., Asg) with

28
Ak = Z le]')\]‘
k=1

with N = {nk'}z‘g'; € SL(2g,Z). Therefore A — NA. Summarizing, two matrices A and A represent the same
i5k,j=1 8 g p

torus if 3
A=NAM, MeGL(g,C), NeSL(2g,Z). (3.1.49)

If we assume that the lattice generated by A has maximal rank, we can always choose A in such a way that
— Al
»=(3)
I
with A1 € GL(g, C). Therefore, by (3.1.49) the two matrices A and AA[ 1= < A /g\1> with I, the g-dimensional
2i4

identity, represent the same torus.
Let B = (Bjx) be an arbitrary complex symmetric ¢ x ¢ matrix with positive-definite imaginary part (as
shown in Lecture 3.1.2, the period matrices of Riemann surfaces have this property). We consider the vectors

e,...,eq, €B, ... eB. (3.1.50)



3.1. HOLOMORPHIC DIFFERENTIALS 121

Lemma 3.1.36. The vectors (3.1.50) are linearly independent over R.
Proof. Assume that these vectors are dependent over R:
(p1e1 + -+ + pgeg) + (p1er + - + pgeg)B =0, pi, pjeR.

Separating out the real part of this equality we get that J((uie1 + --- + pgeee)B) = 0. But the matrix J(B) is
non-singular, which implies y; = - -+ = ug = 0. Hence also p; = - - = p, = 0. The lemma is proved. O

Consider in C¢ the integer period lattice generated by the vectors (3.1.50). The vectors in this lattice can be
written in the form
m+nB, m,neZ8. (3.1.51)

By Lemma 3.1.36 the quotient of C¢ by this lattice is a torus of maximal rank:
T% = T?¢(B) = C8/{m + nB}. (3.1.52)

Definition 3.1.37. Suppose that B = (Bj) is a period matrix of a Riemann surface S of genus g. The torus T?$(B) in
(3.1.52), constructed from this period matrix is called the Jacobi variety (or Jacobian) of the surface S and denoted by [(S).

Remark 3.1.38. What happens with the torus J(S) when the canonical basis of cycles on S changes? Let
a=(ay,...,ag) and B = (B1,...,B;)" be the column vectors of the canonical homology basis. Let a’ and ' be a
new canonical homology basis related to @ and § by the symplectic transformation

<g> ) (? Z) @ (? Z)ESP(Zg,Z).

Let w = (wy,...,wy) be the canonical homology basis of holomorphic differentials with respect to the basis

and 3, namely
J w =1, J w=B8
a i

where [, is the ¢ dimensional identity matrix. Then

Ja):f w = alg + bB,
a’ aa+bp

Jw:f w = cly +dB.
/ ca+dp

Observe that al, + bB is non singular, since it is the matrix of a-periods of the holomorphic differentials. So the
canonical basis of holomorphic differentials @’ = (wj, ..., ;) with respect to the basis o’ and g is given by

w' = w(aly + bB)™!
This implies that the corresponding period matrix

B = J @' = (clg + dB)(al, + bB) ™. (3.1.53)

From (3.1.49) it follows that the tori T?¢(B) and T?¢(B’) are isomorphic. Accordingly, the Jacobian J(S) changes
up to isomorphism when the canonical basis changes.
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We consider the primitives (”Abelian integrals”) of the basis of holomorphic differentials:
P
ur(P) = f wy, k=1,...,3 (3.1.54)
Py

where Py is a fixed point of the Riemann surface. The vector-valued function
A(P) = (ur(P), ..., ug(P)) (3.1.55)

is called the Abel mapping (the path of integration is chosen to be the same in all the integrals u; (P), ..., uy(P)).
Lemma 3.1.39. The Abel mapping is a well-defined holomorphic mapping

S = J(S). (3.1.56)

Proof. (cf. Example 3.1.28). A change of the path of integration in the integrals (3.1.54) leads to a change in the
values of these integrals according to the law

uk(P) —>uk(P) +§wk, k= 1,...,g,
'}/

where y is some cycle on S. Decomposing it with respect to the basis of cycles, y ~ > m;a; + > n;f; we get that

ug(P) — ux(P) + my + ZBkjnj, k=1,...,g
j

The increment on the right-hand side is the kth coordinate of the period lattice vector m + nB where m =
(my,...,mg),n = (ny,...,ng). Thelemma is proved. O

The Jacobi variety together with the Abel mapping (3.1.56) is used for solving the following problem: what
points of a Riemann surface can be the zeros and poles of meromorphic functions? We have the Abel’s theorem.

Theorem 3.1.40 (Abel’s Theorem). The points P1,...,P,and Q1, ..., Q, (some of the points can repeat) on a Riemann
surface S are the respective zeros and poles of some function meromorphic on S if and only if the following relation holds
on the Jacobian:

AP1) + -+ A(Py) = A(Q1) + -+ + A(Qn)- (3.1.57)

Here and below, the sign = will mean equality on the Jacobi variety (congruence modulo the period lattice
(3.1.51)). We remark that the relation (3.1.57) does not depend on the choice of the initial point Py of the Abel
map (3.1.54).

Proof. 1) Necessity. Suppose that a meromorphic function f has the respective points Py, ..., P, and Qy, ..., Qy
as zeros and poles, where each zero and pole is written the number of times corresponding to its multiplicity.
Consider the logarithmic differential Q = d(log f). Since f = constexp Sgo (), is a meromorphic function, the
integral in the exponent does not depend on the path of integratio. It follows that all the periods of this
differential € are integer multiples of 27ti. On the other hand, we represent it in the form

n 8
Q=) Qpg + ), cws, (3.1.58)
j=1 s=1



3.1. HOLOMORPHIC DIFFERENTIALS 123

where Qp,q; are normalized differentials of the third kind (see Lecture 3.1.3) and cy, ..., ¢ are constant coeffi-
cients. Let us use the information about the periods of the differential. We have that

2ming = 3€Q =cy, Nr€Z,

which gives us ¢, = 2ming. Further,

P;
n
Znimk:§Q:2n ZJ k+2ﬂ121’ls sk
:Q

b

(we used the formula (3.1.38)). From this,

n g
ug(Py) + -+ ug(Py) — ug(Q1) — -+ — ur(Qn) = Z j = my — Y 1By (3.1.59)
j=15. s=1

The right-hand side is the kth coordinate of the vector m+nB of the period lattice (3.1.51), where m = (my, ..., my),
n = (ny,...,ng). The necessity of the condition (3.1.57) is proved.
2) Sufficiency. Suppose that

ue(P1) + -+ + ug(Pu) — ue(Q1) — - -+ — ux(Qn) = my — Zns - (3.1.60)

f(P) —exp[ JQPQ]—&-Zc]f a)]]

where Qp,q. are the normalised third kind differentials with poles in P; and Q; and c¢; are constants. The
function is a single valued meromorphic function if the integrals in the exponent do not depend on the path of
integration. Let us study the behaviour of f when P — P + ay:

8
£(B) = fPrexp | Yo [ wr .
= Jo

In order to have a single valued function the constant c; = 27mny, 1 € IN. Next let us consider the behaviour of
fwhenP — P+ B

8 (P 8
f(P) — f(P)exp [Zf Qpg, + En]f a)]} = f(P)exp [2711'];}@ wk+2ni;nij wj]

Using the relation (3.1.60) one obtains that f(P) — f(P)exp[2nimi] = f(P) which shows that f(P) is a mero-
morphic function on S. o

Consider the function
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Example 3.1.41. We consider the elliptic curve
W =42° — gz — gs. (3.1.61)

For this curve the Jacobi variety J(S) is a two-dimensional torus, and the Abel mapping (which coincides with
(??)) is an isomorphism (see Example 3.1.22). Abel’s theorem becomes the following assertion from the theory
of elliptic functions: the sum of all the zeros of an elliptic function is equal to the sum of all its poles to within
a vector of the period lattice.

Example 3.1.42. (also from the theory of elliptic functions). Consider an the elliptic function of the form
f(z,w) = az + bw + c, where a,b, and c are constants. It has a pole of third order at infinity (for b # 0).
Consequently, it has three zeros Pj, P;, and P3. In other words, the line az + bw + ¢ = 0 intersects the elliptic
curve (3.1.61) in three points (see the figure). We choose « as the initial point for the Abel mapping, i.e.,
u(o0) = 0. Letu; = u(P;),i = 1,2,3. In other words,

Pi = (p(ui),9'(ui)), i=12,3,

where ¢(u) is the Weierstrass function corresponding to the curve (3.1.61). Applying Abel’s theorem to the
zeros and poles of f, we get that
Uy +up +uz =0.

Conversely, according to the same theorem, if u; + u + u3 = 0, i.e. u3 = —up — u; then the points Py, P; and P3
lie on a single line. Writing the condition of collinearity of these points and taking into account the evenness of
p and oddness of ¢, we get the addition theorem for Weierstrass functions:

1 9(u1) 9 (u1)
det|1 p(u2) 9 (uz) =0. (3.1.62)
1 ol +ux) —9' (1 + up)
3.1.5 Divisors on a Riemann surface. The canonical class. The Riemann-Roch theorem

Definition 3.1.43. A divisor D on a Riemann surface is defined to be a (formal) integral linear combination of points on
it:

n
D=>mP, PeS, neZ (3.1.63)
i=1

For example, for any meromorphic function f the divisor (f) of its zeros Py, ..., Pr and poles Qs,...,Q; of
multiplicities my, ..., my, and ny, ..., n;, respectively is defined

(f) = mlpl + -4 mkPk — lel .= lel' (3164)

Observe that given f and g two meromorphic functions

(f&) =)+ @), (f/8) =) —(8)

Definition 3.1.44. Divisors of meromorphic functions are also called principal divisors.
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Another useful notation for the divisor of a meromoprhic function is given by
(f) = Y ordp(f) - P
P

where the order of f in P is the minimum coefficient present in the Laurent expansion in a neighbourhood of
the point P namely if f = >}, @, 7" near the point P, then ordp f = min,ez{n, |, # 0}. Such definition does not
depend on the choice of the local coordinates. Note that the order ordp(f) = 0 if P is neither a zero or a pole of
f and that the set of zeros and poles of a meromorphic function on a compact Riemann surface S is finite so
that (f) is a finite set.

The set of all divisors on S, Div(S), obviously form an Abelian group (the zero is the empty divisor).

Definition 3.1.45. The degree deg D of a divisor of the form (3.1.63) is defined to be the number

N
degD = ) n;. (3.1.65)
i=1

The degree is a linear function on the group of divisors. For instance,

deg(f) = 0. (3.1.66)

Definition 3.1.46. Two divisors D and D' are said to be linearly equivalent, D ~ D’ if their difference is a principal
divisor.

Linearly equivalent divisors have the same degree in view of (3.1.66). For example, on P! any divisor of
zero degree is principal, and two divisors of the same degree are always linearly equivalent.

