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Chapter 1

Riemann surfaces

1.1 Definition of Riemann surface and basic examples

1.1.1 Complex manifolds. First examples of Riemann surfaces

Bernhard Riemann (1826–1866) introduced the concept of Riemann surface to make sense of multivalued
functions like the square root or the logarithm. For the geometric representation of multi-valued functions of
a complex variable w “ wpzq it is not convenient to regard z as a point of the complex plane. For example,
take w “

?
z. On the positive real semiaxis z P R, z ą 0 the two branches w1 “ `

?
z and w2 “ ´

?
z of this

function are well defined by the condition w1 ą 0. This is no longer possible on the complex plane. Indeed,
the two values w1, 2 of the square root of z “ r eiψ

w1 “
?

r ei ψ2 , w2 “ ´
?

r ei ψ2 “
?

rei ψ`2π
2 , (1.1.1)

interchange when passing along a path

zptq “ r ei pψ`tq, t P r0, 2πs

encircling the point z “ 0. It is possible to select a branch of the square root as a function of z by restricting
the domain of this function for example, by making a cut along the negative real semi-axis. The two functions
w1pzq and w2pzq defined as in (1.1.1) with´π ă ψ ă π are single-valued on the cut plane Czp´8, 0s. Riemann’s
idea was to combine the two branches of the function

?
z to a single-valued fuction well-defined on a suitable

geometric object S. To do this observe that w1pzq Ñ i
?

r and w2pzq Ñ ´i
?

r for z Ñ ´r from above the cut
p´8, 0s. In a similar way w1pzq Ñ ´i

?
r and w2pzq Ñ i

?
r for z Ñ ´r from below the cut p´8, 0s. So, the rules

to construct the space S are as follows: one has to take two copies of the complex plane cut along the negative
real semi-axis and join the two copies of the complex plane along the cuts glueing the upper side of the cut on
one copy with the lower side of the cut on another one. In other words the two sheets have to be glued together
in such a way that the branch of the function

?
z on one sheet joins continuously with the branch defined on

the other sheet. The result of this operation is a complex manifold S of complex dimension one (see below for
the precise definition). It can also be treated as a smooth real manifold of dimension two, that is, a surface. The
surface shown on figure 1.1 is the imaginary part of

?
z.

5



6 CHAPTER 1. RIEMANN SURFACES

Figure 1.1: The imaginary part of the function
?

z

A similar procedure of cutting and glueing can be repeated for other multivalued analytic functions. For
example the logarithm log z is a single valued function on Czr0,`8q with infinite number of branches. Each
adjacent branch differs by an additive term 2πi. The infinite set of branches attached along the positive real
line is shown on the figure 1.2.

Figure 1.2: The Riemann surface of the function log z

In the theory of Riemann surfaces the techniques of working with complex manifolds or with complex
algebraic curves both played an important role.

Before doing this we remind that a complex function f : G Ñ C where G is a domain in C, can be written
in the form f pzq “ upx, yq ` ivpx, yq, with z “ x` iy, x, y P R and upx, yq and vpx, yq real functions of px, yq. The
function f pzq is holomorphic in G if u and v are real differentiable in G and their derivatives satisfy the Cauchy
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Riemann equations
ux “ vy, uy “ ´vx, for z P G.

Alternatively introducing the operators B{Bz and B{Bz̄ defined by

B

Bz
“

1
2

ˆ

B

Bx
´ i

B

By

˙

,
B

Bz̄
“

1
2

ˆ

B

Bx
` i

B

By

˙

, (1.1.2)

the Cauchy Riemann equations can be written in the form

B

Bz̄
f “ 0, for z P G.

We also recall that a holomorphic function f : G Ñ C can be expanded in convergent power series. For this
reason it is often called analyic function.

We now introduce some basic properties of complex manifolds.

Definition 1.1.1. A complex manifold of complex dimension n is a second-countable Hausdorff 1 topological space M
with a collection of charts tpUα, φαquαPA where Uα Ă M is an open subset in M and φα : Uα Ñ Cn such that

1. The sets Uα are a covering of M
ď

αPA

Uα “ M (1.1.3)

2. φαpUαq is open in Cn and φα : Uα Ñ φαpUαq is a homeomorphism onto an open subset in Cn.

3. If Uα,β :“ Uα XUβ ,H then both φαpUα,βq and φβpUα,βq are open sets in Cn and

Gα,β :“ φβ ˝ φ´1
α : φαpUα,βq Ñ φβpUα,βq (1.1.4)

are holomorphic maps,

Gα,βpz1, . . . , znq “ pw1pzq, . . . ,wnpzqq P φβpUα,βq Ă C
n, z “ pz1, . . . , znq P φαpUα,βq Ă C

n

Bwi

Bz̄ j
“ 0, i, j “ 1, . . . ,n.

The collection of charts is called an atlas for the manifold M. The image φαpPq “ pz1pPq, . . . , znpPqq P Cn of a point
P P Uα defines local coordinates z1pPq, . . . , znpPq of the point. The maps Gα,β are called transition functions.

Note that the transition functions Gα,β are invertible and the inverse maps G´1
α,β “ Gβ,α are holomorphic.

Given two atlases tpUα, φαquαPA and tpVβ, ψβquβPB on M, we say that they are equivalent if their union is
still an atlas. An equivalence class of atlas defines a complex analytic structure on M.

The spaceCn is the simplest example of an n-dimensional complex manifold. One can also take an arbitrary
open subset M Ă Cn. In these cases it suffices to use atlases consisting just of one chart. Let us consider a less
trivial example.

1Recall that a Hausdorff topological space is a topological space such that for any pair of distinct points there exist non-intersecting
open neighbourhoods. A topogical space X is second-countable if there there exists a countable family pViqiPN such that any open subset
in X can be represented as a union

Ť

iPI Vi for some I ĂN.
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Example 1.1.2. Points of the complex n-dimensional projective space Pn are defined as equivalence classes of
pn` 1q-dimensional non-zero complex vectors P Cn`1z0

pZ0,Z1, . . . ,Znq „ λ pZ0,Z1, . . . ,Znq , 0 , λ P C.

The equivalence class of vectors pZ0,Z1, . . . ,Znq is denoted by pZ0 : Z1 : ¨ ¨ ¨ : Znq. The complex numbers Zα are
called homogeneous cordinates of the point.

An atlas consisting of n` 1 charts pUα, φαqα“0,1,...,n is defined as follows

Uα “ tpZ0,Z1, . . . ,Znq P C
n`1 | Zα , 0u

φα pZ0,Z1, . . . ,Znq “

˜

Z0

Zα
,

Z1

Zα
, . . . ,

xZα
Zα
, . . . ,

Zn

Zα

¸

where the hat means that the corresponding term is omitted.
Let us consider the particular cases n “ 1 and n “ 2. On P1 we have two charts U0 and U1 with the local

coordinates
φ0pZ0,Z1q “

Z1

Z0
:“ z on U0, φ1pZ0,Z1q “

Z0

Z1
:“ w on U1.

On the intersection U0 XU1 we have z , 0, w , 0 and the transition functions are

w “
1
z

or z “
1
w
.

The map φ0 establishes a one-to-one correspondence between U0 and the complex plane C. The complement
P1zU0 consists just of one point p0 : 1q. It can be considered as the point at infinity in the complex plane.
Indeed, if a point P P U0 goes to p0 : 1q then zpPq Ñ 8. Thus

P1 “ CY t8u.

That means that topologically P1 is a two-dimensional sphere. For this reason the manifold P1 is often called
Riemann sphere. Another name for P1 is extended complex plane denoted by C.

In a similar way for P2 the chart U0 is identified with C2 and

P2zU0 “ tp0,Z1,Z2q , 0, | p0,Z1,Z2q „ λ p0,Z1,Z2q | 0 , λ P Cu “ P1.

Therefore
P2 “ C2 Y P1.

Exercise 1.1.3: Consider the p2n` 1q-dimensional unit sphere S2n`1 defined in the space Cn`1 “ R2n`2 by the
equation

|Z0|
2 ` |Z1|

2 ` ¨ ¨ ¨ ` |Zn|
2 “ X2

0 ` Y2
0 ` X2

1 ` Y2
1 ` ¨ ¨ ¨ ` X2

n ` Y2
n “ 1

where Zk “ Xk ` i Yk. The group S1 “ tλ P C | |λ| “ 1u acts on S2n`1 by multiplication

pZ0,Z1, . . . ,Znq „ λ pZ0,Z1, . . . ,Znq .

Prove that the quotient manifold S2n`1{S1 carries a natural structure of a complex manifold of complex dimen-
sion n. Prove that this manifold can be identified with Pn. As a corollary derive that the projective space Pn is
compact for any n.
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Exercise 1.1.4: Prove that P1 is diffeomorphic to the standard unit sphere S2 in R3

x2 ` y2 ` z2 “ 1.

To define a real Ck-smooth n-dimensional manifold, one has to replace Cn with Rn and the transition
functions are Ck-smooth in their respective variables. An equivalence class of atlases defines a Ck-smooth
structure on the manifold. When k “ 8 the manifold is simply called smooth manifold or C8-smooth
manifold.

A complex n-dimensional manifold is also a real C8-smooth2 manifold of dimension 2n. A natural choice
of local coordinates on the real manifold is given by the real and imaginary parts of the complex coordinates

xi “ Re zi, yi “ Im zi, i “ 1, . . . ,n.

The transition function
z “ pz1, . . . , znq ÞÑ pw1pzq, . . . ,wnpzqq

is a holomorphic change of coordinates. In the new chart define the real coordinates

ui “ Re wi, vi “ Im wi, i “ 1, . . . ,n.

Further the following identity between real and complex Jacobians holds true

det
ˆ

Bui{Bx j Bui{By j
Bvi{Bx j Bvi{By j

˙

“

ˇ

ˇ

ˇdet
`

Bwi{Bz j
˘

ˇ

ˇ

ˇ

2
. (1.1.5)

We leave the proof of this identity as an exercise for the reader.
A real smooth manifold M is orientable if there exists an atlas such that all the transition maps Gpx1, . . . , xnq “

pG1pxq, . . . ,Gnpxqq have positive Jacobian determinant det
ˆ

BG jpxq
Bxk

˙

ą 0. A choice of such an atlas is called an

orientation on M.
From the relation (1.1.5) it follows that a complex manifold is always orientable.

We will be concerned with manifolds of complex dimension 1.

Definition 1.1.5. A Riemann surface S is a connected3one-dimensional complex manifold.

As it was explained above S is also a two-dimensional smooth orientable manifold.
Let tpUα, φαquαPA define a complex structure on S and suppose that P P Uα X Uβ , H. Hence the local

charts
z “ φαpPq, w “ φβpPq

will be complex-valued functions.
The transition function φβ ˝ φ´1

α : z Ñ w “ wpzq is bi-holomorphic, namely, holomorphic with holomorphic
inverse z “ zpwq

Bw
Bz̄
“ 0,

Bz
B sw

“ 0,

2It is even a real analytic manifold.
3In this book we use the word ‘connected’ for path-connected topological spaces. For manifolds these two notions are equivalent, see

e.g. [?].
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where the operators B{Bw and B{B sw are defined in a similar way as in (1.1.2). So, in a small neighbourhood of
any point P0 P Uα XUβ with z0 “ φαpP0q and w0 “ φβpP0qwe have the power series expansion

wpzq “ w0 `
ÿ

ką0

akpz´ z0q
k, a1 , 0,

and
zpwq “ z0 `

ÿ

ką0

bkpw´ w0q
k, b1 , 0.

Example 1.1.6. Elementary examples of Riemann surfaces

(a) The simplest examples of Riemann surfaces are those defined by one single chart. Any connected open
subset of the complex plane is clearly a Riemann surface. Other interesting examples include the complex
plane C, the unit diskD “ tz P C | |z| ă 1u and the upper half spaceH “ tz P C | Im z ą 0u.

(b) The projective space P1, the Riemann sphere or extended complex plane C “ C Y 8 and the sphere
S2 “ tpx, y, tq P R3 | x2 ` y2 ` t2 “ 1u are Riemann surfaces. In this case the atlas consists of two charts.
For the sphere S2 the two charts are

U1 “ S2zp0, 0, 1q, φ1px, y, tq “
x` iy
1´ t

(1.1.6)

U2 “ S2zp0, 0,´1q, φ2px, y, tq “
x´ iy
1` t

“
1´ t
x` iy

(1.1.7)

(1.1.8)

On the intersection U1 XU2 » Czt0uwe have φ2 ˝ φ
´1
1 pzq “

1
z where z “ φ1px, y, tq. It is let as an exercise

to show that C and P1 are Riemann surfaces.

Example 1.1.7. Riemann surface of
?

z.
Consider the complex algebraic curve

C “ tpz,wq P C2 | w2 ´ z “ 0u .

A chart in a neighbourhood of a point pz0,w0q P C with z0 , 0 is defined on the domain U “ tpz,w “
?

zq P
C | |z ´ z0| ă εu with ε ă |z0| where the branch of

?
z is uniquely defined by the condition

?
z0 “ w0. The

coordinate map U Ñ C is given by the projection to the z-axis

pz,wq ÞÑ z.

It remains to construct a chart in a neighbourhood of the point p0, 0q P C. Define the domain V “ tpz “ w2,wq P
C | |w| ă εu for some ε ą 0. The coordinate map V Ñ C is given by the projection to the w-axis

pz,wq ÞÑ w.

On the intersection U X V we have holomorphic transition functions

zpwq “ w2 and wpzq “
?

z, wpz0q “ w0.
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Example 1.1.8. Complex tori
Let ω, ω1 be two complex numbers called half-periods satisfying

Im
ω1

ω
ą 0.

Define the lattice of points on the complex plane by

Λω,ω1 “ 2Zω` 2Zω1 “ t2mω` 2nω1 | m,n P Zu. (1.1.9)

The half-periodsω,ω1 are linearly independent as vectors on the two-dimensional real planeC “ R2. Therefore
two vectors 2m1ω` 2n1ω1 and 2m2ω` 2n2ω1 of the lattice coincide iff m1 “ m2 and n1 “ n2. In other words the
lattice Λω,ω1 Ă C as a subgroup of the additive group of complex numbers is isomorphic to the group Z‘Z.

Consider the quotient
T2
ω,ω1 “ C{Λω,ω1 (1.1.10)

as the set of equivalence classes of complex numbers, where the equivalence relation is as follows: two complex
numbers z and z̃ are equivalent if z̃´ z P Λω,ω1 .

The claim is that

• As a real smooth manifold the quotient is diffeomorphic to the two-dimensional torus T2
ω,ω1 » S1 ˆ S1.

• It has a natural structure of compact connected one-dimensional complex manifold namely a compact
Riemann surface.

To prove the first statement introduce real coordinates on the complex plane by representing a given complex
number z in the form

z “ 2ω x` 2ω1y.

Such a representation is unique. In these coordinates the quotient becomes equal to

C{Λω,ω1 “ R{ZˆR{Z “ S1 ˆ S1.

In particular this implies compactness of (1.1.10).
To prove the second statement one needs to construct a complex analytic structure on T2

ω,ω1 . Letπ : CÑ T2
ω,ω1

be the projection map. Endow T2
ω,ω1 with the quotient topology, namely, a set U Ă T2

ω,ω1 is open if π´1pUq is
open in C. This definition makes π continuous and since C is connected so is T2

ω,ω1 . Furthermore, it is easy
to check that π is an open map. Indeed, let U be an open set in C. Then by definition the set πpUq is open if
π´1pπpUqq is. But the latter is certainly open since π´1pπpUqq “

Ť

m,nPZpU ` 2ωm` 2ω1nq is open.
In order to define a complex chart near a point pα P T2

ω,ω1 choose a representative zα P π´1ppαq and consider
the parallelogram

Upzαq “ tzα ` 2ω x` 2ω1y | x, y P R, |x|, |y| ă εu, 0 ă ε ď
1
2

centered at zα. The restriction π|Upzαq : Upzαq Ñ πpUpzαqq is a homeomorphism. So we will use the natural
complex coordinate on the parallelogram Upzαq Ă C for defining the homeomorphism φα on πpUpzαqq Ă T2

ω,ω1 .
The pair pπpUpzαqq, φαq defines a complex chart. For p P πpUpzαqq X πpUpzβqq let φαppq “ z and φβppq “ z̃ so
that the transition function Tpzq :“ φβ ˝φ´1

α pzq “ rz. Since z and z̃ are the image of the same point p on the torus,
it follows that

Tpzq ´ z “ Ωpzq, Ωpzq P Λω,ω1 .
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Since the map T is continuous and Λω,ω1 is discrete, it follows that Ωpzq independent from z. We conclude that
the map T is holomorphic. An important remark is to be done. Namely, although the complex tori (1.1.10)
are all diffeomorphic as real smooth manifolds they in general define different complex manifolds for different
pairs of half-periods.In the next Section more details are given.

1.1.2 Holomorphic maps of Riemann surfaces

We begin this section with the general definition of holomorphic maps between complex manifolds. Let M and
N be complex manifolds of complex dimensions m and n respectively. Let pUα, φαqαPA

φαpPq “ pz1pPq, . . . , zmpPqq P Cm for P P Uα Ă M

and pVβ, ψβqβPB
ψβpQq “ pw1pQq, . . . ,wnpQqq P Cn for Q P Vβ Ă N

be atlases on these manifolds.

Definition 1.1.9. (i) A map f : M Ñ N is called holomorphic if for any P0 P Uα such that f pP0q P Vβ the
superposition

ψβ ˝ f ˝ φ´1
α : z “ pz1, . . . , zmq Ñ pw1pzq, . . . ,wnpzqq

defined on a sufficiently small open neighbourhood of P0 is a holomorphic map of an open subset in Cn to Cm.

(ii) Holomorphic maps f : M Ñ C are called holomorphic functions on M.

(iii) The holomorphic map f : M Ñ N is called biholomorphic equivalence if it is one-to-one and the inverse map
f´1 : N Ñ M is also holomorphic. The notation M » N will be used for biholomorphically equivalent complex
manifolds.

We leave as an exercise for the reader to verify that the above definition depends only on the complex
analytic structures on the manifolds but not on the choice of atlases.

Example 1.1.10. The projective space P1, the Riemann sphere C and the sphere S2 “ tpx, y, tq P
R3 |x2 ` y2 ` t2 “ 1u are biholomorphic equivalent. The biholomorphic equivalence is given by

f1 : P1 Ñ C, rz1 : z2s Ñ

#

z1
z2

if z2 , 0
8 if z2 “ 0

f2 : S2 Ñ C, px, y, tq Ñ

#

x`iy
1´t if x , 0, y , 0
8 if x “ y “ 0.

Straightforward computations shows that the maps f1 and f2 are biholomorphic.

Exercise 1.1.11: Prove that the superposition g˝ f : M Ñ L of two holomorphic maps f : M Ñ N and g : N Ñ L
between complex manifolds is holomorphic.

Exercise 1.1.12: Let M be a compact connected one dimensional complex manifold. Prove that any holomorphic
function f : M Ñ Cmust be a constant. Hint: use the maximum modulus principle.

Meromorphic functions on a Riemann surface S are defined as follows.

Definition 1.1.13. Let S be a Riemann surface. Holomorphic maps f : SÑ P1 “ C are called meromorphic functions
on S.
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Denote by z the complex coordinate on the finite part of C and by z̃ “ 1{z the complex coordinate near
infinity. Take a point P0 P S and choose a local complex coordinateφpPq “ τ near this point such thatφpP0q “ 0.
Let f pP0q “ z0 P C. Then we have a locally defined holomorphic function

z “ f ˝ φ´1pτq “ z0 `
ÿ

kěm

akτ
k, m ě 1, am , 0.

If z0 “ 0 then the number m is the multiplicity of the zero at P0 of the meromorphic function f . Consider now
the case f pP0q “ t8u “ tz̃ “ 0u. In this case z̃ is a holomorphic function of τ

z̃ “
ÿ

kěn

bkτ
k, n ě 1, bn , 0.

Then for the function z “ f ˝ φ´1pτqwe obtain an expansion in Laurent series

z “ f ˝ φ´1pτq “

«

ÿ

kěn

bkτ
k

ff´1

“
ÿ

kďn

c´k

τk
, c´n “

1
bn
, 0,

valid on a punctured disk 0 ă |τ| ă ε, for a sufficiently small ε. The point P0 is called a pole of order n of the
meromorphic function f . The multiplicity of a zero and the order of a pole do not depend on the choice of local
parameter. An alternative definition of a meromorphic function on a Riemann surface is that the function f is
holomorphic in S outside a discrete subset of points that are poles of this function.

Exercise 1.1.14: Prove that, indeed, the set of poles of a meromorphic function must be discrete. In particular
prove that a meromorphic function on a compact connected one-dimensional complex manifold has only a
finite number of poles.

Exercise 1.1.15: Prove that any meromorphic function on the Riemann sphere C is a rational function.

Remark 1.1.16. The space of meromorphic functions on a Riemann surface S is a field. That means that the
product f g of two meromorphic functions is meromorphic; the same is true for the ratio f {g provided the
function g is not an identical zero. This field will be denoted byMpSq. For example, according to the above
ExerciseMpCq is isomorphic to the field of rational functions of one variable.

Example 1.1.17. Consider the Riemann surface

S “ tpz,wq P C2 | w2 ´ z “ 0u.

The projections πz : SÑ C and πw : SÑ C defined as

πzpz,wq “ z and πwpz,wq “ w

define holomorphic functions on S.
The map πw establishes a biholomorphic equivalence S » C. Indeed, the inverse to the map πw : SÑ C is

given by
w ÞÑ

`

w2,w
˘

P S.
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Example 1.1.18. LetD “ t|z| ă 1u be the unit disk andH “ tIm w ą 0u the upper half-plane. The map

w “ i
1´ z
1` z

establishes a biholomorphic equivalence D » H between the unit disk D and the upper half-plane H. The
inverse map is given by

z “
i´ w
i` w

.

Example 1.1.19. Any holomorphic map from C Ñ D must be a constant, due to the maximum modulus
principle. Therefore the complex plane and the unit disk are not biholomorphically equivalent. Nevertheless
C andD are diffeomorphic to each other by means of the smooth map ψ : CÑ D

ψpzq “
z

a

1` |z|2
“ w

with inverse ψ´1pwq “
w

a

1´ |w|2
.

Remark 1.1.20. Clearly the Riemann sphere is not biholomorphically equivalent either to C or to H as it is
compact. Indeed combining the results of Examples 1.1.18 and 1.1.19 we conclude that there is no biholomorphic
equivalence between C andH.

The following fundamental result proven in 1907 by Henri Poincaré and Paul Koebe provides a complete
classification of simply connected Riemann surfaces.

Uniformization Theorem. Any simply connected Riemann surface is biholomorphically equivalent to one of these
three:

1. complex plane C;

2. Riemann sphere P1 “ C;

3. upper half-planeH.

For the definition of simply connected topological spaces see below Section 1.3.1. The proof of the Uni-
formization Theorem can be found in the book [27].

Example 1.1.21. Holomorphic maps of complex tori.
Recall (see Example 1.1.8 above) that a complex torus is a compact Riemann surface T2

ω,ω1 defined as the
quotient of the complex plane over a two-dimensional lattice

T2
ω,ω1 “ C{t2ωm` 2ω1n | m, n P Zu. (1.1.11)

Here ω, ω1 P C is a pair of half-periods of the lattice. They must satisfy the inequality

Im
ω1

ω
ą 0.

Vectors 2ωm ` 2ω1n of the lattice are called periods. A natural basis in the lattice is given by the periods 2ω,
2ω1. All vectors of the lattice are linear combinations with integer coefficients of the basic periods. There are
other bases in the lattice that can be obtained in the following way.
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Lemma 1.1.22. Let 2ω̃, 2ω̃1 be another basis of the lattice satisfying the inequality Im ω̃1

ω̃ ą 0. Then

ω̃ “ dω` cω1, ω̃1 “ bω` aω1 (1.1.12)

where the integers a, b, c, d satisfy

det
ˆ

a b
c d

˙

“ 1.

Conversely, any matrix from the group SLp2,Zq defines a change of basis in the lattice according to eq. (1.1.12)

Recall that the group SLp2,Zq consists of 2ˆ 2 matrices with integer entries and determinant one.
Proof Since the vectors 2ω̃, 2ω̃1 belong to the lattice with the basis 2ω, 2ω1 they must have the form (1.1.12)
with some integer coefficients. Interchanging the roles of the bases we conclude that the inverse of the matrix
ˆ

a b
c d

˙

must also have integer entries hence det
ˆ

a b
c d

˙

“ ˘1. Using the simple identity

Im
ω̃1

ω̃
“
pad´ bcq|ω|2

|cω1 ` dω|2
Im

ω1

ω
(1.1.13)

we conclude that the determinant of the matrix must be positive.

Let us proceed to studying functions on complex tori. First, we already know that any holomorphic
function on T2

ω,ω1 must be a constant, see Exercise 1.1.12 above. It is worthwhile to present the proof of the
statement about holomorphic functions on a complex torus in a slightly modified way. Namely, a function
f : C{t2ωm` 2ω1nu Ñ C can be considered as a function on C satisfying

f pz` 2ωq “ f pzq, f pz` 2ω1q “ f pzq (1.1.14)

for any z P C. Such functions are called doubly periodic. Any doubly periodic holomorphic function will be
bounded on the entire complex plane hence, due to Liouville theorem it must be constant.

Definition 1.1.23. Doubly periodic meromorphic functions on the complex plane are called elliptic functions.

We conclude that the set of holomorphic maps of the complex torus (1.1.11) to P1 is the same as the set of
elliptic functions on the complex plane. In Section ?? we will construct some important examples of elliptic
functions.

Let us now consider holomorphic maps between complex tori. Any such map

f : T2
ω,ω1 Ñ T2

ω̃,ω̃1 (1.1.15)

can be considered as a holomorphic function f pzq, z P C satisfying

f pz` 2ωq “ f pzq ` 2s ω̃` 2r ω̃1, f pz` 2ω1q “ f pzq ` 2q ω̃` 2p ω̃1, p, q, r, s P Z (1.1.16)

for any z P C. The derivative f 1pzq will be a doubly periodic holomorphic function hence constant. So
f pzq “ λ z ` z0 for some λ , 0, z0 P C. Thus the holomorphic maps (1.1.15) correspond to pairs λ , 0,

M “

ˆ

p q
r s

˙

P Matp2,Zq. The matrix M must have positive determinant; this can be proven by using the

relation (1.1.13). Existence of such a map imposes the following constraint on the periods of the tori

λ

ˆ

ω1

ω

˙

“

ˆ

p q
r s

˙ˆ

ω̃1

ω̃

˙

(1.1.17)
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The simplest case is M “

ˆ

1 0
0 1

˙

. Then the lattice Λω̃,ω̃1 is obtained from Λω,ω1 by rescaling

ω̃ “ λω, ω̃1 “ λω1. (1.1.18)

The map
f : T2

ω,ω1 Ñ T2
λω,λω1 , f pzq “ λ z (1.1.19)

is biholomorphic, f´1pz̃q “ z̃{λ. By chosing λ “ 1
2ω it follows that the tori

f : T2
ω,ω1 Ñ T2

1
2 ,
τ
2

f pzq “
1

2ω
z, τ “

ω1

ω
(1.1.20)

are biholomorphic equivalent. For simplicity the torus T2
1
2 ,
τ
2

is denoted by T2
τ. Combining the above observation

with lemma 1.1.22 we arrive to the following Theorem.

Theorem 1.1.24. Let Tτ and Tτ1 be two tori defined by the lattices tm` nτ |m,n P Nu and tm` nτ1 |m,n P Nu with
=pτq ą 0 and =pτ1q ą 0. The tori are isomorphic if and only if

τ1 “
aτ` b
cτ` d

,

ˆ

a b
c d

˙

P SLp2,Zq. (1.1.21)

The proof is left as an exercise.
Holomorphic maps between complex tori will be considered up to superpositions with rescalings. This

allows to freely choose λ in a suitable way.
One can also use the freedom in the choice of bases in the lattices Λω,ω1 , Λω̃,ω̃1 in order to reduce the matrix

M “

ˆ

p q
r s

˙

to some canonical form. In this way the matrix M is considered up to transformations of the

form
M ÞÑ AMB, A, B P SLp2,Zq. (1.1.22)

The matrix A corresponds to a change of basis in Λω,ω1 and B comes from a change of basis in the lattice Λω̃,ω̃1 .
The following algebraic statement describes the normal form of the matrix M wrt transformations of the form
(1.1.22).

Lemma 1.1.25. Any 2 ˆ 2 matrix M with integer entries and det M ą 0 by a transformation of the form (1.1.22) can
be reduced to the form

Mnormal “ ˘

ˆ

d1 0
0 d2

˙

, d1, d2 ą 0, d1 | d2, (1.1.23)

where the symbol d1 | d2, stands for d1 divides d2. The numbers d1 and d2 are determined uniquely.

The proof of Lemma is left as an exercise for the reader.
Summarizing the above arguments we arrive at the following

Proposition 1.1.26. Any holomorphic map between complex tori modulo biholomorphic rescalings can be reduced to the
following standard form

fn : T2
ω,ω1 Ñ T2

ω{n, ω1 , fnpzq “ z (1.1.24)

for some integer n ą 0.
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Holomorphic maps of the form (1.1.24) play an important role in the theory of elliptic functions. For the
first nontrivial case n “ 2 they are related to Landen’s transformations that we will explain in Example 1.4.11.

Exercise 1.1.27: Prove that the preimage of any point in the torus wrt the map (1.1.24) consists of n points.

Example 1.1.28. We conclude this section by constructing a meromorphic function on the torus T2
τ with=pτq ą

0.
The Jacobi theta function is defined by the series

θpz; τq “
ÿ

´8ănă8
exp

`

πiτn2 ` 2πinz
˘

. (1.1.25)

The function ϑ3pz ; τq) in the standard notation for θpz; τq, see e.g.[4]. Since
ˇ

ˇexp
`

πiτn2 ` 2πinz
˘
ˇ

ˇ “ exp
`

´π=τn2 ´ 2πn=zq
˘

the series (1.1.25) converges absolutely and uniformly in the strips |=pzq| ď const and defines an entire function
of z.

The series (1.1.25) can be rewritten in the form common in the theory of Fourier series:

θpzq “
ÿ

´8ănă8
exppπiτn2qe2πizn (1.1.26)

The function θpz; τq has the following periodicity properties:

θpz` 1; τq “ θpzq (1.1.27)

θpz`mτ; τq “ expp´πim2τ´ 2πimzqθpzq, m P Z (1.1.28)

The equality (1.1.27) is obvious. The equality (1.1.28) is also easy to prove:

θpz`mτ; τq “
ÿ

nPZ

exp
`

πiτpn´mq2 ` 2πipn´mqpz`mτq
˘

“ expp´πim2τ´ 2πimzqθpz; τq.

The integer lattice with basis 1 and τ is called the period lattice of the theta function. The remaining Jacobi
theta-functions are defined with respect to the lattice 1, τ as

ϑ1pz ; τq :“
ÿ

´8ănă8
exp

«

πiτ
ˆ

n`
1
2

˙2

` 2πi
ˆ

z`
1
2

˙ˆ

n`
1
2

˙

ff

ϑ2pz ; τq :“
ÿ

´8ănă8
exp

«

πiτ
ˆ

n`
1
2

˙2

` 2πiz
ˆ

n`
1
2

˙

ff

ϑ4pz ; τq :“
ÿ

´8ănă8
exp

„

πiτn2 ` 2πi
ˆ

z`
1
2

˙

n


.

The functions ϑ2pz ; τq, ϑ3pz ; τq and ϑ4pz ; τq are even functions of z while ϑ1pz ; τq is odd. For simplicity we
drop the τ-dependence and write only θpzq for θpz ; τq.
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In the parallelogram Γ defined by the lattice 1 and τ, namely

Γ :“
"

1
2
`
τ
2
` x` yτ | x, y P R, |x| ď

1
2
, |y| ď

1
2

*

the function θpzq has only one zero. Indeed let us consider the integral

1
2πi

ż

BΓ

d
dz

logθpzqdz “ t# of zeros of θpzq in Γu

“
1

2πi

˜

ż 1

0
plogθptqq1dt`

ż 1

0
plogθp1` τtqq1τdt´

ż 1

0
plogθpτ` tqq1dt`

ż 0

1
plogθpτtqq1τdt

¸

.

Using the periodicity properties (1.1.27) and (1.1.28) we obtain

1
2πi

ż

BΓ

d
dz

logθpzqdz “
1

2πi

˜

ż 1

0
plogθptqq1dt´

ż 1

0
plogθpτ` tqq1dt

¸

“
1

2πi

˜

ż 1

0
plogθptqq1dt´

ż 1

0
rplogθptqq1 ´ 2πisdt

¸

“ 1,

which shows that the number of zeros of θpzq in the domain Γ is equal to one. To determine this zero, we use
the parity and periodicity property of θpzq so that

θ

ˆ

τ
2
`

1
2

˙

“ θ

ˆ

´
τ
2
´

1
2

˙

“ θ

ˆ

τ
2
`

1
2
´ τ

˙

“ e´πiτ`2πip τ2`
1
2 qθ

ˆ

τ
2
`

1
2

˙

“ ´θ

ˆ

τ
2
`

1
2

˙

which implies that τ
2 `

1
2 is the only zero for the theta function θpzq in the domain Γ. Finally it is left as an

exercise to show that for 2m complex numbers v1, . . . , vm and c1, . . . , cm such that
řm

j“1 v j “
řm

j“1 c j the function

f pzq “

śm
j“1 θpz´ v jq

śm
j“1 θpz´ c jq

in meromorphic on the torus T2
τ with zeros at the points z “ v j `

1
2 `

τ
2 and poles at the points z “ c j `

1
2 `

τ
2 ,

j “ 1, . . . ,m with v j , ci, i, j “ 1, . . . ,m.

1.2 Algebraic curves and Riemann surfaces

1.2.1 Algebraic digression: resultant and discriminant

The resultant of two polynomials f pzq and gpzq in one variable is a polynomial in the coefficients of f and g
that provides a condition of compatibility of the system

f pzq “ 0
gpzq “ 0

*

of two algebraic equations. More precisely,
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Definition 1.2.1. Let f pzq “ a0zn ` a1zn´1 ` ¨ ¨ ¨ ` an and gpzq “ b0zm ` b1zm´1 ` ¨ ¨ ¨ ` bm be two polynomials of
degree n and m respectively with ai, b j P C with a0 , 0 and b0 , 0. The resultant Rp f , gq is given by the determinant of
the pn`mq ˆ pn`mq matrix

Rp f , gq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a0 a1 . . . an 0 0 . . . 0
0 a0 a1 . . . an 0 0 . . . 0
. . . . . . . . .
0 0 . . . . . . a0 a1 a2 . . . an
b0 b1 . . . . . . bm´1 bm 0 . . . 0
0 b0 b1 . . . . . . bm´1 bm 0 . . . 0
. . . . . . . . .
0 . . . b0 b1 . . . . . . bm´1 bm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.2.1)

Lemma 1.2.2. Rp f , gq “ 0 if and only if f and g have a common zero. The co-rank of the matrix appearing in the
determinant is the number of common zeroes.

Proof. The polynomials f pzq and gpzq have a common root z “ z0 if and only if they are divisible by rpzq “ z´z0,
that is there exist polynomials ψpzq and φpzq such that f pzq “ rpzqψpzq and gpzq “ rpzqφpzq. Here ψ and φ are
polynomials of degree at most n´ 1 and m´ 1 respectively. This implies that

f pzqφpzq “ gpzqψpzq (1.2.2)

where
φpzq “ β1zm´1 ` ¨ ¨ ¨ ` βm´1z` βm

and
ψpzq “ α1zn´1 ` ¨ ¨ ¨ ` αn´1z` αn

for some complex coefficients α1, . . . , αm and β1, . . . , βn.
To write the system in a matrix form we define the spaces V “ spanpzm´1, . . . , 1q ‘ spanpzn´1, . . . , 1q and

W “ spanpzn`m´1, . . . , 1q. The space of solutions to the system (1.2.2) coincides with the kernel of the map
M : V Ñ W given by

Mpφ‘ ψq “ fφ´ gψ P W.

The matrix of the linear operatorM in the indicated bases is (up to multiplication of the last n rows by p´1q)
precisely the matrix appearing in (1.2.1). Hence the vanishing of the determinant is the necessary and sufficient
condition for the solvability of (1.2.2).

Note now that the smallest possible degrees of ψ,φ amongst the possible solutions of (1.2.2) are precisely
m ´ s,n ´ s where s is the number of common roots of the polynomials f and g (exercise). Denoting pφ0, ψ0q

such a minimal solution we then observe that we have a s-dimensional freedom of multiplying both sides of
the equation f pzqφ0pzq “ gpzqψ0pzq by an arbitrary polynomial of degree ď s ´ 1 . This means that the kernel
of the matrix in (1.2.1) has dimension s.

�

Lemma 1.2.3.
Rp f , gq “ am

0 bn
0

ź

px j ´ ykq

where x j and yk are the roots of the polynomials f and g respectively.
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Proof. We have

f pzq “ a0

n
ź

i“1

pz´ xiq, gpzq “ b0

m
ź

j“1

pz´ yiq.

So
ai “ p´1qia0 ˆ i´th elementary symmetric function of x1, . . . , xn, i “ 1, . . . ,n

and a similar representation holds for the coefficients of the polynomial gpzq.
The resultant can be considered as a polynomial in the coefficients of f and g,

Rp f , gq P Cra0, a1, . . . , an, b0, b1, . . . , bms

homogeneous of degree m in a0, a1, . . . , an and degree n in b0, b1, . . . , bm. Using the elementary symmetric
functions we can represent it as an element of the ring of polynomials

Rp f , gq P am
0 bn

0 Crx1, . . . , xn, y1, . . . , yms
SnˆSm

symmetric in x1, . . . , xn and in y1, . . . , ym. It vanishes if xi “ y j for some i, j. Therefore it is divisible by xi ´ y j
for every i “ 1, . . . ,n and j “ 1, . . . ,m. We conclude that Rp f , gq is divisible by the polynomial

P :“ am
0 bn

0

ź

i, j

pxi ´ y jq. (1.2.3)

The polynomial (1.2.3) can be represented in the following way

P “ am
0

n
ź

i“1

gpxiq.

Hence it is a homogeneous polynomial of degree n in b0, b1, . . . , bm. Its coefficients are symmetric polynomials
in x1, . . . , xn times am

0 . So they can be represented, in a unique way, as polynomials in a0, a1, . . . , an. Alternatively
P can be written as follows

P “ p´1qmnbn
0

m
ź

j“1

f py jq.

Thus P is a homogeneous polynomial of degree m in a0, a1, . . . , an. We conclude that

Rp f , gq “ const P.

In order to prove that const=1 we look at the terms of the highest degree in bm. It is easy to see that they are
equal to am

0 bn
m both in R and in P. The lemma is proved. �

Now we address the following question: how to check whether the polynomial

f pzq “ a0zn ` a1zn´1 ` ¨ ¨ ¨ ` an´1z` an (1.2.4)

has multiple roots? It is well known that z “ z0 is a mutiple root of f pzq if and only if it satisfies the system

f pz0q “ 0
f 1pz0q “ 0

*

.

Here f 1pzq “ d f pzq{dz. The condition of compatibility of this system is the vanishing of the resultant Rp f , f 1q.
We arrive at
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Definition 1.2.4. The discriminant Dp f q of the polynomial f pzq in (1.2.4) is equal to

Dp f q “
1
a0
p´1q

npn´1q
2 Rp f , f 1q. (1.2.5)

From eq. (1.2.1) we obtain the following expression for the discriminant

Dp f q “
1
a0
p´1q

npn´1q
2 det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a0 a1 a2 . . . an´1 an 0 . . . 0
0 a0 a1 . . . . . . an´1 an . . . 0
. . . . . . . . . . . . . . .
0 0 . . . . . . . . . an´1 an

na0 pn´ 1qa1 pn´ 2qa2 . . . an´1 0 . . . . . . 0
0 na0 pn´ 1qa1 . . . 2an´2 an´1 0 . . . 0

. . . . . . . . .
0 0 . . . . . . . . . 2an´2 an´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.2.6)

We put the prefactor 1{a0 since the polynomial Rp f , f 1q is divisible by a0. In this way we can see that Dp f q is a
homogeneous polynomial in a0, a1, . . . , an of degree 2n´ 2.

For example, the discriminant of a degree two polynomial f “ a0z2 ` a1z` a2 is equal to Dp f q “ a2
1 ´ 4a0a2.

For a cubic polynomial f “ a0z3 ` a1z2 ` a2z` a3 it is given by the formula

Dp f q “ ´
1
a0

det

¨

˚

˚

˚

˚

˝

a0 a1 a2 a3 0
0 a0 a1 a2 a3

3a0 2a1 a2 0 0
0 3a0 2a1 a2 0
0 0 3a0 2a1 a2

˛

‹

‹

‹

‹

‚

“ a2
1a2

2 ´ 4a0a3
2 ´ 4a3

1a3 ` 18a0a1a2a3 ´ 27a2
0a2

3. (1.2.7)

Exercise 1.2.5: Prove that the discriminant as a symmetric polynomial in the roots z1, . . . , zn of f pzq can be
written in the following form

Dp f q “ a2n´2
0

ź

iă j

pzi ´ z jq
2.

1.2.2 Smooth affine plane curves as Riemann surfaces

Let us consider a polynomial Fpz,wq “
řn

i“0 aipzqwn´i in two complex variables z and w, aipzq P Crzs, i “
0, 1, . . . , n. For simplicity let us assume4 that a0pzq ” 1. Then for any z P C the algebraic equation

Fpz,wq “ 0

has n roots w1pzq, . . . , wnpzq counted with multiplicities. We obtain a n-valued function w “ wpzq of complex
variable. The basic idea of Riemann surface theory is to replace the domain of the multivalued function wpzq

4This can be achieved by a transformation

w ÞÑ
w

a0pzq
, F ÞÑ a0pzqn´1F.
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by its graph that is nothing but the complex algebraic curve

C :“ tpz,wq P C2 | Fpz,wq “
n
ÿ

i“0

aipzqwn´i “ 0u (1.2.8)

and to deal with a single-valued holomorphic function pz,wq ÞÑ w onC rather than with a multivalued function
on C. We have already considered above the example of the multivalued function wpzq “

?
z. It becomes

single-valued on the algebraic curve w2 ´ z “ 0.
In the theory of functions of a complex variable one encounters also more complicated (nonalgebraic)

curves, where Fpz,wq is not a polynomial. For example, the equation ew ´ z “ 0 determines the Riemann
surface of the logarithm or sin w´ z “ 0 determines the Riemann surface of arcsine. Such surfaces will not be
considered here.

From the real point of view the algebraic curve (1.2.8) is a two-dimensional surface in C2 “ R4 given by the
two equations

<Fpz,wq “ 0
=Fpz,wq “ 0

*

.

We will now formulate main conditions that guarantee that this surface is smooth and, moreover, it admits a
natural structure of a connected complex manifold of complex dimension one or, according to Definition ?? it
is a Riemann surface.

Definition 1.2.6. An affine plane curve C is a subset in C2 defined by the equation (1.2.8 ) where Fpz,wq is polynomial
in z and w. The curve C is non-singular if for any point P0 “ pz0,w0q P C the complex gradient vector

gradCF|P0 “

ˆ

BFpz,wq
Bz

,
BFpz,wq
Bw

˙
ˇ

ˇ

ˇ

ˇ

pz“z0,w“w0q

does not vanish. If the polynomial Fpz,wq is irreducible5then the curve C is called irreducible affine plane curve.

In order to define a complex structure on Cwe need the following complex version of the implicit function
theorem.

Lemma 1.2.7. [Complex implicit function theorem] Let Fpz,wq be an analytic function of complex variables z and w in
a neighbourhood of the point P0 “ pz0,w0q such that Fpz0,w0q “ 0 and BwFpz0,w0q , 0. Then there exists a unique
function φpzq such that Fpz, φpzqq “ 0 and φpz0q “ w0. This function is analytic in z in some neighbourhood of z0.

Proof. Let z “ x` iy and w “ u` iv, F “ f ` ig. Then the equation Fpz,wq “ 0 can be written as the system
"

f px, y,u, vq “ 0
gpx, y,u, vq “ 0

The conditions of the real implicit function theorem are satisfied for this system: the matrix
¨

˚

˚

˚

˝

B f
Bu

B f
Bv

Bg
Bu

Bg
Bv

˛

‹

‹

‹

‚

pz0,w0q

5A polynomial Fpz,wq is called irreducible if it cannot be factorized into a product Fpz,wq “ F1pz,wqF2pz,wq of two nonconstant
polynomials.
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is non-singular because

det

¨

˚

˚

˚

˝

B f
Bu

B f
Bv

Bg
Bu

Bg
Bv

˛

‹

‹

‹

‚

“

ˇ

ˇ

ˇ

ˇ

BF
Bw

ˇ

ˇ

ˇ

ˇ

2

ą 0,

(here we use only analyticity in w of the function Fpz,wq). Thus, in some neighbourhood of pz0,w0q there
exists a unique smooth function φpz, z̄q “ φ1px, yq ` iφ2px, yq such that Fpz, φpz, z̄qq “ 0, with φpz0, z̄0q “ w0.
Differentiating the identity Fpz, φpz, z̄qq ” 0 with respect to z̄, we get that

0 “
BF
Bz̄
`
BF
Bw
Bφ

Bz̄
“
BF
Bw
Bφ

Bz̄

due to analyticity of Fpz,wq. Using
BF
Bw
, 0 we conclude that

Bφ

Bz̄
“ 0. That means that φpzq is an analytic

function of z. �

We arrive to the following main result of this Section.

Theorem 1.2.8. Let C be the irreducible affine plane curve (1.2.8). If C is non-singular then it has a natural structure
of a Riemann surface. Restriction of the coordinates z and w onto the curve defines two holomorphic functions on the
Riemann surface.

Proof. Since Fpz,wq is irreducible the curveC is connected, see Theorem 1.3.47 below for the proof. Let us define
a complex structure on C. Let P0 “ pz0,w0q be a non-singular point of the surface C. Suppose, for example,

that the derivative
BF
Bw

is nonzero at this point. Then by the Lemma 1.2.7, in a neighbourhood U0 of the point
P0, the points of the curve C admit a parametric representation of the form

pz,wpzqq P U0 Ă C, wpz0q “ w0, (1.2.9)

where the function wpzq is holomorphic. Therefore, in this case z is a complex local coordinate also called local
parameter on C in a neighbourhood U0 of P0 “ pz0,w0q P C. For a pair of charts with this type of local coordinate
the transition function is the identity.

Similarly, if the derivative
BF
Bz

is nonzero at the point P0 “ pz0,w0q, then we can take w as a local parameter
(an obvious variant of the lemma), and the curve C can be represented in a neighbourhood U0 of the point P0
in the parametric form

pzpwq,wq P C, zpw0q “ z0, (1.2.10)

where the function zpwq is, of course, holomorphic. Call U0 the domain of the second type. For a non-singular
surface it is possible to use both ways for representing the surface on the intersection of domains of the first and

second types, i.e., at points of C where
BF
Bw
, 0 and

BF
Bz
, 0 simultaneously. The resulting transition functions

w “ wpzq and, z “ zpwq are holomorphic and invertible.
Let us prove that the projections pz,wq ÞÑ z and pz,wq ÞÑ w are holomorphic on the constructed Riemann

surface. Indeed, on a domain of the first kind the first projection is given by the identity function z Ñ z while
the second one is given by the holomorphic function wpzq. In a similar way on domains of the second kind we
have zpwq and w Ñ w respectively. �
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Remark 1.2.9. If the polynomial Fpz,wq “
řn

i“0 aipzqwn´i is not monic in w then the Riemann surface associated
with the algebraic curve Fpz,wq “ 0 can still be constructed but the function w will not be holomorphic but
meromorphic on this surface. Poles of this function can be located over zeros of the coefficient a0pzq.