Example 3.1.47. The divisor (w) of any Abelian differential @ on a Riemann surface S is well-defined by
analogy with (3.1.64). If &’ is another Abelian differential, then (w) ~ («’). Indeed, their ratio f = w/«’ is
a meromorphic function on S, and (w) — («’) = (f). We remark that any differential in a coordinate chart
@y : Uy — Vo, with ¢, (P) = z, take the form

W = hy(24)dze, @' =H\(24)dza

where h, and /), are meromorphic functions. The ratio g, = h,/h,, is a meromorphic function of V,,. Now define
f := ga 0 o which is a meromorphic function on U,. It is easy to check that f is well defined and independent
from the coordinate chart.

Definition 3.1.48. The linear equivalence class of divisors of Abelian differentials is called the canonical class of the
Riemann surface S. We denote it by Ks.

For example, the divisor —200 = (dz) can be taken as a representative of the canonical class Kpi.

We reformulate Abel’s theorem in the language of divisors. Note that the Abel map extends linearly to
the whole group of divisors. Abel’s theorem obviously means that a divisor D is principal if and only if the
following two conditions hold:

1. degD = 0;
2. A(D) =0on J(S),



126 CHAPTER 3. DIFFERENTIALS ON A RIEMANN SURFACE.

where
M

AD) = Y J(AP) = AQy), D=3 (Pi-Q),
i=1 i=1
with A the Abel map defined in (3.1.55).
Let us return to the canonical class. We compute it for a hyperelliptic surface w? = Pagy2(z). Let Py, ..., Pygio
be the branch points of the Riemann surface, and P+ and P, its point at infinity. We have that

-

(dz) =Py + -+ P2g+2 — 2P+ — 2P -.

Thus the degree of the canonical class on this surface is equal to 2g — 2. We prove an analogous assertion for
an arbitrary Riemann surface. For the purpose we need the following lemma.

Lemma 3.1.49. Let f : S — X be a holomorphic map between Riemann surfaces S and X and w a meromorphic one
form on X, then for any fixed point P € S

ordpf*w = (1 + ordgpy(w))multp(f) — 1 (3.1.67)
where f*w denotes the pull back of w via f.

Proof. We recall that the multiplicity of f in P is the unique integer m such that there is local a coordinate near
P e S and f(P) € X such that f takes the form 7 — 7. Suppose that the map f can be represented near the
point P and f(P) with centred local coordinates 7 and 7’ as T — t’ = ™. Suppose that near the point f(P) the
one form w takes the form w = g(7')d7’ with g(7') = Y., ax7™". Then, the one form f*w, near the point P,
takes the form

ffo = g(t™)ymt" dr = Z apr"k M=l

k=n

Looking at the coefficient in the exponent, one has the claim of the lemma. m|

Definition 3.1.50. Let f : S — X be a holomorphic map between Riemann surfaces. The branch point divisor Wy is the
divisor on S defined by

Wy = [multp(f) — 1]P. (3.1.68)
PeS

For example, let us consider the Riemann surface S of the curve C := {z,w) € C?|F(z,w) = 0} and consider
the projection 7, : C — C such that m,(z,w) = z. Such map can be extended to a holomorphic function
2:8 — P Let Py,..., Py be the ramification points of Z with multiplicity by, ..., by respectively. The branch
point divisor is W; = b1 P; + ...byPy.

Definition 3.1.51. Let f : S — X be a holomoprhic map between Riemann surfaces, let Q € X and consider the divisor
nQ with n € Z\{0}. The pullback f*(nQ) of the divisor nQ, via the map f is defined as

f*nQ) =n >, mult,(f) P (3.1.69)
Pef~1(Q)

We remark that deg(f*(nQ)) = ndeg f.
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Lemma 3.1.52. The canonical class of the surface S has the form
Ks = W¢ + f*(Kp). (3.1.70)
Here f* denotes the inverse image of a divisor in the class Kp1 with respect to the holomorphic function f : S — PL.

Proof. . Let f : S — P! be a non constant holomorphic map between compact Riemann surfaces S and P! and
@ an Abelian differential on IP!. Then applying (3.1.67), (3.1.68) and Lemma 3.1.49 we arrive to

(ffw) = Wr + f*(w). (3.1.71)
The statement of the lemma follows immediately from (3.1.71). O
Corollary 3.1.53. The degree of the canonical class Ks of a Riemann surface S of genus g is equal to 2g — 2.

Proof. We have from (3.1.70) that deg Ks = deg Wy — 2deg f, where deg Wy is the total multiplicity of the
ramification points of the map f. By the Riemann-Hurwitz formula (2.1.4), deg Wy = 2¢ + 2deg f — 2. The
corollary is proved. O

The divisor (3.1.63) is positive if all multiplicities n are non negative numbers An effective divisor is a divisor
linearly equivalent to a positive divisor. Divisors D and D’ are connected by the inequality D > D’ if their
difference D — D' is a positive divisor.

With each divisor D we associate the linear space of meromorphic functions

L(D) = {f | (f) + D = 0}. (3.1.72)

If D is a positive divisor, then this space consists of functions f having poles only at points of D, with
multiplicities not greater than the multiplicities of these points in D. If D = D, — D_, where D, and D_ are
positive divisors, then the space L(D) consists of the meromorphic functions with poles possible only at points
of D, with multiplicities not greater than the multiplicities of these points in D , and with zeros at all points
of D_ (at least), with multiplicities not less than the multiplicities of these points in D.

Lemma 3.1.54. If the divisors D and D' are linearly equivalent, then the spaces L(D) and L(D") are isomorphic.
Proof. Let D — D’ = (g), where g is a meromorphic function. If f € L(D), then f' = fg e L(D’). Indeed,
(f)+D' = (f) + (@) + D' = (f) + D > 0.
Conversely, if f' € L(D’), then f = ¢~ f" € L(D). The lemma is proved. ]
We denote the dimension of the space L(D) by
I(D) = dimL(D). (3.1.73)

By Lemma 3.1.54, the function /(D) (as well as the degree deg D) is constant on linear equivalence classes of
divisors. We make some simple remarks about the properties of this important function.

Remark 3.1.55. For the zero (empty) divisor, /(0) = 1. If deg D < 0, then I(D) = 0.
Remark 3.1.56. A divisor D is effective if and only if /(D) > 0. Indeed, replacing D by a positive divisor D’
linearly equivalent to it, we see that the space L(D’) contains the constants. Conversely, if /(D) > 0, then D is

effective. Indeed, if the meromorphic function f is such that D’ = (f) + D > 0, then the divisor D', which is
linearly equivalent to D is positive.
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Remark 3.1.57. The number I(D) — 1 is often denoted by |D|. According to Remark 3.1.56 |D| = 0 for effective
divisors. The number |D| admits the following intuitive interpretation. Let us assume D > 0. We show that
ID| = m if and only if for any points P, ..., P,, there is a divisor D’ ~ D containing the points P, ..., P, (the
presence of coinciding points among Pj, ..., P, is taken into account by their multiple occurrence in D).

If (D) = m + 1, then there are linearly independent functions fi,..., f,, € L(D) such that the function
f= Z’]”:l cjfi — co, wherecj, j = 1,...,m are arbitrary constants, has zeros in P, ..., P;;,, namely

fP)=0, j=1,..,m

This system can be written in the form

AP f(P1) ..o fu(P1) (€
f@P2)  fo(P2) ... fu(P2) C

AP A e )\ ) G

It is a system of inhomogeneous linear equations for the constants ¢y, . . ., ¢,; which has a solution for any choice
of the points Py,..., P, since the functions fi,..., f, € L(D) are linearly independent. Note that a similar
inhomogeneous linear equations can be obtained when the points Py, ..., P,, are not all distinct.

We conclude that the divisor D’ = (f) + D > 0 contains the arbitrary points Py, ..., P,, and D’ ~ D.

Viceversa suppose that there is a positive divisor D’ containing the arbitrary points P, ..., P,, and such that
D’ ~ D. Then there is a meromorphic function f such that (f) = D’ — D, or (f) + D = D’ > 0. It follows that
f € L(D) and f has zeros in arbitrary points Py, ..., Pr. We write f is the form f = Z]m:l cjfi—cowhere f; € L(D).
If the function f has zeros at arbitrary points Py, ..., Py it follows that the system of equations

fP)=0, j=1,..,m,

must be solvable for any set of points Py, ..., Py, but this is possible only if the functions fi, ..., f, are linearly
independent and different from the constant, which means that /(D) > m + 1. One therefore says that |D| is the
number of mobile points in the divisor D.

N =
.9 a9
(=R )

Remark 3.1.58. Let K = Kg, be the canonical class of a Riemann surface. We mention an interpretation that will
be important later for the space L(K — D) for an arbitrary divisor D. First, if D = 0, the empty divisor, then
the space L(K) is isomorphic to the space of holomorphic differentials on S. Indeed, choose a representative
Ky > 0 in the canonical class, taking Ky to be the zero divisor of some holomorphic differential wy, Ko = (wp).
If f e L(Kp),ie. (f)+ (wo) = 0, then the divisor (fwy) is positive, i.e., the differential fwy is holomorphic.
Conversely, if w is any holomorphic differential, then the meromorphic function f = w/wy lies in L(Ky).

It follows from the above considerations and Theorem 3.1.12 that

I(K) = g
Lemma 3.1.59. For a positive divisor D the space L(K — D) is isomorphic to the space
QD) = {we H(S) | (w) — D = 0}.

Proof. We choose a representative Ky > 0 in the canonical class, taking Ko to be the zero divisor of some
holomorphic differential wy, Ky = (wo). If f € L(Ky — D), then (f) + (wp) — D > 0, namely the differential
fwo is holomorphic and has zeros at the points of D, i.e., fwy € Q(D). Conversely, if w € Q(D), then
f = w/wg € L(Ky — D). The assertion is proved. o
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The main way of getting information about the numbers I(D) is the Riemann-Roch Theorem.

Theorem 3.1.60 (Riemann Roch Theorem). For any divisor D
I(D)=1+degD — g+ I(K—D). (3.1.74)

Proof. For surfaces S of genus 0 (which are isomorphic to IP! in view of Problem 6.1) the Riemann-Roch theorem
is a simple assertion about rational functions (verify!). By Remarks 3.1.55 and 3.1.58 (above) the Riemann-Roch
theorem is valid for D = 0.

For Riemann surfaces S of positive genus we first prove (3.1.74) for positive divisors D > 0. Let D =
St m Py where all the n; > 0 and Py # Pj for k # j. We first verify the arguments when all the n; = 1 for
k=1,...,mand m = degD. Let f € L(D) be a nonconstant function.

We consider the Abelian differential w = df. It has double poles and zero residues at the points Py, ..., Py,
and does not have other singularities. Therefore, it is representable in the form

Q=df =) aQ)) +¢
k=1

1)
Py

the differential ¢ is holomorphic. Since the function f(P) = Sﬁo Q is single-valued on S, the integral Sﬁo Qis
independent from the path of integration. This implies that

where )’ are normalized differentials of the second kind (see Lecture 3.1.3), cy,...,c, are constants, and

3@0:0, 3[>Q=o, i=1,...,¢ (3.1.75)
a; Bi

From the vanishing of the a-periods of the meromorphic differentials Ql(,lk) we get that ¢ = 0 (see Corol-
lary 3.1.18). From the vanishing of the f-period we get, by (3.1.37) with n = 1, that

0= 45@ =2mi Y api(z)|zm0, i=1,...,8 (3.1.76)
k=1
ﬁz

where z is a local parameter in a neighbourhood of Py, zx(Px) = 0,k = 1,...,m, and the basis of holomorphic
differentials are written in a neighbourhood of Py in the form w; = Y (z¢)dzr. Defining w;(Py) := ¢ (0), we
write the system (3.1.76) in the form

CL)1(P1) w1 (Pz) . w1 (Pm) C1
wz(Pl) a)z(Pz) . a)z(Pm) Co _ 0, (3177)
Wg(P1) @g(Pa) ... wg(Pu)) \cm

We have obtained a homogeneous linear system of m = degD equations in the coefficients cy,...,c,. The
nonzero solutions of this systems are in a one-to-one correspondence with the non constant functions f in L(D),
where f can be reproduced from a solution cy, .. ., ¢, of the system (3.1.76) in the form

m P
f(P):ECk Ql()lk)-
k=1 P



130 CHAPTER 3. DIFFERENTIALS ON A RIEMANN SURFACE.

Thus /(D) = 1 + deg D — rankp where p is the matrix of holomorphic differentials in (3.1.77) (the 1 is added
because the constant function belong to the space L(D)). On the other hand the rank of the matrix p has another
interpretation. Consider the holomorphic differential w = Zle rjw;j. Such differential w belongs to the space
Q(D) if

w(Pr)=0, k=1,...,m.

The above system of equations can be written in the equivalent form

a)l(Pl) a)l(Pm)
(n rn ... rg)( )—0. (3.1.78)
wg(P1) ... wg(P)

The number of solutions of this system is equal to ¢ — rankp and it is in one to one correspondence with the
linearly independent holomorphic differentials in Q3(D). Therefore dimQ(D) = g — rankp. On the other hand
we have obtained that

I(D) =1+ degD — rankp

so that combining the two equations we obtain
I(D) =1+degD — g+ dimQ(D) =1+ degD — g+ (K- D)

where the second identity is due to the fact that the space (D) and L(K — D) are isomorphic for positive
divisors. Accordingly the Riemann-Roch theorem has been proved in this case.

We explain what happens when the positive divisor D has multiple points. For example suppose that
D=mP;+Py+ -+ Py ThenQ =df = 271:1 Cigl(?]l) + D cle(,i) and the system (3.1.76) can be written in
the form

n i—1 m
1 a’ 1
DT L B SRS
k=2

; i1 g1
j=1 ] le z1=0 =

This is a system of homogeneous equations is the variables C%, e, c;”, C,...,Cy. If the rank of the coefficient
matrix of this system is denoted (as above) by rankp, the dimension of the space L(D) is equal to /(D) = 1 +
deg D—rankp while the dimension of the space (D) is equal to g—rankp so that/(D) = 1+deg D—g+dimQ(D).
We have proved the Riemann-Roch theorem for all positive divisors and hence for all effective divisors, which
(accordingly to Remark 3.1.56) are distinguished by the condition /(D) > 0. Next we note that the relation in
this theorem can be written in the form

I(D) — %degD =l(K-D) - %deg(K - D), (3.1.79)

which is symmetric with respect to the substitution D — K— D. Therefore the theorem is proved for all divisors
D such that D or K — D is equivalent to a positive divisor. If neither D nor K — D are equivalent to a positive
divisor, then /(D) = 0 and /(K — D) = 0 and the Riemann-Roch theorem reduces in this case to the equality

degD =g —1. (3.1.80)

Let us prove this equality. We represent D in the form D = D, — D_, where D, and D_ are positive
divisors and deg D_ > 0. It follows from the validity of the Riemann-Roch theorem for D, that /(D) >
degD, — g+ 1 = degD + degD_ — g + 1. Therefore if degD > g, then I(D;) > 1 + degD_. Then the
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space L(D.) contains a nonzero function f vanishing on D_, i.e. f € L(D; — D_) = L(D). This contradicts
the condition /(D) = 0. Similarly, suppose deg(K — D) > gand K — D = D, — D_ with D, and D_ positive
divisors. Then (D) > degD, — g+ 1 =deg(K—D) +degD_ — g+ 1or

I(Dy) >deg(D_) +1,

which implies that there exists a nonzero function f € L(D, ) and vanishing in D_, namely f € L(Dy —D_) =
L(K — D). This contradicts the condition /(K — D) = 0. We conclude that

degD < g, deg(K—D)<g

which is equivalent to deg D = g — 1. The theorem is proved. m|

3.1.6 Some consequences of the Riemann-Roch theorem. The structure of surfaces of
genus 1. Weierstrass points. The canonical embedding
Corollary 3.1.61. If degD > g, then the divisor D is effective.

Corollary 3.1.62. The Riemann inequality
I(D)>1+degD—g, (3.1.81)

holds for deg D > g.
Definition 3.1.63. A positive divisor D is called special if

dimQ(D) > 0.

We remark that any effective divisor of degree less then g is special since /(D) > 0 and by Riemann-Roch
theorem this implies dimQ(D) > 0.

Corollary 3.1.64. If degD > 2g — 2, then D is nonspecial.

Proof. For deg D > 2g — 2 we have that deg(K — D) < 0, hence /(K — D) = 0 (see Remark 3.1.55). The corollary
is proved. o

Exercise 3.1.65: Suppose that k > g; let the Abel mapping A : S — J(S) (see Lecture 3.1.4) be extended to the
kth-power mapping
AR S %o x 8- J(S)
| ———
k times

by setting A*(Py,...,Pt) = A(Py) + --- + A(Px) (it can actually be assumed that A¥ maps into J(S) the kth
symmetric power S*S, whose points are the unordered collections (Ps, ..., Px) of points of S). Prove that the
special divisors of degree k are precisely the critical points of the Abel mapping A*. Deduce from this that a
divisor D with deg D > g in general position is nonspecial.

Remark 3.1.66. Let degD = 0, then if D is equivalent to a divisor of a meromorphic function, then /(D) = 1
otherwise [(D) = 0. Letdeg D = 2¢ — 2, then if D is equivalent to the canonical divisor, then /(D) = g otherwise
I(D) = g — 1. Furthermore if deg D > 2¢ — 2, then by Riemann Roch theorem one has /(D) = 1 + degD — g.If
0 < degD < g —1 the minimum value of /(D) is zero while for g < deg D <2g¢—2, min(/(D)) = 1— g+ degD.
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The values of /(D) for 0 < deg D < 2¢ — 2 are estimated by the Clifford theorem.
Theorem 3.1.67. If0 < degD < 2g — 2, then

(D) <1+ %deg D. (3.1.82)

Proof. If1(D) = 0 or [(K — D) = 0, the proof of the theorem is straightforward. Let us assume that /(D) > 0 and
I(K—D) > 0and consider the map L((D) x L(K—D) — L(K) givenby (f,h) — fhwhere (f,h) € L((D) x L(K—-D).
Let V be the subspace in L(K) which is the image of this map. Then one has

¢=1(K)=>dimV = [(D)I(K— D) > I(D) + (K — D) — 1

where in the last equality we use the identity which holds for real numbers a and bbigger then one: (a—1)(b—1) >
Oandsoab>a+b—1.
Therefore
g=2ID)+I(K—-D)—1=2I(D) +g—2—degD,

which implies (3.1.82). O

Let us make a plot of the possible values of (D) using Clifford theorem and the above observations.

(D)

e R Py ‘7

non special |
divisors

g1 2g-2 deg(D)

Figure 3.5: The values of (D) as a function of deg D. One can see that the value of /(D) of a special divisors is
located between the two lines.

We now present examples of the use of the Riemann-Roch theorem in the study of Riemann surfaces.

Example 3.1.68. Let us show that any Riemann surface S of genus ¢ = 1 is isomorphic to an elliptic surface
w? = P3(z). Let Py be an arbitrary point of S. Here 2g — 2 = 0, therefore, any positive divisor is nonspecial. We
have that /(2P)) = 2, hence there is a nonconstant function z in /(2Py), i.e., a function having a double pole at
Py. Further I(3Py) = 3, hence there is a function w € /(3P)) that cannot be represented in the form w = az + b.
This function has a pole of order three at Py. Finally, since [(6Py) = 6, the functions 1, z, z2, 23, w, w?, wz which

lie in I(6Py) are linearly dependent. We have that

MW + Bwz + a3w + asz° + asz® + agz + ay = 0. (3.1.83)
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The coefficient a; is nonzero (verify). Making the substitution

as as
— - —z 4+ —
w—w <2a1 z 2a4 >
we get the equation of an elliptic curve from (3.1.83).

Example 3.1.69 (Riemann count of the moduli space of Riemann surface). Consider a Riemann surface S of
genus g and a meromorphic function of degree n > 2¢ — 2. Such function represents S as a n-sheeted covering
of the complex plane, branched over a number of points with total branching number b equal to

bf=2n+2¢-2

where the Riemann-Hurwitz formula has been used. Generically the ramification points have branching
number equal to one so that by is also equal to the ramification points of the Riemann surface with respect
to the map f. From the Riemann existence theorem, given the branch points zj, ...,z ; and a permutation
associated to each branch point such that the corresponding monodromy group is a transitive sub-group of
the permutation group S,, one can construct a Riemann surface S up to isomorphism. Let us count how many
distinct surfaces one can obtain.

Any meromorphic function of degree n on S represents S as a n-sheeted covering of the complex plane.
Let Dy, be the divisor of poles of f. Since the degree of f is equal to n then deg D, = n. Furthermore from
Riemann-Roch theorem

I(Doc):n+1—g.

So the freedom of choosing the function f is given by the position of the poles, and this gives 1 parameters, and
the number of functions having poles in D, which is equal to n + 1 — g. The total number of parameters in
choosing the meromorphic function of degree 1 is 2n + 1 — g. So the total number of parameters for describing
a curve of genus ¢ is the number of branch points by minus the parameters for describing the meromorphic
function f, namely

2n+2¢g—-2—-(2n+1-g)=3¢g—3.

Definition 3.1.70 (Weierstrass points). A point Py of a Riemann surface S of genus g is called a Weierstrass point if
I(kPo) > 1 for some k < g.

It is clear that in the definition of a Weierstrass point it suffices to require that I(gPy) > 1 when g > 2. There
are no Weierstrass points on a surface of genus ¢ = 1. On hyperelliptic Riemann surfaces of genus g > 1 all
branch points are Weierstrass points, since there exist functions with second-order poles at the branch points
(see Lecture ??).