Due to the above Theorem we will denote by S the Riemann surface corresponding to a non-singular
irreducible algebraic curve C “ tpz,wq P C2 |Fpz,wq “ 0u. It is equipped with a pair of holomorphic functions
z, w that establish a one-to-one correspondence

S Q P ÞÑ pzpPq,wpPqq P C.

The Riemann surface S associated to the curve (1.2.8) is realized as an n-sheeted branched covering of the
z-plane. The precise meaning of this is as follows: let π : SÑ C be the projection map from S to the complex
z-plane given by the function z that here will be denoted by

πpz,wq “ z. (1.2.11)

Then for almost all z the preimage π´1pzq consists of n distinct points

pz,w1pzqq, pz,w2pzqq, . . . , pz,wnpzqq (1.2.12)

of the surface S where w1pzq, . . . ,wnpzq are the n roots of (1.2.8) for a given value of z. For certain values of z,
some of the points of the preimage can merge. This happens at the ramifications points pz0,w0q of the Riemann
surface where the partial derivative Fwpz,wq vanishes (recall that we consider only non-singular curves so far).
The point z0 P C is called branch point and it is determined by the system of equations

Fpz0,wq “ 0
Fwpz0,wq “ 0

*

. (1.2.13)

Let ∆Fpzq :“ DpFpz, .qq be the discriminant of Fpz,wq considered as a polynomial in w depending on the
parameter z

∆Fpzq “
1

a0pzq
p´1q

npn´1q
2 ˆ (1.2.14)

det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a0pzq a1pzq a2pzq . . . an´1pzq anpzq 0 . . . 0
0 a0pzq a1pzq . . . . . . an´1pzq anpzq . . . 0
. . . . . . . . . . . . . . .
0 0 . . . . . . . . . an´1pzq anpzq

na0pzq pn´ 1qa1pzq pn´ 2qa2pzq . . . an´1pzq 0 . . . . . . 0
0 na0pzq pn´ 1qa1pzq . . . 2an´2pzq an´1pzq 0 . . . 0

. . . . . . . . .
0 0 . . . . . . . . . 2an´2pzq an´1pzq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Proposition 1.2.10. If P0 P S is a ramification point of the complex algebraic curve (1.2.8) with respect to its projection
onto the z-plane then its projection z0 “ πpP0q P C satisfies ∆Fpz0q “ 0. If the curve is smooth irreducible then also the
converse statement holds true.

The proof easily follows from the results of the previous section.
It follows that the Riemann surface associated with a smooth irreducible affine algebraic curve has a finite

number of ramification points.
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The choice of the variables z or w as a local parameter is not always the most convenient. We shall also
encounter other ways of choosing a local parameter τ so that near the point pz,wq the curveS can be represented
locally in the form

z “ zpτq, w “ wpτq (1.2.15)

where zpτq and wpτq are holomorphic functions of τ, and
ˆ

dz
dτ
,

dw
dτ

˙

, p0, 0q (1.2.16)

on a sufficiently small neighbourhood of the point. We study the structure of the mapping π in (1.2.12) in a
neighbourhood of a ramification point P0 “ pz0,w0q of S defined in (1.2.8). Let τ be a local parameter on S in a
neighbourhood of P0 such that τpP0q “ 0. Then

z “ z0 ` akτ
k `Opτk`1q, ak , 0

w “ w0 ` cqτ
q `Opτq`1q, cq , 0,

(1.2.17)

where ak and cq are nonzero coefficients. Since w can be taken as the local parameter in a neighbourhood of P0
it follows that q “ 1. We get a parametrization of the surface S in a neighbourhood of a ramification point:

z “ z0 ` akτ
k `Opτk`1q,

w “ w0 ` b1τ`Opτ2q,
(1.2.18)

where k ą 1. It is easy to check that the number k does not depend on the choice of the local parameter.

Definition 1.2.11. The number multzpP0q “ k is called the multiplicity and bzpP0q “ k ´ 1 the ramification index of
the point P0 P S wrt the map π : SÑ C, πpz,wq “ z.

So, if P0 is not a ramification point then multzpP0q “ 1 and bzpP0q “ 0.

Exercise 1.2.12: Let P0 “ pz0,w0q be a ramification point for the curve (1.2.8) with respect to the projection
pz,wq Ñ z. Suppose that the local parameter in the neighbourhood of P0 is of the form (1.2.18) with k ą 1.
Show that

d jFpz,wq
dw j

ˇ

ˇ

ˇ

ˇ

pz0,w0q

“ 0, j “ 0, . . . , k´ 1.

Exercise 1.2.13: Prove that the total multiplicity of all the ramification points on S over z “ z0 is equal to the
multiplicity of z “ z0 as a root of the discriminant of the polynomial Fpz,wq.

Exercise 1.2.14: Recall that a partition µ of an integer n is a collection of positive integers µ “ pµ1, . . . , µlq such
that

řl
j“1 µ j “ n. To every smooth algebraic curve C in (1.2.8) of degree n in w and a point z0 P C, let l ď n

be the number of pre-images π´1pz0q “ P1 Y ¨ ¨ ¨ Y Pl, where π : C Ñ C is the projection πpz,wq “ z. Assign
positive integers pk1, . . . , klq by

k j “ multzpP jq, j “ 1, . . . , l.

This collection of integers is called the ramification profile of the smooth curve over z0 P C. Note that if z0
is not a branch point then the preimage π´1pz0q consists of n distinct points of multiplicity 1. Show that the
ramification profile over any point of the complex plane is a partition of n.
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Lemma 1.2.15. Let P0 “ pz0,w0q be a ramification point of the Riemann surface S defined in (1.2.8) with respect to the
projection pz,wq Ñ z and let multzpP0q “ k be its multiplicity. Then there are k functions w1pzq, . . . , wkpzq analytic on
a sector Sρ,φ of the punctured disc

0 ă |z´ z0| ă ρ, argpz´ z0q ă φ

for sufficiently small ρ ą 0 and any positive φ ă 2π such that

Fpz,w jpzqq ” 0 for z P Sρ,φ, j “ 1, . . . , k.

The functions w1pzq, . . . , wkpzq are continuous in the closure S̄ρ,φ and

w1pz0q “ ¨ ¨ ¨ “ wkpz0q “ w0.

Proof. As P0 is a ramification point we have Fwpz0,w0q “ 0. Therefore, by the non-singularity assumption
Fzpz0,w0q , 0. So the complex curve Fpz,wq “ 0 can be locally parametrized in the form z “ zpwq where the
analytic function zpwq is uniquely determined by the condition zpw0q “ z0. Consider the first nontrivial term
of the Taylor expansion of this function

zpwq “ z0 ` αkpw´ w0q
k ` αk`1pw´ w0q

k`1 ` . . . , k ą 1, αk , 0,

or equivalently

z´ z0 “ αkpw´ w0q
k
ˆ

1`
αk`1

αk
pw´ w0q `Oppw´ wq2q

˙

k ą 1, αk , 0.

Introduce an auxiliary function

f pwq “ βpw´ w0q

„

1`
αk`1

αk
pw´ w0q `O

`

pw´ w0q
2˘


1
k

“ βpw´ w0q

„

1`
αk`1

kαk
pw´ w0q `O

`

pw´ w0q
2˘


,

(1.2.19)

where the complex number β is chosen in such a way that βk “ αk. The function f pwq is analytic for sufficiently
small |w ´ w0|. Observe that f 1pw0q “ β , 0. Therefore the analytic inverse function f´1 locally exists. The
needed k functions w1pzq, . . . , wkpzq can be constructed as follows

w jpzq “ f´1
´

e
2πi p j´1q

k pz´ z0q
1{k
¯

, j “ 1, . . . , k, (1.2.20)

where we choose an arbitrary branch of the k-th root of pz´ z0q for z P Sρ,φ. �

The statement of Lemma shows that near a ramification point P0 P S of multiplicity k there are exactly k
sheets of the Riemann surface that all merge together at the point P0.
Example 1.2.16. Elliptic and hyperelliptic Riemann surfaces have the form

S “ tpz,wq P C2 |Fpz,wq “ w2 ´Qnpzq “ 0u, (1.2.21)

where Qnpzq is a polynomial of degree n with leading coefficient 1. These surfaces are two-sheeted coverings
of the z-plane. The non-singularity condition implies that gradient vector gradCF “ p´Q1npzq, 2wq , p0, 0q at
any point of S. A point pz0,w0q P S is singular if

w0 “ 0, Q1npz0q “ 0. (1.2.22)
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Together with the condition (1.2.21) for a point pz0,w0q to belong to Swe get that

Qnpz0q “ 0, Q1npz0q “ 0, (1.2.23)

i.e. z0 is a multiple root of the polynomial Qnpzq. Accordingly, the surface (1.2.21) is non-singular if and only if
the polynomial Qnpzq does not have multiple roots:

Qnpzq “
n
ź

i“1

pz´ ziq, zi , z j, for i , j. (1.2.24)

The surface S is called elliptic for n “ 3, 4 and it is called hyperelliptic for n ą 4. The ramification points of the
surface with respect to the map pz,wq Ñ z are determined by the two equations

w2 “ Qnpzq, w “ 0,

which gives n ramification points Pi “ pz “ zi,w “ 0q, i “ 1, . . . ,n. All the ramification points have ramification
index equal to one. In a neighbourhood of any point ofS that is not a ramification point, one can take z as a local
parameter, and w “

a

Qnpzq is a locally defined holomorphic function. In a neighbourhood of a ramification
point Pi it is convenient to take

τ “
?

z´ zi, (1.2.25)

as a local parameter. Then near the ramification point Pi, the Riemann surface (1.2.21) has the local parametriza-
tion

z “ zi ` τ
2, w “ τ

d

ź

j,i

pτ2 ` zi ´ z jq (1.2.26)

where w “ wpτq is a single-valued holomorphic function and dw{dτ , 0 for sufficiently small values of τ.

Exercise 1.2.17: Consider the family of n-sheeted Riemann surfaces of the form

Fpz,wq “
ÿ

i` jďn

ai jziw j (1.2.27)

(the so-called planar curves of degree n) for all possible values of the coefficients ai j. Prove that (1) the generic
surface of the form (1.2.27) is smooth; (2) there are npn´ 1q ramification points on the curve and they all have
ramification index 1. In other words, the conditions for the appearance of ramification points of index greater
than one are written as a collection of algebraic equations on the coefficients ai j.

We conclude this Section with a brief discussion of Riemann surfaces associated with singular curves. Let
C be the algebraic curve defined by an irreducible polynomial equation Fpz,wq “ 0. The goal is to construct
a Riemann surface S along with a map ρ : S Ñ C that is biholomorphic away from the singular points of C
and their preimages on S. Here we will do it only locally near one singular point and, moreover, only for the
simplest case of a nodal singularity. The case of arbitrary singularities will be treated in the next Section.

Let pz0,w0q be a singular point of the curve that is,

Fpz0,w0q “ 0, Fzpz0,w0q “ 0, Fwpz0,w0q “ 0.

It is called a node if

det

¨

˝

Fzzpz0,w0q Fzwpz0,w0q

Fzwpz0,w0q Fwwpz0,w0q

˛

‚, 0.
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Using Taylor formula rewrite the polynomial F in the form

Fpz,wq “
1
2
“

apz´ z0q
2 ` 2bpz´ z0qpw´ w0q ` cpy´ y0q

2‰` ∆Fpz,wq

where
a “ Fzzpz0,w0q, b “ Fzwpz0,w0q, c “ Fwwpz0,w0q

and

∆Fpz,wq “
ÿ

i` jě3

ri jpz´ z0q
ipw´ w0q

j, ri j “
1

pi` jq!
Bi` jFpz0,w0q

Bzi Bw j .

The quadratic term can be factorized into a product of two distinct linear functions. Near the point pz0,w0q the
term ∆F can be considered as a small perturbation of the leading quadratic term. Therefore, assuming c , 0
one obtains two solutions of equation Fpz,wq “ 0 in the form of convergent series

w˘pzq “ w0 ´
b˘

?
b2 ´ ac
c

pz´ z0q ` O
`

pz´ z0q
2˘ .

We are now ready to describe the local structure of the Riemann surface S and the map ρ : S Ñ C near
the node P0 “ pz0,w0q. The surface will consist locally of two small disks D` and D´ centred at points P˘
respectively. The complex coordinates τ˘ on the disks can be chosen in such a way that τ˘pP˘q “ 0 and the
map ρpτ˘q “ pzpτ˘q,w˘pτ˘qq reads

zpτ˘q “ z0 ` τ˘

w˘pτ˘q “ w0 ´
b˘
?

b2´ac
c τ˘ ` O

`

τ2
˘

˘

+

, τ˘ P D˘.

From the above calculations it follows that the map ρ : 9D` Y 9D´ Ñ CzP0 of the punctured disks 9D˘ “ D˘zP˘
is locally biholomorphic. But ρpP`q “ ρpP´q “ P0.

We did the calculations assuming that c , 0. If c “ 0 but a , 0 then everything goes in a similar way
after interchanging the roles of z and w. The picture slightly changes in the case a “ c “ 0. In this case the
polynomial Fpz,wq takes the form

Fpz,wq “ bpz´ z0qpw´ w0q `
ÿ

i` j“3

ri jpz´ z0q
ipw´ w0q

j `
ÿ

i` jě4

ri jpz´ z0q
ipw´ w0q

j.

The map ρ has the form
zpτ`q “ z0 ` τ`

w`pτ`q “ ´
r30
b τ

2
`
` Opτ3

`
q

*

on D` and
zpτ´q “ z0 ´

r03
b τ

2
´
` Opτ3

´
q

w´pτ´q “ w0 ` τ´

*

on D´. Observe that in the case the points P˘ P S is a ramification point wrt the projection on the w-plane and
the z-plane respectively.

The above method for constructing the Riemann surface of an algebraic curve near a singular point of
the latter is a version of the procedure called resolution of singularities. The constructed Riemann surface is
called normalisation of the algebraic curve. The method is based on an efficient algorithm for computing series
expansions of all branches of the algebraic function near the singular point. In full generality the algorithm
will be explained in the next Section.
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1.2.3 Newton polygons and Puiseux series

In this section we explain the use of an algebraic tool for studying the local structure of the Riemann surface S
associated with an algebraic curve C defined by an irreducible polynomial equation

Fpz,wq “ a0pzqwn ` a1pzqwn´1 ` ¨ ¨ ¨ ` anpzq “ 0 (1.2.28)

near a singular point P0 “ pz0,w0q of the curve. Here the problem will be treated only locally, near one singular
point; discussion of the global structure of the Riemann surface S is postponed till Section 1.3.

Recall (see the previous Section) that locally the Riemann surface Smust consist of a finite number of open
disks S “ D1 Y ¨ ¨ ¨ YDk centred at Pi P Di, i “ 1, . . . , k and a map

ρ : SÑ C satisfying ρpPiq “ P0, i “ 1, . . . , k

that establishes a biholomorphic equivalence between 9D1 Y ¨ ¨ ¨ Y 9Dk and a punctured neighbourhood of the
point P0 P C. Here 9Di “ DizPi. On every disk Di one can choose a local parameter τ such that τpPiq “ 0 and the
restriction of ρ on the disk

ρpτq “ pzpτq,wpτqq, Fpzpτq,wpτqq ” 0, ρp0q “ P0

is given by a pair of holomorphic functions on Di of the form6

zpτq “ z0 ` τq

wpτq “ w0 ` α0τp ` α1τp`1 ` α2τp`2 . . . , α0 , 0

*

(1.2.29)

for some integers p , 0, q ą 0. The integer p is positive unless z0 is a root of the leading coefficient a0pzq of the
polynomial Fpz,wq. It is understood that, in the second line of (1.2.29), the series is convergent for sufficiently
small |τ|. In order to show that the map ρ is bi-holomorphic for τ , 0, we build the inverse map by first
assuming the vanishing of the coefficients α1, α2, . . . in (1.2.29). Let m and n be integers such that mq` np “ 1.
Then the inverse map is ρ´1pz,wq “ pz ´ z0q

mp
w´w0
α0
qn “ τ that is clearly holomorphic for w , w0 and z , z0.

In the general case (1.2.29) let us define the function hpτq by the relation wpτq “ w0 ` τphpτq. Then hpτq is
holomorphic and invertible because h1p0q , 0. Next we define the function gpτq “ τphpτqqn that is holomorphic
and invertible. We conclude that ρ´1pz,wq “ g´1 ppz´ z0q

mpw´ w0q
nq “ τ.

If q “ 1 then the expansion for w in (1.2.29) can be rewritten in the form of a convergent Taylor series

w “ w0 ` α0pz´ z0q
p ` α1pz´ z0q

p`1 ` . . . .

In the general case q ą 1 eliminating τ “ pz ´ z0q
1
q one obtains an alternative representation of (1.2.29) as an

expansion in fractional powers of z´ z0

wpzq “ w0 ` α0pz´ z0q
p
q ` α1pz´ z0q

p`1
q ` . . . . (1.2.30)

In complex analysis the expansions of the form (1.2.30) are called Puiseux series. For p ą 0 they can be

considered as power series in the variable pz´ z0q
1
q ; if p ă 0 then they are Laurent series in the same variable.

We will present an algorithm of computing Puiseux expansions of all branches of the algebraic function wpzq

6The integers p, q as well as the coefficients α0, α1 certainly depend on the label i of the disk. We do not put this dependence explicitly
in the formulae in order to avoid too complicated notations.
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near a singular point of the curve. Clearly the branches of the algebraic function wpzq obtained one from
another by analytic continuation around the point z0 on the complex plain are identified, namely:

w0 `
ÿ

měp
αm´ppz´ z0q

m
q „ w0 `

ÿ

měp
e

2πimj
q αm´ppz´ z0q

m
q for j “ 0, 1, . . . , q´ 1.

It is understood that the numbers p, q are chosen in the minimal way i.e., there exists an integer m ě p not
divisible by q such that αm´p , 0.

Let the polynomial (1.2.28) have the form

Fpz,wq “
ÿ

i, jě0

ai jziw j. (1.2.31)

Without loss of generality we may assume that the singular point in question is the origin,

Fp0, 0q “ Fzp0, 0q “ Fwp0, 0q “ 0.

It will be always assumed that the partial derivative Fwpz,wq does not vanish identically at the points of the
curve Fpz,wq “ 0.

Definition 1.2.18. The Newton polygon of the polynomial (1.2.31) is the convex hull of the set of points pi, jq on the
px, yq-plane defined by

tpi, jq P R2 | ai j , 0u.

The Newton polygon is a convex set belonging to the first quadrant of the plane. Without loss of generality
we may assume that it touches the coordinate axes. In the opposite case we can factor out some powers of z or
of w. Actually, for the algorithm only the sides of the polygon looking towards the y-axis will be relevant, see

{
<latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit>

✓
<latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit><latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit><latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit><latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit>

m
<latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit>

tan ✓ =
p

q
> 0

<latexit sha1_base64="beAV1DZVM3l0FQGr7rxzTc5Ukzo=">AAACAXicbVBNS8NAEN34WetX1IvgZbEInkoigl6UohePFewHNKFstpt26WYTdydCCfHiX/HiQRGv/gtv/hu3bQ7a+mDg8d4MM/OCRHANjvNtLSwuLa+sltbK6xubW9v2zm5Tx6mirEFjEat2QDQTXLIGcBCsnShGokCwVjC8HvutB6Y0j+UdjBLmR6QvecgpASN17X0PiPRgwIBceKEiNEvy7D6/dLp2xak6E+B54hakggrUu/aX14tpGjEJVBCtO66TgJ8RBZwKlpe9VLOE0CHps46hkkRM+9nkgxwfGaWHw1iZkoAn6u+JjERaj6LAdEYEBnrWG4v/eZ0UwnM/4zJJgUk6XRSmAkOMx3HgHleMghgZQqji5lZMB8TkACa0sgnBnX15njRPqq5TdW9PK7WrIo4SOkCH6Bi56AzV0A2qowai6BE9o1f0Zj1ZL9a79TFtXbCKmT30B9bnD9j5lyA=</latexit><latexit sha1_base64="beAV1DZVM3l0FQGr7rxzTc5Ukzo=">AAACAXicbVBNS8NAEN34WetX1IvgZbEInkoigl6UohePFewHNKFstpt26WYTdydCCfHiX/HiQRGv/gtv/hu3bQ7a+mDg8d4MM/OCRHANjvNtLSwuLa+sltbK6xubW9v2zm5Tx6mirEFjEat2QDQTXLIGcBCsnShGokCwVjC8HvutB6Y0j+UdjBLmR6QvecgpASN17X0PiPRgwIBceKEiNEvy7D6/dLp2xak6E+B54hakggrUu/aX14tpGjEJVBCtO66TgJ8RBZwKlpe9VLOE0CHps46hkkRM+9nkgxwfGaWHw1iZkoAn6u+JjERaj6LAdEYEBnrWG4v/eZ0UwnM/4zJJgUk6XRSmAkOMx3HgHleMghgZQqji5lZMB8TkACa0sgnBnX15njRPqq5TdW9PK7WrIo4SOkCH6Bi56AzV0A2qowai6BE9o1f0Zj1ZL9a79TFtXbCKmT30B9bnD9j5lyA=</latexit><latexit sha1_base64="beAV1DZVM3l0FQGr7rxzTc5Ukzo=">AAACAXicbVBNS8NAEN34WetX1IvgZbEInkoigl6UohePFewHNKFstpt26WYTdydCCfHiX/HiQRGv/gtv/hu3bQ7a+mDg8d4MM/OCRHANjvNtLSwuLa+sltbK6xubW9v2zm5Tx6mirEFjEat2QDQTXLIGcBCsnShGokCwVjC8HvutB6Y0j+UdjBLmR6QvecgpASN17X0PiPRgwIBceKEiNEvy7D6/dLp2xak6E+B54hakggrUu/aX14tpGjEJVBCtO66TgJ8RBZwKlpe9VLOE0CHps46hkkRM+9nkgxwfGaWHw1iZkoAn6u+JjERaj6LAdEYEBnrWG4v/eZ0UwnM/4zJJgUk6XRSmAkOMx3HgHleMghgZQqji5lZMB8TkACa0sgnBnX15njRPqq5TdW9PK7WrIo4SOkCH6Bi56AzV0A2qowai6BE9o1f0Zj1ZL9a79TFtXbCKmT30B9bnD9j5lyA=</latexit><latexit sha1_base64="beAV1DZVM3l0FQGr7rxzTc5Ukzo=">AAACAXicbVBNS8NAEN34WetX1IvgZbEInkoigl6UohePFewHNKFstpt26WYTdydCCfHiX/HiQRGv/gtv/hu3bQ7a+mDg8d4MM/OCRHANjvNtLSwuLa+sltbK6xubW9v2zm5Tx6mirEFjEat2QDQTXLIGcBCsnShGokCwVjC8HvutB6Y0j+UdjBLmR6QvecgpASN17X0PiPRgwIBceKEiNEvy7D6/dLp2xak6E+B54hakggrUu/aX14tpGjEJVBCtO66TgJ8RBZwKlpe9VLOE0CHps46hkkRM+9nkgxwfGaWHw1iZkoAn6u+JjERaj6LAdEYEBnrWG4v/eZ0UwnM/4zJJgUk6XRSmAkOMx3HgHleMghgZQqji5lZMB8TkACa0sgnBnX15njRPqq5TdW9PK7WrIo4SOkCH6Bi56AzV0A2qowai6BE9o1f0Zj1ZL9a79TFtXbCKmT30B9bnD9j5lyA=</latexit>

{
<latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit>

m
<latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit>
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Figure 1.3: Newton polygon
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Fig. 3.1 for an example.
To each side of the Newton polygon looking towards the y axis we associate two numbers, a positive integer

m that equals the length of the projection of the side onto the y-axis, and a rational number p
q that is equal to

the tangent of the angle between the side and the negative direction of the y-axis. With such a side we will
associate m convergent Puiseux expansions of the algebraic function wpzq of the form

w “ αzρ ` α1zρ
1

` . . . (1.2.32)

for rational numbers ρ ă ρ1 ă . . . . The exponent of the leading term is equal to the slope of the corresponding
side

ρ “
p
q
. (1.2.33)

The leading coefficient α , 0 is determined as a nonzero root of the polynomial

Ppωq “
ÿ

pi, jqPthe side

ai jω
j. (1.2.34)

Observe that the number of nonzero roots of the polynomial (1.2.34), counted with multiplicities, is equal to
m=lenght of the projection of the side onto the y-axis.

Remark 1.2.19. The number of solutions, counted with multiplicities, of the equation Fpz,wq “ 0 written in the
form of Puiseux series (1.2.32) is equal to n “ degwpFq (the degree of F with respect to the variable w). If the
Newton polygon has k sides that faces the y-axis and we denote by m1, . . . , mk the lengths of their projections
onto the y-axis, since the height of the Newton polygon is equal to n we have m1 ` ¨ ¨ ¨ `mk “ n.

Choose a nonzero root ω “ α of (1.2.34). Further inspection shows that the set of nonzero roots of the
polynomial Ppωq is invariant with respect to multiplication by the q-th root of unity (assuming the numbers p,
q to be coprime): this follows from the representation

Ppωq “ ω j0 Q pωqq (1.2.35)

for some polynomial Q and a nonnegative integer j0 (see eq. (1.2.41) below).
In order to determine the next term w1 “ α1zρ

1

of the expansion (1.2.32), consider the new polynomial

F1pz1,w1q :“ F
`

zq
1, α zp

1 ` w1
˘

(1.2.36)

and repeat the above procedure applying it to the side closest to the x-axis. And so on and so forth.
Before explaining the motivations for such an algorithm let us consider an example.

Example 1.2.20. Consider polynomial

Fpz,wq “ 2z7 ´ z8 ´ z3w` p4z2 ` z3qw2 ` pz3 ´ z4qw3 ´ 4zw4 ` 7z5w5 ` p1´ z2qw6 ` 5z6w7 ` z3w8. (1.2.37)

There are four sides in the Newton polygon of F looking towards the y-axis (see Fig. 1.4); only they will be
relevant for determining the Puiseux expansions of various branches of the solutions wpzq near z “ 0. For the
first one with the vertices p7, 0q and p3, 1q one has m “ 1, p

q “ 4. The corresponding part of the polynomial
reads 2z7´ z3w. Solving the equation 2z7´ z3w “ 0 we obtain w “ 2z4. This is the leading term of the branch of
solution corresponding to the first side of the polygon. In order to compute the first correction let us substitute
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Figure 1.4: Newton polygon of the polynomial (1.2.37).

w “ 2z4`w1 in Fpz,wq. Then w1 is determined from the equation F1pz,w1q :“ Fpz, 2z4`w1q “ 0. In the Newton
polygon of F1 (see Fig. 1.5) take the edge connecting the points p8, 0q and p3, 1q. The corresponding equation
´z8 ´ z3w1 “ 0 yields w1 “ ´z5. So, the first two terms of expansion of the branch of wpzq associated with the
first side of the Newton polygon read w “ 2z4 ´ z5 ` Opz6q. Higher order terms can be obtained by iterating
the above procedure. This is an ordinary point of the Riemann surface with respect to the map z : SÑ C.

In a similar way to the second side p3, 1q–p2, 2q of the Newton polygon in Figure 1.4, with m “ 1, p
q “ 1,

one associates the leading term w “ 1
4 z. From the side p5, 0q–p3, 1q of the Newton polygon of F1pz,w1q :“

F
`

z, 1
4 z` w1

˘

(see Fig. 1.6) one finds the next correction etc. This gives the second branch of wpzq near another
ordinary point of the Riemann surface w “ 1

4 z´ 3
64 z2 ` Opz3q.

For the third side of the polygon in Figure 1.4, one has m “ 4, p
q “

1
2 . It corresponds the equation

4z2w2´ 4zw4`w6 “ w2pw2 ´ 2zq2 “ 0. So, at the leading order one has two pairs of double roots wp1q “ wp2q “
?

2 z
1
2 and wp3q “ wp4q “ ´

?
2 z

1
2 . We will see now that these double roots split at the next approximation.

Indeed, in order to treat the pair wp1q and wp2q we have to substitute w “
?

2 z
1
2 ` w1 and obtain a new

polynomial in z1 “ z
1
2 and w1. For the side p7, 0q–p4, 2q of the Newton polygon (see Fig. 1.7) of such a new

polynomial it corresponds the equation´
?

2z7
1`16z4

1w2
1 “ 0 that yields w1 “ ˘

2
1
4

4 z
3
2
1 . One obtains the following

pair of distinct expansions

wp1q “
?

2 z
1
2 `

2
1
4

4
z

3
4 ` . . . wp2q “

?
2 z

1
2 ´

2
1
4

4
z

3
4 ` . . . .

Similarly for wp3q and wp4q one has

wp3q “ ´
?

2 z
1
2 ` i

2
1
4

4
z

3
4 ` . . . wp4q “ ´

?
2 z

1
2 ´ i

2
1
4

4
z

3
4 ` . . . .
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Figure 1.5: Newton polygon of the polynomial Fpz, 2z4 ` w1q.

Figure 1.6: Newton polygon of the polynomial Fpz, 1
4 z` w1q.

It can be shown that the higher order terms will contain integer powers of z1{4; all four expansions zp1q, . . . , zp4q

are four branches of the same algebraic function. These branches merge at z “ 0. One obtains one ramification
point of multiplicity 4 of the Riemann surface pS, zq.

The fourth side of the Newton polygon in Figure 1.4, with m “ 2, p
q “ ´

3
2 yields the equation w6` z3w8 “ 0

that is, wp1, 2q “ ˘i z´
3
2 . At the next order one has to analyze the equation F

`

z2
1, i z´3

1 ` w1
˘

“ 0 (here, like
above we denote z1 “ z1{2). To obtain a polynomial equation one has to multiply the result by z15

1 , see the
corresponding Newton polygon on Fig. 1.8. For the first correction one obtains the equation z1 ´ 2iw1 “ 0.
This gives a ramification point of multiplicity 2:

wp1q “ i z´
3
2 ´

i
2

z
1
2 ` . . . wp2q “ ´i z´

3
2 `

i
2

z
1
2 ` . . . .

Actually, when z goes to zero these two branches tend to infinity. So, the last point is an infinite point of the
Riemann surface pS, zq. Note that the leading term a0pzq “ z3 vanishes at the singular point.

Remark 1.2.21. To compute the branches of wpzq at z Ñ 8 one can use the above algorithm applied at the
right-looking sides of the Newton polygon. For the example (1.2.37) of an algebraic curve we obtain two
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Figure 1.7: Newton polygon of the polynomial Fpz2
1,
?

2z1 ` w1q.

Figure 1.8: Newton polygon of the polynomial z15
1 Fpz2

1, i z´3
1 ` w1q .

expansions, namely, a Laurent series in 1{z

wpzq “ ´5z3 ´
12
25

z´4 `
1
5

z´6 ` . . .

for the side p3, 8q–p6, 7q and a Laurent–Puiseux series in z´1{7

wpzq “
z2{7

51{7
´

2
7

1
51{7z5{7

` . . .

along with 6 other branches wkpzq “ w
`

z e2πik
˘

, k “ 1, . . . , 6 for the side p6, 7q–p8, 0q. So we have two infinityInfinity points, or points
at infinity points P1, P2 on the Riemann surface. The function z has a simple pole at P1 and a pole of order 7 at P2. In other

words, P1 is an ordinary point of the Riemann surface with respect to its projection onto the extended z-plane
C. The point P2 is a ramification point of multiplicity 7. The function w has poles of order 3 and 2 at the points
P1, P2 respectively.

In order to justify the above algorithm let us first make a digression about zeroes of families of analytic
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functions. Let f pxq be an analytic function in x with a simple zero at x “ x0,

f px0q “ 0, f 1px0q , 0.

Consider the perturbed equation
f pxq “ ε (1.2.38)

where ε is a small parameter. The claim is that the solution to (1.2.38) remains close to x0. Moreover, such
a solution is an analytic function in ε for sufficiently small |ε|. Indeed, the inverse function f´1 such that
f´1p0q “ x0 is well defined due to the assumption f 1px0q , 0 and it is analytic on a neighborhood of 0. Then

x “ f´1pεq “ x0 `
ε

f 1px0q
` Opε2q.

All terms of the expansion in powers of ε are uniquely determined from eq. (1.2.38).
Consider now the case of a multiple zero. Let x0 be a root of f pxq of multiplicity k,

f px0q “ f 1px0q “ ¨ ¨ ¨ “ f pk´1qpx0q “ 0, f pkqpx0q , 0.

Then, after adding of a small perturbation the multiple root splits in k different roots that are analytic functions
in ε

1
k . Indeed, the Taylor expansion of f pxq at x “ x0 starts from a term of degree k

f pxq “ ckpx´ x0q
k ` ck`1px´ x0q

k`1 ` . . . , ck “
f pkqpx0q

k!
, 0.

Denote f̃ the k-th root of f pxq

f̃ pxq “ bkpx´ x0q

„

1`
ck`1

ck
px´ x0q ` . . .


1
k

for some choice of bk “ c
1
k
k . This function is analytic and invertible on a neighborhood of x0. Thus the equation

f pxq “
“

f̃ pxq
‰k
“ ε

can be solved by a convergent Puiseux series

x “ f̃´1
´

ε
1
k

¯

“ x0 ` b´1
k ε

1
k ` O

´

ε
2
k

¯

.

Choosing various branches of ε
1
k one obtains expansions of all k distinct roots of the perturbed equation.

For more complicated perturbations the splitting of the multiple root of the equation f pxq “ 0 may not take
place. Consider, for example, a more general perturbation of the form

f pxq “ gpεq

where
gpεq “ dlε

l ` dl`1ε
l`1 ` . . . , dl , 0
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is analytic near ε “ 0. Then the deformation of a k-multiple root x0 of the unperturbed equation f pxq “ 0 will
be determined from an equivalent equation

f̃ pxq “ rgpεqs
1
k “ d

1
k
l ε

l
k

„

1`
dl`1

dl
ε` . . .


1
k

“ d
1
k
l ε

l
k `

dl`1

k d
k´1

k
l

ε
l
k`1 ` . . . .

If l
k “

l1
k1

where k1 and l1 are coprime integers then solutions to the equation f pxq “ gpεq are represented by

convergent Puiseux series in ε
1

k1 . In the case k1 ă k we conclude that the function xpεq lives on a Riemann
surface with k{k1 ramification points of order k1.

The above considerations can also be applied to the more general equations of the form

f pxq “ ε gpx, εq

where the function gpx, εq is analytic near the point px0, 0q. We leave the details as an exercise for the reader.
Let us apply the above ideas to the derivation of the Newton polygon algorithm. Let us fix a side of the

Newton polygon facing the y-axis with the lowest vertex pi0, j0q and the slope p
q . For simplicity we will only

consider the sides with positive slope p{q. Any point on the side can be written in the form

i “ i0 ´ p l
j “ j0 ` q l

(1.2.39)

for some integer l “ 0, 1, . . . . So, the terms of the polynomial F corresponding to the vertices on the side can
be written as follows

ÿ

pi, jqPthe side

ai jziw j “ zi0`
q
p j0

ÿ

pi, jqPthe side

ai j

˜

w

z
p
q

¸ j

“ z
qi0`pj0

q P pωq (1.2.40)

where we put

ω “
w

z
p
q

and the polynomial Ppωqwas defined in (1.2.34). Observe that the polynomial Q in (1.2.35) is equal to

Qpxq “
ÿ

lě0

ai0´pl, j0`qlxl. (1.2.41)

We will now rewrite other terms of the polynomial Fpz,wq in the variables z, ω. In this way it will become
clear that the sum of other monomials in Fpz,wq can be considered as a perturbation of the leading term (1.2.40).
The small parameter of the perturbation will be some fractional power of z.

Consider a monomial aIJzIwJ in F for a point pI, Jq sitting inside the Newton polygon. The points on the side
of the Newton polygon satisfy the equation

i´ i0
p

`
j´ j0

q
“ 0.
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Hence the coordinates pI, Jq satisfy
I ´ i0

p
`

J ´ j0
q

“ r ą 0,

for some rational number r “ rpI, Jq. Thus

zIwJ “ zi0`
p
q j0`p r

˜

w

z
p
q

¸J

“ zi0`
p
q j0`p rωJ.

We arrive at the following representation of the polynomial Fpz,wq

Fpz,wq “ z
qi0`pj0

q

«

Ppωq `
ÿ

I,J

aIJpzpqrpI,JqωJ

ff

where the sum is taken for pI, Jq inside the Newton polygon and the exponents rpI, Jq ą 0 for all terms in the
sum. As there is a finite number of terms one can choose an integer t such that the numbers

spI, Jq :“ rpI, Jq t p

are all integers. Introducing new variable ε “ z
1
t we apply the above perturbative procedure to solve the

equation
Ppωq `

ÿ

I,J

aIJε
spI,JqωJ “ 0

in the form of a Puiseux series of the form

ω “ α` α1εσ ` . . . , σ ą 0

for every root ω “ α of a multiplicity k of the polynomial Ppωq. This gives a branch of the algebraic function
wpzq

w “ α z
p
q ` α1z

p
q`

σ
t ` . . . .

Summarizing the above considerations we arrive to the following.

Theorem 1.2.22. Let us consider the algebraic curve C described by the zero locus of the polynomial

Fpz,wq “ wn ` a1pzqwn´1 ` ¨ ¨ ¨ ` anpzq “ 0, (1.2.42)

where the coefficients a1pzq, . . . anpzq are polynomials in z. Let us suppose that pz0,w0q P C is a singular point such that
π´1pz0q “ pz0,w0q with π the projection to the z- plane. Then there exist positive integers m1, . . . , mk satisfying

m1 ` ¨ ¨ ¨ `mk “ n

and k functions f1, . . . fk analytic on a neighborhood of z0 such that all solutions wpzq to (1.2.42) for sufficiently small
|z´ z0| can be written in the form

wpzq “ w0 ` f j

ˆ

pz´ z0q
1

mj

˙

, j “ 1, . . . , k. (1.2.43)
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Observe that, for m j ą 1 the formula (1.2.43) defines m j series due to ambiguity up to conjugation

wpzq „ w̃pzq “ w0 ` f j

ˆ

e
2πi`
mj pz´ z0q

1
mj

˙

, ` “ 0, 1, . . . ,m j ´ 1.

Remark 1.2.23. It follows from the theorem that near the singular point pz0,w0q, the polynomial equation (1.2.42)
can be written in the form

Fpz,wq “
k
ź

j“1

m j
ź

`“1

ˆ

w´ w0 ´ f j

ˆ

e
2πi`
mj pz´ z0q

1
mj

˙˙

,

for |z´ z0| sufficiently small.

Remark 1.2.24. Let pz0,w0q P C be a singular point for the curveC. In the situation described in the theorem 1.2.22
we obtain k points P1, . . . , Pk on the Riemann surfaceSof the algebraic curveC. The holomorphic mapρ : SÑ C

with local structure near the point P j given by (1.2.29) is obtained from the Puiseux expansion f j

ˆ

pz´ z0q
1

mj

˙

.

We conclude this Section with an elegant algebraic statement. Consider the space

Cxxzyy “
8
ď

q“1

Cppz
1
q qq

of Puiseux Laurent series with arbitrary fractional exponents. It is easy to see that this is a field.

Theorem 1.2.25 (Puiseux). The field Cxxzyy is algebraically closed.

That is, all solutions of a polynomial equation with coefficients in the field Cxxzyy belong to the same field.
The theorem of Puiseux is a generalization of the fundamental theorem of algebra. The constructive proof is
obtained by extending the Newton-Puiseux method developed in this section to the case when the coefficients
a jpzq are not polynomials in z but Puiseux Laurent series with arbitrary fractional exponents. Details of the
proof can be found in [28].

1.2.4 Smooth projective curves as compact Riemann surfaces

In this subsection we define Riemann surfaces as algebraic curves in P2.

Definition 1.2.26. Let QpX,Y,Zq be a homogeneous non-zero polynomial of degree d in the variables X, Y and Z. The
locus

C “ tpX : Y : Zq P P2 | QpX,Y,Zq “ 0u (1.2.44)

is the projective curve defined by the polynomial Q.

Remark 1.2.27. Observe that the curve C is well defined since the condition QpX,Y,Zq “ 0 is independent from
the choice of homogeneous coordinates due to QpλX, λY, λZq “ λdQpX,Y,Zq. Furthermore C is a closed subset
of P2 and therefore it is compact.
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Recall that the space P2 can be covered with three open subsets homeomorphic to C2 :

U0 “ tpX : Y : Zq P P2 | X , 0u

U1 “ tpX : Y : Zq P P2 | Y , 0u

U2 “ tpX : Y : Zq P P2 | Z , 0u.

The homeomorphism on U0 is given by the map pX : Y : Zq Ñ pY{X,Z{Xq P C2 and similarly for the other open
subsets U1 and U2.

The intersection of Cwith any of the Ui is an affine plane curve. For example

C0 “ CXU0 “ tpu, vq P C2 | Qp1,u, vq “ 0u.

Now we show that under non-singularity assumptions, C is a compact Riemann surface.

Definition 1.2.28. The curve (1.2.44) is non-singular if there are no non-zero solutions to the following system of four
equations

Q “
BQ
BX

“
BQ
BY

“
BQ
BZ

“ 0.

Exercise 1.2.29: Show that the projective curveCdefined in (1.2.44) is non-singular if and only if its intersections
Ci “ CXUi, i “ 1, 2, 3 with the charts Ui are all non-singular. Hint: use Euler identity for homogeneous functions
of degree d

XQX ` YQY ` ZQZ “ Qd. (1.2.45)

Suppose that C is a smooth projective curve. In order to define a complex manifold structure on C let us
recall that each Ci is a smooth affine plane curve and hence a Riemann surface. The coordinate charts are given
by the projections onto coordinate axes. For example for the curve C0 the coordinate charts are Y{X or Z{X and
the transition functions are the same as those obtained for smooth affine plane curves. One needs to check that
the complex structures given on each Ci are compatible.

Proposition 1.2.30. Suppose that the projective curve C in (1.2.44) is non-singular. Then C is a compact Riemann
surface.

Proof. We will show that the complex structures given on each Ci are compatible. Let P P C0 X C1 where
P “ pX : Y : Zq and X , 0 and Y , 0. Since each smooth affine plane curve is non-singular (see exercise 1.2.29),
we can assume without loss of generality that QX and QZ are non-zero on C. Let φ0 : C0 Ñ Cwith φ0pPq “ Y{X
and with locally defined inverse φ´1

0 pY{Xq “ r1 : Y{X : hpY{Xqs where h is a holomorphic function on some
open domain in C. Let φ1 : C1 Ñ C with φ1pPq “ Z{Y with locally defined inverse φ´1

1 “ rgpZ
Y q, 1,

Z
Y s where

gpZ
Y q is holomorphic for Y , 0 and non-zero since we assume X , 0. Then φ1 ˝ φ

´1
0 pY{Xq “ XhpY{Xq{Y which

is holomorphic because Y , 0, X , 0 and hpY{Xq is holomorphic. In the same way φ0 ˝ φ
´1
1 pZ{Yq “

1
gpZ{Yq

which is holomorphic because Y , 0 and g is nonzero. Similar checks can be done with the other coordinate
charts. �

Lemma 1.2.31. Let QpX,Y,Zq and FpX,Y,Zq be two homogeneous polynomials of degree d and m respectively. Suppose
that Qp0, 0,Zq , 0 and Fp0, 0,Zq , 0. Then the resultant

RpQ,FqpX,Yq

is a homogeneous polynomial in X and Y of degree dm.
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Proof. According to the assumptions, QpX,Y,Zq “ q0Zd ` q1pX,YqZd´1 ` ¨ ¨ ¨ ` qdpX,Yq where q jpX,Yq are
homogeneous polynomials of degree j in X and Y, j “ 0, . . . , d and FpX,Y,Zq “ f0Zm ` f1pX,YqZm´1 ` ¨ ¨ ¨ `

fmpX,Yqwhere f jpX,Yq are homogeneous polynomials of degree j, j “ 0, . . . ,m.
Then according to the definition of resultant in (1.2.1)

RpQ,FqpX,Yq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q0 q1 q2 . . . qd 0 0 . . .
0 q0 q1 . . . qd 0 . . . 0
. . . . . . . . .
0 . . . . . . 0 q0 q1 q2 . . . qd
f0 f1 f2 . . . . . . fm´1 fm 0 . . .
0 f0 f1 . . . . . . . . . fm´1 fm 0 . . .
. . . . . . . . . . . .
0 . . . f0 f1 . . . . . . fm´1 fm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.2.46)

We multiply the second row by λ , 0, the third row by λ2 and so on till the m-th row that is multiplied by λm´1.
Then we multiply the pm` 2q-th row by λ, the pm` 3q-th by λ2 and so on till the pm` dq-th that is multiplied
by λd´1 one has

RpQ,FqpλX, λYq “
1

λ
1
2 pd´1qdλ

1
2 mpm´1q

ˆ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q0 λq1 . . . λdqd 0 0 . . . 0
0 λq0 λ2q1 . . . . . . 0 0 . . . 0
. . . . . . . . .
0 0 . . . . . . λm´1q0 λmq1 . . . . . . λd`m´1qd
f0 λ f1 . . . . . . λm´1 fm´1 λm fm 0 . . . 0
0 λ f0 λ2 f1 . . . . . . λm fm´1 λm`1 fm . . . 0
. . . . . . . . .
0 . . . λd´1 f0 λd f1 . . . . . . λm`d´2 fm´1 λm`d´1 fm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ λmdRpQ,FqpX,Yq,

where we use the fact that and q jpλX, λYq “ λ jq jpX,Yq and f jpλX, λYq “ λ j f jpX,Yq. The above relation shows
that the resultant RpQ,FqpX,Yq is a homogeneous polynomial in X and Y of degree md. �

Theorem 1.2.32 (Bézout’s theorem). Let C and D be two projective curves defined by the homogenous polynomials
QpX,Y,Zq and FpX,Y,Zq of degree d and m respectively. If C andD do not have common components then they intersect
in dm points counted with multiplicity.

Proof. By Lemma 1.2.3, C and D have a common component if and only if their resultant is identically zero.
Consider the case in which C andD do not have common components. Without loss of generality we assume
that r0 : 0 : 1sdoes not belong to both curves. With this assumption QpX,Y,Zq “ q0pX,YqZd`q1pX,YqZd´1`¨ ¨ ¨`

qdpX,Yqwhere q jpX,Yq are homogeneous polynomials of degree j in X and Y, j “ 0, . . . , d and q0p0, 0q , 0. In the
same way FpX,Y,Zq “ f0pX,YqZm` f1pX,YqZm´1`¨ ¨ ¨` fmpX,Yqwhere f jpX,Yq are homogeneous polynomials
of degree j, j “ 0, . . . ,m and f0p0, 0q , 0. Therefore the resultant is a homogeneous polynomial of degree md by
lemma 1.2.31 and it has md zeros counting their multiplicity. �

Lemma 1.2.33. If the projective curveC defined in (1.2.44) is non-singular, then the polynomial QpX,Y,Zq is irreducible.
If C is irreducible, then it has at most a finite number of singular points.
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Proof. Let us suppose that the polynomial is reducible, namely Q “ Q1Q2 where Q1 and Q2 are homogeneous
polynomials in X,Y and Z of degree d1 and d´ d1. The condition of C being singular takes the form

Q2Q1 “ 0, Q2BXQ1 `Q1BXQ2 “ 0, Q2BYQ1 `Q1BYQ2 “ 0, Q2BZQ1 `Q1BZQ2 “ 0.

Such system of equations has always a solution as long as there is a point P in the intersection of the curves
defined by Q1 “ 0 and Q2 “ 0. But this is always the case. Indeed let us consider the resultant RpQ1,Q2qpX,Yq
of the polynomials Q1pX,Y,Zq and Q2pX,Y,Zqwith respect to Z. Assuming that Q1p0, 0, 1q , 0 and Q2p0, 0, 1q , 0
the resultant RpQ1,Q2qpX,Yq is a homogeneous polynomial of degree d1pd´ d1q. Therefore the curves defined
by the equations Q1pX,Y,Zq “ 0 and Q2pX,Y,Zq “ 0 intersect by Bézout’s theorem in d1pd´ d1q points counted
with multiplicity. We conclude that if Q is reducible, then C is singular. Suppose that C is irreducible and
defined by a polynomial Q of degree n. Then Q and QZ do not have a common component so that the resultant
RpQ,QZqpX,Yq is a homogeneous polynomial of degree npn´ 1q not identically zero. Since the singular points
of C are contained among the zeros of the resultant, their number is finite. �

Example 1.2.34. The simplest example of a projective curve is a projective line P1 Ă P2 given by a linear
equation

αX ` βY` γZ “ 0

where pα, β, γq , p0, 0, 0q. Every such line is uniquely specified by the homogeneous coordinates pα : β : γq. We
obtain an isomorphism

tlines in P2u » P2.

A line in P2 is uniquely specified by a pair of points on it assuming the points to be in general position.
In this case “general position” simply means that the points are distinct. In the multidimensional case we say
that the points P1, . . . , Pn in Pn are not in general position if there exists a subspace Pn´2 Ă Pn containing all
these points.

Exercise 1.2.35: Prove that equation of the tangent line to a projective curve C defined by a homogeneous
polynomial QpX,Y,Zq at a non-singular point pX0,Y0,Z0q can be written in the form

X QXpX0,Y0,Z0q ` Y QYpX0,Y0,Z0q ` Z QZpX0,Y0,Z0q “ 0.

Example 1.2.36. The next example is a conic defined by a homogeneous equation of degree 2

CA :“

$

&

%

pX : Y : Zq P P2 | |QApX,Y,Zq “
`

X Y Z
˘

¨

˝

a11 a12 a13
a12 a22 a23
a13 a23 a33

˛

‚

¨

˝

X
Y
Z

˛

‚“ 0

,

.

-

where the matrix

A “

¨

˝

a11 a12 a13
a12 a22 a23
a13 a23 a33

˛

‚ .

In order to spell out the condition of smoothness it suffices to observe that the three partial derivatives QX, QY,

QZ are equal to 2A

¨

˝

X
Y
Z

˛

‚so that the condition of smoothness is

det A , 0.



42 CHAPTER 1. RIEMANN SURFACES

Now let O be a nonsingular 3ˆ 3 matrix. Then the matrix B “ OtAO is a non singular matrix that defines the
conic CB as the zero locus of the polynomial equation

QBpX,Y,Zq “
`

X Y Z
˘

OtAO

¨

˝

X
Y
Z

˛

‚“ 0.

Clearly the conic CA and CB are isomorphic, the isomorphism is the linear map pX,Y,Zq Ñ pX,Y,ZqOT.

Exercise 1.2.37: Show that any conic is determined by five points belonging to it. Further show that five points
in P2 uniquely determine a conic if their images w.r.t the Veronese map

P2 Ñ P5, pX : Y : Zq ÞÑ pX2 : Y2 : Z2 : XY : YZ : ZXq.

are in general position (see exercise 1.2.34).

Exercise 1.2.38: Prove that the tangent line to a smooth conic intersects with it only at the tangency point.

Exercise 1.2.39: Let QpX,Y,Zq be an irreducible homogeneous polynomial of degree d defining a smooth
projective curve C. Suppose that the equation QpX,Y, 1q “ 0 locally defines Y as a holomorphic function of X.

(1) Show that

d2YpXq
dX2 “

1
Q3

Y

det

¨

˝

QXX QXY QX
QYX QYY QY
QX QY 0

˛

‚. (1.2.47)

(2) A point pX0 : Y0 : 1q is an inflection point for the curve C if and only if
d2YpXq

dX2 vanishes at X0. Calculate

the number of inflection points of the cubic defined by the homogeneous polynomial QpX,Y,Zq “
Y2Z´ pX ´ ZqpX ´ aZqX with a , 0, 1.

(3) Prove that a smooth point P of a projective curve is an inflection point iff it has multiplicity at least three
as the intersection point of the curve with its tangent line at the point P.

(4) Prove that the tangent line at a smooth inflection point of a cubic has no other intersections with the curve
but the tangency point.

(5) Prove that inflection points on the projective curve QpX,Y,Zq “ 0 can be determined by the hessian
equation

det

¨

˝

QXX QXY QXZ
QYX QYY QYZ
QZX QZY QZZ

˛

‚“ 0. (1.2.48)

Derive that on any smooth plane cubic there are 9 distinct inflection points.

(6) Prove that the inflection points of the projectivization of the smooth elliptic curve w2 “ 4z3´ g2z´ g3 are
at the infinite point and at the points pzi,˘wiq, i “ 1, . . . , 4 where zi are the roots of the equation

48z4 ´ 24g2z2 ´ 48g3z´ g2
2 “ 0.
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Exercise 1.2.40: Let C be a smooth plane cubic and P0 P C a point on it. (1) Prove that there exists a unique
structure of an abelian group on C such that

• P`Q` R “ 0 for any triple of points in the intersection of Cwith a line.

• P0 ` P “ P for any P P C.

(2) Let P P C be such that the line tangent to C at the point P passes via P0. Prove that P is an element of order
2 in the group.

(3) Prove that the inflection points of the curve have order 3 in the group.

Compactification of an affine plane curve

At the beginning of this Section we have seen that the intersection of a projective curve C in P2 with any of the
open charts Ui » C2 is an affine plane curve. For example

C2 “ CXU2 “ tpz,wq P C2 | Qpz,w, 1q “ 0u.

Clearly we can proceed also in the opposite direction. Namely given an affine plane curve C2 in C2 defined by
the polynomial equation Fpz,wq “ 0,

C2 “ tpz,wq P C2 |Fpz,wq “ 0u,

we can compactify such a curve in the projective space P2 in the following way. Let

Fpz,wq “
ÿ

i` jďk

ai jziw j.

Define the homogeneous polynomial of degree k by

QpX,Y,Zq “ ZkF
ˆ

X
Z
,

Y
Z

˙

. (1.2.49)

A complex compact curve C is given in P2 by the homogeneous equation

C :“ tpX : Y : Zq P P2 | QpX,Y,Zq “ 0u. (1.2.50)

The affine part of the curve C X U2 (where Z , 0) coincides with C2. The projective curve C is compact and
thus we have compactified the affine plane curve C2 by adding the points at infinity given by the equation

QpX,Y, 0q “ 0. (1.2.51)

Remark 1.2.41. Even if the curve C2 is non-singular, the projective curve Cmight be singular.

Example 1.2.42. C2 “ tpz,wq P C2 | w2 “ zu. A local parameter at the branch point pz “ 0,w “ 0q is given by
τ “

?
z, i.e. z “ τ2, w “ τ. The compactification C has the form C “ tpX : Y : Zq P P2 | Y2 “ XZu. The point at

infinity is given by solving the equation (1.2.51), that gives P8 “ r1 : 0 : 0s. We determine the local coordinates
near the point P8. For X , 0 we introduce the coordinates u, v

u “
Y
X
“

w
z
, v “

Z
X
“

1
z
, (1.2.52)
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which define the affine curve u2 “ v. The point at infinity is given by pv “ 0,u “ 0q which is clearly a
ramification point for the curve defined by the equation u2 “ v and

?
v is a local parameter near this point.

Therefore a parametrization of the C in a neighbourhood of P8 takes the form

z “
1
u2 , w “

1
u
.

Example 1.2.43. C2 “ tw2 “ z2 ´ a2u, a , 0. The branch points are pz “ ˘a,w “ 0q and the corresponding local
parameters are τ˘ “

?
z˘ a. The compactification is the conic C “ tY2 “ X2 ´ a2Z2u. The points at infinity

are given by solving the equation (1.2.51), that gives P8
˘
“ r1 : ˘1 : 0s. Making the substitution (1.2.52) we get

the form of the curve C in a neighbourhood of the ideal line: u2 “ 1´ a2v2. For v “ 0 we get that u “ ˘1. We
can take v “ 1{z as a local parameter in a neighbourhood of each of these points. The form of the surface C in
a neighbourhood of these points P˘ is as follows:

z “
1
v
, w “ ˘

1
v

a

1´ a2v2, v Ñ 0 (1.2.53)

where
?

1´ a2v2 is, for small v, a single-valued holomorphic function, and the branch of the square root is
chosen to have value 1 at v “ 0.
Example 1.2.44. Let us consider the class of hyperelliptic Riemann surfaces

C2 “ tpz,wq P C2 | Fpz,wq “ w2 ´ PNpzq “ 0u, (1.2.54)

where PNpzq “
śN

j“1pz´ a jq, and ai , a j for i , j.
If we consider the projective curve defined by the zeros of homogeneous polynomial

QpX,Y,Zq “ Y2ZN´2 ´ ZNPNpX{Zq “ 0

one can check that the curve is singular at the point r0 : 1 : 0s if N ě 4. Therefore, for N ě 4, the embedding of
C2 in P2 results in a singular surface. For N “ 3 the projective curve

Y2Z “ pX ´ a1ZqpX ´ a2ZqpX ´ a3Zq

is a compact smooth elliptic curve. By a projective transformation such curve can be reduced to the form

Y2Z “ XpX ´ ZqpX ´ λZq, λ P Czt0, 1u.

The point at infinity is given by P8 “ r0 : 1 : 0s. For Y , 0 the substitution u “ X{Y and v “ Z{Y gives the
curve

Qpu, 1, vq “ v´ upu´ vqpu´ λvq “ 0

The point p0, 0q is a branch point for the above curve. Indeed for pu, vq , 0 the projection π : pu, vq Ñ v is a
local coordinate. The preimage π´1pvq consists of three points. At the point p0, 0q one has Qup0, 1, 0q “ 0 and
Quup0, 1, 0q “ 0 so that the preimage of π´1p0q consists of a single point. Therefore a local coordinate near the
point p0, 0q takes the form

u “ τp1` opτqq, v “ τ3p1` opτqq.

We look for the holomorphic tail of the above expansions in the form

u “ τgpτq, v “ τ3gpτq



1.3. COMPACT RIEMANN SURFACES: A TOPOLOGICAL VIEWPOINT 45

with gpτq analytic and invertible in a neighbourhood of τ “ 0. Plugging the above ansatz in the equation
Qpu, 1, vq “ v´ upu´ vqpu´ λvq “ 0 one obtains that

gpτq “
1

a

p1´ τ2qp1´ λτ2q
.

Since
z “

X
Z
“

u
v
, w “

Y
Z
“

1
v

one has that a local coordinate near the point at infinity for the curve C is given by

z “
1
τ2 , w “

1
τ3

b

p1´ τ2qp1´ λτ2q.

The above examples show that a smooth affine plane curve can sometimes be made into a compact Riemann
surface by embedding the affine curve into the projective space. In general such embedding produces a singular
projective curve that can still be turned into a compact Riemann surface once the problems with the singular
points have been fixed. In the next Section we will show how to do it by using simple topological arguments
about covering spaces.

1.3 Compact Riemann surfaces: a topological viewpoint

1.3.1 Topological digression: coverings, fundamental group and monodromy

Let X, Y be two topological spaces and p : X Ñ Y a surjective continuous map. We additionally assume the
space Y to be connected7.

Definition 1.3.1. The triple pX,Y, pq is called a covering if for any point P P Y there exists an open neighbourhood
UP Q P such that the preimage p´1 pUPq is a disjoint union of open subsets Uα Ă X, α P F such that the restriction of p
onto Uα is a homeomorphism p : Uα Ñ UP for any α P F. Here F is an at most countable discrete set.

X is called the covering space, Y the base of the covering, p the covering map. The set F can be naturally
identified with the preimage p´1pPq of the point P. It is called the fiber over P.

Our first claim is that the fiber over P does not depend on P. Indeed, let Q be another point in the base. If
the intersection of UP with UQ is not empty then there is an obvious one-to-one correspondence between the
fibers over P and over Q. In general we connect the points by a path

γ : r0, 1s Ñ Y, γp0q “ P, γp1q “ Q.

Due to compactness of the path there exists a finite sequence t1 “ 0 ă t2 ă ¨ ¨ ¨ ă tN “ 1 such that the open
domains Uγptiq, i “ 1, . . . ,N cover the path γpr0, 1sq. Then passing from Uγptiq to Uγpti`1q step by step we obtain
a one-to-one correspondence between the fibers over the end points.

If the fiber is a finite set of n points then we say that the covering is of degree n or also n-sheeted covering.
Example 1.3.2. The Cartesian product X “ YˆF for an arbitrary discreet set F with the covering map ppP, αq “ P
is an example of trivial covering. Definition of

trivial covering7Recall that in this book ‘connected’ means ‘path-connected’, cf. footnote 3.
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Definition 1.3.3. Two coverings pX,Y, pq and pX1,Y, p1q are called equivalent if there exists a homeomorphism f : X Ñ X1

such that p1 ˝ f “ p. A covering equivalent to the trivial one will itself be called trivial.

Exercise 1.3.4: Let pX,Y, pq be a covering of degree n , 1 with connected covering space X. Prove that it is not
trivial.

Example 1.3.5. Define a map of the punctured disk 9D “ tz P C | 0 ă |z| ă 1u to itself by

ppzq “ zn.

This is a covering of degree n.
Example 1.3.6. The map

p : CÑ C˚, ppzq “ ez

is a covering. The fiber can be identified with the set of integers since e2πin “ 1 for any n P Z.
Before we proceed to further constructions from the theory of coverings we need to recall the notion of

homotopy. It formalizes the idea of deformations of continuous maps between topological spaces.

Definition 1.3.7. Let X, Y be two topological spaces and f0, f1 : X Ñ Y two continuous maps. These maps are homotopic
if there exists a continuous map F : X ˆ r0, 1s Ñ Y called homotopy between f0 and f1 such that

FpP, 0q “ f0pPq, FpP, 1q “ f1pPq @P P X.

We will use notation f0 „ f1 for homotopic maps. Clearly it is an equivalence relation.
Example 1.3.8. A path on a topological space is a continuous map of the segment r0, 1s to this space. Let
γ0, 1 : r0, 1s Ñ Y be two paths on the topogical space Y. A homotopy between these paths is a continuous map
of the square Γ : r0, 1s ˆ r0, 1s Ñ Y such that

Γpt, 0q “ γ0ptq, Γpt, 1q “ γ1ptq @ 0 ď t ď 1.

In the particular case where the end points of the two paths coincide

γ0p0q “ γ1p0q “ P, γ0p1q “ γ1p1q “ Q

for P, Q P Y it is convenient to consider homotopies with fixed end points imposing the following boundary
conditions

Γp0, sq “ P, Γp1, sq “ Q @ 0 ď s ď 1.

In the more specific case P “ Q we are dealing with loops on the space Y with the base point P. In this case Γ
is a homotopy between the two loops with fixed base point.

We now return to coverings.

Lemma 1.3.9. Let pX,Y, pq be a covering and γ : r0, 1s Ñ Y be a path on the base of the covering.
1. Then for any P̂ P p´1pγp0qq there exists a unique path γ̂ : r0, 1s Ñ X on the covering space with prescribed initial
point γ̂p0q “ P̂ such that ppγ̂ptqq “ γptq for all t P r0, 1s. The path γ̂ is called the lift of γ with prescribed initial point.

2. Let γ0 : r0, 1s Ñ Y and γ1 : r0, 1s Ñ Y be two homotopic paths on the base with the same initial and end points.
Denote γ̂0 : r0, 1s Ñ X, γ̂0 : r0, 1s Ñ X their lifts with the same initial point γ̂0p0q “ γ̂1p0q.Then

γ̂0p1q “ γ̂1p1q.
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Proof Let us first assume that the entire path γ belongs to the open domain UP Ă Y from the definition of a
covering where P “ γp0q. Denote ÛP Ă X the component of the preimage p´1pUPq containing P̂. Then the lift
is obtained by

γ̂ptq “
`

p |ÛP

˘´1
pγptqq. (1.3.1)

In the general case we split r0, 1s in small segments rti´1, tis, i “ 1, . . . , N, t0 “ 0, tN “ 1 such that γi :“
γ|rti´1,tis Ă Uγpti´1q. Such spltting always exists due to compactness of the segment r0, 1s. Then, following the
above procedure we construct the lift of γ1 with the initial point P̂, the lift of γ2 with the initial point = the end
point of γ1 etc.

Let us now consider a homotopy Γpt, sq between the paths γ0 and γ1 with fixed end points

Γpt, 0q “ γ0ptq, Γpt, 1q “ γ1ptq, Γp0, sq ” P, Γp1, sq ” Q.

We represent it as a family of curves depending on the parameter s P r0, 1s

γsptq “ Γpt, sq, t P r0, 1s.

All these curves have their initial point at P and the end point at Q. Denote γ̂s : r0, 1s Ñ X the lift of the path
γs with the initial point P̂ and define a map Γ̂ : r0, 1s ˆ r0, 1s Ñ X by

Γ̂pt, sq “ γ̂sptq.

By definition it satisfies
p ˝ Γ̂ “ Γ

Let us prove continuity of this map. First, it is continuous for sufficiently small t. Indeed, since Γp0, sq ” P
there exists ε ą 0 such that Γpt, sq P UP for 0 ď t ă ε and any s P r0, 1s. So the lift of the curves γsptq for 0 ď t ă ε
can be obtained by

γ̂sptq “
`

p |ÛP

˘´1
pγsptqq

(cf. eq. (1.3.1)) hence the continuity on r0, εq ˆ r0, 1s.
Suppose that the set of points pt, sq P r0, 1sˆ r0, 1swhere Γ̂ fails to be continuous is non-empty. Denote t0 the

lower bound of those values of t for which Γ̂ is not continuous for some s “ s0. We already know that t0 ě ε ą 0.
Denote R “ Γpt0, s0q “ γs0pt0q, R̂ “ Γ̂pt0, s0q “ γ̂s0pt0q. Let UR Ă Y and ÛR Ă X be open neighbourhoods of the
points R and R̂ respectively such that the map p : ÛR Ñ UR is a homeomorphism. Choose ε1 ą 0 such that
Γpt, sq P UR for |t´ t0| ă ε1, |s´ s0| ă ε1. As the curve γ̂s0ptq passes through the point R̂ it must have the form

γ̂s0ptq “
`

p |ÛR

˘´1
pγs0ptqq

for |t´ t0| ă ε1. Take t0 ´ ε1 ă t1 ă t0 so that γ̂s0pt1q P ÛR. The map Γ̂ is continuous at the point pt1, s0q. So there
exists δ ą 0 such that γ̂spt1q “ Γ̂pt1, sq P ÛR for |s´ s0| ă δ. Assume additionally that δ ď ε1. Then

Γ̂pt, sq “
`

p |ÛR

˘´1
pΓpt, sqq

for |t´ t0| ă ε1, |s´ s0| ă δ hence it is continuous in this region. This contradicts the assumption about pt0, s0q.
Thus Γ̂ is continuous everywhere on r0, 1s ˆ r0, 1s.

It remains to prove that Γ̂p1, sq ” Q̂ for s P r0, 1s. Indeed, Γ̂p1, sq is a continuous path but it must belong to
p´1pΓp1, sqq “ p´1pQq. The latter set is discrete hence Γ̂p1, sq ” γ̂0p1q “ Q̂ that implies that Γ̂p1, 1q “ γ̂1p1q “
γ̂0p1q.
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Remark 1.3.10. The above Lemma is a particular case of the Covering Homotopy Theorem. Namely, given a
covering pX,Y, pq and two continuous maps f : Z Ñ Y and f̂ : Z Ñ X of a topological space Z in a suitable class
satisfying p ˝ f̂ “ f and, moreover, a homotopy

F : Zˆ r0, 1s Ñ Y, F |Zˆt0u “ f

then there exists a unique covering homotopy

F̂ : Zˆ r0, 1s Ñ X satisfying F̂ |Zˆt0u “ f̂ .

For the proof see e.g. [26].
Using the operation of lifting paths from the base of a covering to the covering space we now define

monodromy transformations acting on the fiber over a given point in the base.

Definition 1.3.11. Let pX,Y, pq be a covering and P0 P Y a point on the base. Monodromy transformations are bijections
σγ of the fiber F “ p´1pP0q defined for any loop γ : r0, 1s Ñ Y with γp0q “ γp1q “ P0. Namely, for any given point
Q P p´1pP0q we put σγpQq “ Q1 P p´1pP0q if Q1 “ γ̂p1q is the end point of the lift γ̂ of the loop γ with the initial point
γ̂p0q “ Q.

Due to Lemma the monodromy transformation σγ depends only on the homotopy class of the loop γ with
the base point P0. To put this observation into a proper algebraic setting we need to recall the definition of
fundamental group of a topological space.

Elements of the fundamental groupπ1pY,P0q are equivalence classes of loops γ : r0, 1s Ñ Y, γp0q “ γp1q “ P0
wrt homotopies with fixed base point P0. The product of two loops γ1, γ2 is the loop that we denote γ1γ2
defined in the following way

pγ1γ2qptq “
"

γ1p2tq for 0 ď t ď 1
2

γ2p2t´ 1q for 1
2 ď t ď 1 .

The inverse of a loop γ is the same loop run in the opposite direction

γ´1ptq :“ γp1´ tq, t P r0, 1s.

The unit of the group is the homotopy class of the constant loop γptq ” P0.
According to the definition the fundamental group depends on the choice of the base point. But for a

connected space Y the fundamental groups π1pY,P0q and π1pY,Q0q are isomorphic for any pair of points P0, Q0.
An isomorphism π1pY,Q0q Ñ π1pY,P0q is established by choosing a path from P0 to Q0. It depends only on the
homotopy class of the path with fixed end points.
Example 1.3.12. The fundamental group of the unit diskD “ t|z| ă 1u is trivial, π1pD, t0uq “ 1. A homotopy
of a loop with the base point 0 to the trivial one can be obtained by using the contraction z ÞÑ t z, t P r0, 1s
of the unit disk to the central point. In a similar way the complex plane can be contracted to one point so
π1pC, t0uq “ 1.

Contractions appear as the simplest example of homotopy equivalence between topological spaces.

Definition 1.3.13. Two topological spaces X and Y are homotopy equivalent if there are two continuous maps f : X Ñ Y
and g : Y Ñ X such that f ˝ g „ idY and g ˝ f „ idX.

Homeomorphic spaces are homotopy equivalent but not vice versa. The simplest example is the unit disk
an the space consisting of one point. The map f : D Ñ pt maps the disk to the point and g : pt Ñ t0u P D is
an embedding of the point in the disk. The superposition f ˝ g is the identity map of the point to itself. The
homotopy F : Dˆ r0, 1s Ñ D between g ˝ f and the identity mapDÑ D can be constructed as Fpz, tq “ t z.



1.3. COMPACT RIEMANN SURFACES: A TOPOLOGICAL VIEWPOINT 49

Exercise 1.3.14: Prove that the punctured plane C˚ is homotopy equivalent to the unit circle S1 “ t|z| “ 1u.

Exercise 1.3.15: Let f : X Ñ Y be a continuous map of topological spaces. Choose a point P0 P X and let
Q0 “ f pP0q. Define a map

f˚ : π1pX,P0q Ñ π1pY,Q0q, f˚γptq “ f pγptqq.

Prove that the map f˚ is well defined and it is a group homomorphism.

Exercise 1.3.16: Let pX,Y, pq be a covering. Choose a point P0 P Y in the base and let Q0 P p´1pP0q. Prove that

p˚ : π1pX,Q0q Ñ π1pY,P0q

is a monomorphism.

Exercise 1.3.17: Let the maps f : X Ñ Y and g : Y Ñ X establish a homotopy equivalence between the spaces
X and Y. Prove that the fundamental groups π1pX,P0q and π1pY,Q0qwhere Q0 “ f pP0q are isomorphic.

Definition 1.3.18. A connected topological space is called simply connected if its fundamental group consists only of the
unit element.

In other words, every loop on a simply connected space is homotopic to the constant one.
The Riemann surfaces C,D,H are all simply connected. More generally, if a space is homotopy equivalent

to a point then it is simply connected. The Riemann sphere P1 is an example of simply connected space that is
not homotopy equivalent to a point, see [26] for the proof.
Example 1.3.19. The simplest example of a non-simply connected space is the circle S1 “ tz P C | |z| “ 1u. Take
the loop

γ : r0, 1s Ñ S1, γptq “ e2πit, γp0q “ γp1q “ 1.

The homotopy classes of this loop and of its powers

γnptq “ e2πint, n P Z

are pairwise distinct and any other loop on S1 is homotopic to one of these. Thus

π1pS1, t1uq » Z.

Proofs of the above statements using universal coverings will be given below, see Example 1.3.29.
Let us return to monodromy transformations. Recall that for any loop γ on the base Y of the covering

pX,Y, pq with the base point P0 we have constructed a bijection of the fiber F “ p´1pP0q onto itself. Denote it
µpγq P AutpFq. The monodromy transformation µpγq depends only on the homotopy class of the loop γ with
fixed base point P0. We obtain a map

µ : π1pY,P0q Ñ Aut pFq . (1.3.2)

Here and below AutpFq is the set of bijections F Ñ F. It has a natural group structure defined by superposition
of bijections.

Proposition 1.3.20. The map (1.3.2) is an anti-homomorphism of the groups that is, for any a, b P π1pY,P0q we have

µpabq “ µpbqµpaq. (1.3.3)
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Proof easily follows from the above definitions.

We will often omit ”anti” if there is no confusion.

Definition 1.3.21. The (anti)homomorphism (1.3.2) is called the monodromy of the covering pX,Y, pq.

Example 1.3.22. To compute the monodromy of the covering p : 9D Ñ 9D of the punctured disk 9D “ t0 ă |z| ă 1u
to itself, ppzq “ zn (see Example 1.3.5 above) we have to study the behaviour of branches of the algebraic function
p´1pzq “ n

?
z under analytic continuation along the loop γptq “ r e2πit, 0 ď t ď 1 for some 0 ă r ă 1 that is a

generator of the fundamental group π1p 9D, truq “ Z. Choose the first branch in such a way that
`

p´1pγptqq
˘

1 “ r1{ne
2πit

n .

Passing from t “ 0 to t “ 1 we obtain the second branch
`

p´1pγptqq
˘

2 “ r1{ne
2πipt`1q

n

and so on up to the n-th branch
`

p´1pγptqq
˘

n “ r1{ne
2πipt`n´1q

n .

One more step in the analytic continuation takes us back to the first branch. We conclude that, with the chosen
labelling of the branches the monodromy µpγq is the cyclic permutation 1 ÞÑ 2, 2 ÞÑ 3, . . . , n´ 1 ÞÑ n, n ÞÑ 1. In
the theory of symmetric group Sn such a permutation is called a cycle of length n. It is denoted by p12 . . . nq P Sn.
Example 1.3.23. For the covering p : C Ñ C˚, ppzq “ ez over the punctured complex plane (see Example
1.3.6 above) we have p´1pzq “ log z. Using the well known formula logpze2πiq “ log z ` 2πi we conclude that
monodromy µpγq along the generator γptq “ e2πit of the fundamental group π1p 9D, t1uq “ Z acts on the fiber
F “ Z by shifts n ÞÑ n` 1 @n P Z.

Definition 1.3.24. The monodromy representation (1.3.2) is called reducible if there exists a nonempty subset in the fiber
p´1pP0q different from the fiber itself and invariant wrt to the image of µ. Otherwise it is called irreducible.

It is easy to see that reducibility/irreducibility of monodromy does not depend on the choice of the point P0
in the base of the covering.
Remark 1.3.25. Irreducibility of the monodromy representation µ implies that the bijections from the image of
µ act transitively on the fiber, and vice versa. Recall that action of a group on a set is called transitive if for any
pair of points x, y in the set there exists an element of the group that maps x to y.

Let pX,Y, pq be a covering of finite degree n and µ its monodromy representation.

Lemma 1.3.26. The covering space X is connected if and only if the monodromy (1.3.3) is irreducible.

Proof. Assuming irreducibility of the monodromy let us prove the connectivity of X. It suffices to prove that
any point Q0 P p´1pP0q can be connected with any other point Q P p´1pPq for an arbitrary P P Y. To this end let
us choose a path γ Ă Y in the base from P to P0. Denote γ̂ the lift of γ to the covering space X with the initial
point Q. Denote Q̃ P p´1pP0q the final point of γ̂. Due to transitivity of the monodromy there exists a loop
δ Ă Y starting and ending at P0 such that its lift δ̂ that begins from Q̃ has Q0 as its end point. The composition
γ̂ δ̂ connects Q with Q0.

Conversely, assume that X is connected. Choose a pair of points Q0, Q10 P p´1pP0q. Let σ Ă X be a path
connecting Q0 with Q10. The projection ppσq is a loop on Y such that the monodromy µ pppσqq interchange Q0
with Q10.
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Definition 1.3.27. A covering pX,Y, pq is called universal if the covering space X is connected and simply connected.

Let pX,Y, pq be a universal covering. We will now establish a one-to-one correspodence between points of
its fiber and elements of the fundamental group of the base.

Proposition 1.3.28. Choose a point P0 P Y on the base of the universal covering and another point Q0 P X satisfying
ppQ0q “ P0. For any loop γ P π1pY,P0q define a point Qγ P p´1pP0q by the monodromy action on Q0

Qγ “ µpγqpQ0q.

The map
π1pY,P0q Ñ p´1pP0q, γ ÞÑ Qγ (1.3.4)

is one-to-one. It satisfies
µpγ1qpQγ2q “ Qγ2γ1 . (1.3.5)

Proof Let Q P p´1pP0q be any point. It can be connected with Q0 by a path γ̂, γ̂p0q “ Q0, γ̂p1q “ Q. The
projection γ “ ppγ̂q is a loop on the base with the base point P0. Then Q “ Qγ. So the map (1.3.4) is surjective.

Let us now prove injectivity of the map (1.3.4). Suppose Qγ “ Q0 for some γ P π1pY,P0q. That means that
the lift γ̂ Ă X of the loop γ with the initial point Q0 returns to Q0, i.e. it is a loop. As the covering space X
is simply connected the loop γ̂ is homotopic to the constant one. Projecting this homotopy to Y we obtain a
homotopy between γ and the constant loop. That is, γ „ e.

The last point is about eq. (1.3.5). It easily follows from the property (1.3.3) of the monodromy representation.

Example 1.3.29. The covering
p : RÑ S1, x ÞÑ e2πix

of the real line over the unit circle t|z| “ 1u Ă C is universal. The fiber over the point z “ 1 consists of all
integers Z Ă R. Use this point as a marked point P0 on the base and choose the point x “ 0 as the marked
point Q0 in the fiber over P0. For the loop γptq “ e2πit, t P r0, 1s we have p´1pγptqq “ t as the lift starting at Q0.
Hence Qγ “ 1. In a similar way for the n-th power of the loop γ

γnptq “ e2πint, n P Z

we have Qγn “ n. This gives a one-to-one correspondence between the infinite cyclic group generated by the
loop γ and the fiber over the point z “ 1. According to Proposition this implies that the fundamental group of
the circle coincides with this infinite cyclic group i.e., π1pS1, t1uq » Z.

Exercise 1.3.30: Compute the fundamental group of the n-dimensional torus Tn “ S1 ˆ S1 ˆ ¨ ¨ ¨ ˆ S1 (n times).

Example 1.3.31. The covering p : C Ñ C˚, ppzq “ ez over the punctured complex plane (see Example 1.3.6) is
universal. Repeating the arguments from the previous Example we conclude that π1pC˚, t1uq » Z. This is not
a big surprise as the punctured complex plane is homotopy equivalent to the unit circle; we leave as an exercise
for the reader to construct explicitly such a homotopy equivalence.

The story becomes much more involved for the complex plane with two or more punctures. The funda-
mental group of the complex plane with K punctures is the free group with K generators. We will denote it by
FK. Elements of the group are words made of symbols a1, . . . , aK and a´1

1 , . . . , a´1
K . The product of two words

is defined by concatenation: we write the first word on the left then continue with the second one on the right.
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One rule is to be imposed: having in a word two neighboring symbols ai a´1
i or a´1

i ai we just erase them. For
example,

a1a´1
2 a1 ˆ a´1

1 a2a1 “ a1a1.

The unit is the empty word and the inverse to the word a˘i1 . . . a
˘

is
is a¯is . . . a

¯

i1
. For K “ 1 one obtains the infinite

cyclic group F1 » Z. For K ě 2 the group FK is non-abelian.
So, the claim is that

π1 pCzptz1u Y ¨ ¨ ¨ Y tzKuq, z˚q » FK (1.3.6)

where zi , z j for i , j, z˚ , zi for any i “ 1, . . . ,K. To establish the isomorphism (1.3.6) we choose loops α1, . . . ,
αK on the punctured plane as follows. The loops must have no pairwise intersections either self-intersections
except for the common point z˚; the loopαi has inside only one puncture zi; it goes around it in the anticlockwise
direction. The homotopy classes of these loops correspond to the generators of the free group

π1 pCzptz1u Y ¨ ¨ ¨ Y tzKuq, z˚q Q αi Ø ai P FK.

To justify the above statement for K ě 2 we will construct a universal covering over the complex plane with
K punctures and describe the action of the fundamental group on the fiber. We will do like it was done above
for the case of complex plane with one puncture, namely, we replace the complex plane with K punctures by a
homotopy equivalent space that is bouquet of K circles, see Figure 1.9 for the case K “ 2. Construction of the
homotopy equivalence is left as an exercise to the reader. The fundamental groups of the punctured plane and
of the bouquet are isomorphic so we will be computing the latter.

α1

α2

z1z2 z∗

Figure 1.9: Generators of the fundamental group of complex plane with two punctures

The bouquet is not a manifold for K ě 2. Nevertheless Proposition 1.3.28 remains valid also in this case.
The universal cover of the bouquet of K circles is an infinite graph with no cycles (such graphs are called trees)
with all vertices of valency 2K, see Figure8 1.10 for K “ 2. The edges of the graph are oriented and labelled by
symbols a1, . . . , aK (on Figures 1.9 and 1.10 for K “ 2). At every vertex there are K incoming edges labelled
by a1, . . . , aK and K outgoing edges with the same labels. The covering map from the graph to the bouquet
of oriented circles acts as follows: the vertices of the graph go to the common point z˚, any edge labelled by
ai goes to the i-th circle according to the orientation. Choose a vertex of the graph. Then the lift of a product
α˘i1 . . . α

˘

is
of s loops with the initial point at the marked vertex will be a walk of length s on the graph that starts

from the marked vertex and goes successively along the edges a˘i1 , . . . , a˘is in positive or negative directions
according to the signs ˘. The isomorphism (1.3.6) readily follows from this description of the lift.

Exercise 1.3.32: Compute the fundamental group of the Riemann sphere with K punctures.
8This graph is perhaps the most known example of Cayley graphs. There are many ways to draw this graph; we have chosen the one

found in the book by W.Fulton [26] as the most appropriate one to illustrate ideas of topology of coverings.
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Figure 1.10: Universal covering of figure-eight

Remark 1.3.33. From Theorem 1.3.34 it follows that the universal covering of the complex plane with K punctures
is a simply connected Riemann surface. So, according to the Uniformization Theorem (see Section 1.1.2 above)
it must be biholomorphically equivalent to the one of three: P1, C or the upper half plane H. For K “ 1 we
already know that the universal covering of the punctured complex plane is C. It turns out that the universal
covering of the complex plane with K ě 2 punctures isH. For more details see below Section ??.

Theorem 1.3.34. Let M be a smooth connected manifold. Then there exists a smooth manifold M̂ and a smooth locally
diffeomorphic map p : M̂ Ñ M such that the triple pM̂,M, pq is a universal covering. Such a covering is unique up to an
equivalence in the sense of Definition 1.3.3. A similar statement holds true for connected complex manifolds M. Then the
covering space M̂ is a complex manifold as well and the covering map p is holomorphic and locally biholomorphic.

Proof Let P0 P M be an arbitrary point. We define M̂ as the set of equivalence classes of paths γ : r0, 1s Ñ M
such that γp0q “ P0. Two paths γ and γ̃ are called equivalent if γ̃p1q “ γp1q and they are homotopic with fixed
end points. Denote rγs the equivalence class of a path γ. The map p : M̂ Ñ M is defined as follows

pprγsq “ γp1q.

Observe that the preimage p´1pP0q of the point P0 can be naturally identified with the fundamental group
π1pM,P0q. Therefore it is at most countable as it follows from the following Lemma.
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Lemma. The fundamental group of any manifold is at most countable.

For the proof see e.g. [21].
We now continue the proof of Theorem 1.3.34 by introducing a topology on the set M̂. For any point P P M

we define a family of admissible pairs pU, εq where U is a chart of an atlas on M with local coordinates x1,. . . ,
xn such that P P U and a positive number ε satisfies the following condition: the ball BεpPq of radius ε centered
at P

BεpPq :“ t
n
ÿ

i“1

pxi ´ x0
i q

2 ă ε2u, x0
i “ xipPq, i “ 1, . . . ,n

is entirely contained in U. Here n is the dimension of the manifold M. Now, let γ be a path on M with
γp0q “ P0 and let pU, εq be an admissible pair for the point γp1q. Define a subset VpU,εqpγq Ă M̂ consisting of the
equivalence classes of the paths of the form γρ where ρ is a radial path inside the ε-ball centered at γp1q with
the initial point γp1q. Here the product of the paths γ and ρ is defined like it was done above for the product
of loops, namely, we first go along γ from γp0q “ P0 to γp1q “ ρp0q then proceed along ρ till ρp1q. Clearly the
subset VpU,εqpγq depends only on the equivalence class of the path γ. For any pair pU, εq admissible for γp1q the
subset VpU,εqpγq will be considered as an open neighbourhood of the point rγs. We leave as an exercise for the
reader to verify that this collection of open subsets defines a base9 of topology on M̂.

For any pair pU, εq admissible for a point P P M the full preimage of the ε-ball centered at P is equal to

p´1 pBεpPqq “
ď

rγsP p´1pPq

VpU,εqpγq (1.3.7)

where by definition p´1pPq “ trγs | γp0q “ P0, γp1q “ Pu. It is easy to see that

VpU,εqpγ1q X VpU,εqpγ2q “ H if rγ1s , rγ2s.

Thus the full preimage (1.3.7) is a disjoint union of open subsets VpU,εqpγq with γ P p´1pPq. Finally we observe
that the map

p : VpU,εqpγq Ñ Bεpγp0qq

is one-to-one and, therefore it is a homeomorphism. We conclude that pM̂,M, pq is a covering indeed.
Let us now prove that the space M̂ is connected. We have to show that any pair of points rγ1s, rγ2s can be

connected by a path. It suffices to prove it for the particular case of constant path γ1 “ γid where γidptq ” P0.
Then the needed path Γ : r0, 1s Ñ M̂ has the form Γpsq “ rγ2pstqs.

It remains to prove that M̂ is simply connected. A loop with the base point at the constant path γid can be
considered as a map of the square to M

Γpt, sq P M, pt, sq P r0, 1s ˆ r0, 1s satisfying Γpt, 0q “ Γpt, 1q ” P0 and Γp0, sq ” P0.

Take the map of the unit cube with the coordinates pt, s, rq given by

Γpt, s, rq “ Γprt, sq, r P r0, 1s.

It provides a homotopy between the original loop (for r “ 1) and the constant loop Γpt, s, 0q ” P0. Thus
π1pM̂, rγidsq “ 1.

Uniqueness of the universal covering follows from
9A base of topology on a set X is a collection of subsets Vα Ă X covering X such that for any pair Vα, Vβ with non-empty intersection

and any point x P Vα X Vβ there exists Vγ such that x P Vγ Ă Vα X Vβ. Using a base one can introduce topology on the set X defining the
open subspaces as unions of arbitrary families of elements of the base. We refer the reader to the book [?] for further details.
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Lemma 1.3.35. Let pM̂1,M, p1q and pM̂2,M, p2q be two universal coverings. Fix a point P0 in the base and choose points
P1 P M̂1 and P2 P M̂2 such that p1pP1q “ p2pP2q “ P0. Then there exists a unique map f : M̂1 Ñ M̂2 satisfying
p2 ˝ f “ p1 such that f pP1q “ P2. Moreover, this map is a homeomorphism.

Proof Let P P M̂1 be an arbitrary point. Choose a path γ1 Ă M̂1 connecting P1 with P and let γ “ p1pγ1q Ă M be
its projection to the base. Its initial point is γp0q “ P0. Denote γ2 Ă M̂2 the lift of γ to M̂2 with the initial point
γ2p0q “ P2. Put f pPq :“ γ2p1q. The choice of the lift γ2 is unique due to the condition f pP1q “ P2.

Due to connectedness and simply-connectedness of M̂1 the construction of f works for any point P P M̂1
and it does not depend on the choice of the path γ1. Observe that p1pPq “ p2p f pPqq. That is the map
f : M̂1 Ñ M̂2 satisfies the condition p2 ˝ f “ p1 from Definition 1.3.3 of equivalence of coverings. The inverse
map f´1 : M̂2 Ñ M̂1 can be constructed in a similar way. Therefore the map f is one-to-one. Let us now prove
that it is continuous.

Let U2 Ă M̂2 be an open neighbourhood of f pPq. For a sufficiently small ε ą 0 we can find an open ε-ball
BεpQq Ă M centered at the point Q :“ p1pPq “ p2p f pPqq and two open neighbourhoods V1 Ă M̂1 and V2 Ă M̂2
containing the points P and f pPq respectively such that the projections

p1 : V1 Ñ BεpQq and p2 : V2 Ñ BεpQq

are homeomorphisms. Put
U1 :“ V1 X p´1

1 pp2pU2qq Ă M̂1.

It is an open subset in M̂1. Obviously it contains the point P. We will now prove that f pU1q Ă U2.
Let P1 P U1 be an arbitrary point. In order to compute f pP1q we choose a path γ11 Ă M̂1 connecting P1 with

P1 in the following way
γ11 “ γ1ρ1

where ρ1 Ă V1 is the lift of the radial path ρ in BεpQq from Q “ p1pPq to p1pP1q with the initial point P. Recall
that p1pP1q P p2pU2q. Now we have to lift the path p1pγ11q “ γρ to M̂2 with the initial point P2. The resulting lift
has the form

γ12 “ γ2ρ2 where ρ2 “ p´1
2 pρq X V2.

Hence the end point ρ2p1q “ f pP1q belongs to V2 XU2.
The continuity of the inverse map f´1 can be proved in a similar way. This completes the proof of Lemma.

We have completed the construction of the topological space M̂ of the universal covering as well as of the
covering map p : M̂ Ñ M that is a local homeomorphism. We have now to prove that the universal covering
space over a smooth manifold is a smooth manifold itself. Similarly if the base is a complex manifold then so
is the universal covering space. This follows from

Lemma 1.3.36. A covering space X over a complex10 manifold Y inherits a structure of complex manifold. With respect
to the constructed complex structure the covering map p : X Ñ Y becomes locally biholomorphic.

Proof Let pVβ, φβqβPB be a complex atlas on Y. For any point P P Y and any β P B such that P P Vβ denote

UP,β “ UP X Vβ. We obtain a new complex atlas
´

UP,β, φβ|UP,β

¯

PPY, βPB
on Y. The components of the preimages

p´1
`

UP,β
˘

with the coordinate maps Q ÞÑ φβ|UP,βpppQqq provide a complex atlas on X. This structure is second-
countable since the fiber of the covering is at most countable. The Lemma and, therefore the Theorem 1.3.34 is
proved.

10Needless to say that the construction works for smooth real manifolds as well.
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Exercise 1.3.37: Let G Ă π1pM,P0q be a subgroup of the fundamental group of a connected manifold M. Prove
that there exists a covering pM̂G,M, pq such that π1pM̂G,Q0q » G where Q0 P p´1pP0q.

We will now define an action of the fundamental group of the base on the universal covering space. Let us
first recall some basics about group actions.

Let G be a group and X a topological space.

Definition 1.3.38. 1. We say that the group G acts on the space X if for any g P G there is a homeomorphism

Tg : X Ñ X satisfying Tg1 ˝ Tg2 “ Tg1 g2 @ g1, g2 P G. (1.3.8)

In particular Te=id. Here e is the unit of the group.
2. A point x P X is fixed for the map Tg if Tgpxq “ x. The action (1.3.8) is called fixed points free if Tg has no fixed

points for g , e.
3. The group G acts discontinuously on the space X if for any x P X there exists an open neighbourhood Vx Q x such

that TgpVxq X Vx “ H for any g , e.

Exercise 1.3.39: Let the group G act discontinuously and fixed points free on the space X. Define the quotient
space X{G in the following way. Points of X{G are orbits

Ox “
ď

gPG

Tgpxq.

To introduce a base of topology on X{G define subsets

V “
ď

yPVx

Oy Ă X{G

for any x P X. Here the open neighbourhood Vx of the point x is as in the part 3 of the above Definition. Prove
that the triple pX,X{G, pqwhere the map p : X Ñ X{G is given by

ppxq “ Ox

is a covering.

Example 1.3.40. Define an action of the group of integers on the real line by

R Q x ÞÑ x` n, n P Z. (1.3.9)

Clearly this group action is fixed point free. For any interval I of the length less than 1 and any nonzero integer
n we have I X I ` n “ H. So the group Z acts on R discontinuously. The quotient of the real line over this
action coincides with the quotient R{Z of the additive group of real numbers over the subgroup of integers.
As a real one-dimensional manifold it can be identified with the unit circle |z| “ 1 on the complex z-plane by
the map

z “ e2πix.

So the factorization map RÑ R{Z coincides with the covering of Example ??.
Another way for the identification of the quotient R{Z with the circle is the following one. Consider

the segment r0, 1s. In the equivalence class of any non-integer real number there is a unique representative
belonging to the inner part of the segment. Integers have two equivalent representatives at the end points of
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the segment. Thus to obtain the set of equivalence classes wrt the action (1.3.9) one has to identify the end
points of the segment resulting in a circle.

The above construction is the simplest example of a fundamental domain for a group action on a topological
space X. Roughly speaking a fundamental domain is a subset D Ă X of unique representatives of all orbits of
the group action. For the group action (1.3.9) the choice D “ r0, 1q is fine. In many cases however it is more
convenient to slightly modify the definition assuming that D is a closed subset containing representatives of
all orbits containing no equivalent pairs of points in the internal part of D but some repetitions allowed on the
boundary. The segment D “ r0, 1s fits into this modified definition. In sequel all examples of fundamental
domains will also be treated according to the modified version of the definition.
Example 1.3.41. An action of the group Z‘Z on the real plane R2 will be defined by

px, yq ÞÑ px`m, y` nq, m, n P Z. (1.3.10)

The quotient R2{Z‘Z can be identified with the two-dimensional torus T2 “ S1 ˆ S1 by

px, yq ÞÑ pe2πix, e2πiyq.

For the fundamental domain (see the previous Example) one can choose the unit square r0, 1s ˆ r0, 1s Ă R2.
The points on the opposite sides of the square must be identified as

px, 0q „ px, 1q, 0 ď x ď 1, p0, yq „ p1, yq, 0 ď y ď 1

in order to obtain the set of all orbits of the action (1.3.10). After gluing together the opposite sides of the square
we again obtain a torus.

The above construction can be easily generalised to multidimensional tori.
We will now explain an important construction of an action of the fundamental group of a manifold on its

universal covering space.

Theorem 1.3.42. Let M be a connected smooth manifold and pM̂,M, pq its universal covering. Then the fundamental
group of M acts on M̂ by diffeomorphisms

Tγ : M̂ Ñ M̂ @γ P π1pM,P0q

discontinuously and fixed points free. Here P0 P M is an arbitrary point. If M is a complex manifold then the maps Tγ
are biholomorphic.