Definition 3.1.71. A Riemann surface is called hyperelliptic if and only if it admits a non constant meromorphic function
of degree 2.

The use of Weierstrass points can be illustrated in the next exercise.

Exercise 3.1.72: Let S be a Riemann surface of genus g > 1, and Py a Weierstrass point of it, with [(2Py) > 1.
Prove that S is hyperelliptic. Prove that the surface is also hyperelliptic if /(P + Q) > 1 for two points P and Q.

Exercise 3.1.73: Let S be a hyperellitpic Rieamnn surface and z a function of degree two. Prove that any other
function f of degree two is a Moebius transformation of z.

We show that there exist Weierstrass points on any Riemann surface S of genus g > 1.
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Lemma 3.1.74. Suppose that z is a local parameter in a neighbourhood Py, z(Py) = 0; assume that locally the basis of
holomorphic differentials has the form w; = ¢i(z)dz, i = 1,..., g. Consider the determinant

iz Yl ... P V()
W(z) =det | ... . (3.1.84)
Yo(z) @) ... ¥ V()

The point Py is a Weierstrass point if and only if W(0) =

Proof. If Py is a Weierstrass point, i.e., [(gP) > 1, then /(K — gPy) > 0 by the Riemann-Roch theorem. Hence,
there is a holomorphic differential with a g-fold zero at Py on S. The condition that there be such a differential
can be written in the form W(0) = 0 (cf. the proof of the Riemann-Roch theorem). The lemma is proved. O

Lemma 3.1.75. Under a local change of parameter z = z(w) the quantity W transforms according to the rule W(w) =
dz \ 28(8+D)

Proof. Suppose that w; = i(z)dz = {;(w)dw. Then each ¢; = gbij—;), i =1,...,¢. This implies that the

derivatives d*(;/dw* can be expressed for each i in terms of the derivatives d'i;/dz' by means of a triangular
transformation of the form
A< L ghy, k=1 g
Vi _ (dz Z] L 1,...¢
dwk dw eI dzl'’

(the coefficients c; in this formula are certain differential polynomials in z(w)). The statement of the Lemma
readily follows from the transformation rule. ]

Let us define the weight of a Weierstrass point Py as the multiplicity of zero of W(z) at this point. According
to the previous Lemma the definition of weight does not depend on the choice of the local parameter.
The proof of existence of Weierstrass points for ¢ > 1 can be easily obtained from the following statement.

Lemma 3.1.76. The total weight of all Weierstrass points on the Riemann surface S of genus g is equal to (g—1) g (g+1).

Proof. Let us consider the ratio
W(2)/97 (z).

Here N = 1 ¢(g + 1). According to lemma (3.1.75), the above ratio does not depend on the choice of the local
parameter and, hence, it is a meromorphic function on S. This function has poles of multiplicity N at the
zeroes of the differential w; (the total number of all poles is equal to 2g — 2). Therefore this function must
have N (2¢ —2) = (¢ — 1) g(g + 1) zeroes (as usual, counted with their multiplicities). These zeroes are the
Weierstrass points. O

Let us do few more remarks about the Weierstrass points. Given a point Py € S, let us consider the dimension
I(k Py) as a function of the integer argument k. This function has the following properties. According to figure
(3.5) we have
1<I(kP)<g 1<k<2g-1.
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In particular [ ((2g — 1)Py) = g. It follows that while k increases 2¢ — 2 times the function I(k Py) increases only
¢ — 1 times. The next lemma shows that the function /(k Py) is a piece-wise constant function where each step
has size equal to one.

Lemma 3.1.77.

1k Pa) — 1((k—1)Py) + 1, if there exists a function with a pole of order k at P
(kPo) = I((k—1)Py), if such a function does not exist

Proof. The space L(k Py) is larger then the space L((k — 1)Py) therefore I(k Py) = I((k—1)Py). On the other hand,
dimQ(kPp) < dimQ((k — 1)Py). From the Riemann Roch theorem one has

I(kPo) — I((k —1)Pg) = 1 + dimQ(kPy) — dimQ((k — 1)Po)
which, when combined with the above two inequalities, gives the statement. o

When I(k Py) = I((k—1)Py) we will say that the number k is a gap at the point Py. From the previous remarks
it follows the following Weierstrass gap theorem:

Theorem 3.1.78. There are exactly g gaps 1 = a1 < ... < ay < 2g at any point Py of a Riemann surface of genus g.

The gaps have the forma; = i,i = 1,...,g, for a point Py in general position (which is not a Weierstrass
point). Namely for a non Weierstrass point the function /(kPy) is non-zero only for k > ¢ and one has
I(kPy) = 1+ k — g for k > g. A Weierstrass point Py is called normal if the Weierstrass gap sequence takes the
form 1,2,...,¢ — 1, + 1 where g is the genus of the surface. Namely a meromorphic function with only a
pole in Py has order at least equal to g. Normal Weierstrass points are generic. A Weierstrass point Py is called
hyperelliptical is the Weierstrass gap sequence takes the form 1,3,5,...,2¢ — 1. In this case a meromorphic
function with only a pole in Py has order equal to two.

Exercise 3.1.79: Show that every compact Riemann surface of genus ¢ is conformally equivalent to a (g +
1)—sheeted covering surface of the complex plane.

Exercise 3.1.80: Prove that for branch points of a hyperelliptic Riemann surface of genus g the gaps have the
forma; =2i—1,i =1,...,g. Prove that a hyperelliptic surface does not have other Weierstrass points. Next
suppose that the hyperelliptic Riemann surface has genus 2 and let Py be a Weierstrass point. Show that there
exist meromorphic functions z and w with only a pole in Py and such that

W + mwz + awz® + a32° + a2t + a5z’ + agz® + ayz + ag = 0.

Exercise 3.1.81: Prove that any Riemann surface of genus 2 is hyperelliptic.

Exercise 3.1.82: Let S be a hyperelliptic Riemann surface of the form w? = Pg.(z). Prove that any bira-
az +b

cz+d’

tional (biholomorphic) automorphism & — S has the form (z,w) — ( +w), where the linear fractional

transformation leaves the collection of zeros of Py¢,2(z) invariant.

Example 3.1.83 (The canonical embedding). . Let S be an arbitrary Riemann surface of genus g > 2. We
fix on S a canonical basis of cycles ay,...,aq, by,...,bg; let wy,...,wy be the corresponding normal basis of
holomorphic differentials. This basis gives a canonical mapping S — P$~! according to the rule

P — (w1(P) : w2(P) : - : wg(P)). (3.1.85)
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Indeed, it suffices to see that all the differentials wy, ..., w, cannot simultaneously vanish at some point of the
surface. If P were a point at which any holomorphic differential vanished, i.e., [(K—P) = g, (see Remark 3.1.58),
then [(P) would be = 2 in view of the Riemann-Roch theorem, and this means that the surface S is rational
(verify!). Accordingly (3.1.85) really is a mapping S — P871; it is obviously well-defined.

Lemma 3.1.84. If S is a non hyperelliptic surface of genus g > 3, then the canonical mapping (3.1.85) is a smooth
embedding. If S is a hyperelliptic surface of genus g > 2, then the image of the canonical mapping is a rational curve,
and the map itself is a two-sheeted covering.

Proof. We prove that the mapping (3.1.85) is an embedding. Assume not: assume that the points P; and P, are
merged into a single point by this mapping. This means that the rank of the matrix

(cul(Pl) (U1(P2)>
a’g:'d)l) (‘)g‘(.I')Z)

is equal to 1. But then [(P; + P;) > 1 (see the proof of the Riemann-Roch theorem). Hence, there exists on S a
nonconstant function with two simple poles at P; and P; i.e., the surface S is hyperelliptic. The smoothness is
proved similarly: if it fails to hold at a point P, then the rank of the matrix

is equal to 1. Then /(2P) > 1, and the surface is hyperelliptic. Finally, suppose that S is hyperelliptic. Then it
can be assumed of the form w? = Pyz1(z). Its canonical mapping is determined by the differentials (4.2.37).
Performing a projective transformation of the space IP§~! with the matrix () (see the formula (4.2.37)), we get
the following form for the canonical mapping:

P=(zw)—> (1:z:---:2571) (3.1.86)
Its properties are just as indicated in the statement of the lemma. The lemma is proved. m]

Exercise 3.1.85: Suppose that the Riemann surface S is given in IP? by the equation

Z al.jginjc‘l—i—f =0, (3.1.87)

i+j=4
and this curve is non-singular in IP? (construct an example of such a non-singular curve). Prove that the genus
of this surface is equal to 3 and the canonical mapping is the identity up to a projective transformation of IP2.

Prove that S is a non hyperelliptic surface. Prove that any non hyperelliptic surface of genus 3 can be obtained
in this way.

The range 8’ = IP¢~! of the canonical mapping is called the canonical curve.

Exercise 3.1.86: Prove that any hyperplane in IP§~! intersects the canonical curve S’ in 2¢ — 2 points (counting
multiplicity).
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Jacobi inversion problem and
theta-functions

4.1 Statement of the Jacobi inversion problem. Definition and simplest
properties of general theta functions

In Lecture 3.1.2 we saw that inversion of an elliptic integral leads to elliptic functions. For a surface of genus
g > 1 the Inversion of integrals of Abelian differentials is not possible since any such differential has zeros
(at least 2¢g — 2 zeros). Instead of the problem of inverting a single Abelian integral, Jacobi proposed for
hyperelliptic surfaces of genus two of the form w? = P5(z) the problem of solving the system

P, P,
J dz dz n
=m
5 Ps(z) 3 Ps(z)
’ ’ (4.1.1)
Py P,
J zdz zdz n
2
\/P5(z) A v/ Ps5(z)

where 11,1, are given numbers from which the location of the points P1 = (z1,w1), P, = (2, wy) is to be
determined. It is clear, moreover, that P; and P, are determined from (4.1.1) only up to permutation. Jacobi’s
idea was to express the symmetric functions of P; and P, as functions of 1; and ;. He noted also that this
will give meromorphic functions of 771 and n, whose period lattice is generated by the periods of the basis of
holomorphic differentials dz/+/Ps(z) and zdz/+/Ps(z). This Jacobi inversion problem was solved by Goepel
and Rosenhain by means of the apparatus of theta functions of two variables. The generalization of the
Jacobi inversion problem to arbitrary Riemann surfaces and its solution are due to Riemann. We give a precise
statement of the Jacobi inversion problem. Let S be an arbitrary Riemann surface of genus g, and fix a canonical
basis of cycles ay, ..., ag, f1,...,p; on S; as above let wy, ..., w, be be the corresponding basis of normalized
holomorphic differentials. Recall (see Lecture 3.1.4) that the Abel mapping has the form

A:8—](S), AP) = (w(P),...,ug(P)), 4.1.2)

137
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where J(S8) is the Jacobi variety,
P

ui(P) = ij, (4.1.3)
Py
Py is a particular point of S, and the path of integration from Py to P is the same for alli = 1,...,g. Consider
the gth symmetric power
S8(8)=8Sx---x8/S,
[ ———

¢ times

the symmetric group of g elements. The unordered collections (P, ..., P,) of g points of S are the points of the
manifold S8(8). The meromorphic functions on S8(8) are the meromorphic symmetric functions of g variables
Py,...,Pg, Pje S. The Abel mapping (4.1.2) determines a mapping

A& S3(S) - J(S), AL(Py,...,Pg) =APr) + -+ APy), (4.1.4)
which we also call the Abel mapping.