Proof Choose a point Q0 P M̂ such that ppQ0q “ P0. Connect Q0 with a given point Q P M̂ by a path γ̂Q. Let
γQ “ ppγ̂Qq be its projection to M. For any loop γ P π1pM,P0q, define a new path

γ1Q “ γγQ.

Let γ̂1Q be the lift of γ1Q with the initial point Q0. Denote Q1 the end point of γ̂1Q and put

TγpQq “ Q1.

As the space M̂ is simply connected the resulting point TγpQq does not depend on the choice of the path γ̂Q.
It depends only on the homotopy class of the loop γ. The superposition Tγ1pTγ2pQqq for two loops γ1, γ2 in
π1pM,P0q can be obtained by lifting the path γ1γ2γQ. Therefore

Tγ1 ˝ Tγ2 “ Tγ1γ2 .
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In particular Tγ´1 “ pTγq´1. Thus for any γ P π1pM,P0q the map Tγ : M̂ Ñ M̂ is a bijection. Contiinuity of this
map as well as of the inverse map can be proved in the way similar to the proof of continuity of the map f
in Lemma 1.3.35. If Q is a fixed point of Tγ then the paths γQ and γγQ are homotopic with fixed end points.
Hence γ is homotopic to the constant loop. This implies that the action of the fundamental group π1pM,P0q on
the universal covering space M̂ is fixed points free.

It remains to prove that it acts discontinuously. To this end for a given point Q P M̂ we choose an open
neighbourhood VppQq of its projection ppQq such that the full preimage p´1

`

VppQq
˘

is homeomorphic to VppQqˆF.
Points of the fiber F of the universal covering can be identified, via the monodromy action, with elements of
the fundamental group. Let UQ be the component of the preimage p´1

`

VppQq
˘

containing the point Q. Then
the images TγpUQq for γ P π1pM,P0qwill have no intersections.

We will return to these constructions in Section ?? considering universal coverings of Riemann surfaces.

1.3.2 Riemann surface of an algebraic function: the general case

Let us return to the study of Riemann surfaces of algebraic functions. For an irreducible monic polynomial

Fpz,wq “ wn ` a1pzqwn´1 ` ¨ ¨ ¨ ` anpzq (1.3.11)

of degree n in w introduce a finite set of critical points Crit Ă C taking zeros of the discriminant of F

Crit “ tz P C | ∆Fpzq “ 0u.

Denote
9C “ Czπ´1 pCritq (1.3.12)

where C is the complex algebraic curve

C “ tpz,wq P C2 | Fpz,wq “ 0u (1.3.13)

and
π : CÑ C, πpz,wq “ z (1.3.14)

is the projection. The punctured curve 9C has a natural structure of a one-dimensional complex manifold.

Lemma 1.3.43. 9C is a n-sheeted covering space of CzCrit with respect to the projection

π : 9CÑ CzCrit. (1.3.15)

The map π is defined in (1.3.14).

Proof Let z0 be a point in CzCrit. Then for every point P P π´1pz0q one can use z as a local coordinate. In other
words, there exists a positive number εP and a neighbourhood UP of P such that the map

π : UP Ñ t|z´ z0| ă εPu

is biholomorphic. Put
ε “ min

PPπ´1pz0q
εP
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and denote U “ t|z´ z0| ă εu. Order the points P1, . . . , Pn in π´1pz0q. Then the preimage π´1pUq has the form

π´1pUq “
n
ď

i“1

Ui, Ui “
ď

zPU

tpz,wipzqqu

where wipzq is the branch of the algebraic function wpzq near Pi. The biholomorphic map

ϕ : π´1pUq Ñ U ˆ t1, 2, . . . ,nu, pz,wipzqq ÞÑ pz, iq

is the needed homeomorphism.

Choose a complex number z˚ P CzCrit.

Definition 1.3.44. The monodromy (anti)homomorphism

µ : π1 pCzCrit, z˚q Ñ Aut
`

π´1pz˚q
˘

(1.3.16)

of the covering (1.3.15) (see the Definition 1.3.21) is called the monodromy of the algebraic function wpzq defined by the
polynomial equation Fpz,wq “ 0.

The preimage π´1pz˚q consists of n distinct points. Ordering them in an arbitrary way

pz˚,w1pz˚qq, . . . , pz˚,wnpz˚qq

we can rewrite (1.3.16) as a homomorphism into symmetric group

µ : π1 pCzCrit, z˚q Ñ Sn. (1.3.17)

Recall that a change of the base point z˚ gives rise to an equivalent representation.
Example 1.3.45. For the hyperelliptic curve

C “ tpz,wq P C2 | w2 “

k
ź

i“1

pz´ aiqu, ai , a j for i , j

the set Crit consists of the branch points

Crit “
k
ď

i“1

taiu.

The punctured curve

9C “ Cz

k
ď

i“1

tpai, 0qu

is a two-sheet covering of CzCrit.
For a loop γ Ă CzCrit encircling just one branch point the monodromy along γ changes the sign of

wpzq “
b

śk
i“1pz´ aiq. Thus

µpγq “ p12q P S2

is the permutation between 1 and 2. For a loop encircling two branch points the monodromy is trivial. More
generally, for a loop γ encircling m branch points

µpγq “

"

p12q P S2, m “ odd
id P S2, m “ even.
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Let f “ f pz,wq be a function on 9C. Restricting it at the points of the preimage π´1pz˚q ordered in some way
we obtain n numbers f pz˚,w1pz˚qq, . . . , f pz˚,wnpz˚qq. We say that f is monodromy invariant over z˚ if, for any
loop γ P π1pCzCrit, z˚qwe have

f pz˚,wµpγqpiqpz˚qq “ f pz˚,wipz˚qq @ i P t1, 2, . . . ,nu.

For example the symmetric functions
w1pz˚qk ` ¨ ¨ ¨ ` wnpz˚qk

for any integer k are always monodromy invariant. If f pz,wq is locally holomorphic near the points in π´1pz˚q
then the above invariance holds true over z in some neighbourhood of z˚. Finally, if f pz,wq is meromorphic on
9C and monodromy invariant over z˚, then, applying analytic continuation we obtain monodromy invariance
over any point z P CzCrit. In this case we will simply say that the meromorphic function f is monodromy
invariant.

Proposition 1.3.46. Assume irreducibility of the monodromy (1.3.16). Let f “ f pz,wq be a meromorphic function on 9C

growing at most polynomially at the punctures in π´1 pCritq as well as at infinity. Suppose f is invariant with respect
to the monodromy representation. Then f “ f pzq and this is a rational function of the complex variable z.

Proof Because of the monodromy invariance and transitivity of the monodromy, the function f pz,wq depends
only on z. Therefore it is a meromorphic function on CzpCrit Y t8uq. Due to the assumptions about the
polynomial growth, it has removable singularities (See e.g. []) at the points of the set CritY t8u. Hence it can
be extended to a meromorphic function C. So it must be a rational function.

We will now prove connectedness of 9C.

Theorem 1.3.47. For an irreducible polynomial Fpz,wq the manifold 9C is connected.

Proof Suppose 9C is not connected. According to Lemma 1.3.26 it implies that the monodromy action is not
transitive. That means that there exists a partition

t1, 2, . . . ,nu “ I \ J

into two nonempty sets I “ ti1, . . . , ipu and J “ t j1, . . . , jqu, p` q “ n such that, for a given point z P CzCrit after
a suitable ordering of the points in the preimage π´1pzq the subsets

tpz,wi1pzqq, . . . , pz,wippzqqu and tpz,w j1pzqq, . . . , pz,w jqpzqqu

are both invariant with respect to the monodromy

π1 pCzCrit, zq Ñ Aut
`

π´1pzq
˘

.

Let us assume the action of the monodromy on both subsets I and J to be irreducible. Consider two polynomials

FI “ pw´ wi1pzqq . . . pw´ wippzqq and FJ “ pw´ w j1pzqq . . . pw´ w jqpzqq.

They are locally well defined and monodromy-invariant. We will now extend them onto CzCrit. Let z1 < Crit
be another point. Connect it by a path γ Ă CzCrit with z. The n lifts of γ establish a one-to-one correspondence
between the sets π´1pzq and π´1pz1q. Denote I1 and J1 the images of the subsets I and J with respect to this
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correspondence. They have the same cardinalities p and q respectively. These subsets are monodromy-invariant
with respect to the representation

π1 pCzCrit, z1q Ñ Aut
`

π´1pz1q
˘

.

Analytically continuing the roots wi1pzq, . . . ,wippzq of the polynomial FI along the lifts of γ that start at the points
of I we obtain the needed extension of FI to the point z1. In a similar way we extend the polynomial FJ. Due
to the above arguments about monodromy-invariance the resulting extensions do not depend on the choice of
the path γ. So, according to Proposition 1.3.46 the coefficients of these polynomials are rational functions in z.
Clearly F “ a0pzqFIFJ. This contradicts irreducibility. In the more general case where the action of monodromy
on I and/or J is reducible we split them into smaller subsets such that the monodromy acts irreducibly on each
of them. Repeating the above arguments we arrive at a factorization of Fpz,wq into a product of more than two
factors.

We now pass to the main point of this Section: to the construction of Riemann surface of an algebraic
function. We do it in the following way. Start from the open manifold 9C as in eq. (1.3.12). Then add to it a
finite number of points and introduce local coordinates on neighbourhoods of these points. The last step is to
compactify the resulting Riemann surface. To this end we add a finite number of points at infinity. Remarkably
all prescriptions for this construction are encoded in the monodromy of the covering 9CÑ CzCrit.

Theorem 1.3.48. Let C be the complex algebraic curve Fpz,wq “ 0 defined by an irreducible monic polynomial of degree
n in w. Then there exists a compact Riemann surface S and two holomorphic maps ẑ : SÑ Cz and ŵ : SÑ Cw onto the
extended complex z- and w-plane respectively such that

(i)
F pẑpPq, ŵpPqq “ 0 @P P S;

(ii) the map
ρ : Szẑ´1pCritY t8uq Ñ 9C, P ÞÑ pz “ ẑpPq,w “ ŵpPqq

is biholomorphic;

(iii) if the algebraic curve C is smooth then Szẑ´1pt8uq “ C.

Let us begin with constructing the finite part Sfinite of the Riemann surface; the infinite points will be
added later. We will follow the notations introduced in the beginning of this section. Let z0 be a zero of the
discriminant ∆Fpzq. Choose a point z˚ close to z0 but away from Crit. Order in an arbitrary way the points in
the preimage π´1pz˚q. Consider the monodromy transformation σ P Sn

σ : π´1pz˚q Ñ π´1pz˚q

generated by lifting the anticlockwise loop around z0. Decompose the permutation σ into product of cycles

σ “ pi1, . . . , ipqp j1, . . . , jqq ¨ ¨ ¨ pl1, . . . , lsq

of the lengths p, q, . . . , s,
p` q` ¨ ¨ ¨ ` s “ n

corresponding to a partition of the set t1, 2, . . . ,nu into disjoint union of subsets ti1, . . . , ipu, t j1, . . . , jqu, . . . ,
tl1, . . . , lsu. Such a decomposition always exists and is unique [3]. For every such cycle we add to 9C a point.
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It will be a ramification point with respect to ẑ of the new Riemann surface Sfinite of the ramification index =
length of the cycle - 1. We will explain the construction for the first cycle pi1, . . . , ipq.

In a sufficiently small neighbourhood of z˚ we have p branches wi1pzq, . . . , wippzq. Anticlockwise analytic
continuation around z0 permutes them cyclically

wi1

`

z0 ` pz´ z0qe2π i
˘

“ wi2 pzq
wi2

`

z0 ` pz´ z0qe2π i
˘

“ wi3 pzq
.
.
.

wip´1

`

z0 ` pz´ z0qe2π i
˘

“ wip pzq
wip

`

z0 ` pz´ z0qe2π i
˘

“ wi1 pzq

Take a punctured disk
9D “ tτ P C | 0 ă |τ| ă εu

for a sufficiently small ε and consider the function

w̃pτq “ wi1 pz0 ` τ
pq

on 9D. Since wi1

`

z0 ` pz´ z0qe2pπi
˘

“ wi1 pzq we conclude that w̃pτq is a single valued holomorphic function on
9D. We obtain a holomorphic map

9D Ñ 9C, τ ÞÑ pz0 ` τ
p, w̃pτqq . (1.3.18)

Note that the projection of the image of 9D to z-plane is again a punctured disk

9D0 “ tz P C | 0 ă |z´ z0| ă ε
pu

and the degree of the through map
9D Ñ 9D0

equals p. It remains to observe that wikpzq Ñ w0 when z Ñ z0 along radial directions, for any k “ 1, . . . , p.
Here w0 is a root of the equation Fpz0,wq “ 0. Therefore τ “ 0 is a removable singularity for the function w̃pτq.
We define it as the new point P0 P Sfinite added to 9C. The map

D “ tτ P C | |τ| ă εu Ñ S, τ ÞÑ

"

pz0 ` τp, w̃pτqq , τ , 0
P0, τ “ 0

provides a chart on a neighbourhood of P0. Put

ẑpP0q “ z0, ŵpP0q “ w0, ẑ pz0 ` τ
p, w̃pτqq “ z0 ` τ

p, ŵ pz0 ` τ
p, w̃pτqq “ w̃pτq

It is easy to see that all properties of these maps formulated in the Theorem hold true. This completes the
construction for the first cycle in the decomposition of the monodromy σ . For other cycles the construction is
identical, so we obtain a new point P1 P Sfinite for the second cycle etc. Then we proceed to other zeros of the
discriminant.

The last step is in compactification of the Riemann surface Sfinite. Denote ζ “ 1{z the local coordinate near
the infinite point of Cz. Let us rewrite the algebraic equation Fpz,wq “ 0 in the variables ζ, w taking

F̃pζ,wq “ ζNF
ˆ

1
ζ
,w

˙
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where N “ maxtdeg a0pzq, . . . ,deg anpzqu. This polynomial is not monic in w so we do one more substitution
(cf. footnote 4 above) by introducing a new variable

ω “ w ζN “
w
zN

and define a new polynomial

F8pζ, ωq “ ζNpn´1qF̃
ˆ

ζ,
ω

ζN

˙

“ ζn NF
ˆ

1
ζ
,
ω

ζN

˙

“

n
ÿ

j“0

a jp
1
ζ
qζ jNωn´ j

monic of degree n in ω. We can now proceed with analysis of the local monodromy σ8 P Sn interchanging
the branches of the algebraic function ωpζq as the result of the anticlockwise analytic continuation along a
small loop around the point ζ “ 0. Factorizing σ8 into a product of cycles we obtain the prescription for
adding to Sfinite some points over the infinite point ζ “ 0 of the extended complex plane Cz. One important
observation about the local monodromy σ8 has to be taken into account. Namely, to the small loop |ζ| “ ε
around infinity running in the anticlockwise direction it corresponds the big loop |z| “ 1{ε running in the
clockwise direction. Hence the monodromy σ8 describes the clockwise analytic continuation of the branches
of the algebraic function wpzq along such a big loop. Let ε be so small that the circle |z| “ 1{ε contains inside
all zeros z0, . . . , zK of the discriminant. Choose a point z˚ on the circle such that the segments connecting z˚
with z0, . . . , zK do not have common internal points. Order the zeros of the discriminant in such a way that
the segments follow in the anticlockwise direction, looking from their common point z˚ . Running along the
i-th segment from z˚ to a point close to zi then along a small loop around zi in the anticlockwise direction and
finally returning back to z˚ along the same segment we obtain a loop γi P π1pCzCrit, z˚q. Denote σi “ µpγiq the
monodromy along the loop γi. Our claim is that

σ8 “ rσKσK´1 . . . σ0s
´1 . (1.3.19)

Indeed, the loop given by the circle |z| “ 1{ε run in the anticlockwise direction is homotopic to the prod-
uct γKγK´1 . . . γ0. Inverting the direction we obtain the inverse of this element in the fundamental group
π1pCzCrit, z˚q. This proves eq. (1.3.19).

We are now to prove that the constructed one-dimensional complex manifold S is connected and compact.
Connectednes immediately follows from Theorem 1.3.47. Let us prove compactness.

Let Q1, Q2, . . . be an infinite sequence of points in S. Due to compactness of the Riemann sphere there
exists a subsequence Qi1 , Qi2 , . . . such that ẑpQisq converges to some point z˚inC for s Ñ8 (it may happen that
z˚ “ 8. Let us first consider the case where z˚ is not a branch point wrt the map ẑ that is at all points P˚1 , P˚2 ,
. . . , P˚n of the preimage ẑ´1pz˚q the derivative of ẑ wrt the local parameter does not vanish. Then ẑ is locally
biholomorphic near every point P˚1 , . . . , P˚n . There exists at least one point P˚j such that its neighbourhood
contains an infinite number of points Qis . This subsequence of subsequence converges to P˚j .

Consider now the case where z˚ is a branch point. Then the preimage consists of m ă n points P1, . . . , Pm
of multiplicities k1, . . . , km respectively. Therefore for every j “ 1, . . . ,m there exists a neighbourhood U j of P j
such that the map

ẑ : U jzP j Ñ t0 ă |z´ z0| ă εu

for some ε ą 0 is a covering of degree k j. Repeating the above arguments we obtain a subsequence of
subsequence of points Qi P S convergent to P j for some j “ 1, . . . ,m. This completes the proof of compactness
of S.



64 CHAPTER 1. RIEMANN SURFACES

It remains to consider the case of smooth algebraic curves C. Let pz0,w0q P C be a ramification point of the
ramification index p´1. One can use the w-coordinate as a local parameter near this point. Another coordinate
is a holomorphic function of the local parameter on some neighbourhood of w0

z “ z0 `
ÿ

kě1

ckpw´ w0q
k.

Due to our assumptions the first nonzero coefficient is cp. Introduce a holomorphic function

τpwq “ c1{p
p pw´ w0q

«

1`
ÿ

kě1

ck`p

cp
pw´ w0q

k

ff
1
p

.

The inverse function is also holomorphic for sufficiently small |τ|; denote it w̃pτq. We have

z “ z0 ` τ
p, w “ w0 ` w̃pτq. (1.3.20)

So in this case we do not need to add new points as the function w̃pτq is holomorphic at τ “ 0 and w̃p0q “ 0. As
the projection pz,wq Ñ z has degree p near pz0,w0q the local monodromy around z0 of the function wpzq defined
by (1.3.20) is a cycle of length p. The Theorem is proved.

Example 1.3.49. Consider the algebraic function wpzq defined by equation

w2 “ z2pz` 1q.

The discriminant is equal to 4z2pz ` 1q, so Crit “ t0u Y t´1u. The point pz “ ´1,w “ 0q is a smooth point
of the corresponding algebraic curve C; it is a ramification point of the ramification index 1. Another point
pz “ 0,w “ 0q is a singular point of C. Near z “ 0 the function wpzq has two branches w1,2pzq “ ˘z

?
z` 1.

The analytic continuation along the circle |z| “ r, r ă 1 does not interchange these two branches. Therefore the
corresponding monodromy is the identity

id “ p1qp2q P S2.

So we have to add two points P1, P2 to the punctured curve

Sfinite “ pCztp0, 0quq Y tP1u Y tP2u

π̂ pP1,2q “ 0 P C, ρ pP1,2q “ p0, 0q P C

and these points are not ramification points of Swith respect to π̂ : SÑ C.
As we have only one branch point on C then, due to (1.3.19) there is also a branch point at infinity. The

monodromy around infinity interchanges the two branches of the algebraic function ωpζq defined by equation

ω2 “ ζ3 ` ζ4.

Here
z “

1
ζ
, w “

ω

ζ3 .

Observe that this curve has a cuspidal singularity at pζ “ 0, ω “ 0q. According to the constructions of the
Theorem we have to add one point P8 to Sfinite and introduce a local parameter τ near this point by

ζ “ τ2.
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We obtain a function
ω̃pτq “ τ3

a

1` τ2

holomorphic for |τ| ă 1. In the original coordinates we have

z “
1
τ2

and the function w has a pole of order 3 at P8

w “
1
τ3

a

1` τ2.

It is easy to find a realization of the Riemann surfaceSfinite as a smooth algebraic curve. To this end consider
the curve defined by the equation

w̃2 “ z` 1.

Obviously it is smooth. It has two points P1,2 “ pz “ 0, w̃ “ ˘1q above z “ 0. Define a map

ρ : Sfinite Ñ C, ρpz, w̃q “ pz, zw̃q.

It is biholomorphic for z , 0, 8 and it maps both the points P1 and P2 to p0, 0q. Adding, like above a point P8
to Sfinite we obtain a realization of S.
Example 1.3.50. Consider the hyperelliptic curve

w2 “ z2n`1 ` a1z2n ` ¨ ¨ ¨ ` a2n`1 “

2n`1
ź

i“1

pz´ ziq, zi , z j for i , j.

It has 2n ` 1 branch points z “ z1, . . . , z “ z2n`1. The monodromy around every of these points is the
permutation p12q P S2. From eq. (1.3.19) using the obvious identity p12q2 “ id it follows that the monodromy
around infinity is the same permutation p12q. Therefore the Riemann surface of the algebraic function wpzq has
one infinite point P8 and it is a ramification point of the ramification index 1. Like in the previous example we
introduce the local parameter near P8 by

z “
1
τ2 .

The function z has a pole of order 2 at P8 and the function

w “
1

τ2n`1

b

1` a1τ2 ` a2n`1τ4n`2

has a pole of order 2n` 1.
Example 1.3.51. Consider now a hyperelliptic curve with even number of branch points

w2 “ z2n`2 ` a1z2n`1 ` ¨ ¨ ¨ ` a2n`2 “

2n`2
ź

i“1

pz´ ziq, zi , z j for i , j.

Applying again eq. (1.3.19) we conclude that the monodromy around infinity is trivial. Therefore the Riemann
surface of the algebraic function wpzq in this case has two infinite points P˘8 and these are not ramification
points. That means that the local parameter τ near this points coincides with ζ “ 1{z or

z “
1
τ
.
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Thus the function z has two simple poles at the infinite points P˘8 and w has two poles of order n` 1

w “ ˘
1

τn`1

b

1` a1τ` ¨ ¨ ¨ ` a2n`2τ2n`2, pz,wq Ñ P˘8.

We conclude this section with three remarks.

Remark 1.3.52. The constructions we used in the proof of Theorem 1.3.48 are close to the Riemann’s original
approach to the idea of Riemann surface. Taking n copies of complex plane with cuts between the critical
points he glues the copies along the cuts where the rules of glueing are prescribed by the action of monodromy.
The simplest example of this procedure was already considered above in Section 1.1.1 in the construction of
Riemann surface of

?
z. Further examples will be considered below in Section ??.

On this way Riemann arrived at the following important result.

Riemann Existence Theorem. Let z1, . . . , zK be distinct points of complex plane and

µ : FK Ñ Sn

an (anti)homomorphism of the free group with K generators to the symmetric group Sn such that the image acts transitively
on the set t1, 2, . . . ,nu. Then there exists a n-sheeted Riemann surface with branch points at z1, . . . , zK and, possibly, at
infinity (see eq. (1.3.19) above) with the monodromy µ.

Exercise 1.3.53: Prove Riemann Existence Theorem for n “ 2 and arbitrary K.

Exercise 1.3.54: Prove Riemann Existence Theorem for K “ 1 and arbitrary n.

Remark 1.3.55. In this Section we have started from an irreducible polynomial equation Fpz,wq “ 0 to construct
what was called compact Riemann surface of the algebraic function wpzq defined by this equation. It turns that
any compact Riemann surface can be obtained in this way. The precise statement is given by the following
theorem.

Theorem. LetS be a compact Riemann surface. Then there exist two meromorphic functions z, w : SÑ C satisfying
the identity

FpzpPq,wpPqq “ 0 @P P S

for some irreducible polynomial Fpz,wq. S coincides with the Riemann surface of the algebraic function wpzq defined by
the equation Fpz,wq “ 0.

The Theorem will be proven in Section 3.1.5 below.

Remark 1.3.56. The most powerful tool for computing the local monodromy of an algebraic function around a
critical point uses Newton polygons to obtain expansions of the branches of this function in Puiseux series. Let
us illustrate this procedure using the results of Example 1.4 above. Namely, we will describe the local structure
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of the Riemann surface associated with the algebraic curve (1.2.37) near the branch point z “ 0. There were
obtained 8 different Puiseux expansions

w1pzq “ 2z4 ` . . . , w2pzq “
1
4

z` . . . , w3pzq “
?

2 z
1
2 `

2
1
4

4
z

3
4 ` . . . , w4pzq “

?
2 z

1
2 ´

2
1
4

4
z

3
4 ` . . . ,

w5pzq “ ´
?

2 z
1
2 ` i

2
1
4

4
z

3
4 ` . . . , w6pzq “ ´

?
2 z

1
2 ´ i

2
1
4

4
z

3
4 ` . . . ,

w7pzq “ i z´
3
2 ´

i
2

z
1
2 ` . . . , w8pzq “ ´i z´

3
2 `

i
2

z
1
2 ` . . .

of solutions wpzq to the equation Fpz,wq “ 0 of degree 8 in w. They correspond to 8 sheets of the Riemann
surface. Label the branches of wpzq according to the order they were written above. The local monodromy
z ÞÑ z e2πi around z “ 0 is given by the permutation

ˆ

1 2 3 4 5 6 7 8
1 2 6 5 3 4 8 7

˙

.

It factorizes into product of four cycles
p1qp2qp3645qp78q.

Thus there are four points on the Riemann surface over z “ 0, two of them regular i.e. of multiplicity 1, one
point of multiplicity 4 and one of multiplicity 2.

Exercise 1.3.57: Prove that the monodromy group of the Riemann surface of the algebraic function defined
by a generic polynomial equation of the form (1.2.27) coincides with the complete symmetric group Sn . Hint.
Show that the branch points of such a surface can be labeled by pairs of distinct numbers i , j, pi, j “ 1, ...,nq in
such a way that a circuit about the images of the points Pi j and P ji gives rise to a transposition of the i-th and
j-th points of the fiber ( when these points are suitably numbered).

1.3.3 Meromorphic functions on compact Riemann surfaces and branched coverings of
P1

Recall that a meromorphic function on a Riemann surface S is nothing but a holomorphic map

f : SÑ P1

of the surface to the Riemann sphere. The points in the preimage of the infinite point t8u P P1 “ CY t8u are
called poles of f , other points on S will be called ordinary points. If P P S is a pole of f then the function can
be expanded in a Laurent series

f “
ÿ

iě´m

ciτ
i, m ą 0, c´m , 0

convergent on some punctured neighbourhood of the point P. Here τ is a local parameter near P P S such that
τpPq “ 0. The positive number m is called the order of the pole. Near an ordinary point the function can be
expanded in a convergent power series

f “ f pPq `
ÿ

iě1

ciτ
i.
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The number
m “ min

iě1
ti | ci , 0u

is called the multiplicity mult f pPq of the ordinary point P wrt the map f : SÑ P1, cf. Definition 1.2.11. If P is a
pole of f of order m then we put mult f pPq “ m. It is easy to see that the multiplicity of a point is independent
of the choice of local parameter. Moreover, one can always choose a local parameter τ near a point P P S, either
an ordinary one or a pole, and a local parameter ζ near f pPq P C such that the map f is locally written as

ζ “ τm, m “ mult f pPq. (1.3.21)

The points of multiplicity one will be called regular points of the meromorphic function. All other points in S
will be called ramification points of f .
Example 1.3.58. Let S be the compact Riemann surface of an algebraic function wpzq defined by an irreducible
polynomial equation Fpz,wq “ wn ` a1pzqwn´1 ` ¨ ¨ ¨ ` anpzq “ 0. From the construction of Theorem 1.3.48 we
have two holomorphic maps

z : SÑ C, w : SÑ C

(we now omit hats over z and w used in the Theorem) satisfying the identity

F pzpPq,wpPqq “ 0 @ P P S.

Let us look at regular points and ramification points on S wrt the map f “ z. First, let Crit Ă C be the finite
subset in the Riemann sphere consisting of all zeros of the discriminant ∆Fpzq plus the infinite point. Denote
9S “ Szz´1pCritq. Then any point in 9S is a regular point wrt the map z. Moreover, the holomorphic map
z : 9SÑ CzCrit is a covering of degree n.

So, the ramification points can be found only in the finite set z´1pCritq. Let z0 be a point in Crit. We associate
with it a partition of n

z0 P Crit ñ a partition pm1, . . . ,mlq, mi ą 0, m1 ` ¨ ¨ ¨ `ml “ n (1.3.22)

called the ramification profile of S over z0 P Crit. Namely, choose a point z˚ close to z0 and order the n points
in the preimage z´1pz˚q. Denote µ0 P Sn the permutation generated by a small anticlockwise loop around z0
wrt the monodromy representation

µ : π1pCzCrit, z˚q Ñ Sn

of the covering
´

9S,CzCrit, z
¯

. The permutation µ0 can be factorized, in a unique way, into a product of l
cycles of the lengths m1, . . . , ml. This is the partition in question. Now we are ready to describe the preimage
z´1pz0q P S of the point z0 P Crit. It consists of l points P1, . . . , Pl of multiplicities m1, . . . , ml respectively. Since
the preimage of any point away from Crit consists of n regular points in S we assign p1, 1, . . . , 1q (n times) as
the ramification profile over z0 < Crit.

Exercise 1.3.59: Describe the ramification points of the holomorphic map f : CÑ C given by a polynomial of
degree n

f pzq “ a0zn ` a1zn´1 ` ¨ ¨ ¨ ` an, a0 , 0, for z P C.

The above Example is a brief summary of the constructions and results of Section 1.3.2. Our nearest goal is
to extend them to arbitrary non-constant meromorphic functions on arbitrary compact Riemann surfaces.
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Proposition 1.3.60. Let f : SÑ C be a non-constant holomorphic map of a compact Riemann surface S. Then

• The map f is surjective.

• The preimage of any point in C is a finite subset of S.

• The number of ramification points on S is finite.

Proof For any open subset U Ă S its image f pUq Ă C is open. This can be easily proven by using (1.3.21). So
f pSq is an open subset in C. Since S is compact its image is also a closed subset. Therefore f pSq “ C as C is a
connected Hausdorff topological space.

Let us now consider the preimage f´1pz0q Ă S of a given point z0 P C. Suppose it consists of an infinite set
of points P1, P2, . . . . By definition f pPiq “ z0 for any i. Due to compactness of the Riemann surface one can
choose a convergent subsequence Pik Ñ P0 P S (the so-called accumulation point of the infinite set). Using the
following uniqueness statement from complex analysis

Lemma 1.3.61. Let f1, f2 be two functions holomorphic on an open connected domain U Ă C taking equal values at the
points of an infinite subset with an accumulation point in U. Then f1 ” f2.

along with connnectedness of S we conclude that f ” z0. Such a contradiction proves the second part of
Proposition.

Proof of the third statement of Proposition is quite similar. Namely, if Pi P S is a ramification point then
d f pPiq{dτ “ 0 where τ is a local parameter near Pi. If the set of such points is infinite then, using again the
above Lemma and connectedness of Swe conclude that f is a constant map.

Definition 1.3.62. Let f : S Ñ C be a non-constant holomorphic map of a compact Riemann surface. A point z0 P C
is called a branch point wrt this map if z0 “ f pP0q for some ramification point P0 P S. The finite set of all branch points
will be denoted Branch Ă C.

Remark 1.3.63. If S is the compact Riemann surface of an algebraic function wpzq then the set of all branch
points wrt the map f pz,wq “ z belongs to the set Crit (see above) but not necessarily coincides with it.

Theorem 1.3.64. 1. Let f : S Ñ C be a non-constant holomorphic map of a compact Riemann surface. Denote
9S “ f´1

´

CzBranch
¯

. Then the triple
´

9S,CzBranch, f | 9S

¯

(1.3.23)

is a covering of a finite degree n for some n ě 1.
2. Let z0 P C be a branch point and tP1u Y ¨ ¨ ¨ Y tPlu “ f´1pz0q. Denote

mi “ mult f Pi, i “ 1, . . . , l.

Then the ramification profile over z0 wrt the covering (1.3.23) equals pm1, . . . ,mlq. In particular

m1 ` ¨ ¨ ¨ `ml “ n.

Proof Let tP1u Y ¨ ¨ ¨ Y tPnu “ f´1pz0q Ă S be the full preimage of a point z0 P CzBranch. All the points P1, . . . ,
Pn are regular. So for every i “ 1, . . . ,n there is an open neighbourhood Pi P Ui Ă S such that the restriction

f : Ui Ñ Vi for some open neighbourhood Vi Ă CzBranch of z0



70 CHAPTER 1. RIEMANN SURFACES

is biholomorphic. Put V “
Şn

i“1 Vi. Then f´1pVq is biholomorphically equivalent to V ˆ t1, 2, . . . ,nu. This
proves the first part of Theorem since CzBranch is a connected complex manifold.

Let us proceed to the second part. Choose local parameters τ1, . . . , τl near the points P1, . . . , Pl respectively
and a local parameter ζ near the branch point z0 in such a way that τkpPkq “ 0 and the map f near Pk has the
form

ζ “ τmk
k .

Note that the local parameter ζ is chosen independently of k; this always can be done. Near Pk the points in
the preimage f´1pζ˚q for small |ζ˚| have the form

Qpkq1 “ ζ
1

mk
˚ , Qpkq2 “ ωζ

1
mk
˚ , . . . , Qpkqmk

“ ωmk´1ζ
1

mk
˚ where ω “ e

2πi
mk .

Replacing ζ˚ ÞÑ e2πiζ˚ we obtain the action of the monodromy around the branch point z0 of the covering
(1.3.23)

´

Qpkq1 ,Qpkq2 , . . . ,Qpkqmk

¯

ÞÑ

´

Qpkq2 , . . . ,Qpkqmk
,Qpkq1

¯

.

This is a cycle of the length mk, k “ 1, . . . , l.

The following corollary of the Theorem has a particular importance.

Corollary 1.3.65. Let f be a holomorphic map of a compact Riemann surface to the Riemann sphere. Then
ÿ

tPPS | f pPq“z0u

mult f pPq

does not depend on z0 P C.

Definition 1.3.66. The number of sheets of the covering (1.3.23) is called the degree of a meromorphic function f on a
compact Riemann surface. It will be denoted by deg f .

According to Corollary 1.3.65 the degree of a meromorphic function is equal to the number of points,
counted with multiplicities, in the preimage of any point in C.

Example 1.3.67. The meromorphic function f on C defined by a polynomial of degree n has a single pole at
infinity of order n. Thus deg f “ n. Applying Corollary 1.3.65 we arrive at the Main Theorem of Algebra
saying that the number of roots, counted with multiplicities of a polynomial of degree n is equal to n.

Exercise 1.3.68: Let f be a meromorphic function on a compact Riemann surface S having only one pole of
order 1. Prove that f : SÑ C is a biholomorphic equivalence.

Definition 1.3.69. A compact Riemann surface is called rational if it is biholomorphically equivalent to the Riemann
sphere.

Exercise 1.3.70: Prove that a compact Riemann surface is rational if and only if there exists a meromorphic
function of degree 1 on it.

Exercise 1.3.71: Prove that the field of meromorphic functions (see Remark 1.1.16) on a rational Riemann
surface is isomorphic to the field Cpzq of rational functions of one variable.
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To conclude this section we briefly discuss more general holomorphic maps between Riemann surfaces. Let
f : S1 Ñ S2 be a non-constant holomorphic map between compact Riemann surfacesS1 andS2. The following
general propertes of such maps can be established in a way similar to the particular case S2 “ P1 considered
above. Namely,

• the number of ramification points in S1 is finite;

• the number of branch points in S2 is finite;

• the number of points in the preimage f´1pQq Ă S1 counted with multiplicities does not depend on the
choice of the point Q Ă S2. This number is called degree of the map f and denoted deg f .

We leave as an exercise to the reader to formulate the precise definitions of a ramification point, branch
point, multiplicity of a point.

Example 1.3.72. The holomorphic map (1.1.24) between complex tori has degree n. The sets of ramification
points and branch points both are empty.

Exercise 1.3.73: Let f : S1 Ñ S2 be a non constant holomorphic map of Riemann surfaces. Prove that if S1 is
compact then so is S2.

Given a holomorphic map f : S1 Ñ S2 of compact Riemann surfaces and a meromorphic function ϕ2 on S2
one can construct a meromorphic function ϕ1 by using the pullback ϕ1 “ f˚ϕ2

f˚ϕ2pPq “ ϕ2p f pPqq.

One obtains a homomorphism
f˚ :MpS2q ÑMpS1q

of the fields of meromorphic functions. It is an isomorphism iff f is a biholomorphic equivalence.

Proposition 1.3.74. A holomorphic map f : S1 Ñ S2 of compact Riemann surfaces is biholomorphic iff deg f “ 1.

Proof of Proposition is left as an exercise for the reader.

Exercise 1.3.75: Consider the compact Riemann surface S of the algebraic function defined by equation wn “

Pmpzq where Pmpzq is a polynomial of degree m in z with distinct roots. Consider the group of automorphisms
of S of the form

J : pz,wq Ñ pz, e2πi j{nwq, j “ 0, 1, . . . ,n´ 1

and define the equivalence relation pz1,w1q » pz2,w2q if z1 “ z2 and w1 “ e2πi j{nw2 for some j. Show that the
quotient surface S{J is well defined and it is biholomorphic to P1. Determine the ramification points of the
projection map

π : SÑ S{J.

Example 1.3.76. Consider the hyperelliptic Riemann surfaceS of w2 “ P2g`2pzq. We show that any such surface
is biholomorphically equivalent to some surface S̃ of the form rw2 “ rP2g`1przq. Let z0 be one of the zeros of the
polynomial P2g`2pzq, and let

rz “
1

z´ z0
, rw “

w
pz´ z0q

g`1 .
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The point pz0, 0q P S goes to the infinite point of S̃. The two infinite points P˘ P S where z Ñ 8 and
w{zg`1 Ñ ˘1 go to p0,˘1q P S̃. The inverse mapping has the form

z “ z0 `
1
z̃
, w “

rw
rzg`1 .

If P2g`2pzq “ pz´ z0q
ś2g`1

i“1 pz´ ziq, then rP2g`1przq “
ś2g`1

i“1 p1` pz0 ´ ziqrzq.

1.3.4 Rational versus meromorphic functions on compact Riemann surfaces

Let S be the compact Riemann surface of an algebraic function wpzq defined by an irreducible polynomial
equation Fpz,wq “ 0. How can we construct meromorphic functions f : S Ñ P1 on it? We already have two
meromorphic functions denoted by the same symbols z and w satisfying the identity F pzppq,wppqq “ 0 for any
p P S. More generally we can take a rational function of two variables

Rpz,wq “
Ppz,wq
Qpz,wq

, Ppz,wq, Qpz,wq P Crz,ws (1.3.24)

and restrict it on S, i.e., define
f ppq “ Rpzppq,wppqq, p P S. (1.3.25)

The following simple statement says that, under a natural assumption about the denominator the above
construction produces a meromorphic function on the Riemann surface.

Proposition 1.3.77. Assume that the restriction on S of the polynomial Qpz,wq does not vanish identically. Then the
rational function (1.3.24), (1.3.25) is meromorphic on S.

Proof Any algebraic combination of the meromorphic functions z, w is a meromorphic function on S. So the
functions Ppzppq,wppqq, Qpzppq,wppqq are meromorphic and the latter one is not an identical zero. The ratio of
these meromorphic functions is also meromorphic.

We will now prove the converse statement.

Theorem 1.3.78. Let S be the compact Riemann surface of the algebraic function wpzq defined by an irreducible equation

Fpz,wq “ a0pzqwn ` a1pzqwn´1 ` ¨ ¨ ¨ ` anpzq “ 0 (1.3.26)

Let f be a meromorphic function on S. Then f can be represented as a rational function of z and w.

Proof Within this proof it will be convenient to redenote by π : S Ñ C the function p ÞÑ zppq. Take a generic
point z on the complex plane such that its preimage π´1pzq Ă S consists of n distinct points. Ordering them in
an arbitrary way we obtain two n-tuples of locally well defined functions w1pzq, . . . , wnpzq and f1pzq, . . . , fnpzq.
Consider the following combinations

b1pzq “ f1pzq ` ¨ ¨ ¨ ` fnpzq
b2pzq “ w1pzq f1pzq ` ¨ ¨ ¨ ` wnpzq fnpzq

. . .
bnpzq “ w1pzqn´1 f1pzq ` ¨ ¨ ¨ ` wnpzqn´1 fnpzq.

(1.3.27)
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They do not depend on the choice of the order of points in the preimage hence they are monodromy invariant.
Due to the monodromy invariance of b1pzq, . . . , bnpzq they are rational functions in z. We now look at (1.3.27)
as at a system of linear equations for f1pzq, . . . , fnpzq. The determinant Dpw1pzq, . . . ,wnpzqq of the matrix of
coefficients of the system is nothing but the Vandermonde determinant

Dpw1pzq, . . . ,wnpzqq “
ź

ią j

`

wipzq ´ w jpzq
˘

.

According to Exercise 1.2.5 it is equal to

Dpw1pzq, . . . ,wnpzqq “

a

∆Fpzq
a0pzqn´1

where ∆Fpzq is the discriminant of the polynomial Fpz,wq. So it is not an identical zero.
Using Kramer rule write an explicit formula for the solution of the linear system. For f1pzqwe have

f1pzq “
Dpbpzq,w2pzq, . . . ,wnpzqq

Dpw1pzq,w2pzq, . . . ,wnpzqq

where Dpbpzq,w2pzq, . . . ,wnpzqq is obtained from the Vandermonde determinant by replacing the first column
`

1,w1pzq, . . . ,w1pzqn´1
˘

by pb1pzq, . . . , bnpzqq. Multiplying both the numerator and denominator by the Vander-
monde

f1pzq “
a0pzq2n´2

∆Fpzq
Dpbpzq,w2pzq, . . . ,wnpzqqDpw1pzq,w2pzq, . . . ,wnpzqq

we obtain a polynomial in w1pzq whose coefficients are rational functions in z combined with symmetric
polynomials in w2pzq, . . . , wnpzq. These symmetric polynomials can be expressed via the coefficients of

pw´ w2pzqq . . . pw´ wnpzqq “
1

a0pzq
Fpz,wq

w´ w1pzq
“

1
a0pzq

“

a0pzqwn´1 ` pa0pzqw1pzq ` a1pzqqwn´2 ` . . .
‰

.

The coefficients of this polynomial are rational functions in z and w1pzq. We finally arrive at an expression of
the form

f1pzq “ Rpz,w1pzqq

where Rpz,wq is some rational function in two variables. For other functions fkpzqwe obtain similar expressions

fkpzq “ Rpz,wkpzqq, k “ 2, . . . ,n

with the same Rpz,wq. Therefore f “ Rpz,wq.

Example 1.3.79. Let S be the hyperelliptic Riemann surface

w2 “ P2n`1pzq, P2n`1pzq “
2n`1
ź

i“1

pz´ aiq, ai , a j for i , j.

The functions z and w are holomorphic in the finite part of S. These functions have poles at the infinite point
of S, namely, z has a double pole and w has a pole of order 2n ` 1. The function z has on S two simple zeros
at the points z “ 0, w “ ˘

a

P2n`1p0q that merge into a single double zero if P2n`1p0q “ 0. The function w has
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2n` 1 simple zeros on S at the branch points. The function 1{pz´ aiq has a unique second order pole at the i-th
ramification point on S and a double zero at infinity. More general rational functions on S have the form

Rpz,wq “
P0pzq ` P1pzqw
Q0pzq `Q1pzqw

for some polynomials P0, 1pzq, Q0, 1pzq. Multiplying both the numerator and the denominator by Q0pzq ´Q1pzqw
we can rewrite the function in the form

Rpz,wq “ R0pzq ` R1pzqw

where R0, 1pzq are rational functions of z.

Exercise 1.3.80: Describe poles and zeros of the meromorphic function

Rpz,wq “
w

śn
i“1pz´ aiq

on the hyperelliptic Riemann surface of the above example.

Exercise 1.3.81: On the same hyperelliptic surface, consider n points p1 “ pz1,w1q, . . . , pn “ pzn,wnq in the finite
part of S satisfying zi , z j for i , j and w1 ¨ ¨ ¨wn , 0. Construct a meromorphic function f on S with simple
poles at p1, . . . , pn and at infinity. Prove that such a function is unique up to a transformation f ÞÑ a f ` b, a , 0,
b P C,

Exercise 1.3.82: Prove that any meromorphic function on the Riemann surface of the algebraic function wpzq
defined by eq. (1.3.26) can be represented in the form

f “ R0pzq ` R1pzqw` ¨ ¨ ¨ ` Rn´1pzqwn´1

where R0pzq, . . . , Rn´1pzq are rational functions of z.

Exercise 1.3.83: Let S be a compact Riemann surface represented as a smooth projective curve in P2. Prove
that any meromorphic function f on S can be represented in the form

f pX : Y : Zq “
PpX,Y,Zq
QpX,Y,Zq

.

Here pX : Y : Zq are homogeneous coordinates of a point on S, P and Q are homogeneous polynomials of the
same degree such that Q does not vanish identically on the curve.

Exercise 1.3.84: Let S be a compact Riemann surface and f a degree n meromorphic function on it. Let g be
another meromorphic function onS. Prove that these functions are algebraically dependent that is, there exists
a polynomial Fpz,wq of degree n in w such that

F p f ppq, gppqq “ 0 @ p P S.

Example 1.3.85. Let S and S̃ be two compact Riemann surfaces realized as smooth projective curves in P2

defined by homogeneous polynomial equations QpX,Y,Zq “ 0 and Q̃pX,Y,Zq “ 0 respectively. A map f : SÑ S̃
is called rational if it can be represented in the form

f pX : Y : Zq “ pApX,Y,Zq : BpX,Y,Zq : CpX,Y,Zqq
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where A, B, C are three homogeneous polynomials of the same degree such that none of them vanishes
identically on S and satisfying

pApX,Y,Zq,BpX,Y,Zq,CpX,Y,Zqq , p0, 0, 0q @ pX : Y : Zq P S

and
Q̃ pApX,Y,Zq,BpX,Y,Zq,CpX,Y,Zqq “ 0 @ pX : Y : Zq P S.

Let us prove that the map f is holomorphic. Consider a point p P S belonging to the chart UZ “ tpX : Y :
Zq |Z , 0u on the projective plane and assume that p̃ “ f ppq P S̃ belongs to the same chart. Then locally, near p
the map f in the coordinates x “ X{Z, y “ Y{Z is given by a pair of rational functions

f : px, yq ÞÑ px̃, ỹq “
ˆ

Apx, y, 1q
Cpx, y, 1q

,
Bpx, y, 1q
Cpx, y, 1q

˙

.

Due to smoothness of the curve S one of the coordinates x or y can be used as a local parameter near p; let it be
x “: τ then y “ ypτq is a locally defined holomorphic function. In a similar way near p̃ assume that, say, ỹ “: τ̃
works as a local parameter on S̃. Then the map f is locally given by the holomorphic function

τ̃ “
Bpτ, ypτq, 1q
Cpτ, ypτq, 1q

.

In a similar way one can consider other combinations of charts on P2 and other choices of local parameters on
the curves.

Let us now prove the converse statement saying that any holomorphic map between smooth projective
curves is rational. To this end take two meromorphic functions x̃ “ X{Z, ỹ “ Y{Z on S̃. Their pullbacks f˚x̃
and f˚ ỹ are meromorphic functions on S. Hence, according to Theorem 1.3.78 they are rational functions on
the curve S

x̃ “
apx, yq
cpx, yq

, ỹ “
bpx, yq
cpx, yq

where apx, yq, bpx, yq, cpx, yq are polynomials; we have reduced the two fractions to a common denominator
cpx, yq. Let p, q, r be non-negative integers such that

ZpapX{Z,Y{Zq “ ApX,Y,Zq, ZqbpX{Z,Y{Zq “ BpX,Y,Zq, ZrcpX{Z,Y{Zq “ CpX,Y,Zq

with some homogeneous polynomials A, B, C. Denote m “ maxpp, q, rq. Then f coincides with the rational
map

f pX : Y : Zq “
`

Zm´pApX,Y,Zq : Zm´qBpX,Y,Zq : Zm´rCpX,Y,Zq
˘

.