Lemma 4.1.1. If the divisor D = Py + - - - + Py is nonspecial, then in a neighbourhood of a point A& (P, ..., Py) € J(S)
the mapping A®) has a single-valued inverse.

Proof. Suppose that all the points are distinct; let zy,...,z; be local parameters in neighbourhoods of the
respective points Py, ..., Pg with z(Px) = 0 and w; = i(zx)dz the normalized holomorphic differentials in a
neighbourhood of Px. The Jacobi matrix of the mapping (4.1.4) has the following form at the points (P, ..., Pg)

(¢11(21 = 0) . lplg(zg = 0))
ngl(;Z‘l.: 0) 4’35'(%3': 0) .

If the rank of this matrix is less than g, then I(K — D) > 0, i.e., the divisor D is special by the Riemann-Roch
theorem. The case when not all the points Py, ..., P, are distinct is treated similarly. We now prove that
the inverse mapping is single-valued. Assume that the collection of points (P}, ..., P%) is also carried into
AW (P1,...,Pg). Then the divisor D" = P} +--- + P’g is linearly equivalent to D by Abel’s theorem. If D’ # D,
then there would be a meromorphic function with poles at points of D and with zeros at points of D’. This
would contradict the fact that D is nonspecial. Hence, D’ = D, and the points P/, ..., P, differ from Py, ..., P,
only in order. The lemma is proved. m]

Since a divisor P; + ... + P in general position is nonspecial (see Problem 3.1.65), the Abel mapping (4.1.4)
is invertible almost everywhere. The problem of inversion of this mapping in the large is the Jacobi inversion
problem. Thus, the Jacobi inversion problem can be written in coordinate notation in the form

{ M1(P1)+"'+M1(Pg) =M
......... (4.1.5)
ug(P1) + - +ug(Py) =1,

which generalizes (4.1.1). To solve this problem we need the apparatus of multi-dimensional theta functions.
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4.2 Theta-functions

The g-dimensional theta-functions are defined by their Fourier serie. Let B = (Bjx) be a symmetric ¢ x ¢ matrix
with positive-definite imaginary part and let z = (z1,...,z¢;) € CS and N = (Njy,...,N,) € Z3 be g-dimensional
vectors. The Riemann theta function is defined by its multiple Fourier series,

g
0(z) = 0(z;B) = ) exp (ni(NB,N) + 2mi(N, z)), (4.2.1)
Nez
where the angle brackets denote the Euclidean inner product:
8 8
<N,Z> = Z Nka, <NB,N> = Z Bk]‘N]'Nk.
k=1 k=1

The summation in (4.2.1) is over the lattice of integer vectors N = (Ny,...,Ng). The obvious estimate
R(i(NB,N)) < —b(N,N), where b > 0 is the smallest eigenvalue of the matrix J(B), implies that the se-
ries (4.2.1) defines an entire function of the variables zy, ..., z,.

Proposition 4.2.1. The theta-function has the following properties.
1. 6(—z; B) = 6(z; B).
2. For any integer vectors M, K € ZZ£,

6(z + K + MB; B) = exp (—ni{MB, M) — 2ni{M, z)) 6(z; B). (4.2.2)

3. It satisfies the heat equation

0 1 02 L
8,07 B) = o 0@ B 1% as
g - L P 29
8B,-,- ! B 4 azlz ! ’

Proof. The proof of properties 1. and 3. is straightforward. Let us prove property 2. In the series for
0(z + K + MB) we make the change of summation index N — N — M. The relation (4.2.2) is obtained after this
transformation. O

The integer lattice {N + MB} is called the period lattice.

Remark 4.2.2. It is possible to define the function 0(z) as an entire function of zy, ..., z, satisfying the transfor-
mation law (4.2.2) (this condition determines 6(z) uniquely to within a factor).

The theta-function is an analytic multivalued function on the g-dimensional torus T8 = C8/{N + MB}. In
order to construct single valued functions, i.e. meromorphic functions on the torus, one can take for example,
for any two vectors 1, e, € C$ the product

O(z+e1)0(z—e1)
O0(z+e)0(z—e2)
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Indeed the above expression is by (4.2.2) a single valued function on the g-dimensional torus. In general for
any two sets of g vectorsey,...eq € C8, v1,...0, € C8 satisfying the constraint

er+...e =0, v1+...0,=0

the product

is a meromorphic function on the torus (verify this!).
Let p and g be arbitrary real g-dimensional row vectors. We define the theta function with characteristics p
and g:

O[p.ql(z) = exp (mi(pB, p) + 2mi(z + q,p)) O(z + g + pB)

= Z exp (i{(N + p)B,N + p) + 2ntilz + q,N + p)) . (4.2.4)
NeZs

Forp = 0 and g = 0 we get the function 6(z). The analogue of the law (4.2.2) for the functions 6[p, g](z) has the
form

0[p,q](z + K+ MB) = 0[p, q](z)exp [-ni(MB, M) — 2ni{M, z + q) + 2ni(K, p)]. (4.2.5)
Observe that all the coordinates of the characteristics p and q are determined modulo 1.

Definition 4.2.3. The characteristics p and q with all coordinates equal to 0 or 1/2 are called half periods. A half period
[p, q] is said to be even if 4(p,q) = 0 ( mod 2) and odd if 4{p,q) =1 ( mod 2).

Exercise 4.2.4: Prove that the function 6[p, q](z) is even if [p, q] is an even half period and odd if [p, ] is an odd
half period.

In particular the function 6(z) is even. For e = g + Bp with 4(p, 4> = 1 ( mod 2) one has
O(e) = 0.

Example 4.2.5. For ¢ = 1 the theta-function reduces to the Jacobi theta-function 9;(z; 7) with parameter 7,
J7 > 0. The Jacobi theta function is defined by the series

0(z7)= >, exp(mitn®+2minz). (4.2.6)
—o00<n<0
Since
lexp (ritn® + 2minz)| = exp (—nItn* — 2nnJz))
the series (4.2.6) converges absolutely and uniformly in the strips |3 (z)| < const and defines an entire function

of z.
The series (4.2.6) can be rewritten in the form common in the theory of Fourier series:

0(z) = Z exp (ritn®)e?™ =" 4.2.7)

—0<n<oo
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(the function 93(z; 7)) in the standard notation; see [[4]). The function 6(z) has the following periodicity
properties:

0(z+1)=0(z) (4.2.8)
0(z + 1) = exp(—mit — 2miz)6(z) (4.2.9)

The integer lattice with basis 1 and 7 is called the period lattice of the theta function. The remaining Jacobi
theta-functions are defined with respect to the lattice 1,7 = b/2mi as

T R exp[m(m%)zﬂm(ﬂg (n+;)]

—00<n<oo

2
(z; 1) := 9[%,0](2) = Z exp lni’( (n + %) + 2miz (n + %)1

—0O<n<oo
94(z; 7) = 6[0, 2](2) = > o + 2mi (2 4 =
a(z; 1) = [,Z]Z— exp | mith mi(z+5)n|.

—00o<n<wo

The functions 9,(z; 7), 93(z; 7) and 94(z; 7) are even functions of z while 91(z; 7) is odd. So for g = 1, the
1+7

theta-function 6(z; t) = 95(z; 1) = 0forz =

Exercise 4.2.6: Prove that the zeros of the function 6(z) form an integer lattice with the same basis 1, 7 and
. . . 147
with origin at the point zg = 5

By multiplying theta function (4.2.4) we obtain higher order theta functions. The function f(z) is said to

be a nth order theta function with characteristics p and g if it is an entire function of zy, ..., z, and transforms

according to the following law under translation of the argument by a vector of the period lattice

f(z + N+ MB) = exp [-nin{MB, M) — 2nin{M, z + q) + 2ni(p,N)] f(z). (4.2.10)

Exercise 4.2.7: Prove that the nth order theta functions with given characteristics g, p form a linear space of
dimension n$. Prove that a basis in this space is formed by the functions

pt+S

o[ ,ql(nz; nB), (4.2.11)

where the coordinates of the vector S run independently through all values from 0 ton — 1.

Under a change of the homology basis a1, ..., a; and f, ..., B¢ under a symplectic transformation

5)-( () (8w

The period matrix transforms as (see 3.1.53)

B = J w' = (clg + dB)(alg + bB) .
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Denote by R the matrix
R =al; + bB (4.2.12)

The transformed values of the argument of the theta-function and of the characteristics are determined by

z=72R

()~ (4 )0 bme(2) “

Here the symbol diag means the vectors of diagonal elements of the matrices ab' and cd’. We have the equality

oy, q](z ; B') = x VdetRexp { $ziz ]alog detR} 6lp,4)(z; B), (4.2.14)

i<j

where ) is a constant independent from z and B. See [19] for a proof.
Exercise 4.2.8: Prove the formula (4.2.14) for ¢ = 1. Hint. Use the Poisson summation formula (see [20],[19]: if

o0

flE) = — j Flx)e e dx

—0o0
is the Fourier transform of a sufficiently nice function f(x), then

o0

Z (2mn) i

n=—0oo n=—oo

Theta function are connected by a complicated system of algebraic relations, which are called addition
theorems. These are basically relations between formal Fourier series (see [19]). We present one of these
relations. Let X "

0[n](z;B) = 0[7,0](2z; 2B),

according to (4.2.11) this is a basis of second order theta functions.

Lemma 4.2.9. The following identity holds:

0(z+w)0(z—w) = 2 0[n](z)0[n](w). (4.2.15)
ne(Zy)8

The expression n € (Z;)8 means that the summation is over the g-dimensional vectors n whose coordinates
all take values in 0 or 1.

Proof. Let us first analyze the case ¢ = 1. The formula (4.2.15) can be written as
0(z + w)0(z — w) = O(z)0(w) + O[1](z)0[1](w) (4.2.16)

where
z) = Z exp(mibk® + 2mikz), 0(z) = Z exp(2mibk® + 4mikz),
k k



4.2. THETA-FUNCTIONS 143

A

ﬂﬂ@)-ikqﬁPmM%+kf+4m&+lpﬁ, I(b) > 0.
k

The left-hand side of (4.2.16) has then the form
Z exp [mib(k* + I7) + 2mik(z + w) + 2mil(z — w)]. (4.2.17)
Kl

We introduce new summation indices m and n by setting m = (k + I)/2 and n = (k — I)/2. The numbers m and
n simultaneously are integers or half integers. In these variables the sum (4.2.17) takes the form

Z exp[2nibm? + 4dnimz + 2mibn® + 4ninw). (4.2.18)

We break up this sum into two parts. The first part will contain the terms with integers m and 1, while in the
second part m and n are both half-integers. In the second part we change the notation from m to m + 3 and
from 1 to n + 3. Then m and n are integers, and the expression (4.2.14) can be written in the form

Z exp[2nibm?® + 4nimz] exp[2mibn® + dminw]+

mneZ

2 exp|2mib(m + %)2 + 4mi(m + %)z] exp[2mib(n + %)2 +4mi(n + %)w] =

mmnez.

0(2)0(w) + 6[1](2)0[1])(w).

The lemma is proved for g = 1. In the general case ¢ > 1 it is necessary to repeat the arguments given for each
coordinate separately. The lemma is proved. ]

/
Exercise 4.2.10: Suppose that the Riemann matrix B has a block-diagonal form B = <% Zg”) , where B’ and B”

are k x k and [ x [ Riemann matrices, respectively with k + [ = g. Prove that the corresponding theta function

factors into the product of two theta function

QZ;B :QZ,;B/QZ/,;B//,
(= B) , ( o ),, (4.2.19)
z=(21,..-,2¢), 2 = (z1,---,%), Z" = (Zk41,---,%¢)-

Notte that the period matrix of a Riemann surface never has a block diagonal structure.

421 The Riemann theorem on zeros of theta functions and its applications

To solve the Jacobi inversion problem we use the Riemann 9-function 6(z) = 6(z; B) on the Riemann surface
S. As usual we assume that ay,...a, and fy, ..., ¢ is a canonical homology basis. The basis of holomorphic
differentials w, ..., wg is normalized
J Wk = Ojt, j wy = B
a; ﬁ

] ]
Even though 6(z B) is not single-valued on J(S), the set of zeros is well defined because of (4.2.2). The set of
zeros of 0(z|B) is an analytic set of codimension one in J(S). Lete = (ey,...,e;) € C& be a given vector. We
consider the function F : § — C defined as

F(P) = O(A(P) —e), (4.2.20)
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where the Abel map A

- ([ J)

is a holomorphic map of maximal rank of S into J(S). Because of the periodicity properties of the theta-function
(4.2.2), the function F(P) transforms in the following way:

e F(P+aj) =F(P) (4.2.21)

P
e F(P+pBj) = F(P)exp [—niBjj — ZRiJ w; + 2niej] . (4.2.22)
Py

The study of the zeros of F(P) is thus the study of the intersection of A(S) < J(S) with the set of zeros of
6(z; B) which form a well defined compact analytic sub-variety of the torus J(S). Since S is compact, there are
only two possibilities. Either F(P) is identically zero on S or else F(P) has only a finite number of zeros. The
function F(P) is single-valued and analytic on the cut surface S (the Poincaré polygon). Assume that it is not
identically zero. This will be the case if, for example 6(e) # 0.

Lemma 4.2.11. IfF(P) % 0, then the function F(P) has g zeros on S (counting multiplicity).

Proof. To compute the number of zeros it is necessary to compute the logarithmic residue

1
7 i; dlog F(P) (4.2.23)
oS
(assume that the zeros of F(P) do not lie on the boundary of 8S). We sketch a fragment of 48 (cf. the proof of
lemma 3.1.16). The following notation is introduced for brevity and used below: F* denotes the value taken
by F at a point on 08 lying on the segment ay or f and F~ the value of F at the corresponding point ak_l or ﬁk_l
(see the figure 4.1).

The notation u™ and u~ has an analogous meaning. In this notation the integral (4.2.23) can be written in
the form

1 13 . _
o j[{ dlog F(P) = ﬁ; (Jk + L) [dlog F* —dlogF~]. (4.2.24)
o8 B
Note that if P is a point on ay then
u].’(P) = u]f(P) + J wj = u;.r(P) +By, j=1,...,8 (4.2.25)
(cf. (3.1.17)), while if P lies on f, then

M;r(P) = u]f(P) + J wj = u],’(P) + 6jk/ ] =1,...,8 (4.2.26)
Ak
(cfr. (3.1.18)). We get from the law of transformation (4.2.2) of the theta function or from (4.2.22), that for P on

the cycle ay one has
log F~(P) = —niBy — 2miu, (P) + 2mie, + log F* (P); (4.2.27)
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Figure 4.1: A fragment of S.

while on the cycle i from (4.2.21) one has

logFt =logF~. (4.2.28)
From this on ay
dlog F~(P) = dlog F* (P) — 2miw(P), (4.2.29)
and on f
dlogF~(P) = dlogF*(P). (4.2.30)

Accordingly, from (4.2.29) and (4.2.29) the sum (4.2.24) can be written in the form
L 3€ dloeF = Z 3g -
2mi o8F = D=8
o8 ko

where we have used the normalization condition §ak wy = 1. The lemma is proved |

Note that although the function F(P) is not a single-valued function on S, its zeros Py, .. ., Py do not depend
on the location of the cuts along the canonical basis of cycles. Indeed, if this basis cycles is deformed then
the path of integration from Py to P can change in the formulas for the Abel map. A vector of the form
(§y w1, ..., §y wy) is added to the argument of the theta-function 0(z) in (4.2.20). This is a vector of period lattice
{N + MB}. As a result of this the function F(P) can only be multiplied by a non-zero factor in view of (4.2.2).

Now we will show now that the g zeros of F(P) give a solution of the Jacobi inversion problem for a suitable
choice of the vector e.

Theorem 4.2.12. Let e € C8, suppose that F(P) = O(A(P) —e) # 0and Py, ..., Pg are its zeros on S. Then on the Jacobi
variety J(S)
A$(Py,...,Py) =e+ K, (4.2.31)
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where K = (K1, ..., Ky) is the vector of Riemann constants,

1+ Bj; P ,
K- -y <j€wl(p>Lowj>, i=1...¢ (42.32)

Proof. Consider the integral
1

Y o

Eﬁ uj(P)dlog F(P). (4.2.33)
o8

This integral is equal to the sum of the residues of the integrands i.e.,
Ci=uj(P1) + - +u(Py), (4.2.34)

where Py, ..., P, are the zeros of F(P) of interest to us. On the other hand, this integral can be represented by
analogy with the proof of Lemma 4.2.11 in the form

(J J) +d10gF+—u dlogF~ ))

f +dlogF+ (u]+ + Bji)(dlog F™ — 2miawy,)]

J erlogl—“+ ( djr)dlog F*]

N
“IH |H “IH “IH

i
o
i

[J Zmu Wi — ]kf dlog F* +2nzB,k] jzz_[ dlogF™,
b

in the course of computation we used formula (4.2.25)-(4.2.30). The function F takes the same values at the
endpoints of ay, therefore

J dlog F™ = 2miny,
(433

where 7 is an integer. Further let Q; and Q; be the initial and terminal point of §;. Then

J dlogFt = logF+(Qj) —log F™(Qj) =
i
= log O(A(Q; + Bj) —e) — log O(A(Q;) — e) = —miBj; + 2mie; — 2miu;(Q;),
The expression for C j can now be written in the form

G =uj(Pr) + - +ui(Pg) =
1 2.
=¢j = 5Bji —1;(Q)) +ZJ wjwr + Y\ Bi(—mi + 1) (4.2.35)
k Y k
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Figure 4.2: Homology basis.

The last two terms can be thrown out, they correspond to the j-coordinate of some vector of the period lattice.
Thus the relation (4.2.35) coincides with the desired relation (4.2.31) if it is proved that the constant in this
equality reduces to (4.2.32), i.e.

1 .
_EB]‘]‘ — u]'(Q]‘) + ZJ Ujwy = 7(]', i=1...,¢
k 2%
To get rid of the term u;(Q;) we transform the integral

3€ wjo; = 3 [A(Q) ~ (R,

aj

where R; is the beginning of a; and Q; is its end (which is also the beginning of b;). Further u;(Q;) = u;(R;) + 1.
We obtain

1

ffujwj = 5[2u5(Q)) — 1],

aj
hence

8 1 8
_u]'(Qj) + EJ Ujwy = _E + 2 UjW.

k=1v% k#jk=1"%

The theorem is proved. ]

Remark 4.2.13. We observe that the vector of Riemann constant depends on the choice of the base point Py of
the Abel map. Indeed let Kp, be the vector of Riemann constants with base point Py. Then K, is related to
7(Po by
Py
WQO = Kp, + (g -1 J w. (4.2.36)
Qo

Example 4.2.14. The vector of Riemann constants can be easily calculated for hyperelliptic Riemann surfaces.

In particular let us consider the curve w? = [[>_, (z—z) of genus g = 2, and choose a basis of cycles as indicated
in the figure 4.2. A normal basis of holomorphic differentials has the form
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2 k—I
_1Cixz"'dz
wj = s qu"_ i=1,2, (4.2.37)

where the constants cj; are uniquely determined by

f a)]- = 5jk-
Qag

We chose as base point of the Abel map the point Py = (o0, o). We need to compute

). {fn-)

2 1

Using the fact that

P 24 24 (z,w) 24 (z,—w)
j;wz(P) J w1 = fﬁwz(P)f w1 + J- w(z,w) J w1 — J- wy(z, —w) J w1
Py Py Z3 Zy Z3 24

a az

one obtains

In the same way calculating

P Zp 2 (z,w) 2 (z,—w)
j;a)l(P) J wy = fﬁwl(P)f Wy + J. w1 (z,w) J wy — J- w1 (z, —w) J w?
Py Py z1 22 21 22

ay ay

22
= éwl(P)J Wy = —321/2
Py
ap

one obtains that
_ 1+ Bzz + 321

%, = .

Observe that the vector K can be written in the form

1 11
K = (0,§> + <§,§)B
11 1
P_<§/§)/ q_<0/§>/

one has that K = g + pB. From this expression it follows that

Namely, given the odd characteristic

0(%K) = 0.
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It is a general result not restricted to this particular example that 6(z)|,—¢ = 0.

Corollary 4.2.15. Let D a positive divisor of degree g. If the function
O(A(P) — ADD) + K)

does not vanish identically on S then its divisor of zeros coincides with D.

Accordingly, if the function O(A(P) — e) is not identically equal to zero on S, then its zeros give a solution of
the Jacobi inversion problem (4.1.5) for the vector n = e+%. We have shown that the map (4.1.4) AS : S; — J(S)
is a local homeomorphism in a neighbourhood of a non special positive divisor D of degree g. Since 6(z) # 0
for z € J(S), then O(A(D)) does not vanish identically on open subsets of S,S. In the next subsection, we
characterize the zero set of the O-function. The zeros of the theta-function form an analytic subvariety of J(S).
The collection of these zeros forms the theta divisor in J(S).