Exercise 1.3.86: Let S be a non-singular projective curve defined as S :“ tpX : Y : Zq P P2 |QpX,Y,Zq “ 0u
where Q is an irreducible homogeneos polynomial of degree ně 2. Show that the map

pX : Y : Zq Ñ pQX : QY : QZq

from S to P2 is well defined. The image of such a map is called the dual curve Ŝ to S. Find the dual curves
for a conic and for the Fermat cubic x3 ` y3 ` z3 “ 0. Show that the map is holomorphic but it does not have a
holomorphic inverse if n ě 3.
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Example 1.3.87. LetC be the algebraic curve defined by an irreducible polynomial equation Fpz,wq “ 0. Denote
by S the compact Riemann surface of an algebraic function wpzq defined by the same equation. The surface is
equipped with a pair of meromorphic functions ẑ, ŵ that define a map

ρ : SÑ C, ρpPq “ pẑpPq, ŵpPqq

biholomorphic outside a finite number of points, see Theorem 1.3.48 above. We want to compare rational
functions on C and on S especially for the case when the curve has singularities. More precisely, we have a
natural pullback map

ρ˚ : trational functions globally defined on Cu Ñ tmeromorphic functions on Su (1.3.28)

ρ˚p f qpPq “ f pρpPqq , P P S, for a rational function f on C.

What is the image of this map?
Let us begin with a simple example of the curve

C : w2 “ z3 ` z2.

The Riemann surface S is rational. It can be described by the equation w̃2 “ z̃` 1, see Example ?? above. The
map ρ has the form11

ρpz̃, w̃q “ pz,wq where z “ z̃, w “ z̃ w̃.

The two points P˘ “ pz̃ “ 0, w̃ “ ˘1q P S go to the same point ρpP˘q “ p0, 0q on C. Thus the pullback ρ˚ of any
rational function globally defined on the curve C consists of meromorphic functions on S taking equal values
at the points P˘. It remains to observe that, due to the rationality of S the space of meromorphic functions on
it is isomorphic to the space of rational functions of the variable w̃. Therefore the image of the map (1.3.28)
consists of rational functions f pw̃q satisfying f p1q “ f p´1q.

In a similar way one can deal with rational functions globally defined on an irreducible algebraic curve
with n nodal singularities assuming rationality of the corresponding compact Riemann surface (as an example
one can take the curve w2 “ z

śn
i“1pz ´ ziq

2). Then the image of the pullback map (1.3.28) consists of rational
functions of one variable satisfying

f paiq “ f pbiq, i “ 1, . . . ,n

for some pairwise distinct complex numbers a1, . . . , an, b1, . . . , bn.

1.4 Example: complex tori and elliptic functions

Let T2 “ T2
ω,ω1 be a complex torus

T2 “ C{Λω,ω1 (1.4.1)

where
Λω,ω1 “ t2mω` 2nω1 | m,n P Zu (1.4.2)

11One can formally invert ρ in the class of rational maps

ρ´1pz,wq “ pz,w{zq.

That means that S and C are birationally equivalent. Observe that the function w{z is not defined at the singular point p0, 0q of the curve C.
We leave as an exercise to the reader to prove birational equivalence between an arbitrary irreducible algebraic curve and the corre-

sponding compact Riemann surface constructed in Theorem 1.3.48.
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be the period lattice defined by a pair of complex numbers ω, ω1 satisfying

=pω1{ωq ą 0.

We already know that there are no non-constant holomorphic functions on the torus and any meromorphic
functions on T2 can be considered as doubly periodic meromorphic function on the complex plane

f pz` 2ωq “ f pzq, f pz` 2ω1q “ f pzq @ z P C.

Such functions will be called elliptic for the reasons that will be explained later.
Values of an elliptic function at any point of the complex plane are uniquely determined by its restriction

onto the fundamental parallelogram consisting of complex numbers z of the form

z “ z0 ` 2xω` 2yω1, 0 ď x, y ď 1 (1.4.3)

for a given z0 P C. There is only finite number of poles of an elliptic function inside the parallelogram or on its
boundary. Choosing appropriately the vertex z0 we can free the boundary of (1.4.3) of the poles of the function.

Proposition 1.4.1. Let z1,. . . , zk be the poles of an elliptic function f inside a fundamental parallelogram (1.4.3). Assume
that there are no poles on the boundary of the parallelogram. Then

k
ÿ

i“1

Res
z“zi

f pzq dz “ 0.

Proof According to Cauchy theorem

k
ÿ

i“1

Res
z“zi

f pzq dz “
1

2πi

¿

C

f pzq dz

where C is the boundary of the parallelogram oriented in the anti-clockwise direction. On the opposite sides
of the boundary the function takes equal values. So the contour integral in the above equation vanishes.

Corollary 1.4.2. There is no elliptic functions with only one simple pole in the fundamental parallelogram.

Remark 1.4.3. According to Exercise 1.3.25 the above Corollary implies that the complex torus is not biholo-
morphically equivalent to the Riemann sphere. In Section 2.1 below we give another proof of this statement
based on simple topological arguments.

Exercise 1.4.4: For a given elliptic function f pzq of degree n choose a fundamental parallelogram containing
neither zeros nor poles of f on its boundary. Denote a1, . . . , an the zeros and b1, . . . , bn the poles of f inside the
parallelogram repeated according to their multiplicities. Prove that

n
ÿ

i“1

ai ´

n
ÿ

i“1

bi P Λω,ω1 .

Hint: consider the integral
1

2πi

¿

z
f 1pzq
f pzq

dz

over the boundary of the parallelogram.
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We now construct the first example of an elliptic function with one double pole in the parallelogram. The
Weierstrass elliptic function, ℘pzq is defined by

℘pzq “ ℘pz |ω,ω1q “
1
z2 `

ÿ

m2`n2,0

„

1
pz´ wmnq

2 ´
1

w2
mn



. (1.4.4)

Here and below we use the notation

wmn “ 2mω` 2nω1, m, n P Z (1.4.5)

for the points of the lattice. It is not difficult to verify that the (1.4.4) converges absolutely and uniformly on
compact sets not containing points of the period lattice. Therefore, it defines a meromorphic function of z
having double poles at the lattice nodes. This function is obviously doubly periodic: ℘pz` 2kω` 2lω1q “ ℘pzq,
k, l P Z. It is an even function ℘p´zq “ ℘pzq.

Exercise 1.4.5: Let f be a meromorphic function on the complex torus (1.4.1) having only one pole of order two
at z “ 0. Prove that

f pzq “ a℘pzq ` b, a, b P C.

The Laurent expansions of the functions ℘pzq and ℘1pzq have the following forms as z Ñ 0

℘pzq “
1
z2 `

g2z2

20
`

g3z4

28
` . . . , (1.4.6)

℘1pzq “ ´
2
z3 `

g2z
10
`

g3z3

7
` . . . , (1.4.7)

where

g2 “ 60
ÿ

m2`n2,0

w´4
mn

g3 “ 140
ÿ

m2`n2,0

w´6
mn ,

(1.4.8)

(verify!). This implies that the Laurent expansion of the function p℘1q2 ´ 4℘3 ` g2℘ ` g3 has the form Opzq as
z Ñ 0. Hence, this doubly periodic function is constant, and thus equals zero. Conclusion: the Weierstrass
function ℘pzq satisfies the differential equation

p℘1q2 “ 4℘3 ´ g2℘´ g3. (1.4.9)

Let us now map the torus T2pω,ω1q to the elliptic curve C, where

C : Y2Z “ 4X3 ´ g2XZ2 ´ g3Z3 (1.4.10)

by setting f : T2pω,ω1q Ñ Cwith

f pzq “

#

p℘pzq, ℘1pzq, 1q, z , 0
p0, 1, 0q, z “ 0

(1.4.11)

Theorem 1.4.6. 1. The elliptic curve (1.4.10) is non-singular.
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2. The map (1.4.11) of the complex torus (1.4.1) to the Riemann surface (1.4.10) is a biholomorphic isomorphism.

3. Any non-singular elliptic curve of the form (1.4.10) is biholomorphically equivalent to a complex torus of the form
(1.4.1)

Proof As the Weierstrass function has on the torus only one pole of order two, the degree of the holomorphic
map ℘ : T2 Ñ C is equal to two. That means that for a given u P C the equation ℘pzq “ u has two solutions
counted with multiplicities. If z is a solution then so is ´z since the function is even. These two solutions are
distinct iff 2z < Λω,ω1 . Therefore the ramification points of the holomorphic map coincide with the half-periods
of the lattice. All of them have multiplicity two.

Modulo the lattice there are four half-periods: ω0 “ 0 and

ω1 “ ω, ω2 “ ´ω´ ω
1, ω3 “ ω

1. (1.4.12)

The point ω0 makes the preimage of the infinite point in C. Denote

ei “ ℘pωiq, i “ 1, 2, 3. (1.4.13)

Lemma 1.4.7. 1. The complex numbers e1, e2, e3 are pairwise distinct.

2. They are roots of the cubic equation 4u3 ´ g2u´ g3 “ 0 where g2, g3 are defined by eqs. (1.4.8).

Proof Suppose, for example that e1 “ e2. Then the full preimage ℘´1pe1q consists of two points ω1 and ω2 of the
total multiplicity four – a contradiction.

To prove the second part of Lemma we observe that ℘1pzq is an odd function. So

℘1pωiq “ ´℘
1p´ωiq “ ´℘

1p´ωi ` 2ωiq “ ´℘
1pωiq ñ ℘1pωiq “ 0, i “ 1, 2, 3.

Substituting z “ ωi in eq. (1.4.9) we obtain

0 “ 4e3
i ´ g2ei ´ g3, i “ 1, 2, 3.

The first statement of Theorem readily follows from Lemma. To prove the second statement it suffices to
prove that the degree of the map (1.4.11) is equal to one. That is, for a given point pX,Y,Zq, Z , 0, of the curve
(1.4.10) we have to solve the system of equations

#

℘pzq “ u, u “ X
Z , v “ Y

Z

℘1pzq “ v

If v , 0 then the first equation has two distinct solutions z and ´z. The second equation selects only one of
them since ℘1pzq , ℘1p´zq in this case. Let us now consider the case v “ 0. Then, we have u “ e1, e2 or e3. We
already know that the equation ℘1pzq “ 0 has three distinct solutions z “ ω1, ω2 and ω3. Since ℘1 is a degree
three meromorphic function on the torus there are no other solutions. So we have uniqueness of the solution to
the system also in this case. Finally for the point at infinity p0, 1, 0q of (1.4.10) the unique point in the preimage
is z “ 0.

The proof of the third part of Theorem follows from the following lemma.
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Lemma 1.4.8. Consider the affine curve v2 “ 4u3 ´ g2u´ g3 and defined the integrals

ωi “

ż ei

8

du
a

4u3 ´ g2u´ g3
, i “ 1, 2, 3

for a suitable choice of the square root. The solution to the differential equation

ˆ

du
dz

˙2

“ 4u3 ´ g2u´ g3 (1.4.14)

satisfying

upzq “
1
z2 ` O

ˆ

1
z

˙

, z Ñ 0

has the form
upzq “ ℘pz |ω,ω1q

where ω “ ω1, ω1 “ ω3.

Proof The differential equation (1.4.14) can be solved by quadratures. Indeed we can write it in the form

du
a

4u3 ´ g2u´ g3
“ dz

so that

zpuq “
ż u

8

du1
a

4pu1q3 ´ g2u1 ´ g3
, zpuq “ ˘

1
?

u
`Opu´

5
2 q

It is more convenient to use the notation

zpPq “
ż P

8

du1

v1
, P “ pu, vq.

For P Ñ P` γ where γ is a loop in Cwe have

zpPq Ñ zpPq `
ż

γ

du1

v1

The inverse map
z ÞÑ Ppzq “ pupzq, vpzqq

satisfies

u

¨

˚

˝
z`

¿

γ

du1

v1

˛

‹

‚
“ upzq, v

¨

˚

˝
z`

¿

γ

du1

v1

˛

‹

‚
“ vpzq

Choose γi the path from8 to ei on the first sheet and back to the second sheet so that
ż

γi

du1

v1
“ 2ωi
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so
upz` 2ωiq “ upzq, vpz` 2ωiq “ vpzq, i “ 1, 2, 3.

One has ω1 ` ω2 ` ω3 “ 0. So we choose 2ω :“ 2ω1 and 2ω1 :“ 2ω3. Then upzq and vpzq are elliptic functions
on the torus T2

pω,ω1q
. Further

upzq `
1
z2 `Opz´4q, vpzq “ ´

2
z3 `Opzq z Ñ 0

We conclude that upzq “ ℘pzq and vpzq “ ℘1pzq.
Namely, the inverse function to the solution in question can be written as elliptic integral

zpZq “
ż Z

8

dZ
a

4Z3 ´ g2Z´ g3
.

For sufficiently large |Z| the function

zpZq “ ˘
1
?

Z
` O

´

Z´5{2
¯

(1.4.15)

is well defined up to a sign. We can extend it to a (multivalued) function zpPq, P “ pZ,Wq on the elliptic
Riemann surface (1.4.10) by the integral

zpPq “
ż P

8

dZ
W

along some path from the infinite point of the surface to the point P. For a given P it depends only on the
homotopy class of the path with fixed endpoints. A change of the homotopy class changes the integral as

zpPq Ñ zpPq `
¿

γ

dZ
W

for a loop γ on the Riemann surface. Therefore the inverse map

z ÞÑ Ppzq “ pZpzq,Wpzqq

satisfies

Z

¨

˚

˝
z`

¿

γ

dZ
W

˛

‹

‚
“ Zpzq, W

¨

˚

˝
z`

¿

γ

dZ
W

˛

‹

‚
“ Wpzq

for any loop γ. Take the following particular loops γi, i “ 1, 2, 3 as follows: choose a path from infinity to ei on
one sheet of the Riemann surface then return back along the same path on another sheet. Then

¿

γi

dZ
W
“ 2ωi, i “ 1, 2, 3,

see eq. (??). We obtain
Zpz` 2ωiq “ Zpzq, Wpz` 2ωiq “ Wpzq, i “ 1, 2, 3.
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It is easy to see that, under a suitable choice of orientations on the loops one has ω1 ` ω2 ` ω3 “ 0. So we
choose 2ω :“ 2ω1 and 2ω1 :“ 2ω3 as two independent periods. It remains to prove that Impω1{ωq ą 0. To this
end consider the following integral

i
2

x dZ
W
^

dZ
W
“

i
2

x dZ^ dZ
|W|2

ą 0

over the Riemann surface. Applying Stokes theorem rewrite it as a contour integral

i
2

¿

zpPq
dZ
W

over two sides of the loopsγ1 andγ3. The latter is equal (cf. the proof of Lemma 3.1.16 below) to 2ipωω1´ω1ωq “
4|ω|2Im ω1

ω .
We conclude that Zpzq and Wpzq are elliptic functions on the complex torus T2

ω,ω1 . They have poles only at
z “ 0. From (1.4.15) it follows that

Zpzq “
1
z2 ` Opz

2q, Wpzq “ ´
2
z3 ` Opzq for z Ñ 0.

Hence
Zpzq “ ℘pz |ω,ω1q, Wpzq “ ℘1pz |ω,ω1q.

This completes the proof of Lemma and, therefore of Theorem.

Exercise 1.4.9: Prove that any elliptic function f pzqwith period lattice t2mω` 2nω1u can be represented in the
form

f pzq “ P r℘pzqs `Q r℘pzqs℘1pzq

where P and Q are rational functions.

Exercise 1.4.10: Prove the following addition theorem for the Weierstrass function

det

¨

˝

1 ℘puq ℘1puq
1 ℘pvq ℘1pvq
1 ℘pu` vq ´℘1pu` vq

˛

‚“ 0 @ u, v. (1.4.16)

Derive that the map (1.4.11) is an isomorphism of the group of points on the torus T2 “ C{t2ωZ ‘ 2ω1Zu to
the group of points on the cubic (1.4.10) with the marked point at infinity, see Exercise 1.2.40 above.

Example 1.4.11. Let us briefly consider behaviour of elliptic functions under holomorphic maps between
complex tori. Take the first nontrivial case of the degree two map

f2 : T2
ω,ω1 Ñ T2

ω
2 ,ω

1 ,

see eq. (1.1.24) above. To compute the pullback of the Weierstrass function ℘pz | ω2 , ω
1q on the torus T2

ω{2,ω1 we
have to express it via ℘pzq “ ℘pz |ω,ω1q. Proof of the resulting expression

℘
´

z |
ω
2
, ω1

¯

“ ℘pzq ` ℘pz´ ωq ´ e1

(the so-called Landen transformation for Weierstrass functions) is left as an exercise to the reader.



1.4. EXAMPLE: COMPLEX TORI AND ELLIPTIC FUNCTIONS 83

Exercise 1.4.12: Prove that
ˆ

℘

ˆ

2
3

mω`
2
3

nω1
˙

, ℘1
ˆ

2
3

mω`
2
3

nω1
˙˙

, 0 ď m, n ď 2

are the inflection points of the cubic (1.4.10), see Exercise 1.2.39 above.

Exercise 1.4.13: Let ℘pzq be the Weierstrass function with a rectangular lattice of periods

ω P Rą0, ω1 P iRą0.

(1) Prove that ℘pzq takes real values on the lines of four types

Re z “ 2mω, or i Im z “ 2nω1

and
Re z “ p2m` 1qω, or i Im z “ p2n` 1qω1

with m, n P Z.

(2) Prove that the coefficients g2, g3 given by eqs. (1.4.8) are real.

(3) Prove that the roots (1.4.13) of the cubic polynomial 4Z3 ´ g2Z´ g3 are real and satisfy the inequalities

e1 ą e2 ą e3.

Observe that e1 ą 0 and e3 ă 0.

(4) Prove that ℘pzq restricted onto the line i Im z “ p2n` 1qω1, n P Z satisfies

e3 ď ℘pzq ď e2

and its restriction onto the line Re z “ p2m` 1qω, m P Z satisfies

e2 ď ℘pzq ď e1.

(5) Prove that any elliptic Riemann surface (1.4.10) with real branch points is biholomorphically equivalent
to a complex torus with a rectangular lattice of periods.

Define the Weierstrass ζ- and σ-functions useful in the theory of elliptic functions by quadratures

ζ1pzq “ ´℘pzq,
σ1pzq
σpzq

“ ζpzq (1.4.17)

assuming that the integration constants are chosen in such a way that, for z Ñ 0

ζpzq “
1
z
` O

`

z3˘ , σpzq “ z` O
`

z5˘ . (1.4.18)

They are given by the following expansion

ζpzq “ ζpz |ω,ω1q “
1
z
`

ÿ

m2`n2,0

„

1
z´ wmn

`
1

wmn
`

z
w2

mn



. (1.4.19)
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and infinite product

σpzq “ σpz |ω,ω1q “ z
ź

m2`n2,0

"ˆ

1´
z

wmn

˙

exp
„

z
wmn

`
z2

2w2
mn

*

. (1.4.20)

The Weierstrass ζ-function has simple poles at the points of the period lattice. The function σpzq is an entire
function on the complex plane. It has simple zeros at the points of the period lattice. These functions satisfy

ζ1pzq “ ´℘pzq,
σ1pzq
σpzq

“ ζpzq. (1.4.21)

The functions ζpzq and σpzq are not elliptic; under a translation of the argument by a vector of the period lattice
they transform according to

ζpz` 2ωq “ ζpzq ` 2η, ζpz` 2ω1q “ ζpzq ` 2η1 (1.4.22)

σpz` 2ωq “ ´σpzq expr2ηpz` ωqs, σpz` 2ω1q “ ´σpzq expr2η1pz` ω1qs (1.4.23)

where η and η1 are constants depending on the period lattice.

Exercise 1.4.14: Prove that
η “ ζpωq, η1 “ ζpω1q. (1.4.24)

Exercise 1.4.15: Prove the transformation law (1.4.23).

Exercise 1.4.16: Integrating ζpzq over the fundamental parallelogram centered at the origin, prove Legendre
relation

ηω1 ´ η1ω “
πi
2
. (1.4.25)

Exercise 1.4.17: Prove that the sum
n
ÿ

k“1

ckζpz´ zkq ` c0 (1.4.26)

is an elliptic function in z iff the coefficients c1, . . . , cn satisfy

c1 ` ¨ ¨ ¨ ` cn “ 0.

Prove that any elliptic function with only simple poles can be represented in the form (1.4.26).

Exercise 1.4.18: Derive the following expression for the elliptic function ζpu` vq ´ ζpuq ´ ζpvq

ζpu` vq ´ ζpuq ´ ζpvq “
1
2
℘1puq ´ ℘1pvq
℘puq ´ ℘pvq

. (1.4.27)

Exercise 1.4.19: Prove that the function
n
ź

k“1

σpz´ akq

σpz´ bkq
(1.4.28)

is an elliptic function in z iff
n
ÿ

k“1

ak “

n
ÿ

k“1

bk.

Prove that any elliptic function can be represented in the form (1.4.28), up to a constant factor.
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Exercise 1.4.20: Prove the following identity:

σpu` vqσpu´ vq
σ2puqσ2pvq

“ ℘pvq ´ ℘puq. (1.4.29)

Exercise 1.4.21: Prove the following generalization of the previous identity

det

¨

˚

˚

˝

1 ℘pu0q ℘1pu0q . . . ℘pn´1qpu0q

1 ℘pu1q ℘1pu1q . . . ℘pn´1qpu1q

. . . . . . . . . . . . .
1 ℘punq ℘1punq . . . ℘pn´1qpunq

˛

‹

‹

‚

“ p´1q
npn´1q

2 1! 2! . . . n!
σpu0 ` u1 ` ¨ ¨ ¨ ` unq

ś

iă j σpui ´ u jq

σn`1pu0qσn`1pu1q . . . σn`1punq

for any n ě 1 and arbitrary u0, u1, . . . , un.

Exercise 1.4.22: Show that for an arbitrary λ , 0

℘pλz |λω, λω1q “ λ´2℘pz |ω,ω1q

ζpλz |λω, λω1q “ λ´1ζpz |ω,ω1q
σpλz |λω, λω1q “ λσpz |ω,ω1q

(1.4.30)

Exercise 1.4.23: Consider the Korteweg–de Vries (KdV) equation

9u “ 6uu1 ´ u3 (1.4.31)

(here u “ upx, tq, the dot stands for the derivative with respect to t, and the prime stands for the derivative with
respect to x). Show that any (complex) periodic solution of KdV in the form of a traveling wave u “ upx´ ctq
has the form

upx, tq “ 2℘px´ ct´ x0q ´
c
6
, (1.4.32)

where the Weierstrass function ℘ corresponds to some elliptic curve (1.4.10), and the velocity c and the phase
x0 are arbitrary.

Exercise 1.4.24: (see [8]). Look for a solution of the KdV equation in the form

upx, tq “ 2℘px´ x1ptqq ` 2℘px´ x2ptqq ` 2℘px´ x3ptqq. (1.4.33)

Derive for the functions x jptq the system of differential equations

:x j “ 12
ÿ

k, j

℘px j ´ xkq, j “ 1, 2, 3, (1.4.34)

(a particular case of Calogero–Moser system and its integrals

ÿ

k, j

℘1px j ´ xkq “ 0, j “ 1, 2, 3. (1.4.35)

Integrate this system by quadratures.
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Exercise 1.4.25: (see [?]). For the elliptic curve (1.4.10) construct a new elliptic curve w2 “ 4P̃3pzq with the
third-degree polynomial

P̃3pzq “ pz2 ´ 3g2q

ˆ

z` 9
g3

g2

˙

. (1.4.36)

Denote by ℘̃ the corresponding Weierstrass function. Let ξi j “ ℘pxiptq ´ x jptqq, i , j, where the quantities xiptq
are defined in the previous Exercise. Show that the functions ξ12ptq, ξ23ptq, and ξ13ptq are the roots of the cubic
equation

4ξ3 ´ g2ξ´
1
3

g3 `
1
2

g2℘̃p6i
a

3g2tq “ 0 (1.4.37)

Other properties of the functions, ℘, ζ and σ and of other elliptic functions as well, can be found, for
example, in the texts [2] and [?], or in the handbook [4].



Chapter 2

Topological properties of Riemann
surfaces

2.1 Genus of a compact Riemann surface

An arbitrary Riemann surface is also a real smooth oriented two-dimensional manifold. What can be said
about the topology of this manifold? From the topological point of view, Riemann surfaces are quite simple as
the following theorem shows.

Theorem 2.1.1. [18] Any compact connected orientable smooth two-dimensional manifold (= surface) is homeomorphic
to a sphere with g ě 0 handles. The number of handles is called the genus of the surface. Surfaces of different genera are
not homeomorphic.

Each surface of genus g can be obtained from a genus g´ 1 surface by removing two discs and connecting
the resulting holes with a cylinder. The surface of genus 0 is the usual sphere. See Figure 2.1 for examples of
surfaces of positive genus.

Let us compute the genus of the surfaces in the examples 1.2.42-1.2.44. We begin with example 1.2.43
namely the curve C “ tpz,wq P C2 | w2 “ z2 ´ a2u, a , 0. Let S be the compactification of C obtained by adding
two points8˘ at infinity. We want to show that the genus of S is equal to zero. For the purpose let us consider
S as a two sheeted branched covering of the Riemann sphere π : S Ñ sC, πpz,wq “ z. Delete the segment
r´a, as with endpoints at the branch points from the z-plane sC. Off this segment it is possible to distinguish
the two branches w˘ “ ˘

?
z2 ´ a2 of the two-valued function wpzq “

?
z2 ´ a2. The preimage π´1psCzr´a, asq

on S splits into two pieces, with the mapping π an isomorphism on each of them. The branches w`pzq and
w´pzq are interchanged in passing from one edge of the cut r´a, as to the other. Therefore, the surface is glued
together from two identical copies of spheres with cuts according to the rule indicated in the figure 2.2

After the gluing we again obtain a sphere, i.e., the genus g is equal to zero. Example 1.2.42 is analogous
to Example 1.2.43, but the cut must be made between the points 0 and 8, i.e. the point at infinity must be
considered as a branch point. Again the genus is equal to zero.

Remark 2.1.2. It is not difficult to prove that the compact Riemann surface S of the algebraic function wpzq “

87
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Figure 2.1: A sphere with five handles

Figure 2.2: The cuts of the algebraic function
?

z2 ´ a2

?
z2 ´ a2 is biholomorphically equivalent to the Riemann sphere. Indeed, consider a family of parallel lines

w “ z´ a s

depending on a complex parameter s. For s , 0 every such line intersects the curve C in a unique point with
the coordinates

zpsq “ a
1` s2

2s
, wpsq “ a

1´ s2

2s
.

We obtain a one-to-one map
Czt0u Ñ S, s ÞÑ pzpsq,wpsqq.

For s Ñ 0 both zpsq and wpsq go to infinity but the ratio wpsq{zpsq Ñ 1. That means that the image of the point
s “ 0 coincides with the point8` P S. In a similar way for s Ñ8 both zpsq and wpsq go to infinity but the ratio
wpsq{zpsq Ñ ´1. That means that the image of the point s “ 0 coincides with the point 8´ P S. So we have a
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one-to-one holomorphic map from C to S. The inverse map is given by

spz,wq “
a

z` w
.

In Example 1.2.44 for the curve described by the equation w2 “
śn

j“1pz ´ z jq it is necessary to split up the
branch points arbitrarily into pairs and make cuts (arcs) in sC joining the paired branch points. If n is odd one
of the branch points is at 8. The surface S is glued together from two identical copies of a sphere with such
cuts, with the edges of the corresponding cuts glued together in ”cross-wise” fashion (see figure 2.4 for n “ 4).

Figure 2.3: Opening of the cuts of the two branches of the function
a

pz´ z1qpz´ z2qpz´ z3qpz´ z4q

Figure 2.4: The Riemann surface of w2 “ pz´a1qpz´a2qpz´a3qpz´a4q is glued from two copies of the extended
complex plane cut along the intervals rz1, z2s and rz3, z4s. The resulting surface topologically is a torus.

It is not hard to see that in the case n “ 4 one obtains a sphere with one handle, and, in the general case one
obtains a sphere with n{2´ 1 handles for n even and pn´ 1q{2 for n odd.
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2.1.1 Genus of a Riemann surface and the Riemann-Hurwitz formula

We derive a formula for the computation of the genus of a compact Riemann surface by computing first the
Euler characteristic of the surface.

A triangulation of a two-dimensional compact surface M is a decomposition of M into closed subsets
homeomorphic to triangles such that each pair fits in one of the following three types

• disjoint

• meet at a vertex

• meet at an edge.

We state the following theorem.

Theorem 2.1.3. [18] Every compact connected orientable 2-dimensional manifold M can be triangulated.

Given a 2-dimensional compact manifold M (possibly with boundary) and a triangulation of the manifold
with

• e “ # of edges;

• v “ # of vertices;

• t “ # of triangles,

we can associate to such triangulation the Euler characteristic.

Definition 2.1.4. The quantity
EpMq “ v´ e` t (2.1.1)

is called the Euler characteristic of the manifold M with respect to the given triangulation.

Proposition 2.1.5. The Euler number is independent from the choice of the triangulation. For a compact Riemann
surface S of genus g the Euler number is

EpSq “ 2´ 2g. (2.1.2)

Proof. We consider compact surfaces with no boundaries. Given a triangulation, one can refine the triangulation
by adding a vertex inside a triangle and three edges. This operation replaces one triangle with three triangles
an it is easy to check that the Euler number remains unchanged. Another way to refine the triangulation is to
add a point on an edge, so that two triangles are replaced by four triangles. Also in this case the Euler number
remains unchanged. These operations define elementary refinements. A general refinement is obtained by
making a sequence of elementary refinements. Therefore a given triangulation and any of its refinement have
the same Euler number. Now the main point is to show that two triangulations have a common refinement. It
is sufficient to superimpose two triangulations and add the necessary number for points to make the union of
these two triangulations a triangulation. Then the triangulation obtained in this way is a refinement of both the
triangulations. This is enough to show that the Euler number does not depend on the triangulation. Now let
us make the computation of the Euler number for a compact Riemann surface of genus g. We use an inductive
argument. For the sphere S0, choosing a triangulation as shown in the figure 2.1.1, with 4 vertices, 4 triangles
and 6 edges, one obtains that the Euler number is equal to 2. For the disc sD “ tz P C | |z| ď 1u , the Euler
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v3

v2

v4

v1

v1 v3

v2

v1

v2

v3

v4

v5

v6

Figure 2.5: Triangulation of the sphere with 4 vertices, 6 edges and 4 triangles. Triangulation of the disc with
3 vertices, 3 edges and one triangle.Triangulation of the cylinder with 6 vertices, 12 edges and 6 triangles.

number is equal to EpsDq “ 1 and for the cylinder Ccylinder of finite length the Euler number EpCcylinderq “ 0, (see
figure 2.5).

The torus can be obtained from the sphere by removing two discs and connecting them with a cylinder. It
is simple to check that the Euler number of the torus S1 can be obtained as

EpS1q “ EpS0q ´ 2EpsDq ` EpCcylinderq “ 2´ 2` 0 “ 0. (2.1.3)

Indeed removing two disks from a genus zero surface, the Euler number decreases by two, because it is just
sufficient to subtract from the Euler formula the two discs that are homeomorphic to two triangles. Next we
add a cylinder to connect the two discs. In order to compute the Euler number of the resulting surface, it is
sufficient to add the contribution of the cylinder (8 edges and 6 triangles for a triangulation like in figure 2.1.1).
The resulting Euler characteristics then can be written as in (2.1.3).

This procedure can be iterated. Indeed the surface Sg of genus g can be obtained from the surface of genus
Sg´1 by removing two discs and connecting them with a cylinder. Therefore one has

EpSgq “ EpSg´1q ´ 2EpsDq ` EpCcylinderq

which implies
EpSgq “ 2´ 2g.

�

We apply this result to calculate the genus of a branched covering over the Riemann sphere.

Proposition 2.1.6. Let S be a compact Riemann surface and f : S Ñ C a non-constant holomorphic map of degree n.
Let P1, . . . ,Pk P S be the ramification points with respect to the map f with multiplicities m1, . . . ,mk respectively. Denote
bi “ mi ´ 1, i “ 1, . . . , k the ramification indices of these points and let

b “
k
ÿ

j“1

b j

be the total ramification index. Then the genus of S is equal to

g “
b
2
´ n` 1. (2.1.4)
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Proof. Consider a triangulation of sC such that the set of vertices of the triangulation contains the points
f pP1q, . . . , f pPkq. Suppose that, for each triangle T on sC the restriction of f onto every connected component of
the preimage of the interior part of T is a homeomorphism onto the interior of T. In this way the triangulation
of sC can be lifted to a triangulation of S. Let the triangulation of C have v vertices, t triangles and e edges.
Then the triangulation of S has

• t̃ “ nt triangles

• ẽ “ ne edges

• ṽ “ nv´ b vertices.

So the Euler characteristic of the surface S equals

2´ 2g “ nv´ b´ ne` nt “ npv´ e` tq ´ b“ 2n´ b.

The Proposition is proved. �

The equation (2.1.4) is the celebrated Riemann–Hurwitz formula. A generalization of it to holomorphic
maps between compact Riemann surfaces will be given below.

As an application of the proposition 2.1.6 we calculate the genus of a smooth projective curve

S “ tpX : Y : Zq P P2 |QpX,Y,Zq “ 0u

where Q is a homogeneous polynomial of degree n. Suppose that p0 : 0 : 1q < S so that Qp0, 0,Zq “ c Zn , 0
with c , 0. Then the map

φ : SÑ P1, φpX,Y,Zq “ pX : Yq

realises S as a n-sheeted covering of P1. Let us calculate the total ramification number of this map. The
ramification points are obtained by solving the equations

QpX,Y,Zq “ 0, QZpX,Y,Zq “ 0.

The solution of the above two equations are given by the zeros of the resultant RpQ,QZq with respect to Z.
Since RpQ,QZq is a homogeneous polynomial of degree npn ´ 1q in X and Y, the total number of ramification
points counting their multiplicity is npn´ 1q.

Recall that the ramification number of a ramification point P0 “ pX0 : Y0 : Z0q indicated as bφpP0q is the
order of the zero of QpX0,Y0,Zq at Z “ Z0 minus one. We can write

QpX0,Y0,Zq “
ź

0ď jďs

pZ´ Z jq
m j

where
ř

j m j “ n and Z0, . . . ,Zs are distinct complex numbers, Z j “ Z jpX0,Z0q. With the above notation the
branching number of each branch point P j “ pX0 : Y0 : Z jq is bφpP jq “ m j ´ 1. So a regular point is simple zero
of QpX0,Y0,Zq a ramification point with ramification number one is a double zero, and in general a ramification
point with ramification number m´ 1 is a zero of order m of QpX0,Y0,Zq. So if the number of distinct roots of
the discriminant is npn´ 1q it means that the curve has npn´ 1q branch points with multiplicity one, so that the
total ramification number is npn ´ 1q. If the discriminant has for example npn ´ 1q ´ k distinct roots, k ą 0, it
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means that some of the branch points have branching number bigger than one. However the total ramification
number remains equal to npn´ 1q. Then we can apply formula 2.1.4 to obtain

g “
1
2
pn´ 1qn´ n` 1.

We summarise the above discussion with the following Lemma.

Lemma 2.1.7. The genus of a smooth projective curve of degree n is given by

g “
1
2
pn´ 2qpn´ 1q. (2.1.5)

Exercise 2.1.8: Calculate the genus of the normalisations of the following curves

• w3 “ pz´ 1qpz´ 2qpz´ 3qpz´ 4q,

• wn “ zn ` an, a , 0.

Exercise 2.1.9: Let us consider the reducible curve

C0 “ tpz,wq P C2 | pw´ p1pzqpw´ p2pzqqpw´ p3pzqq “ 0u

with
pipzq “ aiz` bi, i “ 1, 2, 3

and ai and bi i “ 1, 2, 3 complex constants such aib j ´ a jbi , 0 for i , j. Furthermore let us assume that the
polynomials pipzq satisfy the relation

p1pzq ` p2pzq ` p3pzq “ 0.

Consider the curve

C :“ tpz,wq P C2 | w3 ` wrp1pzqp2pzq ` p1pzqp3pzq ` p2pzqp3pzqqs ´ p1pzqp2pzqp3pzqp1` hq “ 0u (2.1.6)

where h is a small complex constant. Let S be the normalisation of C. Determine

• how many points have been added to C to obtain S;

• the genus of S;

• the branch points (only in the form of the expansion in h, namely ziphq “ zip0q ` hz1ip0q ` . . . );

• the monodromy of S considered as a degree 3 branched covering of the z-plane.

Exercise 2.1.10: Let us consider the curve

C :“ tpz,wq P C2 | pw´ z2qpz´ w2q ` hzw “ 0u,

where h is a small non-zero constant. Determine

• the normalisation S of C and the genus of S;

• the monodromy of Swith respect to the projection to the z plane.
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Exercise 2.1.11: Calculate the genus of the normalization of the singular curves

1. w3 “ pz´ a1q
2pz´ a2qpz´ a3q

2pz´ a4q,

2. w3 “ z3pz´ a3q
2pz´ a4q.

For each singular point calculate the number of points in the preimage of the map φ defined in theorem ??.

Exercise 2.1.12: For which value of λ the following curves are non-singular?

1. X3 ` Y3 ` Z3 ` 3λXYZ “ 0,

2. X3 ` Y3 ` Z3 ` λpX ` Y` Zq3 “ 0.

Describe the singularities when they exist and calculate the genus of the corresponding Riemann surface.

Exercise 2.1.13 (Plücker’s formula): . Let C be a projective curve of degree n with k nodes and no other
singularities. Show that the genus of the Riemann surface S obtained by resolving singularities on the curve is
equal to

g “
1
2
pn´ 1qpn´ 2q ´ k.

2.2 Homology

In this section we define the homology of a compact Riemann surface S. Given a triangulation of the Riemann
surface S, we define the verteces as 0-simplex, the edges as 1-simplex and the triangles as 2-simplex. The
orientation on the manifold induces an orientation on the triangles that can be used to orient the edges
bounding each triangle.

Definition 2.2.1. A (simplicial) 0, 1, 2-chain is a formal sum of vertices P j, edges S j or triangles T j

c0 “
ÿ

n jP j c1 “
ÿ

m jS j c2 “
ÿ

k jT j, n j,m j, k j P Z .

The element ´c1 is the edge with opposite orientation and ´t is the triangle with opposite orientation. The
vertices P1, P2, P3, . . . can be used to identify edges and triangles. For example xP1P2y is the oriented edge
from P1 to P2 and xP1,P2,P3y is the oriented triangle with sides the oriented edges xP1P2y, xP2P3y and xP3P1y.
The sets of p–chains Cp have the (natural) structure of free abelian groups (just by formal sums). A closed curve
γ̃ can be homotopically deformed to a chain of edges in the triangulation T thus defining a cycle (Exercise:
prove that it is a cycle!); this can be called a simple cycle.

With this notation we define the boundary operator δ.

Definition 2.2.2. The boundary operator δ : Cn Ñ Cn´1 with n “ 0, 1, 2 is defined as follows:

δc0 “ 0, c0 P C0

δxP1P2y “ P2 ´ P1

δxP1,P2,P3y “ xP1P2y ` xP2P3y ` xP3P1y.

The above relation defines δ on 1 and 2-simplex and it can be extend to 1 and 2-chain by linearity.
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The fundamental property is that δ2 ” 0: indeed (we need to check this only for C2)

δδpTq “ δ pxP1P2y ` xP2P3y ` xP3P1yq “ P2 ´ P1 ` P3 ´ P2 ` P1 ´ P3 “ 0 . (2.2.1)

Definition 2.2.3. A p–chain cp such that δcp “ 0 P C0 is called a p–cycle. A chain which is the boundary of another
chain is called a p–boundary. Clearly any p-boundary is a p-cycle, but not viceversa.

In our case, being the manifold of real dimension 2, all the interesting information is contained in C1; the
1–cycles and 1–boundaries are the following subgroups of C1:

Zn “ tcn P Cn | δcn “ 0u, Bn “ tcn P Cn | Dcn`1 P Cn`1, cn “ δcn`1u.

From the above definition it is clear that
Bn Ď Zn Ď Cn .

Definition 2.2.4. The first homology group of S is denoted by H1pS,Zq and is

H1pS,Zq :“
Z1pSq

B1pSq
. (2.2.2)

This homology group can be shown to be independent of the choice of triangulation T (more precisely the
homology groups corresponding to two triangulations are isomorphic).
Remark 2.2.5. The other homology groups are defined similarly: in particular H0pS,Zq is made of the classes
of points that cannot be joined by cycles. It is simple to show that H0pS,Zq “ Zk where k is the number of
connected components of S (hence for connected Riemann surfaces k “ 1). The generator is the class of any
vertex. Regarding H2pS,Zqwe have that if S is compact, then C2 consists of one 2-chain, namely the chain that
covers all the surface and B2 “ H. Therefore H2pS,Zq “ Z.

Therefore the only nontrivial group is H1pS,Zq. One has

Proposition 2.2.6. Let S be a connected compact Riemann surface of genus g. The first homology group H1pS,Zq is
isomorphic to the Abelianization of the first homotopy group, namely

H1pS,Zq »
π1pSq

rπ1pSq, π1pSqs
, (2.2.3)

where r ., .s is the standard commutator. The group H1pS,Zq is a free Abelian group with 2g generators and hence it
is isomorphic to Z2g. These generators can be chosen as (classes of) simple cycles.
Any cycle can be written as sum of simple cycles (with coefficients in Z).

Let S be a compact Riemann surface of genus g and let rγ1s, . . . , rγ2gs be the set of generators of π1pSq. Then
any element rγs P π1pSq can be uniquely written as

rγsπ1 “ rγk1s
j1
π1
˝ rγk2s

j2
π1
˝ . . . rγkns

jn
π1
, k1, . . . kn P t1, 2, . . . , 2gu

with j1, . . . , jn P Z and we use the subscript π1 to denote the elements of the homotopy group. Then the
corresponding element rγsH1 in the homology class is obtained as

rγsH1 “ j1rγk1sH1 ` j2rγk2sH1 ` ¨ ¨ ¨ ` jnrγknsH1 , k1, . . . kn P t1, 2, . . . , 2gu.

This in particular also shows that the homology is independent from the triangulation.
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Figure 2.6: The blue contour is not homotopic to the trivial loop but it is homologous to zero because it separates
the surface.

Remark 2.2.7. A cycle may be Homologous to the trivial cycle but not homotopic to a point, for example the
one in Fig. 2.6.

In the rest of this section we simply denote as γ an element in the homology. Let a1, . . . , ag, b1, . . . , bg be a
basis in H1pS,Zq. Then any cycle γ is homologous to a linear combination of the basis with integer coefficients:

γ »
g
ÿ

i“1

miai `

g
ÿ

i“1

nibi, mi, ni P Z.

Intersection number

The notion of intersection number is more general than the one given here as it applies to any two submanifolds
of complementary dimensions. In our case of complex one-dimensional manifold (i.e. real surface) two
submanifolds of complementary dimension must have both dimension 1 (i.e. they must be curves) or 0 and 2
(points and domains). The latter case is rather degenerate (although not meaningless) and we focus only on
the first case.

Given two simple cycles γ and η we represent them as smooth closed curves and we consider their
intersection: again, possibly by a small deformation of one or both contours we can reduce to the situation that
(a) the intersection is finite and
(b) all intersections occur transversally, i.e. the tangents to γ and η at the point of intersection are not parallel.

Given p P γ X η one such point of intersection, we associate a number νppq P t`1,´1u as follows. Let z
be a local coordinate at p: the two (arcs) of γ and η now are arcs in a neighbourhood of zppq “ 0 crossing
each other transversally. We denote by 9γ0 and 9η0 the two tangent vectors at zppq “ 0; if the determinant of
their components is positive we set νppq “ 1, if it is negative we set νppq “ ´1. In other words the number
νppq indicates the orientation of the axis spanned by 9γ0 and 9η0 (in this order!) relative to the orientation of the
standard<pzq, =pzq axes.

Definition 2.2.8. The intersection number between γ and η is then defined by

γ ˚ η :“
ÿ

pPγXη
νppq . (2.2.4)

It follows immediately from the definition that γ ˚ η “ ´η ˚ γ and the intersection number is an integer.
One can also prove that:

Proposition 2.2.9. The intersection number is invariant under smooth homotopy deformations of γ and η.
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Therefore the intersection number depends only on the homotopy classes of γ and η, which we then denote
by rγs ˚ rηs.

In particular it makes sense to compute the self-intersection of a cycle

rγs ˚ rγs “ 0 . (2.2.5)

This makes sense because in the actual computation one chooses two different representatives in the same class
of γ which intersect transversally: the fact that the result is zero then follows from the antisymmetry.

Note also that the intersection number depends on the orientation of the contours: if we reverse one contour
the intersection number changes sign

rγs ˚ rηs “ ´rγs´1 ˚ rηs . (2.2.6)

Moreover:

Lemma 2.2.10. The intersection number of any boundary β with any cycle γ vanishes γ ˚ β “ 0.

Proof. A boundary β is a collection of simple cycles that bound a domain. if γ is a symple cycle it must traverse
the boundary of this domain an even number of times, and two consecutive crossing count with opposite sign,
hence cancel out. �

This lemma implies that the intersection number is well defined as a pairing on the first homology group.
More in fact is true

Theorem 2.2.11. The intersection pairing

˚ : H1pS,Zq ˆH1pS,Zq Ñ Z (2.2.7)

is a bilinear skew–symmetric map. If S is a compact Riemann surface then it is nondegenerate.

+1

−1

+1

−1

γ1 γ2

Figure 2.7: Intersection of γ1 and γ2.
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2.2.1 Homology of a compact Riemann surface of genus g

We have said that H1pS,Zq is isomorphic toZ2g and that the intersection pairing is antisymmetric and nonde-
generate. It can be shown that there are simple cycles

tα1, β1, α2, β2, . . . , αg, βgu (2.2.8)

that generate H1pS,Zq and such that

αi ˚ α j “ 0, βi ˚ β j “ 0 , αi ˚ β j “ δi j . (2.2.9)

Definition 2.2.12. A basis of H1pS,Zq satisfying (2.2.9) is called a canonical basis.

A canonical basis exists but it is not unique. Let α “ pα1, . . . , αgq
t and β “ pβ1, . . . , βgq

t denote the column
vectors of the 2g generators and let us suppose we make a transformation

ˆ

α1

β1

˙

“

ˆ

A B
C D

˙ˆ

α
β

˙

(2.2.10)

where the 2g ˆ 2g matrix S “
ˆ

A B
C D

˙

is integer valued and non-singular. The basis α1,β1 will be a set of

generators provided that S´1 is also integer–valued and hence the determinant of S must be ˘1.
Moreover if we want that the new basis is also canonical this forces

J :“
ˆ

0 1g
´1g 0

˙

“

ˆ

α1

β1

˙

˚ pα1β1q “

ˆ

α
β

˙

˚ pα,βq (2.2.11)

so that
J “ SJSt (2.2.12)

Matrices of dimension 2gˆ 2g satisfying (2.2.12) form a group, the symplectic group, denoted by Sppg,Zq.

oozz zz z

β
α

βα
5

1 2
3

4

1

1

2

2

Figure 2.8: Homology basis.