4.3 The Theta Divisor

In this section we study the set of zeros of the theta functions and in particular the Riemann vanishing theorem
which prescribes in a rather detail manner the set of zeros of the theta-function on C8.

Theorem 4.3.1. Let e € C8, then 0(e) = 0 ifand only if e = A(D) — K where D is a positive divisor of degree g — 1 and
K is the vector of Riemann constants (4.2.32).

Remark 4.3.2. For a positive divisor D of degree g — 1, the expression A(D) — K does not depend on the base
point of the Abel map. The theorem 4.3.1 says that the theta-function vanishes on a ¢ — 1-dimensional variety
parametrized by ¢ — 1 points of S, namely the theta function vanishes on A(S;_1) — K.

Proof. We first prove sulfficiency. Let P; + --- + P, be a non special divisor and v = A(Py + --- + Pg) — K. Let
us consider F(P) = 6(A(P) — v). Either F is identically zero or not. In the former case for eachk =1,...¢g

F(Py) = O(A(Py + -+ + P+ -+ + Pg) — K) =0,

where we use the symbol Py to mean that P does not appear in the divisor. Sofore = A(Py+- -+ +Pg+- - - +Pg)—K
we have 0(e) = 0.

In the latter case F(P) # 0, we have that F has precisely g zeros on S due to lemma 4.2.11. Let Qy,... Qg be
the zeros of F, then according to theorem 4.2.12 one has

AQi+ 4+ Q) =v+K=AP1 + - +Py).

Since P; + - - - + P, is not special, it follows from the Riemann-Roch and the Abel theorems that Q; +--- + Q, =
Py + - -- + P,. Therefore also in this case F(Py) = O(A(Py + - + Do+ + Py) —K)=0fork=1,...,8. Since
the set of non-special divisor of degree g is dense in 58, the divisors of the form Py + -+ + Py + -+ + P,
form a dense subset of S&~1S. Since the function 0(z) is continuous, it follows that 6(z) is identically zero on
W,_1 — K, where in general W, < J(S), is the Abel image of S forn > 1.

Conversely, let O(¢) = 0. Then by Jacobi inversion theorem, since 0 is not identically zero on J(S). Then
there exists an integer s, 1 <s < g, so that

G(A(Dl — Dz) — e) =0, VD1,D2 c S(s—l)S
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but
O(A(D; —D;) —e) #0, Dj,D,eS®S.

LetD; = P1+ -+ P;and Dy = Q1 + - -+ + Qs where we assume that the points of the divisors are mutually
distinct. Now let us consider the function

F(P)=O0(A(P) + APy + -+ D) —A(Q1+ -+ Qs) —¢)

Since F(P1) # 0, this function is not identically zero on S. Therefore, by theorem 4.2.12 it has g zeros on S.
These zeros are by construction Qy, ..., Qs plus some other ¢ — s points Ts,1, ..., Tg. By theorem 4.2.12 one has

A(Ql+"'+Qs+Ts+1/+"‘+Tg)*(}(:A(QlJF"'JFQS)*A(P2+"‘+PS)+€

or equivalently
e=APr+ - +Ps+Tsp1,+---+Ty) =K
which is a pointin W1 — K. m]
Regarding the zeros of the theta-function it is possible to prove a little bit more then stated in the previous
theorems. Let D € S8~V S and lete = A(D) — K. Then
mult,_.0(z) = (D).

where /(D) is the dimension of the space L(D). The proof of this identity can be found in [20].

Remark 4.3.3. The vector of Riemann constants has a characterisation in terms of divisors. Indeed there is a non
positive divisor A of degree ¢ — 1 such that its Abel image coincides with %, namely A(A) = K. Furthermore
let D be a positive divisor of degree g — 1, then the vector

e=AD)-K

is a zero of the theta-function, namely 0(e) = 0. By the parity of the theta-function one has 6(—¢) = 0. It follows
by theorem 4.3.1 that
—e=AD")-K

where D’ is a positive divisor of degree ¢ — 1. Then summing up the two relations we obtain
2K =A(D +D")

where D + D’ is a positive divisor of degree 2¢ — 2. Since D + D’ has arbitrary ¢ — 1 points in it, it follows from
remark 3.1.57 that [(D + D) > g which is equivalent, by Riemann-Roch theorem, to /(K — D — D’) > 1. Since
deg(D + D’) =2¢g —2and deg(K— D — D’) = 0, one has [(K — D — D) = 1 which implies K = D + D', namely
we have shown that

2K = AK) . (4.3.1)
Using the characterization of the theta-divisor one can complete the description of the function F(P).

Lemma 4.3.4. Let F(P) = O(A(P) —e) wheree = A(D) — K, D € S® S and K the vector of Riemann constants defined
in (4.2.32). Then

1. F(P) = 0 iff the divisor D is special;
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2. F(P) # 0iff dimQ(D) = 0, i.e. the divisor D is not special. In this last case D is the divisor of zeros of F(P).

Proof. Let’s prove part 1. of the lemma. Let F(P) = 0, then by theorem 4.3.1 there is a positive divisor D of
degree ¢ — 1 so that }
AD)—-K —-A(P) =AD)-K.

By Abel theorem, the identity holds if and only if D and D + P are linearly equivalent, that is there is a
meromorphic function in L(D) with a zero in an arbitrary point P € S. This is possible only if /(D) > 1 or
equivalently dimQ(D) > 0, namely D is special. Conversely, if D € S88 is special then /(D) > 1 and therefore
there is a function f € L(D) with an arbitrary zero in a point P € Sso that (f) = P+D—D. where D € S&~1S. Tt
follows by Abel theorem that A(P) — A(D) + K = —A(D) + K, then by theorem 4.3.1, one has 6(A(D) —K) = 0.

Now let us prove part 2. of the lemma. Suppose now that D is not special, then F(P) # 0 and by
theorem 4.2.12, the divisors of zeros of F(P) coincides with D. O

Corollary 4.3.5. Let e = A(D) — K with D € S871S. Them the function F(P) = O(A(P) — e) vanishes identically if
and only if dimQ(D + Py) > 1 (Check!!) where Py is the base point of the Abel map.

Proof. Let Py be the base point of the Abel map, then A(P—Py) = A(P). Suppose F(P) = 0, then by theorem 4.3.1
there exists a positive divisor D of degree ¢ — 1 such that

A(P - Py) — A(D) + K = —AD) + K

which implies that A(D + Py) = A(D + P). By Abel theorem, there is a nontrivial meromorphic function & with
divisor
(h)=D+P-D-P,

for all P € S. This implies that /(D + Py) > 2 or equivalently, D + Py is a special divisor. Viceversa suppose
that dimQ(D + Py) > 1, then I(D + Py) > 1 so that L(D + Py) is generated by {1, } where h is a meromorphic
function. So there is a nontrivial meromorphic function with poles in D + Py and having zero in an arbitrary
point P ( take for example the function & — i(P)) and some other g — 1 points given by the divisor D. It follows
that

A(D + Py) = A(D + P)

or equivalently
AP —Py) —AD)+K =—-AD) - K

which implies by theorem 4.3.1 that 0 = 6(—A(D) — K) = 0(A(P — Py) — A(D) — K) = 6(A(P) — A(D) — K)
where we recall that Py is the base point of the Abel map. ]

The zeros of the theta function (the points of the theta divisor) form a variety of dimension 2¢g — 2 (for
g = 3). If we delete from J(S), the theta divisor, then we get a connected 2g-dimensional domain. We get that
the Jacobi inversion problem is solvable for all points of the Jacobian J(S) and uniquely solvable for almost all
points. Thus the collection (P, ..., Pg) = (A®)~1(n) of points of the Riemann surface S (without consideration
of order) is a single valued function of a point 1 = (1,...74) € J(S) (which has singularities at points of the
theta divisor.) To find an analytic expression for this function we take an arbitrary meromorphic function f(P)
on 8. Then the specification of the quantities 1y, ..., 1, uniquely determines the collection of values

f(P1),..., f(Pg), AW(Py,...,Pg) =1. (4.3.2)

Therefore, any symmetric function of f(P1),..., f(P¢) is a single-valued meromorphic function of the g
variables nn = (11,...,1g), that is 2¢g-fold periodic with period lattice {2riiM + BN}. All these functions can
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be expressed in terms of a Riemann theta function. The following elementary symmetric functions has an
especially simple expression:

g
= Y f(Py). (4.3.3)
j=1
From Theorem 4.2.31 and the residue formula we get for this function the representation
P)dl
o1() = 50 3€f 0 O(A(P) — 1+ %)

(4.3.4)

Z Resf Ydlog O(A(P) —n+ K),
f(Qu)=

the second term in the right hand side is the sum of the residue of the integrand over all poles if f(P). As in
the proof of Lemma 4.2.11 and Lemma 4.2.12, it is possible to transform the first term in (4.3.4) by using the
formulas (4.2.29) and (4.2.30). The equality (4.3.4) can be written in the form

ZmZJf Jwxk = Z Res f(P)dlog 6(A(P) —n + K). (4.3.5)
flax)=

Here the first term is a constant independent of 7. We analyze the computation of the second term (the sum of
residue) using an example.

Example 4.3.6. S is an hyperelliptic Riemann surface of genus g given by the equation w? = P,.1(2), and the
function f has the form f(z,w) = z, the projection on the z-plane. This function on S has a unique two-fold
pole at 0. We get an analytic expression for the function o constructed according to the formula (4.3.3). In
other words if P; = (z1,w1), ..., Pg = (z4,w,) is a solution of the inversion problem A(Py) + --- + A(Pg) = 1,
then

Gf(T]) =21+ -+ Zg. (4.3.6)

We take o as the base point Py (the lower limit in the Abel mapping). According to (4.3.5) the function of(1)
has the form
of(n) =c— Rmes [zdlog O(A(P) —n+K)].

Let us compute the residue. Take T = 277 as a local parameter in a neighbourhood of . Suppose that the
holomorphic differentials w; have the form w; = 1;(7)dt in a neighbourhood of cc. Then

MOQ

dlog O(A(P) — 1+ K) = ) [log O(A(P) — 1 + Kliwi(P) =

Il
—_

NS

[log 6(A(P) — n + K)|ihi(t)dt

I
_

where [...]; denotes the partial derivative with respect to the ith variable. By the choice of the base point point
Py = o0, the decomposition of the vector-valued function A(P) in a neighbourhood of o has the form

A(P) = U + O(1?),
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where the vector U = (Uy, ..., U,) has the form

Uy=1v;0), j=1,..,8
From these formulas we finally get
or(n) = —(log 0(n — K));,jUiU; + c = —02log O(xU + 1 — K)|x=0 + ¢, (4.3.7)
where (log 6(n — K));,; denotes derivative with respect to the i — th and j — th argument of the theta-function
and c is a constant.