Example 2.2.13. Let us construct a canonical basis of cycles on the hyperelliptic surface w2 “
ś2g`1

i“1 pz´ziq, g ě
1. We represent this surface in the form of two copies of C (sheets) with cuts along the segments rz1, z2s, rz3, z4s,
. . . , rz2g`1,8s. A canonical basis of cycles can be chosen as indicated in the Figure 2.8 for g “ 2 (the dashed
lines represent the parts of a1 and a2 lying on the lower sheet).
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2.2.2 Canonical dissection of a compact Riemann–surface and Poincare polygon

We take a basepoint P0 and consider the homotopy group π1pS,P0q of loops based at P0. Amongst these there
are 2g generators α1, β1, . . . , αg, βg whose homology classes form a canonical basis. Although these loops are
only identified by their homotopy classes, we will think of them as concrete choices of (smooth) closed curves
on the surface with basepoint P0.

Definition 2.2.14. The canonical dissection of S, called the Poincare’ polygon of S, is the simply connected domain rS

obtained by removing the 2g generators identified above.

α1

P0

γ β1

P0

γ
α2β2

P0

γ
α1 β1α2β2

α2α
−1
2 γ

β2

β
−1
2

β1β
−1
1

α
−1
1

α1

γ

β
−1
1

α
−1
1

β1α1

γ

α2
β2

α
−1
2

β
−1
2

γ

Figure 2.9: Dissection of a surface of genus one and two.

The boundary BrS of this domain consists of both sides of each generator and hence consists of 4g arcs.
We show inductively how to get the domain rS from the surface S. In figure (2.9) each torus is cut along its
cycles so that the simply connected domain rS is the rectangle. One can repeat this operation inductively in
the following way. The surface of genus 2 is cut along the line γ which decomposes the surface is two tori
with boundary. Then each torus is dissected along its canonical basis of cycles and the polygons obtained are
identified along the side γ so that rS coincides with the 8-gone (see Figure 2.9 and 2.10). In the general case
one can repeat the dissection by cutting out of a sphere g disks bounded by curves γ1, . . . , γg. By flattening the
resulting surface, one obtains a polygon with g sides with symbol γ1, . . . , γg. We then attach to each side γ j the
handle α jβ jα

´1
j β´1

j γ j for j “ 1, . . . , g, thus obtaining the normal form of genus g ( see Figure 2.10) for the case
of genus one and two).
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α1

β1

α−1
1

β−1
1

α1

β1

α−1
1

β−1
1

α2

β2

α−1
2

β−1
2

Figure 2.10: Poincaré polygon for surfaces of genus one and two.



Chapter 3

Differentials on a Riemann surface.

3.1 Holomorphic differentials

We consider a complex-one dimensional manifold M with with an atlas of charts tUα, φαuwith

φα : Uα Ñ Vα Ă C

and φαpPq “ zα P Vα and P P Uα. Here we are identifying C with R2 by writing zα “ xα ` iyα with xα and yα
standard coordinates on R2.

Definition 3.1.1. A smooth one 1-form (also called differential) ω on M is an assignment of a collection of two smooth
functions uαpxα, yαq and vαpxα, yαq to each local coordinate zα “ xα ` iyα in Uα such that

ω “ uαpxα, yαqdxα ` vαpxα, yαqdyα (3.1.1)

transform under change of coordinates as a (1,0)-tensor. Namely if zβ “ xβ ` iyβ is another local coordinate such that
Uα XUβ ,H then

ˆ

uβpxβ, yβq
vβpxβ, yβq

˙

“

¨

˚

˚

˝

Bxα
Bxβ

Byα
Bxβ

Bxα
Byβ

Byα
Byβ

˛

‹

‹

‚

ˆ

uαpxα, yαq
vαpxα, yαq

˙

with xα “ xαpxβ, yβq and yα “ yαpxβ, yβq.

Using the basis dzα “ dxα ` idyα, dz̄α “ dxα ´ idyα, we can rewrite ω in the form

ω “ hαpzα, z̄αq dzα ` gαpzα, z̄αq dz̄α, (3.1.2)

where
hα “

1
2
puα ´ ivαq, gα “

1
2
puα ` ivαq.

The two parts hpzα, z̄αq dzα and gpzα, z̄αq dz̄α of the expression (3.1.2) will be called p1, 0q- and p0, 1q-forms
respectively. The above expression shows that the decomposition of ω in p1, 0q and p0, 1q form is invariant
under local change of coordinates, if and only if the change of coordinates is holomorphic, namely

Bz̄α
Bzβ

“ 0,
Bzα
Bz̄β

“ 0.

101



102 CHAPTER 3. DIFFERENTIALS ON A RIEMANN SURFACE.

The above conditions in real coordinates are equivalent to the Cauchy-Riemann equation. For a one-complex
dimensional manifold M that has a complex structure ( namely a Riemann surface), the decomposition of a
one form in p1, 0q and p0, 1q form is invariant under local change of coordinates. From now on we will consider
only holomorphic change of coordinates.

Definition 3.1.2. A one form ω is called holomorphic is the functions hαpzα, z̄αq in (3.1.2) are all holomorphic functions
and gα ” 0, namely

ω “ hpzαqdzα.

A one form ω is called antiholomorphic if
ω “ gpz̄αqdz̄α.

In a similar way to one form we can define two-forms.

Definition 3.1.3. A smooth two form η on M is an assignment of a smooth function fαpzα, z̄αq such that

η “ fαpzα, z̄αqdzα ^ dz̄α

is invariant under coordinate change.

The exterior multiplication satisfies the conditions

dzα ^ dzα “ 0, dz̄α ^ dz̄α “ 0, dzα ^ dz̄α “ ´dz̄α ^ dzα.

Under holomorphic change of coordinates zβ “ zβpzαq, z̄β “ z̄βpz̄αq one has

η “ fβpzβ, z̄βqdzβ ^ dz̄β “ fαpzα, z̄αqdzα ^ dz̄α

where

fβpzβ, z̄βq “ fαpzα, z̄αq
ˇ

ˇ

ˇ

ˇ

dzα
dzβ

ˇ

ˇ

ˇ

ˇ

2

.

We define Ωk for k “ 0, 1, 2 as the set of smooth functions, smooth one forms and smooth two-forms on M
respectively. We define the exterior derivative

d : Ωk Ñ Ωk`1, k “ 0, 1, 2

as follows. For f P Ω0,
d f pz, z̄q “ fzdz` fz̄dz̄,

For one forms ω P Ω1, with ω “ hpz, z̄qdz ` gpz, z̄qdz̄ in a given coordinate chart, the exterior derivative takes
the form

dω “ dh^ dz` dg^ dz̄

and for two forms, η P Ω2pMq
dη “ 0.

Clearly the fundamental property of the exterior differentiation is

d2 “ 0.
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We can decompose the exterior derivative operator d according to the decomposition of 1-form in p0, 1q and
p1, 0q forms

d “ B ` B̄
so that for h P Ω0,0 :“ Ω0 in a local chart

B : Ω0 Ñ Ω1,0, Bhpz, z̄q “ hzdz,

and
B̄ : Ω0 Ñ Ω0,1, B̄hpz, z̄q “ hz̄dz̄.

In general we get the diagram

Ω0,1 B // Ω2

Ω0

B̄

OO

B

// Ω1,0

B̄

OO

where Ω2 “ Ω1,1. Also in this case B2 “ 0 and B̄2 “ 0.

Definition 3.1.4. A one form ω is called exact if there is a function f P Ω0 such that d f “ ω. A one form ω P Ω1 is
called closed if dω “ 0.

Lemma 3.1.5. A p1, 0q-form ω “ hpz, z̄q dz is closed if and only if the function hpz, z̄q is holomorphic.

It follows that all the holomorphic differentials, locally can be written in the form ω “ hpzqdz where hpzq is a
holomorphic function. Holomorphic differentials are closed differentials.

Definition 3.1.6. The first de Rham cohomology group is defined as

H1
deRhampSq “

Closed 1-forms
Exact 1-forms

“
kerpd : Ω1 Ñ Ω2q

Impd : Ω0 Ñ Ω1q
.

A similar definition can be obtained for the Dolbeault cohomology groups H1,0pSq and H0,1pSqwith respect
to the operator B̄:

H1,0pSq :“
kerpB̄ : Ω1,0 Ñ Ω2q

pB̄ : Ω0 Ñ Ω1,0q
“ kerpB̄ : Ω1,0 Ñ Ω2q,

H0,1pSq :“
kerpB̄ : Ω0,1 Ñ Ω2q

pB̄ : Ω0 Ñ Ω0,1q
“

Ω0,1

ImagepB̄ : Ω0 Ñ Ω0,1q
.

A non trivial result shows that there are isomorphisms among the above three groups [17]. By denoting H0,1pSq

the complex conjugate of the group H0,1pSq, one has the following theorem.

Theorem 3.1.7. The Dolbeault cohomology groups H1,0pSq and H0,1pSq are isomorphic

H1,0pSq » H0,1pSq (3.1.3)

and the first de-Rham cohomology group is isomorphic to

H1
deRhampSq » H1,0pSq ‘H0,1pSq. (3.1.4)

The relation (3.1.3) shows that the complex vector spaces H1,0pSq and H0,1pSq have the same dimension. The
relation (3.1.4) shows that the dimension of the complex vector space H1,0pSq and H0,1pSq is half the dimension
of the complex vector space H1

deRhampSq.
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3.1.1 Integration

We can integrate one forms on curves of the Riemann surface S, two-forms on domains of S and 0-forms on
zero dimensional domains of S, namely points. Let c0 be a 0-chain,

c0 “
ÿ

i

niPi, Pi P S

then for f P Ω0pSq the integral of f over a 0-chain c0 is
ż

c0

f “
ÿ

i

ni f pPiq

A one form ω can be integrated over a one-chain c. If the piece-wise differentiable path c : r0, 1s Ñ S is
contained in a single coordinate disc with coordinates z “ x ` iy, then the integral of ω over the one-chain c
takes the form

ż

c
ω “

ż 1

0
hpzptq, z̄ptqq

dz
dt

dt`
ż 1

0
gpzptq, z̄ptqq

dz̄ptq
dt

dt

By the transition formula for ω the above integral is independent from the choice of the coordinate chart z. In
a similar way a two-form η can be integrated over two chains D. Again restricting to a single coordinate chart
one has

ż ż

D
η “

ż ż

D
f pz, z̄qdzdz̄.

The integral is well defined and extends in a obvious way to an arbitrary two-chain.

Theorem 3.1.8 (Stokes theorem). Let D be a domain of S with a piece-wise smooth boundary BD and let ω be a smooth
one-form. Then

ż

D
dω “

ż

BD
ω. (3.1.5)

As a consequence of Stokes theorem, the integral of closed forms ω on any closed oriented contour (cycle)
γ on S does not depend on the homology class of γ. Recall that two cycles γ1 and γ2 are said to be homologous
if their difference γ1 ´ γ2 “ γ1 Y p´γ2q (where (´γ2) is the cycle with the opposite orientation) is the oriented
boundary of some domain D on Swith BD “ γ1 ´ γ2. Then for a close differential ω and from Stokes theorem
we obtain

0 “
ż

D
dω “

ż

BD
ω “

ż

γ1´γ2

ω “

ż

γ1

ω´

ż

γ2

ω.

In addition, the integral of a close differential ω on a close cycle γ is independent from the cohomology class.
Let ω1 “ ω` d f for some smooth function f , then

ż

γ
ω “

ż

γ
pω1 ´ d f q “

ż

γ
ω1.

We summarise the above discussion with the following proposition.

Proposition 3.1.9. The integration is a paring between the first homology group H1pS,Zq and the first cohomology
group H1

deRhampS,Cq
ż

: H1pS,Zq ˆH1
deRhampS,Cq Ñ C

The pairing is non-degenerate.
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Proof. We need to prove that the pairing is non-degenerate. Consider a smooth one-form ω such that
ż

γ
ω “ 0

for all γ P H1pS,Zq. It follows that the function

f pPq “
ż P

P0

ω

is well defined and it does not depend on the path of integration between P0 and P. Therefore d f “ ω, namely
the equivalent class of ω in the de-Rham cohomology is zero, rωs “ 0 in H1

deRhampS,Cq. �

As a consequence of the above proposition we have the following lemma.

Lemma 3.1.10. The dimension of the space H1
deRhampS,Cq is less then or equal to 2g where g is the genus of the compact

Riemann surface S.

Proof. Suppose by contradiction, that there areω1, . . . , ωs, s ą 2g independent closed differentials in H1
deRhampS,Cq.

Then let us consider a basis of the homology S j, j “ 1 . . . , 2g and construct the matrix with entries

c jk “

ż

S j

ωk, j “ 1, . . . 2g, k “ 1, . . . s.

Such matrix has rank at most equal to 2g, and therefore one can find nonzero constants a1, . . . , as such that the
differential ω “

řs
k“1 akωs has all its periods equal to zero, namely

ż

S j

ω “ 0, j “ 1, . . . 2g.

By proposition 3.1.9 it follows that rωs “ 0 and we arrive to a contradiction. �

As a consequence of the above lemma we have the following corollary for the dimension of the space of
holomorphic differentials.

Corollary 3.1.11. The space of holomorphic differentials on a Riemann surface of genus g is no more than g-dimensional.

Actually the number of independent holomorphic differentials is indeed equal to g.

Theorem 3.1.12. The space of holomorphic differentials on a Riemann surface S of genus g has dimension g.

We do not give a proof of the above theorem that is constructive (see [18] or [17]). However for a Riemann
surface given as the zeros of a polynomial equation one can determine explicitly the holomorphic differentials.

Example 3.1.13. Let us consider holomorphic differentials on a hyperelliptic Riemann surface

S “ tw2 “ P2g`1pzqu, P2g`1pzq “
2g`1
ź

k“1

pz´ zkq
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of genus g ě 1. Let us check that the differentials

ηk “
zk´1dz

w
“

zk´1dz
b

P2g`1pzq
, k “ 1, . . . , g (3.1.6)

are holomorphic. Indeed, holomorphicity at any finite point but branch point is obvious as the denominator
does not vanish. We verify holomorphicity in a neighbourhood of the i-th branch point Pi “ tz “ zi, w “ 0u.
Choosing the local parameter τ in a neighbourhood of Pi in the form τ “

?
z´ zi, we get from (1.2.26) that

ηk “ ψkpτqdτ, where the function

ψkpτq “
2pzi ` τ2qk´1

b

ś

j,ipτ
2 ` zi ´ z jq

is holomorphic for small τ.
At the point at infinity the differentials ηk can be written in terms of the local parameter τ “ z´

1
2 in the form

ηk “ φkpτqdτ, where the functions

φkpτq “ ´2τ2pg´kq

«2g`1
ź

i“1

p1´ ziτq

ff´ 1
2

, k “ 1, . . . , g

are holomorphic for small τ.
In the same way it can be verified that the differentials ηk “ zk´1dz{w, k “ 1, . . . , g are holomorphic on the

Riemann surface of the curve w2 “ P2g`2pzqwith P2g`2pzq an even polynomial with 2g` 2 distinct roots.

Newton polygon and holomorphic differentials

In general let us consider the non-singular irreducible affine plane curve C :“ tpz,wq P C2, |Fpz,wq “
řn

j“0 a jpzqwn´ ju, where a jpzq are polynomials in z. Let S be the Riemann surface of the curve C. The one
form

ω “
zi´1w j´1dz

Fwpz,wq
, i, j ě 1, (3.1.7)

is clearly holomorphic for all values where z and w are holomorphic. Indeed the only other possible points
where such differential might have poles are the zeros of Fw, namely the branch points with respect to the
projection πz : S Ñ C, πzpz,wq “ z. At these branch points, one needs to take w as local coordinate. Since
Fzdz` Fwdw “ 0 one has

dz
Fw
“ ´

dw
Fz
.

Therefore at the branch points where Fw “ 0 one can write the differential ω in the form ω “ ´
z j´1wk´1dw

Fz
.

Since we assume that the curve C is non-singular, Fz , 0 at the points where Fw “ 0.
In order to determine for which coefficients pi, jq the differential ω in (3.1.7) remains holomorphic when z

and w go to infinity, we exploit again the Newton polygon.
We recall that the Newton polygonN of the polynomial Fpz,wq “

ř

i, jě0 ai jziw j is the convex hull of the set
of points pi, jq of the px, yq-plane defined by

N “ Convex Hulltpi, jq P Z2 | ai j , 0u.
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We define pN “ NzBN where BN is the boundary ofN . We have the following theorem

Theorem 3.1.14. Suppose that the affine plane curve C “ tpz,wq P C2 |Fpz,wq “
řn

j“0
řM

i“0 ai jziw j “ 0u is connected
and non singular and let S be the compact Riemann surface of the curve C. Then the basis of holomorphic differentials of
S is

ω “
zi´1w j´1

Fw
dz, pi, jq P pN . (3.1.8)

Proof. The Riemann surface S has two meromorphic function z and w. Therefore we need to show that ω in
(3.1.8) remains holomorphic at the poles of z and w when pi, jq P pN .We assume, without loss of generality, that
a0n , 0 and a00 , 0. Further let

mn “ max
i“0,...,M

ti | ain , 0u, m0 “ max
i“0,...,M

ti | ai0 , 0u

In this way the Newton polygon takes the form depicted in the figure. Suppose that the total number of edges

0
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Figure 3.1: Example of Newton polygon

of the Newton polygon is `. We divide the edges of the Newton polygon in two subsets:

• the edges that face the y axis, including the horizontal edges.

• the remaining edges.
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We number each edge starting from the rightmost edge that does not face the y axis and we proceed numbering
the edges anti-clockwise as in Figure 3.1. For each edge that does not face the y axis we associate the line that
contains it

L´s px, yq “ x qs ` yps ´ms “ 0, x, y P R, s “ 1, 2, . . . , `1,

while for the remaining edges, including the horizontal edges we associate the lines

L`s px, yq “ x qs ` yps ´ms “ 0, x, y P R, s “ `1, `1 ` 1, . . . `,

where we assume in both cases that qs,ms PNY t0u, and ps P Z. We define the set of integer lattice points

Ds “ tpi, jq P Z2|L´s pi, jq ă 0u, s “ 1, 2, . . . , `1,

Ds “ tpi, jq P Z2|L`s pi, jq ą 0u, s “ `1, `1 ` 1, . . . `.
(3.1.9)

Then clearly the interior of the Newton polygon is given by

pN “ X`s“1Ds.

Since the function z has degree n the number of its poles counting multiplicity is equal to n. The local coordinate
of the function z at each of its poles is obtained from the slope of each line L´s s “ 1, . . . `1. Indeed to each line
L´s we associate the expansion in the local coordinate t

z “
1
tqs
, w »

c0s

tps
, s “ 1, . . . , `1, (3.1.10)

where we assume that pps, qsq , p0, 0q. We substitute the above expansion into the equation of the curve to
obtain

Fpzptq,wptqq “
ÿ

pi, jqPN

ai jc
j
0st
´iqs´ jps “ t´msp

ÿ

pi, jqPNXL´s

ai jc
j
0s `Optqq .

The coefficient c0s is obtained from
ÿ

pi, jqPNXL´s

ai jc
j
0s “ 0.

The number of distinct solutions of the above equation corresponds to the length of the projection of the
corresponding edge of the Newton polygon on the y axis. In order to study the behaviour of the differential
(3.1.8) near the poles of the function z we first consider the expansion of each term using the local coordinate
(3.1.10):

dz “ ´qs
dt

tqs´1 (3.1.11)

Fwpzptq,wptqq “
ÿ

i, jPN

jai jc
j´1
0s t´iqs´ jps`ps “ tps´msp

ÿ

i, jPNXL´s

ai jc
j´1
0s `Optqq (3.1.12)

so that the differential ω in (3.1.8) takes the form

ω “
zi´1w j´1

Fw
dz “ ´qs

t´pi´1qqs´p j´1qps t´qs`1dt

tps´msp
ř

i, jPNXL´s
ai jc

j´1
0s `Optqq

“ cons t´iqs´ jps`ms`1p1`Optqqdt,
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where the constant factor is not important for our purposes. In view of (3.1.15), for pi, jq P pN one has
iqs ` jps ´ ms ă 0 for s “ 1, . . . , `1 so we conclude from the above expansion that ω is holomorphic near the
poles of z.

Finally, we need to study the behaviour of ω near the set of poles of w. The local behaviour of the function
w near its poles is described by the slope of the edges that are not facing the positive x-axis. For the example
in the Figure 3.1 this corresponds to the edges L´2 and L`3 . In the general case the edges L´s , for s “ r . . . , `1
correspond to poles of both the functions z and w and the computation has already been performed above.
The edges L`s , s “ `1 ` 1, . . . `1 ` k with k ě 0 correspond only to poles of the function w while the function z
assumes finite values that are the zeros of the polynomial

ř

pi,nqPN ainzi. In this case the local coordinate near
such points is described by

z “ c0stqs , w » tps , s “ `1 ` 1, . . . `1 ` k. (3.1.13)

Plugging the above local coordinate in Fpzptq,wptqq one can determine the constant c0s and the number of
solutions corresponds to the length of the projection of the corresponding segment onto the x axis. Then
plugging the local coordinate (3.1.13) in ω one obtains

ω “ cons tiqs` jps´ms´1p1`Optqqdt, s “ `1 ` 1, . . . `1 ` k.

In view of (3.1.15), for pi, jq P pN one has iqs ` jps ´ ms ě 1 for s “ `1 ` 1, . . . `1 ` k, so we conclude from the
above expansion that ω is holomorphic near the poles of w.

�

Example 3.1.15. Consider the algebraic curve C :“ tpz,wq P C2 |Fpz,wq “ w3` zw4` z5w` zw2` z2w2`1 “ 0u.
Using Maple, it is possible to verify that the curve is non singular since the system of equations F “ 0, Fw “ 0
and Fz “ 0 does not have solutions. The Newton polygon is given in the Figure 3.2. The edges L´1 and
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Figure 3.2: Newton polygon

L´2 describe the poles of the function z, with total multiplicity equal to 4 which is equal to the length of the
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projection of the edges onto the y-axis. The edges L´2 and L`3 describe the poles of the function w with total
multiplicity equal to 5 which is equal to the length of the projection of these edges onto the x-axis. The edges
L`3 and L`4 facing the y axis describe the behaviour of the function z near z “ 0 while the side L´1 that is facing
the x axis describes the behaviour of the function w near w “ 0. The corresponding lines are

L´1 px, yq “ x´ 5y “ 0, L´2 px, yq “ 3x` 4y´ 19 “ 0

L`3 px, yq “ x´ y` 3 “ 0 L`4 px, yq “ x “ 0 .
(3.1.14)

• Edge L´1 ; it corresponds to the local parameter of the form

z “
1
τ
, w “ τ5pc0 `

ÿ

kě1

ckτ
kq

Plugging the above ansatz into the equation of the curve one obtains Fpzptq,wptqq “ c0 ` 1 ` Optq “ 0
which implies c0 “ ´1 . We denote this point as P8,0 “ p8, 0q. It is a first order pole for z while it is a
zero of order five for the function w.

• Edge L´2 ; it correspond to a local parameter of the form

z “
1
τ3 , w “

1
τ4 pc0 `

ÿ

kě1

ckτ
kq

Plugging the ansatz into the equation of the curve we obtain Fpzptq,wptqq “ 1
τ19 pc0pc3

0 ` 1q `Opτqq “ 0 so
that c0 “ eπi j{3 for j “ 1, 2, 3. Since locally the function w „ ´z

4
3 , the corresponding point P8 that needs

to be added to make C a compact Riemann surface is a branch point of multiplicity 3 with respect to the
projection πzpz,wq “ z and of multiplicity 4 with respect to the projection πwpz,wq “ w. The point P8 is
a pole of multiplicity 3 for the function z and it is a pole of multiplicity four for the function w.

• Edge L`3 ; it corresponds to a local parameter of the form

z “ τ, w “
1
τ
pc0 `

ÿ

k

ckτ
kq

Plugging the ansatz into the equation of the curve we obtain Fpzpτq,wpτqq “
1
τ3 pc

3
0pc0 ` 1q ` Opτqq “ 0

which implies c0 “ ´1. We denote this point as P0,8. It is a simple zero for z and a first order pole for w.

• Edge L`4 ; it correspond to a local parameter of the form

z “ τ, w “ pc0 `
ÿ

k

ckτ
kq

Plugging the above local coordinate into the equation of the curve one obtains Fpzpτq,wpτqq “ c3
0 ` 1 `

opτq “ 0, so that c0 “ eπi j{3 with j “ 1, 2, 3. Namely the meromorphic function z has three simple zeros at
the points P0

j “ p0, e
πi j{3q, j “ 1, 2, 3.
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Let us define the domains

Ds “ tpi, jq P Z2|L´s pi, jq ă 0u, s “ 1, 2,

Ds “ tpi, jq P Z2|L`s pi, jq ą 0u, s “ 3, 4.

Then the interior of the Newton polygon pN is equal to

pN “

4
č

s“1

Ds.

Let us check that the differential ω “
zi´1w j´1

Fw
dz is holomorphic for pi, jq P pN . For example let us consider

the the differential ω in the local coordinate the point P8,0. We have

Fwpzpτq,wpτqq “
1
τ4 p1`Opτqq, dz “ ´

1
τ2 dτ

so that
ω “ ´τ´i`1τ4 j´4τ2p1`Opτqqdτ “ ´τ´pi´4 j`1qp1`Opτqqdτ

which is holomorphic for small τwhen pi, jq P D4. In a similar way writing the differentialω in local coordinates

near the other points, one concludes that ω “
zi´1w j´1

Fw
dz is a holomorphic differential for pi, jq P

Ş4
s“1 Ds “

pN .

3.1.2 Riemann bilinear relations

In this section we prove several technical assertions regarding the periods of close differential and holomorphic
differentials. Such relations are known as Riemann bilinear relations

Lemma 3.1.16. Letω1 andω2 be two closed differentials on a surfaceS of genus g ě 1. Denote their periods with respect
to a canonical basis of cycles α1, . . . , αg, β1, . . . , βg, by Ai, Bi and A1i , B1i :

Ai “

ż

αi

ω, Bi “

ż

βi

ω, A1i “
ż

αi

ω1, B1i “
ż

βi

ω1. (3.1.15)

Denote by f “
ş

ω the primitive of ω, then

ż ż

S

ω^ ω1 “

¿

BS̃

fω1 “
g
ÿ

i“1

pAiB1i ´ A1iBiq. (3.1.16)

Proof. The first of the equalities in (3.1.16) follows from Stokes’ formula, since dp fω1q “ ω ^ ω1. Let us prove
the second. We have that

¿

BS̃

fω1 “
g
ÿ

i“1

˜

ż

αi

`

ż

α´1
i

¸

fω1 `
g
ÿ

i“1

˜

ż

βi

`

ż

β´1
i

¸

fω1.
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−1

i

i

i

Qi
i

Q’i

P’i

P β
α

α

β−1

i

To compute the i-th term in the first sum we use the fact that f pPq “
şP

P0
ω where P0 is a point in the interior of

S̃:

f pPiq ´ f pP1iq “

Pi
ż

P0

ω´

P1i
ż

P0

ω “

Pi
ż

P1i

ω “ ´Bi (3.1.17)

since the cycle P1iPi, which is closed on S, is homologous to the cycle βi (see the figure; a fragment of the
boundary BS̃ is pictured). Similarly, the jump of the function f in crossing the cut βi has the form

f pQiq ´ f pQ1iq “

Qi
ż

Q1i

ω “ Ai (3.1.18)

since the cycle Q1iQi on S is homologous to the cycle ai. Moreover, ω1pP1iq “ ω
1pPiq and ω1pQ1iq “ ω

1pQiq because
the differential ω1 is single-valued on S. We have that

ż

αi

f pPiqω
1pPiq `

ż

α´1
i

f pP1iqω
1pP1iq “

ż

αi

f pPiqω
1pPiq ´

ż

αi

p f pPiq ` Biqω
1pPiq

“ ´Bi

ż

αi

ω1pPiq “ ´BiA1i

where the minus sign appears because the edge a´1
i occurs in BS̃with a minus sign. Similarly,

˜

ż

βi

`

ż

β´1
i

¸

fω1 “ AiB1i .

Summing these equalities, we get (3.1.16). The lemma is proved. �

We derive some important consequences for periods of holomorphic differentials from the lemma 3.1.16.
Everywhere we denote by α1, . . . , αg, β1, . . . , βg the canonical basis of cycles on S.



3.1. HOLOMORPHIC DIFFERENTIALS 113

Corollary 3.1.17. Letω be a nonzero holomorphic differential onS, and A1, . . . ,Ag, B1, . . . ,Bg its corresponding periods
with respect to the canonical homology basis α1 . . . , αg and β1 . . . , βg, then

=

˜ g
ÿ

i“1

AkB̄k

¸

ă 0. (3.1.19)

Proof. Take ω1 “ ω in the lemma 3.1.16. Then A1i “ Āi and B1i “ B̄i for i “ 1, . . . , g. We have that

i
2

ż ż

S

ω^ ω1 “
i
2

ż ż

| f |2dz^ dz̄ “
ż ż

S

| f |2dx^ dy ą 0.

Here z “ x` iy is a local parameter, and ω “ f pzqdz. In view of (3.1.16) this integral is equal to

i
2

g
ÿ

k“1

AkB̄k ´ ĀkBk “ ´=

˜ g
ÿ

k“1

AkB̄k

¸

.

The corollary is proved. �

Corollary 3.1.18. If all the α-periods of a holomorphic differential are zero, then ω “ 0.

This follows immediately from Corollary 3.1.17.

Corollary 3.1.19. On a surface S of genus g there exists a basis ω1, . . . , ωg of holomorphic differentials such that
¿

α j

ωk “ δ jk, j, k “ 1, . . . , g. (3.1.20)

Proof. Let η1, . . . , ηg be an arbitrary basis of holomorphic differentials on S. The matrix

A jk “

¿

α j

ηk (3.1.21)

is non-singular. Indeed, otherwise there are constants cl, . . . , cg such that
ř

k A jkck “ 0. But then
ř

k ckηk “ 0,
since this differential has zero a-periods. This contradicts the independence of the differentials η1, . . . , ηg.
Consider

ω j “

g
ÿ

k“1

Ãkjηk, j “ 1, . . . , g, (3.1.22)

where the matrix pÃkjq is the inverse of the matrix pA jkq,
ř

k ÃikAkj “ δi j. Then the differentials ω j define the
desired basis. �

A basisω1, . . . , ωg satisfying the conditions (3.1.20) will be called a normal basis of holomorphic differentials
(with respect to a canonical basis of cycles α1, . . . , αg, β1, . . . , βgq .

Corollary 3.1.20. Let ω1, . . . ωg be a normalized basis of holomorphic differentials, and let

B jk “

¿

β j

ωk, j, k “ 1, . . . , g. (3.1.23)

Then the matrix pB jkq is symmetric and has positive-definite imaginary part.
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Figure 3.3: Homology basis.

Proof. Let us apply the lemma 3.1.16 to the pair ω “ ω j and ω1 “ ωk. By (3.1.16) we have that

0 “
ÿ

i

pδi jBik ´ δikBi jq “ pB jk ´ Bkjq.

The symmetry is proved. Next, we apply Corollary 3.1.17 to the differential
řg

j“1 x jω j where all the coefficients
x1, . . . , xg are real. We have that Ak “ xk, Bk “

ř

j x jBkj which implies

=p
ÿ

k

xk

ÿ

j

x jB̄kjq “
ÿ

k, j

=pB̄kjqxkx j ă 0.

The lemma is proved. �

Definition 3.1.21. The matrix pB jkq is called a period matrix of the Riemann surface S.

Example 3.1.22. We consider a surface S of the form w2 “ P3pzq of genus g “ 1 (an elliptic Riemann surface).
Let P3pzq “ pz´ z1qpz´ z2qpz´ z3q and choose a basis of cycles as shown in the figure 2.7. We have that

ω1 “ ω “
adz

a

P3pzq
, a “

¨

˝

¿

α1

dz
a

P3pzq

˛

‚

´1

.

Note that
¿

α1

dz
a

P3pzq
“ 2

ż z2

z1

dz
a

P3pzq
.

The period matrix is the single number

B “
¿

β1

adz
a

P3pzq
“

şz3

z2

dz
a

P3pzq
şz2

z1

dz
a

P3pzq

, =pBq ą 0. (3.1.24)
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Figure 3.4: Homology basis.

Example 3.1.23. . Consider a hyperelliptic Riemann surface w2 “ P2g`1pzq “
ś2g`1

i“1 pz´ziq for genus g ě 2, and
choose a basis of cycles as indicated in the figure 3.4 (there g “ 2). A normal basis of holomorphic differentials
has the form

ω j “

řg
k“1 c jkzk´1dz
b

P2g`1pzq
, j “ 1, . . . , g. (3.1.25)

Here pc jkq is the matrix inverse to the matrix pA jkqwhere

A jk “ 2
ż z2 j

z2 j´1

zk´1dz
b

P2g`1pzq
, j, k “ 1, . . . , g. (3.1.26)

3.1.3 Meromorphic differentials, their residues and periods

Meromorphic (Abelian) differentials on a Riemann surface differ from holomorphic differentials by the possible
presence of singularities of pole type. If a surface is given in the form Fpz,wq “ 0, then the Abelian differentials
have the form ω “ Rpz,wqdz or, equivalently, ω “ R1pz,wqdw, where Rpz,wq and R1pz,wq are rational functions.
For example, on a hyperelliptic Riemann surface w2 “ P2g`1pzq the differential w´1zk´1dz has for k ą g a unique
pole at infinity of multiplicity 2pk ´ gq (see Example 3.1.13). Suppose that the differential ω has a pole of
multiplicity k at the point P0 i.e., can be written in terms of a local parameter z, zpP0q “ 0, in the form

ω “

ˆ

c´k

zk
` ¨ ¨ ¨ `

c´1

z
`Op1q

˙

dz (3.1.27)

(the multiplicity of the pole does not depend on the choice of the local parameter z).

Definition 3.1.24. The residue ResP“P0 ωpPq of the differential ω at a point P0 is defined to be the coefficient c´1.

Lemma 3.1.25. The residue ResP“P0 ωpPq does not depend on the choice of the local parameter z.

Proof. This residue is equal to

c´1 “
1

2πi

¿

C

ω

where C is an arbitrary small contour encircling P0. The independence of this integral on the choice of the local
parameter is obvious. The lemma is proved. �
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Theorem 3.1.26 (The Residue Theorem). . The sum of the residues of a meromorphic differential ω on a Riemann
surface, taken over all poles of this differential, is equal to zero.

Proof. Let P1, . . . ,PN be the poles of ω. We encircle them by small contours C1, ...,CN such that

Res
Pi
ω “

1
2πi

¿

C j

ω, j “ 1, . . . ,N,

(the contours Ci run in the positive direction), and cut out the domains bounded by C1, . . . ,CN from the surface
S. This gives a domain S1 with oriented boundary of the form BS1 “ ´C1 ´ ¨ ¨ ¨ ´ CN (the sign means reversal
of orientation). The differential ω is holomorphic on S1. By Stokes’ formula,

N
ÿ

j“1

Res
P j
ω “

1
2πi

N
ÿ

j“1

¿

C j

ω “ ´
1

2πi

¿

BS1

ω “ ´
1

2πi

ż ż

S1

dω “ 0,

since dω “ 0. The theorem is proved. �

We present the simplest example of the use of the residue theorem: we prove that the number of zeros of
a meromorphic function is equal to its number of poles (counting multiplicity). Let P1, . . . ,Pk, be the zeros of
the meromorphic function f , with multiplicities m1, . . . ,mk a nd let Q1, ...,Ql be the poles of this function, with
multiplicities n1, . . . ,nk. Consider the logarithmic differential dpln f q. This is a meromorphic differential on S
with simple poles at P1, . . . ,Pk with residues m1, . . . ,mk and at the points Q1, . . . ,Ql with residues ´n1, . . . ,´nl.
By the residue theorem: m1 ` ¨ ¨ ¨ ` mk ´ n1 ´ ¨ ¨ ¨ ´ nk “ 0 , which means that the assertion to be proved is
valid. One more example. For any elliptic function f pzq on the torus T2 “ C{t2mω` 2nω1u the residues at the
poles are defined with respect to the complex coordinate z (in C). These are the residues of the meromorphic
differential f pzqdz, since dz is holomorphic everywhere. Conclusion: the sum of the residues of any elliptic
function (over all poles in a lattice parallelogram) is equal to zero. We formulate an existence theorem for
meromorphic differentials on a Riemann surface S (see [?] for a proof).

Theorem 3.1.27. Suppose that P1, . . . ,PN are points of a Riemann surfaceS and z1, . . . , zN are local parameters centered
at these points, zipPiq “ 0, and the collection of principal parts is

¨

˝

cpiq
´ki

zki
i

` ¨ ¨ ¨ `
cpiq
´1

zi

˛

‚dzi, i “ 1, . . . ,N. (3.1.28)

Assume the condition
N
ÿ

i“1

ci
´1 “ 0. (3.1.29)

Then there exists on S a meromorphic differential with poles at the points P1, . . . ,PN, and principal parts (3.1.28).

Any meromorphic differential can be represented as the sum of a holomorphic differential and the following
elementary meromorphic differentials.
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1. Abelian differential of the second kind Ωn
P has a unique pole of multiplicity n` 1 at P and a principal part

of the form

Ωn
P “

ˆ

1
zn`1 `Op1q

˙

dz (3.1.30)

with respect to some local parameter z, zpPq “ 0, n “ 1, 2, . . . .

2. An Abelian differential of the third kind ΩPQ has a pair of simple poles at the points P and Q with residues
`1 and ´1 respectively.

Example 3.1.28. We construct elementary Abelian differentials on a hyperelliptic Riemann surface w2 “

P2g`1pzq. Suppose that a point P which is not a branch point takes the form P “ pa,wa “

b

P2g`1paqq.

An Abelian differential of the second kind Ω
p1q
P has the form

Ω
p1q
P “

˜

w` wa

pz´ aq2
`

P12g`1paq

2wapz´ aq

¸

dz
2w

(3.1.31)

(with respect to the local parameter z-a). The differentials Ω
pnq
P can be obtained as follows:

Ωn
P “

1
n!

dn´1

dan´1 Ω1
P. (3.1.32)

If P “ pzi, 0q is one of the branch points, then

Ωn
P “

dz
2pz´ ziq

k`1
for n “ 2k, Ωn

P “
dz

2pz´ ziq
k`1w

for n “ 2k` 1. (3.1.33)

Finally, if P “ 8, then

Ω
pnq
P “ ´

1
2

zk´1dz for n “ 2k, Ωn
P “ ´

1
2

zg`k´1 dz
w

for n “ 2k` 1. (3.1.34)

We now construct differentials of the third kind. Suppose that the point P and Q have the form P “ pa,wa “
b

P2g`1paqq and Q “ pb,wb “

b

P2g`1pbqq. Then

ΩPQ “

ˆ

w` wa

z´ a
´

w` wb

z´ b

˙

dz
2w

(3.1.35)

If Q “ `8 then

ΩPQ “
w` wa

z´ a
dz
2w
. (3.1.36)

Accordingly, we see that for a hyperelliptic Riemann surface it is possible to represent all the Abelian differentials
without appealing to Theorem 3.1.27.

Exercise 3.1.29: Deduce from Theorem 3.1.27 that a Riemann surface S of genus 0 is rational. Hint. Show
that for any points P, Q P S the function f “ exp

ş

ΩPQ is single valued and meromorphic on S and gives a
biholomorphic isomorphism f : SÑ P1.
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The period of a meromorphic differential ω along the cycle γ is defined if the cycle does not pass through
poles of this differential. The period

ş

γ ω depends only on the homology class of γ on the surface S, with the
poles of ω with nonzero residue deleted. For example, the periods of the differential ΩPQ of the third kind
along a cycle not passing through the points P and Q are determined to within integer multiples of 2πi. In
speaking of the periods of meromorphic differentials we shall assume that the cycles do not pass through the
poles of the differential.

Lemma 3.1.30. Suppose that the differentials Ω1 and Ω2 on a Riemann surface S have the same poles and principal
parts, and the same periods with respect to the cycles α1, . . . , αg, β1, . . . , βg. Then these differentials coincide.

Proof. The difference ω1 ´ ω2 is a holomorphic differential that has zero α-periods. Therefore, it is identically
zero (see Lecture 3.1.2). The lemma is proved. �

Definition 3.1.31. A meromorphic differential ω is said to be normalized with respect to a canonical basis of cycles
α1, . . . , αg, β1, . . . , βg if it has zero α-periods.

Any meromorphic differential ω can be turned into a normalized differential by adding a holomorphic
differential

řg
k“1 ckωk. Indeed the condition that Ω “ ω`

ř

ckωk is normalised, namely

ż

α j

ω`
g
ÿ

k“1

ck

ż

α j

ωk “ 0, j “ 1, . . . , g,

defines the constants c1, . . . , cg uniquely.
By Lemma 3.1.30, a normalized meromorphic differential is uniquely determined by its poles and by the

principal parts at the poles. In what follows we assume that meromorphic differentials are normalized. We
obtain formulas that will be useful for the β-periods of such differentials by arguments like those in the proof
of Lemma 3.1.16.

Lemma 3.1.32. The following formulas hold for the β-periods of normalized differentials Ω
pnq
P and ΩPQ

¿

βk

Ω
pnq
P “ 2πi

1
n!

dn´1

dzn´1ψkpzq|z“0, k “ 1, . . . , g, n “ 1, 2, . . . , (3.1.37)

where z is a particular local parameter in a neighbourhood of P, zpPq “ 0, and the functions ψkpzq are determined by
the equality ωk “ ψkpzqdz and ω1, . . . , ωg is a normalized basis of holomorphic differentials with respect to the canonical
homology basis α1, . . . , αg, β1, . . . , βg,

¿

βk

ΩPQ “ 2πi
ż P

Q
ωk, i “ 1, . . . , g, (3.1.38)

where the integration from Q to P in the last integral does not intersect the cycles α1, . . . , αg, β1, . . . , βg.

Proof. We encircle the point P with a small circle C oriented anticlockwise; deleting the interior of this circle
from the surface S, we get a domain S1 with BS1 “ ´C. Let us apply the arguments of Lemma 3.1.16 to the
pair of differentials ω “ ωk, ω1 “ Ω

pnq
P . Denote by ui the primitive

ukpQq “
ż Q

P0

ωk (3.1.39)
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which is single-valued on the Poincare’ polygon S̃ of the surface S. We have that

0 “
ż ż

S1

ω^ ω1 “

ż

BS̃1
ukΩ

pnq
P “

g
ÿ

j“1

pA jB1j ´ A1jB jq ´

¿

C

ukΩ
pnq
P (3.1.40)

(the boundary BS̃1 differs from the boundary BS̃ by p´Cqq. Here the α and β-periods of ωk and ΩN
P have the

form

A j “ δkj, B j “ Bkj, A1j “ 0, B1j “
¿

β j

Ω
pnq
P .

From this,
¿

βk

Ω
pnq
P “

¿

C

ukΩ
pnq
P “ 2πi Res

P
pukΩ

pnq
P q “ 2πi Res

z“0

„ˆ
ż P

P0

`

ż z

0
ψkpτqdτ

˙

dz
zn`1



(3.1.41)

Computation of the residue on the right-hand side of this equality leads to (3.1.37).
We now prove (3.1.38). Let C and C1 small circles around P and Q respectively. Deleting the interior of this
circles from the surfaceS, we get a domainS1 with BS1 “ ´C´C1. Let us apply the arguments of Lemma 3.1.16
to the pair of differentials ω “ ωk, ω1 “ ΩPQ. Denote by ui the primitive of ωi. By analogy with (3.1.40) and
(3.1.41) we have that

¿

βk

ΩPQ “ 2πi
¿

C

ukΩPQ ` 2πi
¿

C1

ukΩPQ

Since the differential ΩPQ has a simple pole in P and Q with residue ˘1 respectively, the above integrals are
equal to

¿

βk

ΩPQ “ ukpPq ´ ukpQq “
ż P

P0

ωk ´

ż Q

P0

ωk “

ż P

Q
ωk

where we assume that the point P0 lies in the interior of S1. The lemma is proved. �

Exercise 3.1.33: Prove the following equality, which is valid for any quadruple of distinct points P1, . . . ,P4 on
a Riemann surface:

ż P1

P2

ΩP3P4 “

ż P3

P4

ΩP1P2 . (3.1.42)

Exercise 3.1.34: Consider the series expansion of the differentials Ω
pnq
P in a neighbourhood of the point P

Ω
pnq
P “

¨

˝

1
zn`1 `

8
ÿ

j“0

cpnqj z j

˛

‚dz. (3.1.43)

Prove the following symmetry relations for the coefficients cpkqj :

kcpkqj´1 “ jcp jq
k´1, k, j “ 1, 2 . . . . (3.1.44)
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Exercise 3.1.35: Prove that a meromorphic differential of the second kindω is uniquely determined by its poles,
principal parts, and the real normalization condition

=

¿

S

ω “ 0 (3.1.45)

for any cycle S. Formulate and prove an analogous assertion for differentials of the third kind (with purely
imaginary residues).

3.1.4 The Jacobi variety, Abel’s theorem

Let e1, . . . , eg be the standard basis in the space Cg, e j “ p0, . . . , 1, . . . , 0q, with one on the j-entry. Given 2g row
vectors λk P C

g, k “ 1, . . . , 2g, with λk “
řg

j“1 λkje j, we construct the 2g ˆ g matrix Λ having in the k-row the
vector λk

Λkj “ pλkq j. (3.1.46)

The matrix Λ generates a lattice in Cg of maximal rank, if its row vectors are linearly independent over the real
numbers.

Consider in Cg the integer period lattice L generated by the vectors (3.1.46). The vectors in this lattice can
be written in the form

L “ tv P Cg | v “
2g
ÿ

k“1

mkλk, pm1, . . . ,m2gq P Z
2gu (3.1.47)

We assume that L generates a lattice of maximal rank in Cg. Then the quotient of Cg by this lattice is the
2g-dimensional torus

T2g “ Cg{L (3.1.48)

namely a g-dimensional complex manifold. Changing the basis in Cg, namely ek Ñ ekM, with M P GLpg,Cq,
the matrix Λ Ñ ΛM. Furthermore, the same lattice is given by vectors pλ̃1, . . . , λ̃2gqwith

λ̃k “

2g
ÿ

k“1

nkjλ j

with N “ tnkju
2g
k, j“1 P SLp2g,Zq. Therefore Λ Ñ NΛ. Summarizing, two matrices Λ and Λ̃ represent the same

torus if
Λ̃ “ NΛM, M P GLpg,Cq, N P SLp2g,Zq. (3.1.49)

If we assume that the lattice generated by Λ has maximal rank, we can always choose Λ in such a way that

Λ “

ˆ

Λ1
Λ2

˙

with Λ1 P GLpg,Cq. Therefore, by (3.1.49) the two matrices Λ and ΛΛ´1
1 “

ˆ

Ig

Λ2Λ
´1
1

˙

with Ig the g-dimensional

identity, represent the same torus.
Let B “ pB jkq be an arbitrary complex symmetric g ˆ g matrix with positive-definite imaginary part (as

shown in Lecture 3.1.2, the period matrices of Riemann surfaces have this property). We consider the vectors

e1, . . . , eg, e1B, . . . , egB. (3.1.50)
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Lemma 3.1.36. The vectors (3.1.50) are linearly independent over R.

Proof. Assume that these vectors are dependent over R:

pρ1e1 ` ¨ ¨ ¨ ` ρgegq ` pµ1e1 ` ¨ ¨ ¨ ` µgegqB “ 0, ρi, µ j P R.

Separating out the real part of this equality we get that =ppµ1e1 ` ¨ ¨ ¨ ` µgegqBq “ 0. But the matrix =pBq is
non-singular, which implies µ1 “ ¨ ¨ ¨ “ µg “ 0. Hence also ρ1 “ ¨ ¨ ¨ “ ρg “ 0. The lemma is proved. �

Consider in Cg the integer period lattice generated by the vectors (3.1.50). The vectors in this lattice can be
written in the form

m` nB, m,n P Zg. (3.1.51)

By Lemma 3.1.36 the quotient of Cg by this lattice is a torus of maximal rank:

T2g “ T2gpBq “ Cg{tm` nBu. (3.1.52)

Definition 3.1.37. Suppose that B “ pB jkq is a period matrix of a Riemann surface S of genus g. The torus T2gpBq in
(3.1.52), constructed from this period matrix is called the Jacobi variety (or Jacobian) of the surfaceS and denoted by JpSq.