We shall show in the next Section that the function
2

u(x,t) = %loge(llxﬁ— Wt—n+%K)+c

1
where W, = =1¢”(0) solves the Korteweg de Vries equation
3 g q

1
U = Z(6uux + Uyxy)-

Exercise 4.3.7: Suppose that a hyperelliptic Riemann surface of genus g is given by the equation w? = Ppg5(z).
Denotes its points at infinity by P_ and P_.. Chose P_ as the base point Pj of the Abel mapping. Take f(z,w) = z
as the function f. Prove that the function o¢(7) has the form

6(n—K — AP
o) - (10g LKA

where the vector U = (Uj, ..., Ug) has the form

where the basis of holomorphic differentials have the form
wj(P) =yj(t)dr, 1=z"!, P— .

Uj+c (4.3.8)
j

Exercise 4.3.8: Let S be a Riemann surface w? = Ps(z) of genus 2. Consider the two systems of differential
equations:

P P
oy _ VPs(@)  dz  VPs(z2) (4.3.10)
dx Z1 — 2o dx Zr — 271
dzy 22+/Ps(z1) dz  z14/Ps(z2)
fan 2V d;m  avVIsE) (4.3.11)
dt 71— Zn dt Z — 71

Each of these systems determined a law of motion of the pair of points

Py = (z1,4/P5(z1)), P2 = (22, 4/P5(22))

on the Riemann surface S. Prove that under the Abel mapping (4.1.1) these systems pass into the systems with
constant coefficients

dm dana

PP
dT]l df]z
- o Y

In other words, the Abel mapping (4.1.1) is simply a substitution integrating the equations (4.3.10) and (4.3.11).



154 CHAPTER 4. JACOBI INVERSION PROBLEM AND THETA-FUNCTIONS

4.4 Holomorphic line bundles and divisors

In this section we show the equivalence between holomorphic line bundles and divisors on a compact Riemann
surface S.

4.4.1 Holomorphic line bundle
Let {U,}qea an open covering of a compact Riemann surface S. Let
o*(U) co(U) c M(U)
be the set of nowhere vanishing holomorphic, holomorphic and meromorphic functions on U  S.

Definition 4.4.1. A complex line bundle over the Riemann surface S is a complex manifold L and a holomorphic map
7 : L — S such that

o Lp:=71YP)~P xC. Lpis called the fiber of L
o for a covering {Uy}aea of S the triples {P, Uy, Vo }aen with P € U, and v, € C satisfy the equivalence relation
{P Uy, v} ~{Q Ugvg} «—P=Qe Uy nUp# &, va= gap(P)op
where gop € O* (U, N Up) is called transition function
The functions g, € O* (U, N Up) satisfy the cocycle condition
8ap(P)3py (P)ga(P) =1, ¥P e Uy Uy n Uy,

and
8ap(P)gpa(P) = 1.
The line bundle with g, = 1 for all o, f € A is called trivial.

Definition 4.4.2. Two line bundles L and L' with transition functions gag and g;ﬁ define isomorphic line bundles i it
exists f, € O*(U,) so that

Sup = f—;gaﬁ. (4.4.12)

One can give to the set of line bundles over S the structure of a group where the multiplication is given by
tensor product and inverse by dual bundle, namely if L and L' are give by gug and g;l; then

LOL ~ {gulph L~ {8y

The group of line bundles over S is called the Picard group of S and denoted by Pic(S)".
A section of L is a map ¢ : S — L such that ¢/(P) € Lp with P € S. For the trivial bundle L = C x S
every section is of the form (P) = (f(P), P) for some holomorphic or meromorphic function f in S. A set of

IMore precisely the group of line bundles coincides with the first cohomology group H'(S,0*) and this group last is called the Picard
group of S.



4.4. HOLOMORPHIC LINE BUNDLES AND DIVISORS 155

meromorphic functions f, € M(U,) such that f,/fz € O*(U, n Up) Yo, p € A, is a meromorphic section of the
line bundle L. Indeed by defining it transition functions {gag}a e are

_ faP)

gaﬁ(P) = fﬁ(P), Pe lla N Uﬁ

one can immediately see that {gag}a e satisfy the cocycle condition.
The divisor of the meromorphic section { f, }aca is well defined as

(fa) = (fa)lu,-

We now describe a basic correspondence between divisors and line bundles. Let D € Div(S) with D =
>, niP; and let U, be a covering such that each open set U, contains at most a point of D. Let f, € M*(U,) be
meromorphic functions, such that the divisor of f, is precisely the part of D lying in U,, for example if P; € U,
and z, is a centred coordinate near Pj, then f, =z

(fa) = Dlu, = niP;.

Then the functions

Sap 1= E € O* (U, n Up)
o

satisfy the cocycle condition

Jfa fﬁ f?/
« ey — T T 1
8ap8py &) fﬁ fy fa

The line bundle constructed in this way is called the line bundle associated to the divisor D and it is denoted

by L[D]. It is well defined. Indeed if (2}, U,) is another chart and f, = (z,)" then h, = fa € O*(U,) and

fa

fa hg
! = —_— = o
8ap fé 8ap hy,

Therefore according to Definition 4.4.2 g; g and g, define isomorphic line bundles.

The degree of the divisor is called the degree of the line bundle and is denoted by deg L[D].

The map Div(S) — Pic(S) given by D — L[D] is a homomorphism of groups. Indeed, given two divisors
D and D’ with local data {f,} and {f;} respectively, then the local data for D + D’ is given by {f, f.}. It follows
that L[D + D’] = L[D] ® L[D'].

If D is the divisor of a meromorphic function f, namely D = (f), then we can take as a local data over any
cover U, the functions f, := f|y,. The transition functions g3 = fa/fs = 1 so L[D] is trivial. Conversely, if D is
given by local data {f,} and the line bundle L[D] is trivial, then there exists functions h, € O*(U,) such that

so that fyhy ' = fﬁhgl is a global meromorphic function on S with divisor D.

Lemma 4.4.3. The divisors D and D’ are linearly equivalent iff the holomorphic line bundles L|D] and L[D’] are
isomorphic
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Proof. Leth € M(S) so that (h) = D’ — D. Choose a covering of S so that each point of D and D’ belongs only
to one U,. If f, is a meromorphic section of L[D], then h|y, f, is a meromorphic section of L[D’] which implies
(4.4.12). Conversely, let f, and f; be meromorphic sections of isomorphic line bundles L[D] and L[D’]. Then it
exists h, € O*(U,) so that

hafe _ fo
hefs  fg
h
that is ;{a is a meromorphic function with divisor D — D', which gives D ~ D'. m|
a

Summarizing, for each divisor D € Div(S) we can associate a line bundle L[D]. Conversely, given a line
bundle L and a meromorphic section f, we see that g,s = fa/fs € O*(Uy N Up) and L = L[(f)]. In particular, L
is the line bundle associated to a divisor D on § if and only if it has a non vanishing meromorphic section.

Lemma 4.4.4. Every holomorphic line bundle on a compact Riemann surface S admits a meromorphic section.

We do not prove this lemma. Therefore, the map Div(S) — Pic(S) given by D — L[D] is also and
isomorphism of groups. We can then summarize the results of lemmas 4.4.3 and lemma 4.4.4.

Theorem 4.4.5. The Picard group Pic(S) is isomorphic to the group of divisors Div(S) modulo linear equivalence.

We give now a geometric interpretation of the Riemann-Roch theorem. Denote by 1°(L) the dimension of
the space of holomorphic sections of L and by deg L the degree of the line bundle, i.e. the degree of the divisor
D associated to L. Furthermore, we denote by K the canonical line bundle associated to the canonical divisor

K. Its transition functions are
_ dzgy
gaﬁ B dZﬁ

where (z,, U, ) is a chart of S.

Theorem 4.4.6. Let L be an holomorphic line bundle over a Riemann surface S of genus g. Then
W(L) = degL +1 — g+ h°(KL™) (4.4.13)

Proof. We just show that the space of holomorphic section of L[D] is isomorphic to the space L(D) defined in
(3.1.72). Indeed, let be ¢ a meromorphic section of L[D] with divisor D and & a holomorphic section of L[D].
Then &/¢ is a meromorphic function on S and (g) > 0, therefore 1/¢ € L(D). Conversely, given f € L(D)

then f/¢ is a holomorphic section of L[D]. In the same way one can show that the space of holomorphic
section of L[K — D] is isomorphic to the space L(K — D). Then the relation (4.4.13) follows immediately from
the Riemann-Roch theorem 3.1.60. ]

Among the line bundles, the spin bundles deserve special attention.

Definition 4.4.7. A holomorphic line bundle L = L[D] with degD = g — 1, and such that the
2D =K,

where K is the canonical divisor, is called holomorphic spin bundle. Its holomorphic section are called spinors or theta-
charateristics.
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Remark 4.4.8. We observe that the Riemann-Roch theorem does not provide any information on such divisors.
The dimension of the space of holomorphic sections of the corresponding line bundles is obtained using the
theory of theta-functions.

Example 4.4.9. Let e = g + pB be an odd half integer charactheristic. Then 0(e) = 0 and
e=AD)-K, 0=2=2A(D)-2K

where by Theorem 4.3.1 D = Py + --- + P,_1 is a positive divisor of degree ¢ — 1. But we also know from
Remark 4.3.3 that 2K = A(K) so that 2D = K.
On the other hand differentiating 6(A(D) — K) = 0 with respect to P we obtain

g f—
2 %‘J(K)wiwk) =0

So we have found that X
00(e)
(P
oz (P)

i=1
is a holomorphic differential with zeros in D. Since 2D = K we have that w has double zeros in D.

Proposition 4.4.10. There exists 43 non equivalent holomorphic spin bundles on a Riemann surface of genus g.

Proof. Let D be the divisor of the spin bundle. Observe that for any base point Py, the Abel map gives the
identity

2Ap, (D) = Ap, (K).
From Remark 4.3.3 one obtains

2Ap, (D) — 2Kp, = 0.

Therefore there is a half integer characteristicse = g + pB, g = (q1,...,q¢) and p = (p1,...,pg), withg; and p; in
Z; such that
e = APO (DL)) - 7([30.

Since there are 4¢ half-periods ¢, it follows from the Jacobi inversion theorem, that there exists 4% non equivalent
divisor D, such that 2D, = K. O

We observe that 0 is an even half integer characteristics. Therefore, there is a divisor Dy such that
0 = Ap,(Do) — Kp,,

namely, the vector of Riemann constants Kp, = Ap,(Do). This relation gives the clear dependence of the vector
of Riemann constants on the choice of the base point and the canonical homology basis. Since 0(0; B) # 0 it
follows from Theorem 4.3.1, that the corresponding divisor Dy is not a positive divisor.

Lemma 4.4.11 (Fay). The dimension of the space of holomorphic sections of the spin bundle L[D,], where e is an half
integer characteristics is given by
W (L[D,]) = mult,—_.0(z; B).
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