Remark 3.1.38. What happens with the torus JpSq when the canonical basis of cycles on S changes? Let
α “ pα1, . . . , αgq

t and β “ pβ1, . . . , βgq
t be the column vectors of the canonical homology basis. Let α1 and β1 be a

new canonical homology basis related to α and β by the symplectic transformation
ˆ

α1

β1

˙

“

ˆ

a b
c d

˙ˆ

α
β

˙ ˆ

a b
c d

˙

P Spp2g,Zq.

Let ω “ pω1, . . . , ωgq be the canonical homology basis of holomorphic differentials with respect to the basis α
and β, namely

ż

α
ω “ Ig,

ż

β
ω “ B

where Ig is the g dimensional identity matrix. Then
ż

α1
ω “

ż

aα`bβ
ω “ aIg ` bB,

ż

β1
ω “

ż

cα`dβ
ω “ cIg ` dB.

Observe that aIg ` bB is non singular, since it is the matrix of α-periods of the holomorphic differentials. So the
canonical basis of holomorphic differentials ω1 “ pω11, . . . , ω

1
gqwith respect to the basis α1 and β1 is given by

ω1 “ ωpaIg ` bBq´1

This implies that the corresponding period matrix

B1 “
ż

β1
ω1 “ pcIg ` dBqpaIg ` bBq´1. (3.1.53)

From (3.1.49) it follows that the tori T2gpBq and T2gpB1q are isomorphic. Accordingly, the Jacobian JpSq changes
up to isomorphism when the canonical basis changes.
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We consider the primitives (”Abelian integrals”) of the basis of holomorphic differentials:

ukpPq “
ż P

P0

ωk, k “ 1, . . . , g, (3.1.54)

where P0 is a fixed point of the Riemann surface. The vector-valued function

ApPq “ pu1pPq, . . . ,ugpPqq (3.1.55)

is called the Abel mapping (the path of integration is chosen to be the same in all the integrals u1pPq, . . . ,ugpPqq.

Lemma 3.1.39. The Abel mapping is a well-defined holomorphic mapping

SÑ JpSq. (3.1.56)

Proof. (cf. Example 3.1.28). A change of the path of integration in the integrals (3.1.54) leads to a change in the
values of these integrals according to the law

ukpPq Ñ ukpPq `
¿

γ

ωk, k “ 1, . . . , g,

where γ is some cycle on S. Decomposing it with respect to the basis of cycles, γ »
ř

m jα j`
ř

n jβ j we get that

ukpPq Ñ ukpPq `mk `
ÿ

j

Bkjn j, k “ 1, . . . , g.

The increment on the right-hand side is the kth coordinate of the period lattice vector m ` nB where m “

pm1, . . . ,mgq, n “ pn1, . . . ,ngq. The lemma is proved. �

The Jacobi variety together with the Abel mapping (3.1.56) is used for solving the following problem: what
points of a Riemann surface can be the zeros and poles of meromorphic functions? We have the Abel’s theorem.

Theorem 3.1.40 (Abel’s Theorem). The points P1, . . . ,Pn and Q1, . . . ,Qn (some of the points can repeat) on a Riemann
surface S are the respective zeros and poles of some function meromorphic on S if and only if the following relation holds
on the Jacobian:

ApP1q ` ¨ ¨ ¨ `ApPnq ” ApQ1q ` ¨ ¨ ¨ `ApQnq. (3.1.57)

Here and below, the sign ”will mean equality on the Jacobi variety (congruence modulo the period lattice
(3.1.51)). We remark that the relation (3.1.57) does not depend on the choice of the initial point P0 of the Abel
map (3.1.54).

Proof. 1) Necessity. Suppose that a meromorphic function f has the respective points P1, . . . ,Pn and Q1, . . . ,Qn
as zeros and poles, where each zero and pole is written the number of times corresponding to its multiplicity.
Consider the logarithmic differential Ω “ dplog f q. Since f “ const exp

şP
P0

Ω, is a meromorphic function, the
integral in the exponent does not depend on the path of integratio. It follows that all the periods of this
differential Ω are integer multiples of 2πi. On the other hand, we represent it in the form

Ω “

n
ÿ

j“1

ΩP jQ j `

g
ÿ

s“1

csωs, (3.1.58)
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where ΩP jQ j are normalized differentials of the third kind (see Lecture 3.1.3) and c1, . . . , cg are constant coeffi-
cients. Let us use the information about the periods of the differential. We have that

2πink “

¿

ak

Ω “ ck, nk P Z,

which gives us ck “ 2πink. Further,

2πimk “

¿

bk

Ω “ 2πi
n
ÿ

j“1

P j
ż

Q j

ωk ` 2πi
g
ÿ

s“1

nsBsk

(we used the formula (3.1.38)). From this,

ukpP1q ` ¨ ¨ ¨ ` ukpPnq ´ ukpQ1q ´ ¨ ¨ ¨ ´ ukpQnq “

n
ÿ

j“1

P j
ż

Q j

ωk “ mk ´

g
ÿ

s“1

nsBsk. (3.1.59)

The right-hand side is the kth coordinate of the vector m`nB of the period lattice (3.1.51), where m “ pm1, . . . ,mgq,
n “ pn1, . . . ,ngq. The necessity of the condition (3.1.57) is proved.

2) Sufficiency. Suppose that

ukpP1q ` ¨ ¨ ¨ ` ukpPnq ´ ukpQ1q ´ ¨ ¨ ¨ ´ ukpQnq “ mk ´

g
ÿ

s“1

nsBsk. (3.1.60)

Consider the function

f pPq “ exp

»

–

g
ÿ

j“1

ż P

P0

ΩP jQ j `

g
ÿ

j“1

c j

ż P

P0

ω j

fi

fl

where ΩP jQ j are the normalised third kind differentials with poles in P j and Q j and c j are constants. The
function is a single valued meromorphic function if the integrals in the exponent do not depend on the path of
integration. Let us study the behaviour of f when P Ñ P` αk:

f pPq Ñ f pPq exp

»

–

g
ÿ

j“1

c j

ż

αk

ω j

fi

fl .

In order to have a single valued function the constant ck “ 2πnk, nk PN. Next let us consider the behaviour of
f when P Ñ P` βk:

f pPq Ñ f pPq exp

»

–

g
ÿ

j“1

ż

βk

ΩP jQ j `

g
ÿ

j“1

n j

ż

βk

ω j

fi

fl “ f pPq exp

»

–2πi
g
ÿ

j“1

ż P j

Q j

ωk ` 2πi
g
ÿ

j“1

n j

ż

βk

ω j

fi

fl

Using the relation (3.1.60) one obtains that f pPq Ñ f pPq expr2πimks “ f pPq which shows that f pPq is a mero-
morphic function on S. �
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Example 3.1.41. We consider the elliptic curve

w2 “ 4z3 ´ g2z´ g3. (3.1.61)

For this curve the Jacobi variety JpSq is a two-dimensional torus, and the Abel mapping (which coincides with
(??)) is an isomorphism (see Example 3.1.22). Abel’s theorem becomes the following assertion from the theory
of elliptic functions: the sum of all the zeros of an elliptic function is equal to the sum of all its poles to within
a vector of the period lattice.
Example 3.1.42. (also from the theory of elliptic functions). Consider an the elliptic function of the form
f pz,wq “ az ` bw ` c, where a, b, and c are constants. It has a pole of third order at infinity (for b , 0).
Consequently, it has three zeros P1,P2, and P3. In other words, the line az ` bw ` c “ 0 intersects the elliptic
curve (3.1.61) in three points (see the figure). We choose 8 as the initial point for the Abel mapping, i.e.,
up8q “ 0. Let ui “ upPiq, i “ 1, 2, 3. In other words,

Pi “ p℘puiq, ℘
1puiqq, i “ 1, 2, 3,

where ℘puq is the Weierstrass function corresponding to the curve (3.1.61). Applying Abel’s theorem to the
zeros and poles of f , we get that

u1 ` u2 ` u3 “ 0.

Conversely, according to the same theorem, if u1 ` u2 ` u3 “ 0, i.e. u3 “ ´u2 ´ u1 then the points P1,P2 and P3
lie on a single line. Writing the condition of collinearity of these points and taking into account the evenness of
℘ and oddness of ℘1, we get the addition theorem for Weierstrass functions:

det

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ℘pu1q ℘1pu1q

1 ℘pu2q ℘1pu2q

1 ℘pu1 ` u2q ´℘1pu1 ` u2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0. (3.1.62)

3.1.5 Divisors on a Riemann surface. The canonical class. The Riemann-Roch theorem

Definition 3.1.43. A divisor D on a Riemann surface is defined to be a (formal) integral linear combination of points on
it:

D “

n
ÿ

i“1

niPi, Pi P S, ni P Z. (3.1.63)

For example, for any meromorphic function f the divisor p f q of its zeros P1, . . . ,Pk and poles Q1, . . . ,Ql of
multiplicities m1, . . . ,mk, and n1, . . . ,nl, respectively is defined

p f q “ m1P1 ` ¨ ¨ ¨ `mkPk ´ n1Q1 ´ ¨ ¨ ¨ ´ nlQl. (3.1.64)

Observe that given f and g two meromorphic functions

p f gq “ p f q ` pgq, p f {gq “ p f q ´ pgq.

Definition 3.1.44. Divisors of meromorphic functions are also called principal divisors.
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Another useful notation for the divisor of a meromoprhic function is given by

p f q “
ÿ

P

ordPp f q ¨ P

where the order of f in P is the minimum coefficient present in the Laurent expansion in a neighbourhood of
the point P namely if f “

ř

n αnτn near the point P, then ordP f “ minnPZtn, |αn , 0u. Such definition does not
depend on the choice of the local coordinates. Note that the order ordPp f q “ 0 if P is neither a zero or a pole of
f and that the set of zeros and poles of a meromorphic function on a compact Riemann surface S is finite so
that p f q is a finite set.

The set of all divisors on S, DivpSq, obviously form an Abelian group (the zero is the empty divisor).

Definition 3.1.45. The degree deg D of a divisor of the form (3.1.63) is defined to be the number

deg D “

N
ÿ

i“1

ni. (3.1.65)

The degree is a linear function on the group of divisors. For instance,

degp f q “ 0. (3.1.66)

Definition 3.1.46. Two divisors D and D1 are said to be linearly equivalent, D » D1 if their difference is a principal
divisor.

Linearly equivalent divisors have the same degree in view of (3.1.66). For example, on P1 any divisor of
zero degree is principal, and two divisors of the same degree are always linearly equivalent.
Example 3.1.47. The divisor pωq of any Abelian differential ω on a Riemann surface S is well-defined by
analogy with (3.1.64). If ω1 is another Abelian differential, then pωq » pω1q. Indeed, their ratio f “ ω{ω1 is
a meromorphic function on S, and pωq ´ pω1q “ p f q. We remark that any differential in a coordinate chart
φα : Uα Ñ Vα, with φαpPq “ zα take the form

ω “ hαpzαqdzα, ω1 “ h1αpzαqdzα

where hα and h1α are meromorphic functions. The ratio gα “ hα{h1α is a meromorphic function of Vα. Now define
f :“ gα ˝φα which is a meromorphic function on Uα. It is easy to check that f is well defined and independent
from the coordinate chart.

Definition 3.1.48. The linear equivalence class of divisors of Abelian differentials is called the canonical class of the
Riemann surface S. We denote it by KS.

For example, the divisor ´28 “ pdzq can be taken as a representative of the canonical class KP1 .
We reformulate Abel’s theorem in the language of divisors. Note that the Abel map extends linearly to

the whole group of divisors. Abel’s theorem obviously means that a divisor D is principal if and only if the
following two conditions hold:

1. deg D “ 0;

2. ApDq ” 0 on JpSq,
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where

ApDq “
M
ÿ

j“1

pApP jq ´ApQ jqq, D “

M
ÿ

j“1

pP j ´Q jq,

withA the Abel map defined in (3.1.55).
Let us return to the canonical class. We compute it for a hyperelliptic surface w2 “ P2g`2pzq. Let P1, . . . ,P2g`2

be the branch points of the Riemann surface, and P8` and P8´ its point at infinity. We have that

pdzq “ P1 ` ¨ ¨ ¨ ` P2g`2 ´ 2P8` ´ 2P8´ .

Thus the degree of the canonical class on this surface is equal to 2g ´ 2. We prove an analogous assertion for
an arbitrary Riemann surface. For the purpose we need the following lemma.

Lemma 3.1.49. Let f : S Ñ X be a holomorphic map between Riemann surfaces S and X and ω a meromorphic one
form on X, then for any fixed point P P S

ordP f˚ω “ p1` ord f pPqpωqqmultPp f q ´ 1 (3.1.67)

where f˚ω denotes the pull back of ω via f .

Proof. We recall that the multiplicity of f in P is the unique integer m such that there is local a coordinate near
P P S and f pPq P X such that f takes the form τ Ñ τm. Suppose that the map f can be represented near the
point P and f pPq with centred local coordinates τ and τ1 as τÑ τ1 “ τm. Suppose that near the point f pPq the
one form ω takes the form ω “ gpτ1qdτ1 with gpτ1q “

ř

kěn αkτ1k. Then, the one form f˚ω, near the point P,
takes the form

f˚ω “ gpτmqmτm´1dτ “
ÿ

kěn

αkτ
mk`m´1dτ.

Looking at the coefficient in the exponent, one has the claim of the lemma. �

Definition 3.1.50. Let f : SÑ X be a holomorphic map between Riemann surfaces. The branch point divisor W f is the
divisor on S defined by

W f “
ÿ

PPS

rmultPp f q ´ 1sP. (3.1.68)

For example, let us consider the Riemann surface S of the curve C :“ tz,wq P C2|Fpz,wq “ 0u and consider
the projection πz : C Ñ C such that πzpz,wq “ z. Such map can be extended to a holomorphic function
ẑ : S Ñ P1. Let P1, . . . ,PN be the ramification points of ẑ with multiplicity b1, . . . , bN respectively. The branch
point divisor is Wẑ “ b1P1 ` . . . bNPN.

Definition 3.1.51. Let f : SÑ X be a holomoprhic map between Riemann surfaces, let Q P X and consider the divisor
nQ with n P Zzt0u. The pullback f˚pnQq of the divisor nQ, via the map f is defined as

f˚pnQq “ n
ÿ

PP f´1pQq

multpp f q ¨ P. (3.1.69)

We remark that degp f˚pnQqq “ n deg f .
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Lemma 3.1.52. The canonical class of the surface S has the form

KS “ W f ` f˚pKP1q. (3.1.70)

Here f˚ denotes the inverse image of a divisor in the class KP1 with respect to the holomorphic function f : SÑ P1.

Proof. . Let f : SÑ P1 be a non constant holomorphic map between compact Riemann surfaces S and P1 and
ω an Abelian differential on P1. Then applying (3.1.67), (3.1.68) and Lemma 3.1.49 we arrive to

p f˚ωq “ W f ` f˚pωq. (3.1.71)

The statement of the lemma follows immediately from (3.1.71). �

Corollary 3.1.53. The degree of the canonical class KS of a Riemann surface S of genus g is equal to 2g´ 2.

Proof. We have from (3.1.70) that deg KS “ deg W f ´ 2 deg f , where deg W f is the total multiplicity of the
ramification points of the map f . By the Riemann-Hurwitz formula (2.1.4), deg W f “ 2g ` 2 deg f ´ 2. The
corollary is proved. �

The divisor (3.1.63) is positive if all multiplicities n are non negative numbers An effective divisor is a divisor
linearly equivalent to a positive divisor. Divisors D and D1 are connected by the inequality D ě D1 if their
difference D´D1 is a positive divisor.

With each divisor D we associate the linear space of meromorphic functions

LpDq “ t f | p f q `D ě 0u. (3.1.72)

If D is a positive divisor, then this space consists of functions f having poles only at points of D, with
multiplicities not greater than the multiplicities of these points in D. If D “ D` ´ D´, where D` and D´ are
positive divisors, then the space LpDq consists of the meromorphic functions with poles possible only at points
of D`, with multiplicities not greater than the multiplicities of these points in D , and with zeros at all points
of D´ (at least), with multiplicities not less than the multiplicities of these points in D.

Lemma 3.1.54. If the divisors D and D1 are linearly equivalent, then the spaces LpDq and LpD1q are isomorphic.

Proof. Let D´D1 “ pgq, where g is a meromorphic function. If f P LpDq, then f 1 “ f g P LpD1q. Indeed,

p f 1q `D1 “ p f q ` pgq `D1 “ p f q `D ě 0.

Conversely, if f 1 P LpD1q, then f “ g´1 f 1 P LpDq. The lemma is proved. �

We denote the dimension of the space LpDq by

lpDq “ dim LpDq. (3.1.73)

By Lemma 3.1.54, the function lpDq (as well as the degree deg D) is constant on linear equivalence classes of
divisors. We make some simple remarks about the properties of this important function.
Remark 3.1.55. For the zero (empty) divisor, lp0q “ 1. If deg D ă 0, then lpDq “ 0.
Remark 3.1.56. A divisor D is effective if and only if lpDq ą 0. Indeed, replacing D by a positive divisor D1

linearly equivalent to it, we see that the space LpD1q contains the constants. Conversely, if lpDq ą 0, then D is
effective. Indeed, if the meromorphic function f is such that D1 “ p f q ` D ą 0, then the divisor D1, which is
linearly equivalent to D is positive.
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Remark 3.1.57. The number lpDq ´ 1 is often denoted by |D|. According to Remark 3.1.56 |D| ě 0 for effective
divisors. The number |D| admits the following intuitive interpretation. Let us assume D ě 0. We show that
|D| ě m if and only if for any points P1, . . . ,Pm there is a divisor D1 » D containing the points P1, . . . ,Pm (the
presence of coinciding points among P1, . . . ,Pm is taken into account by their multiple occurrence in D1).

If lpDq ě m ` 1, then there are linearly independent functions f1, . . . , fm P LpDq such that the function
f “

řm
j“1 c j f j ´ c0, where c j, j “ 1, . . . ,m are arbitrary constants, has zeros in P1, . . . ,Pm, namely

f pP jq “ 0, j “ 1, . . . ,m.

This system can be written in the form
¨

˚

˚

˝

f1pP1q f2pP1q . . . fmpP1q

f1pP2q f2pP2q . . . fmpP2q

. . . . . . . . .
f1pPmq f2pPmq . . . fmpPmq

˛

‹

‹

‚

¨

˚

˚

˚

˝

c1
c2
...

cm

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

c0
c0
...

c0

˛

‹

‹

‹

‚

It is a system of inhomogeneous linear equations for the constants c1, . . . , cm which has a solution for any choice
of the points P1, . . . ,Pm since the functions f1, . . . , fm P LpDq are linearly independent. Note that a similar
inhomogeneous linear equations can be obtained when the points P1, . . . ,Pm are not all distinct.

We conclude that the divisor D1 “ p f q `D ě 0 contains the arbitrary points P1, . . . ,Pm, and D1 » D.
Viceversa suppose that there is a positive divisor D1 containing the arbitrary points P1, . . . ,Pm and such that

D1 » D. Then there is a meromorphic function f such that p f q “ D1 ´ D, or p f q ` D “ D1 ą 0. It follows that
f P LpDq and f has zeros in arbitrary points P1, . . . ,Pk. We write f is the form f “

řm
j“1 c j f j´ c0 where f j P LpDq.

If the function f has zeros at arbitrary points P1, . . . ,Pk it follows that the system of equations

f pP jq “ 0, j “ 1, . . . ,m,

must be solvable for any set of points P1, . . . ,Pm, but this is possible only if the functions f1, . . . , fm are linearly
independent and different from the constant, which means that lpDq ě m` 1.One therefore says that |D| is the
number of mobile points in the divisor D.

Remark 3.1.58. Let K “ KS, be the canonical class of a Riemann surface. We mention an interpretation that will
be important later for the space LpK ´ Dq for an arbitrary divisor D. First, if D “ 0, the empty divisor, then
the space LpKq is isomorphic to the space of holomorphic differentials on S. Indeed, choose a representative
K0 ą 0 in the canonical class, taking K0 to be the zero divisor of some holomorphic differential ω0, K0 “ pω0q.
If f P LpK0q, i.e. p f q ` pω0q ě 0, then the divisor p fω0q is positive, i.e., the differential fω0 is holomorphic.
Conversely, if ω is any holomorphic differential, then the meromorphic function f “ ω{ω0 lies in LpK0q.

It follows from the above considerations and Theorem 3.1.12 that

lpKq “ g.

Lemma 3.1.59. For a positive divisor D the space LpK ´Dq is isomorphic to the space

ΩpDq “ tω P H1pSq | pωq ´D ě 0u .

Proof. We choose a representative K0 ą 0 in the canonical class, taking K0 to be the zero divisor of some
holomorphic differential ω0, K0 “ pω0q. If f P LpK0 ´ Dq, then p f q ` pω0q ´ D ě 0, namely the differential
fω0 is holomorphic and has zeros at the points of D, i.e., fω0 P ΩpDq. Conversely, if ω P ΩpDq, then
f “ ω{ω0 P LpK0 ´Dq. The assertion is proved. �
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The main way of getting information about the numbers lpDq is the Riemann-Roch Theorem.

Theorem 3.1.60 (Riemann Roch Theorem). For any divisor D

lpDq “ 1` deg D´ g` lpK ´Dq. (3.1.74)

Proof. For surfacesS of genus 0 (which are isomorphic toP1 in view of Problem 6.1) the Riemann-Roch theorem
is a simple assertion about rational functions (verify!). By Remarks 3.1.55 and 3.1.58 (above) the Riemann-Roch
theorem is valid for D “ 0.

For Riemann surfaces S of positive genus we first prove (3.1.74) for positive divisors D ą 0. Let D “
řm

k“1 nkPk where all the nk ą 0 and Pk , P j for k , j. We first verify the arguments when all the nk “ 1 for
k “ 1, . . . ,m and m “ deg D. Let f P LpDq be a nonconstant function.

We consider the Abelian differential ω “ d f . It has double poles and zero residues at the points P1, . . . ,Pm
and does not have other singularities. Therefore, it is representable in the form

Ω “ d f “
m
ÿ

k“1

ckΩ
p1q
Pk
` φ

where Ω
p1q
Pk

are normalized differentials of the second kind (see Lecture 3.1.3), c1, . . . , cm are constants, and

the differential φ is holomorphic. Since the function f pPq “
şP

P0
Ω is single-valued on S, the integral

şP
P0

Ω is
independent from the path of integration. This implies that

¿

αi

Ω “ 0,
¿

βi

Ω “ 0, i “ 1, . . . , g. (3.1.75)

From the vanishing of the α-periods of the meromorphic differentials Ω
p1q
Pk

we get that φ “ 0 (see Corol-
lary 3.1.18). From the vanishing of the β-period we get, by (3.1.37) with n “ 1, that

0 “
¿

βi

Ω “ 2πi
m
ÿ

k“1

ckψikpzkq|zk“0, i “ 1, . . . , g, (3.1.76)

where zk is a local parameter in a neighbourhood of Pk, zkpPkq “ 0, k “ 1, . . . ,m, and the basis of holomorphic
differentials are written in a neighbourhood of Pk in the form ωi “ ψikpzkqdzk. Defining ωipPkq :“ ψikp0q, we
write the system (3.1.76) in the form

¨

˚

˚

˝

ω1pP1q ω1pP2q . . . ω1pPmq

ω2pP1q ω2pP2q . . . ω2pPmq

. . . . . . . . . . . .
ωgpP1q ωgpP2q . . . ωgpPmq

˛

‹

‹

‚

¨

˚

˚

˝

c1
c2
. . .
cm

˛

‹

‹

‚

“ 0, (3.1.77)

We have obtained a homogeneous linear system of m “ deg D equations in the coefficients c1, . . . , cm. The
nonzero solutions of this systems are in a one-to-one correspondence with the non constant functions f in LpDq,
where f can be reproduced from a solution c1, . . . , cm of the system (3.1.76) in the form

f pPq “
m
ÿ

k“1

ck

ż P

P0

Ω
p1q
Pk
.
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Thus lpDq “ 1 ` deg D ´ rankρ where ρ is the matrix of holomorphic differentials in (3.1.77) (the 1 is added
because the constant function belong to the space LpDq). On the other hand the rank of the matrix ρ has another
interpretation. Consider the holomorphic differential ω “

řg
j“1 r jω j. Such differential ω belongs to the space

ΩpDq if
ωpPkq “ 0, k “ 1, . . . ,m.

The above system of equations can be written in the equivalent form

`

r1 r2 . . . rg
˘

¨

˝

ω1pP1q . . . ω1pPmq

. . . . . . . . .
ωgpP1q . . . ωgpPmq

˛

‚“ 0. (3.1.78)

The number of solutions of this system is equal to g ´ rankρ and it is in one to one correspondence with the
linearly independent holomorphic differentials in ΩpDq. Therefore dimΩpDq “ g´ rankρ. On the other hand
we have obtained that

lpDq “ 1` deg D´ rankρ

so that combining the two equations we obtain

lpDq “ 1` deg D´ g` dimΩpDq “ 1` deg D´ g` lpK ´Dq

where the second identity is due to the fact that the space ΩpDq and LpK ´ Dq are isomorphic for positive
divisors. Accordingly the Riemann-Roch theorem has been proved in this case.

We explain what happens when the positive divisor D has multiple points. For example suppose that
D “ n1P1 ` P2 ` ¨ ¨ ¨ ` Pm. Then Ω “ d f “

řn1
j“1 c j

1Ω
p jq
P1
`
řm

k“2 ckΩ
p1q
Pk

and the system (3.1.76) can be written in
the form

n1
ÿ

j“1

c j
1

1
j!

d j´1ψi1

dz j´1
1

ˇ

ˇ

ˇ

ˇ

ˇ

z1“0

`

m
ÿ

k“2

ckψikpzkq|zk“0,“ 0 .

This is a system of homogeneous equations is the variables c1
1, . . . , c

n1
1 , c2, . . . , cm. If the rank of the coefficient

matrix of this system is denoted (as above) by rankρ, the dimension of the space LpDq is equal to lpDq “ 1 `
deg D´rankρwhile the dimension of the space ΩpDq is equal to g´rankρ so that lpDq “ 1`deg D´g`dimΩpDq.
We have proved the Riemann-Roch theorem for all positive divisors and hence for all effective divisors, which
(accordingly to Remark 3.1.56) are distinguished by the condition lpDq ą 0. Next we note that the relation in
this theorem can be written in the form

lpDq ´
1
2

deg D “ lpK ´Dq ´
1
2

degpK ´Dq, (3.1.79)

which is symmetric with respect to the substitution D Ñ K´D. Therefore the theorem is proved for all divisors
D such that D or K ´ D is equivalent to a positive divisor. If neither D nor K ´ D are equivalent to a positive
divisor, then lpDq “ 0 and lpK ´Dq “ 0 and the Riemann-Roch theorem reduces in this case to the equality

deg D “ g´ 1. (3.1.80)

Let us prove this equality. We represent D in the form D “ D` ´ D´, where D` and D´ are positive
divisors and deg D´ ą 0. It follows from the validity of the Riemann-Roch theorem for D` that lpD`q ě
deg D` ´ g ` 1 “ deg D ` deg D´ ´ g ` 1. Therefore if deg D ě g, then lpD`q ě 1 ` deg D´. Then the
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space LpD`q contains a nonzero function f vanishing on D´, i.e. f P LpD` ´ D´q “ LpDq. This contradicts
the condition lpDq “ 0. Similarly, suppose degpK ´ Dq ě g and K ´ D “ D̃` ´ D̃´ with D̃` and D̃´ positive
divisors. Then lpD̃`q ě deg D̃` ´ g` 1 “ degpK ´Dq ` deg D̃´ ´ g` 1 or

lpD̃`q ě degpD̃´q ` 1,

which implies that there exists a nonzero function f P LpD̃`q and vanishing in D̃´, namely f P LpD̃` ´ D̃´q “
LpK ´Dq. This contradicts the condition lpK ´Dq “ 0. We conclude that

deg D ă g, degpK ´Dq ă g

which is equivalent to deg D “ g´ 1. The theorem is proved. �

3.1.6 Some consequences of the Riemann-Roch theorem. The structure of surfaces of
genus 1. Weierstrass points. The canonical embedding

Corollary 3.1.61. If deg D ě g, then the divisor D is effective.

Corollary 3.1.62. The Riemann inequality

lpDq ě 1` deg D´ g, (3.1.81)

holds for deg D ě g.

Definition 3.1.63. A positive divisor D is called special if

dimΩpDq ą 0.

We remark that any effective divisor of degree less then g is special since lpDq ą 0 and by Riemann-Roch
theorem this implies dimΩpDq ą 0.

Corollary 3.1.64. If deg D ą 2g´ 2, then D is nonspecial.

Proof. For deg D ą 2g´ 2 we have that degpK´Dq ă 0, hence lpK´Dq “ 0 (see Remark 3.1.55). The corollary
is proved. �

Exercise 3.1.65: Suppose that k ě g; let the Abel mapping A : S Ñ JpSq (see Lecture 3.1.4) be extended to the
kth-power mapping

Ak : Sˆ ¨ ¨ ¨ ˆ S
looooomooooon

k times

Ñ JpSq

by setting AkpP1, . . . ,Pkq “ ApP1q ` ¨ ¨ ¨ ` ApPkq (it can actually be assumed that Ak maps into JpSq the kth
symmetric power Sk

S, whose points are the unordered collections pP1, . . . ,Pkq of points of S). Prove that the
special divisors of degree k are precisely the critical points of the Abel mapping Ak. Deduce from this that a
divisor D with deg D ě g in general position is nonspecial.

Remark 3.1.66. Let deg D “ 0, then if D is equivalent to a divisor of a meromorphic function, then lpDq “ 1
otherwise lpDq “ 0. Let deg D “ 2g´2, then if D is equivalent to the canonical divisor, then lpDq “ g otherwise
lpDq “ g´ 1. Furthermore if deg D ą 2g´ 2, then by Riemann Roch theorem one has lpDq “ 1` deg D´ g. If
0 ď deg D ď g´ 1 the minimum value of lpDq is zero while for g ď deg D ď 2g´ 2, minplpDqq “ 1´ g`deg D.
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The values of lpDq for 0 ď deg D ď 2g´ 2 are estimated by the Clifford theorem.

Theorem 3.1.67. If 0 ď deg D ď 2g´ 2, then

lpDq ď 1`
1
2

deg D. (3.1.82)

Proof. If lpDq “ 0 or lpK´Dq “ 0, the proof of the theorem is straightforward. Let us assume that lpDq ą 0 and
lpK´Dq ą 0 and consider the map LppDqˆLpK´Dq Ñ LpKq given by p f , hq Ñ f h where p f , hq P LppDqˆLpK´Dq.
Let V be the subspace in LpKqwhich is the image of this map. Then one has

g “ lpKq ě dim V “ lpDqlpK ´Dq ě lpDq ` lpK ´Dq ´ 1

where in the last equality we use the identity which holds for real numbers a and b bigger then one: pa´1qpb´1q ě
0 and so ab ě a` b´ 1.

Therefore
g ě lpDq ` lpK ´Dq ´ 1 “ 2lpDq ` g´ 2´ deg D,

which implies (3.1.82). �

Let us make a plot of the possible values of lpDq using Clifford theorem and the above observations.

g−1 2g−2

g−1

1

g

deg(D)

l(D)

1+deg(D)/2

non special 

divisors

Figure 3.5: The values of lpDq as a function of deg D. One can see that the value of lpDq of a special divisors is
located between the two lines.

We now present examples of the use of the Riemann-Roch theorem in the study of Riemann surfaces.
Example 3.1.68. Let us show that any Riemann surface S of genus g “ 1 is isomorphic to an elliptic surface
w2 “ P3pzq. Let P0 be an arbitrary point of S. Here 2g´ 2 “ 0, therefore, any positive divisor is nonspecial. We
have that lp2P0q “ 2, hence there is a nonconstant function z in lp2P0q, i.e., a function having a double pole at
P0. Further lp3P0q “ 3, hence there is a function w P lp3P0q that cannot be represented in the form w “ az ` b.
This function has a pole of order three at P0. Finally, since lp6P0q “ 6, the functions 1, z, z2, z3,w,w2,wz which
lie in lp6P0q are linearly dependent. We have that

a1w2 ` a2wz` a3w` a4z3 ` a5z2 ` a6z` a7 “ 0. (3.1.83)
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The coefficient a1 is nonzero (verify). Making the substitution

w Ñ w´
ˆ

a2

2a1
z`

a3

2a1

˙

we get the equation of an elliptic curve from (3.1.83).
Example 3.1.69 (Riemann count of the moduli space of Riemann surface). Consider a Riemann surface S of
genus g and a meromorphic function of degree n ą 2g´ 2. Such function represents S as a n-sheeted covering
of the complex plane, branched over a number of points with total branching number b f equal to

b f “ 2n` 2g´ 2

where the Riemann-Hurwitz formula has been used. Generically the ramification points have branching
number equal to one so that b f is also equal to the ramification points of the Riemann surface with respect
to the map f . From the Riemann existence theorem, given the branch points z1, . . . , zb f and a permutation
associated to each branch point such that the corresponding monodromy group is a transitive sub-group of
the permutation group Sn, one can construct a Riemann surface S up to isomorphism. Let us count how many
distinct surfaces one can obtain.

Any meromorphic function of degree n on S represents S as a n-sheeted covering of the complex plane.
Let D8 be the divisor of poles of f . Since the degree of f is equal to n then deg D8 “ n. Furthermore from
Riemann-Roch theorem

lpD8q “ n` 1´ g.

So the freedom of choosing the function f is given by the position of the poles, and this gives n parameters, and
the number of functions having poles in D8, which is equal to n ` 1 ´ g. The total number of parameters in
choosing the meromorphic function of degree n is 2n` 1´ g. So the total number of parameters for describing
a curve of genus g is the number of branch points b f minus the parameters for describing the meromorphic
function f , namely

2n` 2g´ 2´ p2n` 1´ gq “ 3g´ 3.

Definition 3.1.70 (Weierstrass points). A point P0 of a Riemann surface S of genus g is called a Weierstrass point if
lpkP0q ą 1 for some k ď g.

It is clear that in the definition of a Weierstrass point it suffices to require that lpgP0q ą 1 when g ě 2. There
are no Weierstrass points on a surface of genus g “ 1. On hyperelliptic Riemann surfaces of genus g ą 1 all
branch points are Weierstrass points, since there exist functions with second-order poles at the branch points
(see Lecture ??).

Definition 3.1.71. A Riemann surface is called hyperelliptic if and only if it admits a non constant meromorphic function
of degree 2.

The use of Weierstrass points can be illustrated in the next exercise.

Exercise 3.1.72: Let S be a Riemann surface of genus g ą 1, and P0 a Weierstrass point of it, with lp2P0q ą 1.
Prove that S is hyperelliptic. Prove that the surface is also hyperelliptic if lpP`Qq ą 1 for two points P and Q.

Exercise 3.1.73: Let S be a hyperellitpic Rieamnn surface and z a function of degree two. Prove that any other
function f of degree two is a Moebius transformation of z.

We show that there exist Weierstrass points on any Riemann surface S of genus g ą 1.
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Lemma 3.1.74. Suppose that z is a local parameter in a neighbourhood P0, zpP0q “ 0; assume that locally the basis of
holomorphic differentials has the form ωi “ ψipzqdz, i “ 1, . . . , g. Consider the determinant

Wpzq “ det

¨

˚

˝

ψ1pzq ψ11pzq . . . ψpg´1q
1 pzq

. . . . . . . . .

ψgpzq ψ1gpzq . . . ψpg´1q
g pzq

˛

‹

‚
. (3.1.84)

The point P0 is a Weierstrass point if and only if Wp0q “ 0.

Proof. If P0 is a Weierstrass point, i.e., lpgP0q ą 1, then lpK ´ gP0q ą 0 by the Riemann-Roch theorem. Hence,
there is a holomorphic differential with a g-fold zero at P0 on S. The condition that there be such a differential
can be written in the form Wp0q “ 0 (cf. the proof of the Riemann-Roch theorem). The lemma is proved. �

Lemma 3.1.75. Under a local change of parameter z “ zpwq the quantity W transforms according to the rule W̃pwq “
ˆ

dz
dw

˙
1
2 gpg`1q

Wpzq.

Proof. Suppose that ωi “ ψipzqdz “ ψ̃ipwqdw. Then each ψ̃i “ ψi
dz
dw

, i “ 1, . . . , g. This implies that the

derivatives dkψ̃i{dwk can be expressed for each i in terms of the derivatives dlψi{dzl by means of a triangular
transformation of the form

dkψ̃i

dwk
“

ˆ

dz
dw

˙k`1 dkψi

dzk
`

k´1
ÿ

j“1

c j
d jψi

dz j , i “ 1, . . . g

(the coefficients cs in this formula are certain differential polynomials in zpwq). The statement of the Lemma
readily follows from the transformation rule. �

Let us define the weight of a Weierstrass point P0 as the multiplicity of zero of Wpzq at this point. According
to the previous Lemma the definition of weight does not depend on the choice of the local parameter.

The proof of existence of Weierstrass points for g ą 1 can be easily obtained from the following statement.

Lemma 3.1.76. The total weight of all Weierstrass points on the Riemann surfaceS of genus g is equal to pg´1q g pg`1q.

Proof. Let us consider the ratio
Wpzq{ψN

1 pzq.

Here N “ 1
2 gpg ` 1q. According to lemma (3.1.75), the above ratio does not depend on the choice of the local

parameter and, hence, it is a meromorphic function on S. This function has poles of multiplicity N at the
zeroes of the differential ω1 (the total number of all poles is equal to 2g ´ 2). Therefore this function must
have N p2g ´ 2q “ pg ´ 1q g pg ` 1q zeroes (as usual, counted with their multiplicities). These zeroes are the
Weierstrass points. �

Let us do few more remarks about the Weierstrass points. Given a point P0 P S, let us consider the dimension
lpk P0q as a function of the integer argument k. This function has the following properties. According to figure
(3.5) we have

1 ď lpk P0q ď g, 1 ď k ď 2g´ 1.
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In particular l pp2g´ 1qP0q “ g. It follows that while k increases 2g´ 2 times the function lpk P0q increases only
g´ 1 times. The next lemma shows that the function lpk P0q is a piece-wise constant function where each step
has size equal to one.

Lemma 3.1.77.

lpk P0q “

"

l ppk´ 1qP0q ` 1, if there exists a function with a pole of order k at P0
l ppk´ 1qP0q , if such a function does not exist

Proof. The space Lpk P0q is larger then the space Lppk´ 1qP0q therefore lpk P0q ě lppk´ 1qP0q. On the other hand,
dimΩpkP0q ď dimΩppk´ 1qP0q. From the Riemann Roch theorem one has

lpk P0q ´ lppk´ 1qP0q “ 1` dimΩpkP0q ´ dimΩppk´ 1qP0q

which, when combined with the above two inequalities, gives the statement. �

When lpk P0q “ lppk´1qP0qwe will say that the number k is a gap at the point P0. From the previous remarks
it follows the following Weierstrass gap theorem:

Theorem 3.1.78. There are exactly g gaps 1 “ a1 ă ... ă ag ă 2g at any point P0 of a Riemann surface of genus g.

The gaps have the form ai “ i, i “ 1, . . . , g, for a point P0 in general position (which is not a Weierstrass
point). Namely for a non Weierstrass point the function lpkP0q is non-zero only for k ą g and one has
lpkP0q “ 1` k ´ g for k ą g. A Weierstrass point P0 is called normal if the Weierstrass gap sequence takes the
form 1, 2, . . . , g ´ 1, g ` 1 where g is the genus of the surface. Namely a meromorphic function with only a
pole in P0 has order at least equal to g. Normal Weierstrass points are generic. A Weierstrass point P0 is called
hyperelliptical is the Weierstrass gap sequence takes the form 1, 3, 5, . . . , 2g ´ 1. In this case a meromorphic
function with only a pole in P0 has order equal to two.

Exercise 3.1.79: Show that every compact Riemann surface of genus g is conformally equivalent to a pg `
1q´sheeted covering surface of the complex plane.

Exercise 3.1.80: Prove that for branch points of a hyperelliptic Riemann surface of genus g the gaps have the
form ai “ 2i ´ 1, i “ 1, . . . , g. Prove that a hyperelliptic surface does not have other Weierstrass points. Next
suppose that the hyperelliptic Riemann surface has genus 2 and let P0 be a Weierstrass point. Show that there
exist meromorphic functions z and w with only a pole in P0 and such that

w2 ` a1wz` a2wz2 ` a3z5 ` a4z4 ` a5z3 ` a6z2 ` a7z` a8 “ 0.

Exercise 3.1.81: Prove that any Riemann surface of genus 2 is hyperelliptic.

Exercise 3.1.82: Let S be a hyperelliptic Riemann surface of the form w2 “ P2g`lpzq. Prove that any bira-

tional (biholomorphic) automorphism S Ñ S has the form pz,wq Ñ p
az` b
cz` d

,˘wq, where the linear fractional

transformation leaves the collection of zeros of P2g`2pzq invariant.

Example 3.1.83 (The canonical embedding). . Let S be an arbitrary Riemann surface of genus g ě 2. We
fix on S a canonical basis of cycles a1, . . . , ag, b1, . . . , bg; let ω1, . . . , ωg be the corresponding normal basis of
holomorphic differentials. This basis gives a canonical mapping SÑ Pg´1 according to the rule

P Ñ pω1pPq : ω2pPq : ¨ ¨ ¨ : ωgpPqq. (3.1.85)
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Indeed, it suffices to see that all the differentials ω1, . . . , ωg cannot simultaneously vanish at some point of the
surface. If P were a point at which any holomorphic differential vanished, i.e., lpK´Pq “ g, (see Remark 3.1.58),
then lpPq would be “ 2 in view of the Riemann-Roch theorem, and this means that the surface S is rational
(verify!). Accordingly (3.1.85) really is a mapping SÑ Pg´1; it is obviously well-defined.

Lemma 3.1.84. If S is a non hyperelliptic surface of genus g ě 3, then the canonical mapping (3.1.85) is a smooth
embedding. If S is a hyperelliptic surface of genus g ě 2, then the image of the canonical mapping is a rational curve,
and the map itself is a two-sheeted covering.

Proof. We prove that the mapping (3.1.85) is an embedding. Assume not: assume that the points P1 and P2 are
merged into a single point by this mapping. This means that the rank of the matrix

¨

˝

ω1pP1q ω1pP2q

. . . . . .
ωgpP1q ωgpP2q

˛

‚

is equal to 1. But then lpP1 ` P2q ą 1 (see the proof of the Riemann-Roch theorem). Hence, there exists on S a
nonconstant function with two simple poles at P1 and P2 i.e., the surface S is hyperelliptic. The smoothness is
proved similarly: if it fails to hold at a point P, then the rank of the matrix

¨

˝

ω1pPq ω11pPq
. . . . . .
ωgpPq ω1gpPq

˛

‚

is equal to 1. Then lp2Pq ą 1, and the surface is hyperelliptic. Finally, suppose that S is hyperelliptic. Then it
can be assumed of the form w2 “ P2g`1pzq. Its canonical mapping is determined by the differentials (4.2.37).
Performing a projective transformation of the space Pg´1 with the matrix pc jkq (see the formula (4.2.37)), we get
the following form for the canonical mapping:

P “ pz,wq Ñ p1 : z : ¨ ¨ ¨ : zg´1q (3.1.86)

Its properties are just as indicated in the statement of the lemma. The lemma is proved. �

Exercise 3.1.85: Suppose that the Riemann surface S is given in P2 by the equation
ÿ

i` j“4

ai jξ
iη jζ4´i´ j “ 0, (3.1.87)

and this curve is non-singular in P2 (construct an example of such a non-singular curve). Prove that the genus
of this surface is equal to 3 and the canonical mapping is the identity up to a projective transformation of P2.
Prove that S is a non hyperelliptic surface. Prove that any non hyperelliptic surface of genus 3 can be obtained
in this way.

The range S1 Ă Pg´1 of the canonical mapping is called the canonical curve.

Exercise 3.1.86: Prove that any hyperplane in Pg´1 intersects the canonical curve S1 in 2g´ 2 points (counting
multiplicity).



Chapter 4

Jacobi inversion problem and
theta-functions

4.1 Statement of the Jacobi inversion problem. Definition and simplest
properties of general theta functions

In Lecture 3.1.2 we saw that inversion of an elliptic integral leads to elliptic functions. For a surface of genus
g ą 1 the Inversion of integrals of Abelian differentials is not possible since any such differential has zeros
(at least 2g ´ 2 zeros). Instead of the problem of inverting a single Abelian integral, Jacobi proposed for
hyperelliptic surfaces of genus two of the form w2 “ P5pzq the problem of solving the system

P1
ż

P0

dz
a

P5pzq
`

P2
ż

P0

dz
a

P5pzq
“ η1

P1
ż

P0

zdz
a

P5pzq
`

P2
ż

P0

zdz
a

P5pzq
“ η2

(4.1.1)

where η1, η2 are given numbers from which the location of the points P1 “ pz1,w1q, P2 “ pz2,w2q is to be
determined. It is clear, moreover, that P1 and P2 are determined from (4.1.1) only up to permutation. Jacobi’s
idea was to express the symmetric functions of P1 and P2 as functions of η1 and η2. He noted also that this
will give meromorphic functions of η1 and η2 whose period lattice is generated by the periods of the basis of
holomorphic differentials dz{

a

P5pzq and zdz{
a

P5pzq. This Jacobi inversion problem was solved by Göepel
and Rosenhain by means of the apparatus of theta functions of two variables. The generalization of the
Jacobi inversion problem to arbitrary Riemann surfaces and its solution are due to Riemann. We give a precise
statement of the Jacobi inversion problem. LetS be an arbitrary Riemann surface of genus g, and fix a canonical
basis of cycles α1, . . . , αg, β1, . . . , βg on S; as above let ω1, . . . , ωg be be the corresponding basis of normalized
holomorphic differentials. Recall (see Lecture 3.1.4) that the Abel mapping has the form

A : SÑ JpSq, ApPq “ pu1pPq, . . . ,ugpPqq, (4.1.2)

137
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where JpSq is the Jacobi variety,

uipPq “

P
ż

P0

ωi, (4.1.3)

P0 is a particular point of S, and the path of integration from P0 to P is the same for all i “ 1, . . . , g. Consider
the gth symmetric power

SgpSq “ Sˆ ¨ ¨ ¨ ˆ S
looooomooooon

g times

{Sg

the symmetric group of g elements. The unordered collections pP1, . . . ,Pgq of g points of S are the points of the
manifold SgpSq. The meromorphic functions on SgpSq are the meromorphic symmetric functions of g variables
P1, . . . ,Pg, P j P S. The Abel mapping (4.1.2) determines a mapping

A
pgq : SgpSq Ñ JpSq, AgpP1, . . . ,Pgq “ ApP1q ` ¨ ¨ ¨ `ApPgq, (4.1.4)

which we also call the Abel mapping.

Lemma 4.1.1. If the divisor D “ P1` ¨ ¨ ¨ `Pg is nonspecial, then in a neighbourhood of a pointApgqpP1, ...,Pgq P JpSq
the mapping Apgq has a single-valued inverse.

Proof. Suppose that all the points are distinct; let z1, . . . , zg be local parameters in neighbourhoods of the
respective points P1, . . . ,Pg with zkpPkq “ 0 and ωi “ ψikpzkqdzk the normalized holomorphic differentials in a
neighbourhood of Pk. The Jacobi matrix of the mapping (4.1.4) has the following form at the points pP1, . . . ,Pgq

¨

˝

ψ11pz1 “ 0q . . . ψ1gpzg “ 0q
. . . . . . . . .

ψg1pz1 “ 0q . . . ψggpzg “ 0q

˛

‚.

If the rank of this matrix is less than g, then lpK ´ Dq ą 0, i.e., the divisor D is special by the Riemann-Roch
theorem. The case when not all the points P1, . . . ,Pg are distinct is treated similarly. We now prove that
the inverse mapping is single-valued. Assume that the collection of points pP11, . . . ,P

1
gq is also carried into

ApgqpP1, . . . ,Pgq. Then the divisor D1 “ P11 ` ¨ ¨ ¨ ` P1g is linearly equivalent to D by Abel’s theorem. If D1 , D,
then there would be a meromorphic function with poles at points of D and with zeros at points of D1. This
would contradict the fact that D is nonspecial. Hence, D1 “ D, and the points P11, . . . ,P

1
g differ from P1, . . . ,Pg

only in order. The lemma is proved. �

Since a divisor P1 ` ...` Pg in general position is nonspecial (see Problem 3.1.65), the Abel mapping (4.1.4)
is invertible almost everywhere. The problem of inversion of this mapping in the large is the Jacobi inversion
problem. Thus, the Jacobi inversion problem can be written in coordinate notation in the form

$

&

%

u1pP1q ` ¨ ¨ ¨ ` u1pPgq “ η1
. . . . . . . . .
ugpP1q ` ¨ ¨ ¨ ` ugpPgq “ ηg

(4.1.5)

which generalizes (4.1.1). To solve this problem we need the apparatus of multi-dimensional theta functions.
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4.2 Theta-functions

The g-dimensional theta-functions are defined by their Fourier serie. Let B “ pB jkq be a symmetric gˆ g matrix
with positive-definite imaginary part and let z “ pz1, . . . , zgq P Cg and N “ pN1, . . . ,Ngq P Zg be g-dimensional
vectors. The Riemann theta function is defined by its multiple Fourier series,

θpzq “ θpz; Bq “
g
ÿ

NPZ

exp pπixNB,Ny ` 2πixN, zyq , (4.2.1)

where the angle brackets denote the Euclidean inner product:

xN, zy “
g
ÿ

k“1

Nkzk, xNB,Ny “
g
ÿ

j,k“1

BkjN jNk.

The summation in (4.2.1) is over the lattice of integer vectors N “ pN1, . . . ,Ngq. The obvious estimate
<pixNB,Nyq ď ´bxN,Ny, where b ą 0 is the smallest eigenvalue of the matrix =pBq, implies that the se-
ries (4.2.1) defines an entire function of the variables z1, . . . , zg.

Proposition 4.2.1. The theta-function has the following properties.

1. θp´z ; Bq “ θpz ; Bq.

2. For any integer vectors M,K P Zg,

θpz` K `MB; Bq “ exp p´πixMB,My ´ 2πixM, zyqθpz; Bq. (4.2.2)

3. It satisfies the heat equation

B

BBi j
θpz ; Bq “

1
2πi

B2

BziBz j
θpz ; Bq, i , j

B

BBii
θpz ; Bq “

1
4πi

B2

Bz2
i

θpz ; Bq.
(4.2.3)

Proof. The proof of properties 1. and 3. is straightforward. Let us prove property 2. In the series for
θpz` K`MBqwe make the change of summation index N Ñ N´M. The relation (4.2.2) is obtained after this
transformation. �

The integer lattice tN `MBu is called the period lattice.
Remark 4.2.2. It is possible to define the function θpzq as an entire function of z1, . . . , zg satisfying the transfor-
mation law (4.2.2) (this condition determines θpzq uniquely to within a factor).

The theta-function is an analytic multivalued function on the g-dimensional torus Tg “ Cg{tN `MBu. In
order to construct single valued functions, i.e. meromorphic functions on the torus, one can take for example,
for any two vectors e1, e2 P Cg the product

θpz` e1qθpz´ e1q

θpz` e2qθpz´ e2q
.
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Indeed the above expression is by (4.2.2) a single valued function on the g-dimensional torus. In general for
any two sets of g vectors e1, . . . eg P Cg, v1, . . . vg P Cg satisfying the constraint

e1 ` . . . eg “ 0, v1 ` . . . vg “ 0

the product
g
ź

j“1

θpz` e jq

θpz` v jq
,

is a meromorphic function on the torus (verify this!).
Let p and q be arbitrary real g-dimensional row vectors. We define the theta function with characteristics p

and q:

θrp, qspzq “ exp pπixpB, py ` 2πixz` q, pyqθpz` q` pBq

“
ÿ

NPZg

exp pπixpN ` pqB,N ` py ` 2πixz` q,N ` pyq . (4.2.4)

For p “ 0 and q “ 0 we get the function θpzq. The analogue of the law (4.2.2) for the functions θrp, qspzq has the
form

θrp, qspz` K `MBq “ θrp, qspzqexp r´πixMB,My ´ 2πixM, z` qy ` 2πixK, pys. (4.2.5)

Observe that all the coordinates of the characteristics p and q are determined modulo 1.

Definition 4.2.3. The characteristics p and q with all coordinates equal to 0 or 1{2 are called half periods. A half period
rp, qs is said to be even if 4xp, qy ” 0 p mod 2q and odd if 4xp, qy ” 1 p mod 2q.

Exercise 4.2.4: Prove that the function θrp, qspzq is even if rp, qs is an even half period and odd if rp, qs is an odd
half period.

In particular the function θpzq is even. For e “ q` Bp with 4xp, qy ” 1 p mod 2q one has

θpeq “ 0.

Example 4.2.5. For g “ 1 the theta-function reduces to the Jacobi theta-function ϑ3pz ; τq with parameter τ,
=τ ą 0. The Jacobi theta function is defined by the series

θpz; τq “
ÿ

´8ănă8
exp

`

πiτn2 ` 2πinz
˘

. (4.2.6)

Since
ˇ

ˇexp
`

πiτn2 ` 2πinz
˘
ˇ

ˇ “ exp
`

´π=τn2 ´ 2πn=zq
˘

the series (4.2.6) converges absolutely and uniformly in the strips |=pzq| ď const and defines an entire function
of z.

The series (4.2.6) can be rewritten in the form common in the theory of Fourier series:

θpzq “
ÿ

´8ănă8
exppπiτn2qe2πizn (4.2.7)
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(the function ϑ3pz ; τq) in the standard notation; see [[4]). The function θpzq has the following periodicity
properties:

θpz` 1q “ θpzq (4.2.8)
θpz` τq “ expp´πiτ´ 2πizqθpzq (4.2.9)

The integer lattice with basis 1 and τ is called the period lattice of the theta function. The remaining Jacobi
theta-functions are defined with respect to the lattice 1, τ “ b{2πi as

ϑ1pz ; τq :“ θr
1
2
,

1
2
spzq “

ÿ

´8ănă8
exp

«

πiτ
ˆ

n`
1
2

˙2

` 2πi
ˆ

z`
1
2

˙ˆ

n`
1
2

˙

ff

ϑ2pz ; τq :“ θr
1
2
, 0spzq “

ÿ

´8ănă8
exp

«

πiτ
ˆ

n`
1
2

˙2

` 2πiz
ˆ

n`
1
2

˙

ff

ϑ4pz ; τq :“ θr0,
1
2
spzq “

ÿ

´8ănă8
exp

„

πiτn2 ` 2πi
ˆ

z`
1
2

˙

n


.

The functions ϑ2pz ; τq, ϑ3pz ; τq and ϑ4pz ; τq are even functions of z while ϑ1pz ; τq is odd. So for g “ 1, the

theta-function θpz ; τq “ ϑ3pz ; τq “ 0 for z “
1` τ

2
.

Exercise 4.2.6: Prove that the zeros of the function θpzq form an integer lattice with the same basis 1, τ and

with origin at the point z0 “
1` τ

2
.

By multiplying theta function (4.2.4) we obtain higher order theta functions. The function f pzq is said to
be a nth order theta function with characteristics p and q if it is an entire function of z1, . . . , zg and transforms
according to the following law under translation of the argument by a vector of the period lattice

f pz`N `MBq “ exp r´πinxMB,My ´ 2πinxM, z` qy ` 2πixp,Nys f pzq. (4.2.10)

Exercise 4.2.7: Prove that the nth order theta functions with given characteristics q, p form a linear space of
dimension ng. Prove that a basis in this space is formed by the functions

θr
p` S

n
, qspnz ; nBq, (4.2.11)

where the coordinates of the vector S run independently through all values from 0 to n´ 1.

Under a change of the homology basis α1, . . . , αg and β1, . . . , βg under a symplectic transformation
ˆ

α1

β1

˙

“

ˆ

a b
c d

˙ˆ

α
β

˙

,

ˆ

a b
c d

˙

P Spp2g,Zq.

The period matrix transforms as (see 3.1.53)

B1 “
ż

β1
ω1 “ pcIg ` dBqpaIg ` bBq´1.
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Denote by R the matrix
R “ aIg ` bB (4.2.12)

The transformed values of the argument of the theta-function and of the characteristics are determined by

z “ z1R
ˆ

p1

q1

˙

“

ˆ

d ´c
´b a

˙ˆ

p
q

˙

`
1
2

diag
ˆ

cdt

abt

˙

.
(4.2.13)

Here the symbol diag means the vectors of diagonal elements of the matrices abt and cdt. We have the equality

θrp1, q1spz1 ; B1q “ χ
?

det R exp

$

&

%

1
2

ÿ

iď j

ziz j
B log det R
BBi j

,

.

-

θrp, qspz ; Bq, (4.2.14)

where χ is a constant independent from z and B. See [19] for a proof.

Exercise 4.2.8: Prove the formula (4.2.14) for g “ 1. Hint. Use the Poisson summation formula (see [20],[19]: if

f̂ pξq “
1

2π

8
ż

´8

f pxqe´iξxdx

is the Fourier transform of a sufficiently nice function f pxq, then

8
ÿ

n“´8
f p2πnq “

8
ÿ

n“´8
f̂ pnq

Theta function are connected by a complicated system of algebraic relations, which are called addition
theorems. These are basically relations between formal Fourier series (see [19]). We present one of these
relations. Let

θ̂rnspz; Bq “ θr
n
2
, 0sp2z ; 2Bq,

according to (4.2.11) this is a basis of second order theta functions.

Lemma 4.2.9. The following identity holds:

θpz` wqθpz´ wq “
ÿ

nPpZ2q
g

θ̂rnspzqθ̂rnspwq. (4.2.15)

The expression n P pZ2q
g means that the summation is over the g-dimensional vectors n whose coordinates

all take values in 0 or 1.

Proof. Let us first analyze the case g “ 1. The formula (4.2.15) can be written as

θpz` wqθpz´ wq “ θ̂pzqθ̂pwq ` θ̂r1spzqθ̂r1spwq (4.2.16)

where
θpzq “

ÿ

k

exppπibk2 ` 2πikzq, θ̂pzq “
ÿ

k

expp2πibk2 ` 4πikzq,
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θ̂r1spzq “
ÿ

k

expp
„

2πibp
1
2
` kq2 ` 4πipk` 1{2qz



, =pbq ą 0.

The left-hand side of (4.2.16) has then the form
ÿ

k,l

exp
“

πibpk2 ` l2q ` 2πikpz` wq ` 2πilpz´ wq
‰

. (4.2.17)

We introduce new summation indices m and n by setting m “ pk` lq{2 and n “ pk´ lq{2. The numbers m and
n simultaneously are integers or half integers. In these variables the sum (4.2.17) takes the form

ÿ

expr2πibm2 ` 4πimz` 2πibn2 ` 4πinws. (4.2.18)

We break up this sum into two parts. The first part will contain the terms with integers m and n, while in the
second part m and n are both half-integers. In the second part we change the notation from m to m ` 1

2 and
from n to n` 1

2 . Then m and n are integers, and the expression (4.2.14) can be written in the form
ÿ

m,nPZ

expr2πibm2 ` 4πimzs expr2πibn2 ` 4πinws`

ÿ

m,nPZ

expr2πibpm`
1
2
q2 ` 4πipm`

1
2
qzs expr2πibpn`

1
2
q2 ` 4πipn`

1
2
qws “

θ̂pzqθ̂pwq ` θ̂r1spzqθ̂r1spwq.

The lemma is proved for g “ 1. In the general case g ą 1 it is necessary to repeat the arguments given for each
coordinate separately. The lemma is proved. �

Exercise 4.2.10: Suppose that the Riemann matrix B has a block-diagonal form B “
ˆ

B1 0
0 B2

˙

, where B1 and B2

are k ˆ k and lˆ l Riemann matrices, respectively with k ` l “ g. Prove that the corresponding theta function
factors into the product of two theta function

θpz ; Bq “ θpz1 ; B1qθpz2 ; B2q,
z “ pz1, . . . , zgq, z1 “ pz1, . . . , zkq, z2 “ pzk`1, . . . , zgq.

(4.2.19)

Notte that the period matrix of a Riemann surface never has a block diagonal structure.

4.2.1 The Riemann theorem on zeros of theta functions and its applications

To solve the Jacobi inversion problem we use the Riemann θ-function θpzq “ θpz ; Bq on the Riemann surface
S. As usual we assume that α1, . . . αg and β1, . . . , βg is a canonical homology basis. The basis of holomorphic
differentials ω1, . . . , ωg is normalized

ż

α j

ωk “ δ jk,

ż

β j

ωk “ B jk.

Even though θpz Bq is not single-valued on JpSq, the set of zeros is well defined because of (4.2.2). The set of
zeros of θpz |Bq is an analytic set of codimension one in JpSq. Let e “ pe1, . . . , egq P Cg be a given vector. We
consider the function F : SÑ C defined as

FpPq “ θpApPq ´ eq, (4.2.20)
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where the Abel map A

ApPq “
ˆ
ż P

P0

ω1, . . . ,

ż P

P0

ωg

˙

,

is a holomorphic map of maximal rank ofS into JpSq. Because of the periodicity properties of the theta-function
(4.2.2), the function FpPq transforms in the following way:

‚ FpP` α jq “ FpPq (4.2.21)

‚ FpP` β jq “ FpPq exp
„

´πiB j j ´ 2πi
ż P

P0

ω j ` 2πie j



. (4.2.22)

The study of the zeros of FpPq is thus the study of the intersection of ApSq Ă JpSq with the set of zeros of
θpz ; Bqwhich form a well defined compact analytic sub-variety of the torus JpSq. Since S is compact, there are
only two possibilities. Either FpPq is identically zero on S or else FpPq has only a finite number of zeros. The
function FpPq is single-valued and analytic on the cut surface S̃ (the Poincaré polygon). Assume that it is not
identically zero. This will be the case if, for example θpeq , 0.

Lemma 4.2.11. If FpPq . 0, then the function FpPq has g zeros on S̃ (counting multiplicity).

Proof. To compute the number of zeros it is necessary to compute the logarithmic residue

1
2πi

¿

BS̃

d log FpPq (4.2.23)

(assume that the zeros of FpPq do not lie on the boundary of BS̃). We sketch a fragment of BS̃ (cf. the proof of
lemma 3.1.16). The following notation is introduced for brevity and used below: F` denotes the value taken
by F at a point on BS̃ lying on the segment αk or βk and F´ the value of F at the corresponding point α´1

k or β´1
k

(see the figure 4.1).
The notation u` and u´ has an analogous meaning. In this notation the integral (4.2.23) can be written in

the form
1

2πi

¿

BS̃

d log FpPq “
1

2πi

g
ÿ

k“1

˜

ż

αk

`

ż

βk

¸

rd log F` ´ d log F´s. (4.2.24)

Note that if P is a point on αk then

u´j pPq “ u`j pPq `
ż

βk

ω j “ u`j pPq ` B jk, j “ 1, . . . , g, (4.2.25)

(cf. (3.1.17)), while if P lies on βk, then

u`j pPq “ u´j pPq `
ż

αk

ω j “ u´j pPq ` δ jk, j “ 1, . . . , g, (4.2.26)

(cfr. (3.1.18)). We get from the law of transformation (4.2.2) of the theta function or from (4.2.22), that for P on
the cycle αk one has

log F´pPq “ ´πiBkk ´ 2πiu`k pPq ` 2πiek ` log F`pPq; (4.2.27)
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Figure 4.1: A fragment of S̃.

while on the cycle βk from (4.2.21) one has
log F` “ log F´. (4.2.28)

From this on αk

d log F´pPq “ d log F`pPq ´ 2πiωkpPq, (4.2.29)

and on βk

d log F´pPq “ d log F`pPq. (4.2.30)

Accordingly, from (4.2.29) and (4.2.29) the sum (4.2.24) can be written in the form

1
2πi

¿

BS̃

d log F “
ÿ

k

¿

αk

ωk “ g,

where we have used the normalization condition
ű

αk
ωk “ 1. The lemma is proved �

Note that although the function FpPq is not a single-valued function on S, its zeros P1, . . . ,Pg do not depend
on the location of the cuts along the canonical basis of cycles. Indeed, if this basis cycles is deformed then
the path of integration from P0 to P can change in the formulas for the Abel map. A vector of the form
p
ű

γ ω1, . . . ,
ű

γ ωgq is added to the argument of the theta-function θpzq in (4.2.20). This is a vector of period lattice
tN `MBu. As a result of this the function FpPq can only be multiplied by a non-zero factor in view of (4.2.2).

Now we will show now that the g zeros of FpPq give a solution of the Jacobi inversion problem for a suitable
choice of the vector e.

Theorem 4.2.12. Let e P Cg, suppose that FpPq “ θpApPq´ eq ı 0 and P1, . . . ,Pg are its zeros on S. Then on the Jacobi
variety JpSq

AgpP1, . . . ,Pgq “ e`K , (4.2.31)
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whereK “ pK1, . . . ,Kgq is the vector of Riemann constants,

K j “ ´
1` B j j

2
`
ÿ

l, j

¨

˝

¿

αl

ωlpPq
ż P

P0

ω j

˛

‚, j “ 1, . . . , g. (4.2.32)

Proof. Consider the integral

ζ j “
1

2πi

¿

BS̃

u jpPqd log FpPq. (4.2.33)

This integral is equal to the sum of the residues of the integrands i.e.,

ζ j “ u jpP1q ` ¨ ¨ ¨ ` u jpPgq, (4.2.34)

where P1, . . . ,Pg are the zeros of FpPq of interest to us. On the other hand, this integral can be represented by
analogy with the proof of Lemma 4.2.11 in the form

ζ j “
1

2πi

g
ÿ

k“1

˜

ż

αk

`

ż

βk

¸

´

u`j d log F` ´ u´j d log F´q
¯

“
1

2πi

g
ÿ

k“1

ż

αk

ru`j d log F` ´ pu`j ` B jkqpd log F` ´ 2πiωkqs

`
1

2πi

g
ÿ

k“1

ż

βk

u`j d log F` ´ pu`j ´ δ jkqd log F`s

“
1

2πi

g
ÿ

k“1

„
ż

αk

2πiu`j ωk ´ B jk

ż

ak

d log F` ` 2πiB jk



`
1

2πi

ż

b j

d log F`,

in the course of computation we used formula (4.2.25)-(4.2.30). The function F takes the same values at the
endpoints of αk, therefore

ż

αk

d log F` “ 2πink,

where nk is an integer. Further let Q j and Q̃ j be the initial and terminal point of β j. Then

ż

β j

d log F` “ log F`pQ̃ jq ´ log F`pQ jq “

“ logθpApQ j ` β jq ´ eq ´ logθpApQ jq ´ eq “ ´πiB j j ` 2πie j ´ 2πiu jpQ jq,

The expression for ζ j can now be written in the form

ζ j “ u jpP1q ` ¨ ¨ ¨ ` u jpPgq “

“ e j ´
1
2

B j j ´ u jpQ jq `
ÿ

k

ż

ak

u jωk `
ÿ

k

B jkp´nk ` 1q. (4.2.35)
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Figure 4.2: Homology basis.

The last two terms can be thrown out, they correspond to the j-coordinate of some vector of the period lattice.
Thus the relation (4.2.35) coincides with the desired relation (4.2.31) if it is proved that the constant in this
equality reduces to (4.2.32), i.e.

´
1
2

B j j ´ u jpQ jq `
ÿ

k

ż

αk

u jωk “ K j, j “ 1, . . . , g.

To get rid of the term u jpQ jqwe transform the integral
¿

α j

u jω j “
1
2
ru2

j pQ jq ´ u2
j pR jqs,

where R j is the beginning of α j and Q j is its end (which is also the beginning of b j). Further u jpQ jq “ u jpR jq` 1.
We obtain

¿

α j

u jω j “
1
2
r2u jpQ jq ´ 1s,

hence

´u jpQ jq `

g
ÿ

k“1

ż

αk

u jωk “ ´
1
2
`

g
ÿ

k, j,k“1

ż

αk

u jωk.

The theorem is proved. �

Remark 4.2.13. We observe that the vector of Riemann constant depends on the choice of the base point P0 of
the Abel map. Indeed let KP0 be the vector of Riemann constants with base point P0. Then KQ0 is related to
KP0 by

KQ0 “ KP0 ` pg´ 1q
ż P0

Q0

ω. (4.2.36)

Example 4.2.14. The vector of Riemann constants can be easily calculated for hyperelliptic Riemann surfaces.
In particular let us consider the curve w2 “

ś5
i“1pz´ziq of genus g “ 2, and choose a basis of cycles as indicated

in the figure 4.2. A normal basis of holomorphic differentials has the form
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ω j “

ś2
k“1 c jkzk´ldz

w
, j “ 1, 2, (4.2.37)

where the constants c jk are uniquely determined by
ż

αk

ω j “ δ jk .

We chose as base point of the Abel map the point P0 “ p8,8q. We need to compute
¨

˝

¿

α2

ω2pPq
ż P

P0

ω1

˛

‚,

¨

˝

¿

α1

ω1pPq
ż P

P0

ω2

˛

‚.

Using the fact that
¿

α2

ω2pPq
ż P

P0

ω1 “

¿

α2

ω2pPq
ż z4

P0

ω1 `

ż z4

z3

ω2pz,wq
ż pz,wq

z4

ω1 ´

ż z4

z3

ω2pz,´wq
ż pz,´wq

z4

ω1

“

¿

α2

ω2pPq
ż z4

P0

ω1 “

ż z4

P0

ω1 “ p´
1
2
´

B12

2
q

one obtains
K1 “ ´

1` B11

2
´

1
2
´

B12

2
“ ´1´

B11 ` B12

2
In the same way calculating

¿

α1

ω1pPq
ż P

P0

ω2 “

¿

α1

ω1pPq
ż z2

P0

ω2 `

ż z2

z1

ω1pz,wq
ż pz,wq

z2

ω2 ´

ż z2

z1

ω1pz,´wq
ż pz,´wq

z2

ω2

“

¿

α1

ω1pPq
ż z2

P0

ω2 “ ´B21{2

one obtains that
K2 “ ´

1` B22 ` B21

2
Observe that the vectorK can be written in the form

K “

ˆ

0,
1
2

˙

`

ˆ

1
2
,

1
2

˙

B

Namely, given the odd characteristic

p “
ˆ

1
2
,

1
2

˙

, q “
ˆ

0,
1
2

˙

,

one has thatK “ q` pB. From this expression it follows that

θpKq “ 0.
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It is a general result not restricted to this particular example that θpzq|z“K “ 0.

Corollary 4.2.15. Let D a positive divisor of degree g. If the function

θpApPq ´ApDq `Kq

does not vanish identically on S then its divisor of zeros coincides with D.

Accordingly, if the function θpApPq´ eq is not identically equal to zero onS, then its zeros give a solution of
the Jacobi inversion problem (4.1.5) for the vector η “ e`K .We have shown that the map (4.1.4)Ag : Sg Ñ JpSq
is a local homeomorphism in a neighbourhood of a non special positive divisor D of degree g. Since θpzq ı 0
for z P JpSq, then θpApDqq does not vanish identically on open subsets of SgS. In the next subsection, we
characterize the zero set of the θ-function. The zeros of the theta-function form an analytic subvariety of JpSq.
The collection of these zeros forms the theta divisor in JpSq.

4.3 The Theta Divisor

In this section we study the set of zeros of the theta functions and in particular the Riemann vanishing theorem
which prescribes in a rather detail manner the set of zeros of the theta-function on Cg.

Theorem 4.3.1. Let e P Cg, then θpeq “ 0 if and only if e “ ApDq´K where D is a positive divisor of degree g´ 1 and
K is the vector of Riemann constants (4.2.32).

Remark 4.3.2. For a positive divisor D of degree g ´ 1, the expression ApDq ´K does not depend on the base
point of the Abel map. The theorem 4.3.1 says that the theta-function vanishes on a g´ 1-dimensional variety
parametrized by g´ 1 points of S, namely the theta function vanishes onApSg´1q ´K .

Proof. We first prove sufficiency. Let P1 ` ¨ ¨ ¨ ` Pg be a non special divisor and v “ ApP1 ` ¨ ¨ ¨ ` Pgq ´K . Let
us consider FpPq “ θpApPq ´ vq. Either F is identically zero or not. In the former case for each k “ 1, . . . g

FpPkq “ θpApP1 ` ¨ ¨ ¨ ` P̂k ` ¨ ¨ ¨ ` Pgq ´Kq “ 0,

where we use the symbol P̂k to mean that Pk does not appear in the divisor. So for e “ ApP1`¨ ¨ ¨`P̂k`¨ ¨ ¨`Pgq´K

we have θpeq “ 0.
In the latter case FpPq . 0, we have that F has precisely g zeros on S due to lemma 4.2.11. Let Q1, . . .Qg be

the zeros of F, then according to theorem 4.2.12 one has

ApQ1 ` ¨ ¨ ¨ `Qgq “ v`K “ ApP1 ` ¨ ¨ ¨ ` Pgq.

Since P1` ¨ ¨ ¨`Pg is not special, it follows from the Riemann-Roch and the Abel theorems that Q1` ¨ ¨ ¨`Qg “

P1 ` ¨ ¨ ¨ ` Pg. Therefore also in this case FpPkq “ θpApP1 ` ¨ ¨ ¨ ` P̂k ` ¨ ¨ ¨ ` Pgq ´Kq “ 0 for k “ 1, . . . , g. Since
the set of non-special divisor of degree g is dense in SpgqS, the divisors of the form P1 ` ¨ ¨ ¨ ` P̂k ` ¨ ¨ ¨ ` Pg

form a dense subset of Spg´1q
S. Since the function θpzq is continuous, it follows that θpzq is identically zero on

Wg´1 ´K , where in general Wn Ă JpSq, is the Abel image of SpnqS for n ě 1.
Conversely, let θpeq “ 0. Then by Jacobi inversion theorem, since θ is not identically zero on JpSq. Then

there exists an integer s, 1 ď s ď g, so that

θpApD̃1 ´ D̃2q ´ eq “ 0, @D̃1, D̃2 P Sps´1q
S
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but
θpApD1 ´D2q ´ eq , 0, D1,D2 P SpsqS.

Let D1 “ P1 ` ¨ ¨ ¨ ` Ps and D2 “ Q1 ` ¨ ¨ ¨ ` Qs where we assume that the points of the divisors are mutually
distinct. Now let us consider the function

FpPq “ θpApPq ` ApP2 ` ¨ ¨ ¨ ` Psq ´ ApQ1 ` ¨ ¨ ¨ `Qsq ´ eq

Since FpP1q , 0, this function is not identically zero on S. Therefore, by theorem 4.2.12 it has g zeros on S.
These zeros are by construction Q1, . . . ,Qs plus some other g´ s points Ts`1, . . . ,Tg. By theorem 4.2.12 one has

ApQ1 ` ¨ ¨ ¨ `Qs ` Ts`1,` ¨ ¨ ¨ ` Tgq ´K “ ApQ1 ` ¨ ¨ ¨ `Qsq ´ ApP2 ` ¨ ¨ ¨ ` Psq ` e

or equivalently
e “ ApP2 ` ¨ ¨ ¨ ` Ps ` Ts`1,` ¨ ¨ ¨ ` Tgq ´K

which is a point in Wg´1 ´K . �

Regarding the zeros of the theta-function it is possible to prove a little bit more then stated in the previous
theorems. Let D P Spg´1q

S and let e “ ApDq ´K . Then

multz“eθpzq “ lpDq.

where lpDq is the dimension of the space LpDq. The proof of this identity can be found in [20].

Remark 4.3.3. The vector of Riemann constants has a characterisation in terms of divisors. Indeed there is a non
positive divisor ∆ of degree g´ 1 such that its Abel image coincides with K , namely Ap∆q “ K . Furthermore
let D be a positive divisor of degree g´ 1, then the vector

e “ ApDq ´K

is a zero of the theta-function, namely θpeq “ 0. By the parity of the theta-function one has θp´eq “ 0. It follows
by theorem 4.3.1 that

´e “ ApD1q ´K

where D1 is a positive divisor of degree g´ 1. Then summing up the two relations we obtain

2K “ ApD`D1q

where D`D1 is a positive divisor of degree 2g´ 2. Since D`D1 has arbitrary g´ 1 points in it, it follows from
remark 3.1.57 that lpD ` D1q ě g which is equivalent, by Riemann-Roch theorem, to lpK ´ D ´ D1q ě 1. Since
degpD`D1q “ 2g´ 2 and degpK´D´D1q “ 0, one has lpK´D´D1q “ 1 which implies K “ D`D1, namely
we have shown that

2K “ ApKq . (4.3.1)

Using the characterization of the theta-divisor one can complete the description of the function FpPq.

Lemma 4.3.4. Let FpPq “ θpApPq´ eqwhere e “ ApDq´K , D P SpgqS andK the vector of Riemann constants defined
in (4.2.32). Then

1. FpPq ” 0 iff the divisor D is special;
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2. FpPq ı 0 iff dimΩpDq “ 0, i.e. the divisor D is not special. In this last case D is the divisor of zeros of FpPq.

Proof. Let’s prove part 1. of the lemma. Let FpPq ” 0, then by theorem 4.3.1 there is a positive divisor D̃ of
degree g´ 1 so that

ApDq ´K ´ ApPq “ ApD̃q ´K .

By Abel theorem, the identity holds if and only if D and D̃ ` P are linearly equivalent, that is there is a
meromorphic function in LpDq with a zero in an arbitrary point P P S. This is possible only if lpDq ą 1 or
equivalently dimΩpDq ą 0, namely D is special. Conversely, if D P Sg

S is special then lpDq ą 1 and therefore
there is a function f P LpDqwith an arbitrary zero in a point P P S so that p f q “ P`D̃´D. where D̃ P Spg´1q

S. It
follows by Abel theorem that ApPq´ApDq`K “ ´ApD̃q`K , then by theorem 4.3.1, one has θpApD̃q´Kq “ 0.

Now let us prove part 2. of the lemma. Suppose now that D is not special, then FpPq ı 0 and by
theorem 4.2.12, the divisors of zeros of FpPq coincides with D. �

Corollary 4.3.5. Let e “ ApDq ´K with D P Sg´1
S. Them the function FpPq “ θpApPq ´ eq vanishes identically if

and only if dimΩpD` P0q ě 1 (Check!!) where P0 is the base point of the Abel map.

Proof. Let P0 be the base point of the Abel map, then ApP´P0q “ ApPq. Suppose FpPq ” 0, then by theorem 4.3.1
there exists a positive divisor D̃ of degree g´ 1 such that

ApP´ P0q ´ ApDq `K “ ´ApD̃q `K

which implies that ApD`P0q “ ApD̃`Pq. By Abel theorem, there is a nontrivial meromorphic function h with
divisor

phq “ D̃` P´D´ P0

for all P P S. This implies that lpD ` P0q ě 2 or equivalently, D ` P0 is a special divisor. Viceversa suppose
that dimΩpD` P0q ě 1, then lpD` P0q ą 1 so that LpD` P0q is generated by t1, hu where h is a meromorphic
function. So there is a nontrivial meromorphic function with poles in D ` P0 and having zero in an arbitrary
point P ( take for example the function h´ hpPq) and some other g´ 1 points given by the divisor D̃. It follows
that

ApD` P0q “ ApD̃` Pq

or equivalently
ApP´ P0q ´ ApDq `K “ ´ApD̃q ´K

which implies by theorem 4.3.1 that 0 “ θp´ApD̃q ´ Kq “ θpApP ´ P0q ´ ApDq ´Kq “ θpApPq ´ ApDq ´Kq
where we recall that P0 is the base point of the Abel map. �

The zeros of the theta function (the points of the theta divisor) form a variety of dimension 2g ´ 2 (for
g ě 3). If we delete from JpSq, the theta divisor, then we get a connected 2g-dimensional domain. We get that
the Jacobi inversion problem is solvable for all points of the Jacobian JpSq and uniquely solvable for almost all
points. Thus the collection pP1, . . . ,Pgq “ pApgqq´1pηq of points of the Riemann surfaceS (without consideration
of order) is a single valued function of a point η “ pη1, . . . ηgq P JpSq (which has singularities at points of the
theta divisor.) To find an analytic expression for this function we take an arbitrary meromorphic function f pPq
on S. Then the specification of the quantities η1, . . . , ηg uniquely determines the collection of values

f pP1q, . . . , f pPgq, ApgqpP1, . . . ,Pgq “ η. (4.3.2)

Therefore, any symmetric function of f pP1q, . . . , f pPgq is a single-valued meromorphic function of the g
variables η “ pη1, . . . , ηgq, that is 2g-fold periodic with period lattice t2πiM ` BNu. All these functions can
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be expressed in terms of a Riemann theta function. The following elementary symmetric functions has an
especially simple expression:

σ f pηq “
g
ÿ

j“1

f pP jq. (4.3.3)

From Theorem 4.2.31 and the residue formula we get for this function the representation

σ f pηq “
1

2πi

¿

BS̃

f pPqd logθpApPq ´ η`Kq

´
ÿ

f pQkq“8

Res
P“Qk

f pPqd logθpApPq ´ η`Kq,
(4.3.4)

the second term in the right hand side is the sum of the residue of the integrand over all poles if f pPq. As in
the proof of Lemma 4.2.11 and Lemma 4.2.12, it is possible to transform the first term in (4.3.4) by using the
formulas (4.2.29) and (4.2.30). The equality (4.3.4) can be written in the form

σ f pηq “
1

2πi

ÿ

k

ż

ak

f pPqωk ´
ÿ

f pakq“8

Res
P“Qk

f pPqd logθpApPq ´ η`Kq. (4.3.5)

Here the first term is a constant independent of η. We analyze the computation of the second term (the sum of
residue) using an example.
Example 4.3.6. S is an hyperelliptic Riemann surface of genus g given by the equation w2 “ P2g`1pzq, and the
function f has the form f pz,wq “ z, the projection on the z-plane. This function on S has a unique two-fold
pole at 8. We get an analytic expression for the function σ f constructed according to the formula (4.3.3). In
other words if P1 “ pz1,w1q, . . . ,Pg “ pzg,wgq is a solution of the inversion problem ApP1q ` ¨ ¨ ¨ ` ApPgq “ η,
then

σ f pηq “ z1 ` ¨ ¨ ¨ ` zg. (4.3.6)

We take 8 as the base point P0 (the lower limit in the Abel mapping). According to (4.3.5) the function σ f pηq
has the form

σ f pηq “ c´ Res
8
rzd logθpApPq ´ η`Kqs .

Let us compute the residue. Take τ “ z´
1
2 as a local parameter in a neighbourhood of 8. Suppose that the

holomorphic differentials ωi have the form ωi “ ψipτqdτ in a neighbourhood of8. Then

d logθpApPq ´ η`Kq “
g
ÿ

i“1

rlogθpApPq ´ η`KsiωipPq “

“

g
ÿ

i“1

rlogθpApPq ´ η`Kqsiψipτqdτ

where r. . . si denotes the partial derivative with respect to the ith variable. By the choice of the base point point
P0 “ 8, the decomposition of the vector-valued function ApPq in a neighbourhood of8 has the form

ApPq “ τU `Opτ2q,
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where the vector U “ pU1, . . . ,Ugq has the form

U j “ ψ jp0q, j “ 1, . . . , g.

From these formulas we finally get

σ f pηq “ ´plogθpη´Kqqi, jUiU j ` c “ ´B2
x logθpxU ` η´Kq|x“0 ` c, (4.3.7)

where plogθpη ´Kqqi, j denotes derivative with respect to the i ´ th and j ´ th argument of the theta-function
and c is a constant.

We shall show in the next Section that the function

upx, tq “
B2

Bx2 logθpUx`Wt´ η`Kq ` c

where Wk “
1
3
ψ2p0q solves the Korteweg de Vries equation

ut “
1
4
p6uux ` uxxxq.

Exercise 4.3.7: Suppose that a hyperelliptic Riemann surface of genus g is given by the equation w2 “ P2g`2pzq.
Denotes its points at infinity by P´ and P`. Chose P´ as the base point P0 of the Abel mapping. Take f pz,wq “ z
as the function f . Prove that the function σ f pηq has the form

σ f pηq “

ˆ

log
θpη´K ´ ApP`qq

θpη´Kq

˙

j
U j ` c (4.3.8)

where the vector U “ pU1, . . . ,Ugq has the form

U j “ ψ jp0q, j “ 1, . . . , g, (4.3.9)

where the basis of holomorphic differentials have the form

ω jpPq “ ψ jpτqdτ, τ “ z´1, P Ñ8.

Exercise 4.3.8: Let S be a Riemann surface w2 “ P5pzq of genus 2. Consider the two systems of differential
equations:

dz1

dx
“

a

P5pz1q

z1 ´ z2
,

dz2

dx
“

a

P5pz2q

z2 ´ z1
(4.3.10)

dz1

dt
“

z2
a

P5pz1q

z1 ´ z2
,

dz2

dt
“

z1
a

P5pz2q

z2 ´ z1
. (4.3.11)

Each of these systems determined a law of motion of the pair of points

P1 “ pz1,
b

P5pz1qq, P2 “ pz2,
b

P5pz2qq

on the Riemann surface S. Prove that under the Abel mapping (4.1.1) these systems pass into the systems with
constant coefficients

dη1

dx
“ 0,

dη2

dt
“ 1

dη1

dt
“ ´1,

dη2

dt
“ 0.

In other words, the Abel mapping (4.1.1) is simply a substitution integrating the equations (4.3.10) and (4.3.11).
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4.4 Holomorphic line bundles and divisors

In this section we show the equivalence between holomorphic line bundles and divisors on a compact Riemann
surface S.

4.4.1 Holomorphic line bundle

Let tUαuαPA an open covering of a compact Riemann surface S. Let

O
˚pUq Ă OpUq ĂMpUq

be the set of nowhere vanishing holomorphic, holomorphic and meromorphic functions on U Ă S.

Definition 4.4.1. A complex line bundle over the Riemann surface S is a complex manifold L and a holomorphic map
π : L Ñ S such that

• LP :“ π´1pPq » Pˆ C. LP is called the fiber of L

• for a covering tUαuαPA of S the triples tP,Uα, vαuαPA with P P Uα and vα P C satisfy the equivalence relation

tP,Uα, vαu » tQ,Uβ, vβu ÐÑ P “ Q P Uα XUβ ,H, vα “ gαβpPqvβ

where gαβ P O˚pUα XUβq is called transition function

The functions gαβ P O˚pUα XUβq satisfy the cocycle condition

gαβpPqgβγpPqgγαpPq “ 1, @P P Uα XUβ XUγ,

and
gαβpPqgβαpPq “ 1.

The line bundle with gαβ “ 1 for all α, β P A is called trivial.

Definition 4.4.2. Two line bundles L and L1 with transition functions gαβ and g1αβ define isomorphic line bundles i it
exists fα P O˚pUαq so that

g1αβ “
fα
fβ

gαβ. (4.4.12)

One can give to the set of line bundles over S the structure of a group where the multiplication is given by
tensor product and inverse by dual bundle, namely if L and L1 are give by gαβ and g1αβ then

Lb L1 „ tgαβg1αβu, L˚ „ tg´1
αβ u

The group of line bundles over S is called the Picard group of S and denoted by PicpSq1.
A section of L is a map ψ : S Ñ L such that ψpPq P LP with P P S. For the trivial bundle L “ C ˆ S

every section is of the form ψpPq “ p f pPq,Pq for some holomorphic or meromorphic function f in S. A set of

1More precisely the group of line bundles coincides with the first cohomology group H1pS,O˚q and this group last is called the Picard
group of S.
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meromorphic functions fα PMpUαq such that fα{ fβ P O˚pUα X Uβq @α, β P A, is a meromorphic section of the
line bundle L. Indeed by defining it transition functions tgαβuα,βPA are

gαβpPq :“
fαpPq
fβpPq

, P P Uα XUβ.

one can immediately see that tgαβuα,βPA satisfy the cocycle condition.
The divisor of the meromorphic section t fαuαPA is well defined as

p fαq “ p fαq|Uα .

We now describe a basic correspondence between divisors and line bundles. Let D P DivpSq with D “
ř

i niPi and let Uα be a covering such that each open set Uα contains at most a point of D. Let fα PM˚pUαq be
meromorphic functions, such that the divisor of fα is precisely the part of D lying in Uα, for example if Pi P Uα

and zα is a centred coordinate near Pi, then fα “ zni
α

p fαq “ D|Uα “ niPi.

Then the functions

gαβ :“
fα
fβ
P O˚pUα XUβq

satisfy the cocycle condition

gαβgβγgγα “
fα
fβ

fβ
fγ

fγ
fα
“ 1.

The line bundle constructed in this way is called the line bundle associated to the divisor D and it is denoted

by LrDs. It is well defined. Indeed if pz1α,Uαq is another chart and f 1α “ pz1αqni then hα “
fα
f 1α
P O˚pUαq and

g1αβ “
f 1α
f 1β
“ gαβ

hβ
hα

Therefore according to Definition 4.4.2 g1αβ and gαβ define isomorphic line bundles.
The degree of the divisor is called the degree of the line bundle and is denoted by deg LrDs.
The map DivpSq Ñ PicpSq given by D Ñ LrDs is a homomorphism of groups. Indeed, given two divisors

D and D1 with local data t fαu and t f 1αu respectively, then the local data for D`D1 is given by t fα f 1αu. It follows
that LrD`D1s “ LrDs b LrD1s.

If D is the divisor of a meromorphic function f , namely D “ p f q, then we can take as a local data over any
cover Uα the functions fα :“ f |Uα . The transition functions gαβ “ fα{ fβ “ 1 so LrDs is trivial. Conversely, if D is
given by local data t fαu and the line bundle LrDs is trivial, then there exists functions hα P O˚pUαq such that

fα
fβ
“ gαβ “

hα
hβ

so that fαh´1
α “ fβh´1

β is a global meromorphic function on Swith divisor D.

Lemma 4.4.3. The divisors D and D1 are linearly equivalent iff the holomorphic line bundles LrDs and LrD1s are
isomorphic
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Proof. Let h PMpSq so that phq “ D1 ´D. Choose a covering of S so that each point of D and D1 belongs only
to one Uα. If fα is a meromorphic section of LrDs, then h|Uα fα is a meromorphic section of LrD1s which implies
(4.4.12). Conversely, let fα and f 1α be meromorphic sections of isomorphic line bundles LrDs and LrD1s. Then it
exists hα P O˚pUαq so that

hα fα
hβ fβ

“
f 1α
f 1β

that is
hα fα

f 1α
is a meromorphic function with divisor D´D1, which gives D „ D1. �

Summarizing, for each divisor D P DivpSq we can associate a line bundle LrDs. Conversely, given a line
bundle L and a meromorphic section fα we see that gαβ “ fα{ fβ P O˚pUα XUβq and L “ Lrp f qs. In particular, L
is the line bundle associated to a divisor D on S if and only if it has a non vanishing meromorphic section.

Lemma 4.4.4. Every holomorphic line bundle on a compact Riemann surface S admits a meromorphic section.

We do not prove this lemma. Therefore, the map DivpSq Ñ PicpSq given by D Ñ LrDs is also and
isomorphism of groups. We can then summarize the results of lemmas 4.4.3 and lemma 4.4.4.

Theorem 4.4.5. The Picard group PicpSq is isomorphic to the group of divisors DivpSq modulo linear equivalence.

We give now a geometric interpretation of the Riemann-Roch theorem. Denote by h0pLq the dimension of
the space of holomorphic sections of L and by deg L the degree of the line bundle, i.e. the degree of the divisor
D associated to L. Furthermore, we denote by K the canonical line bundle associated to the canonical divisor
K. Its transition functions are

gαβ “
dzα
dzβ

where pzα,Uαq is a chart of S.

Theorem 4.4.6. Let L be an holomorphic line bundle over a Riemann surface S of genus g. Then

h0pLq “ deg L` 1´ g` h0pKL´1q (4.4.13)

Proof. We just show that the space of holomorphic section of LrDs is isomorphic to the space LpDq defined in
(3.1.72). Indeed, let be φ a meromorphic section of LrDs with divisor D and h a holomorphic section of LrDs.

Then h{φ is a meromorphic function on S and
ˆ

h
φ

˙

ě 0, therefore h{φ P LpDq. Conversely, given f P LpDq

then f {φ is a holomorphic section of LrDs. In the same way one can show that the space of holomorphic
section of LrK ´ Ds is isomorphic to the space LpK ´ Dq. Then the relation (4.4.13) follows immediately from
the Riemann-Roch theorem 3.1.60. �

Among the line bundles, the spin bundles deserve special attention.

Definition 4.4.7. A holomorphic line bundle L “ LrDs with deg D “ g´ 1, and such that the

2D “ K,

where K is the canonical divisor, is called holomorphic spin bundle. Its holomorphic section are called spinors or theta-
charateristics.
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Remark 4.4.8. We observe that the Riemann-Roch theorem does not provide any information on such divisors.
The dimension of the space of holomorphic sections of the corresponding line bundles is obtained using the
theory of theta-functions.
Example 4.4.9. Let e “ q` pB be an odd half integer charactheristic. Then θpeq “ 0 and

e “ ApDq ´K , 0 “ 2e “ 2ApDq ´ 2K

where by Theorem 4.3.1 D “ P1 ` ¨ ¨ ¨ ` Pg´1 is a positive divisor of degree g ´ 1. But we also know from
Remark 4.3.3 that 2K “ ApKq so that 2D “ K.

On the other hand differentiating θpApDq ´Kq ” 0 with respect to Pk we obtain

g
ÿ

i“1

BθpApDq ´Kq
Bzi

ωipPkq “ 0

So we have found that

ω “
g
ÿ

i“1

Bθpeq
Bzi

ωipPq

is a holomorphic differential with zeros in D. Since 2D “ K we have that ω has double zeros in D.

Proposition 4.4.10. There exists 4g non equivalent holomorphic spin bundles on a Riemann surface of genus g.

Proof. Let D be the divisor of the spin bundle. Observe that for any base point P0, the Abel map gives the
identity

2AP0pDq “ AP0pKq.

From Remark 4.3.3 one obtains
2AP0pDq ´ 2KP0 “ 0.

Therefore there is a half integer characteristics e “ q` pB, q “ pq1, . . . , qgq and p “ pp1, . . . , pgq, with q j and p j in
Z2 such that

e “ AP0pDeq ´KP0 .

Since there are 4g half-periods e, it follows from the Jacobi inversion theorem, that there exists 4g non equivalent
divisor De such that 2De “ K. �

We observe that 0 is an even half integer characteristics. Therefore, there is a divisor D0 such that

0 “ AP0pD0q ´KP0 ,

namely, the vector of Riemann constantsKP0 “ AP0pD0q. This relation gives the clear dependence of the vector
of Riemann constants on the choice of the base point and the canonical homology basis. Since θp0; Bq , 0 it
follows from Theorem 4.3.1, that the corresponding divisor D0 is not a positive divisor.

Lemma 4.4.11 (Fay). The dimension of the space of holomorphic sections of the spin bundle LrDes, where e is an half
integer characteristics is given by

h0pLrDesq “ multz“eθpz; Bq.
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