Ramanujan-style congruences of local origin

Jenny Roberts
(joint work with Dan Fretwell)
University of Bristol

18 November 2022

Ramanujan's congruence

Take the discriminant function

$$
\Delta(z)=q \prod\left(1-q^{n}\right)^{24}, \quad\left(q=e^{2 \pi i z}\right)
$$

Ramanujan's congruence

Take the discriminant function

$$
\begin{aligned}
\Delta(z) & =q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}, \quad\left(q=e^{2 \pi i z}\right) \\
& =\sum_{n \geq 1} \tau(n) q^{n} \\
& =q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5}-6048 q^{6}+\cdots
\end{aligned}
$$

Ramanujan's congruence

Take the discriminant function

$$
\begin{aligned}
\Delta(z) & =q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}, \quad\left(q=e^{2 \pi i z}\right) \\
& =\sum_{n \geq 1} \tau(n) q^{n} \\
& =q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5}-6048 q^{6}+\cdots
\end{aligned}
$$

So, we have

$$
\begin{array}{c|cccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 \\
\tau(n) & 1 & -24 & 252 & -1472 & 4830 & -6048
\end{array}
$$

Ramanujan's congruence

Now, let's take the $11^{\text {th }}$ power divisor sum

$$
\sigma_{11}(n)=\sum_{d \mid n} d^{11}
$$

Ramanujan's congruence

Now, let's take the $11^{\text {th }}$ power divisor sum

$$
\sigma_{11}(n)=\sum_{d \mid n} d^{11}
$$

Here, we have

$$
\begin{array}{c|cccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 \\
\sigma_{11}(n) & 1 & 2049 & 177148 & 4196353 & 48828126 & 362976252
\end{array}
$$

Ramanujan's congruence

If we were to compare these two series...

$$
\begin{array}{c|cccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 \\
\tau(n) & 1 & -24 & 252 & -1472 & 4830 & -6048 \\
\sigma_{11}(n) & 1 & 2049 & 177148 & 4196353 & 48828126 & 362976252
\end{array}
$$

Ramanujan's congruence

If we were to compare these two series...

\[

\]

Ramanujan's congruence

If we were to compare these two series...

n		1	2	3	4	5	6
$\tau(n)$	\bmod	691	1	667	252	601	684
171							
$\sigma_{11}(n)$	\bmod	691	1	667	252	601	684
171							

Ramanujan's discovery

$\tau(n) \equiv \sigma_{11}(n) \bmod 691$

Ramanujan's congruence

This looks surprising, but can be explained using modular forms...

Ramanujan's congruence

This looks surprising, but can be explained using modular forms...

Proof (Sketch)

Consider the normalised, weight 12 Eisenstein series,

$$
E_{12}(z)=\frac{B_{12}}{24}+\sum_{n \geq 1} \sigma_{11}(n) q^{n} \in M_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

and note that the discriminant function is a weight 12 cusp form,

$$
\Delta(z)=\sum_{n \geq 1} \tau(n) q^{n} \in S_{12}\left(S L_{2}(\mathbb{Z})\right) \subset M_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

Ramanujan's congruence

This looks surprising, but can be explained using modular forms...

Proof (Sketch)

Consider the normalised, weight 12 Eisenstein series,

$$
E_{12}(z)=\frac{B_{12}}{24}+\sum_{n \geq 1} \sigma_{11}(n) q^{n} \in M_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

and note that the discriminant function is a weight 12 cusp form,

$$
\Delta(z)=\sum_{n \geq 1} \tau(n) q^{n} \in S_{12}\left(S L_{2}(\mathbb{Z})\right) \subset M_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

- Where does 691 appear? 691 divides B_{12}, so the constant coefficient of E_{12} vanishes modulo 691. E_{12} and Δ are both modular forms of weight 12 whose constant terms vanish modulo 691 - "cusp forms mod 691".

Ramanujan's congruence

This looks surprising, but can be explained using modular forms...

Proof (Sketch)

Consider the normalised, weight 12 Eisenstein series,

$$
E_{12}(z)=\frac{B_{12}}{24}+\sum_{n \geq 1} \sigma_{11}(n) q^{n} \in M_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

and note that the discriminant function is a weight 12 cusp form,

$$
\Delta(z)=\sum_{n \geq 1} \tau(n) q^{n} \in S_{12}\left(S L_{2}(\mathbb{Z})\right) \subset M_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

- Where does 691 appear? 691 divides B_{12}, so the constant coefficient of E_{12} vanishes modulo 691. E_{12} and Δ are both modular forms of weight 12 whose constant terms vanish modulo 691 - "cusp forms mod 691".
- Comparing the other coefficients we conclude that E_{12} and Δ must be the same cusp form mod 691.

Why do we care?

It turns out, this congruence has deep consequences...

Why do we care?

It turns out, this congruence has deep consequences...

- $\mathbb{Z}\left[\zeta_{691}\right]$ is not a UFD

Why do we care?

It turns out, this congruence has deep consequences...

- $\mathbb{Z}\left[\zeta_{691}\right]$ is not a UFD
- More precisely, $\mathrm{CI}\left(\mathbb{Q}\left(\zeta_{691}\right)\right)[691]$ is non-trivial

Why do we care?

It turns out, this congruence has deep consequences...

- $\mathbb{Z}\left[\zeta_{691}\right]$ is not a UFD
- More precisely, $\mathrm{CI}\left(\mathbb{Q}\left(\zeta_{691}\right)\right)[691]$ is non-trivial
- Even more than that, it tells us precise things about the Galois action on this class group

Why do we care?

It turns out, this congruence has deep consequences...

- $\mathbb{Z}\left[\zeta_{691}\right]$ is not a UFD
- More precisely, $\mathrm{Cl}\left(\mathbb{Q}\left(\zeta_{691}\right)\right)[691]$ is non-trivial
- Even more than that, it tells us precise things about the Galois action on this class group
In general, the existence of Eisenstein congruences like Ramanujan's leads to the proof of the Herbrand-Ribet Theorem, a major theorem in number theory concerning class groups of cyclotomic fields and the associated Galois action.

Next steps

Q1: Can you find other congruences like this, but for higher levels and non-trivial character?

Next steps

Q1: Can you find other congruences like this, but for higher levels and non-trivial character?
Q2: How do we find them, e.g. modulo what primes?

Next steps

Q1: Can you find other congruences like this, but for higher levels and non-trivial character?
Q2: How do we find them, e.g. modulo what primes?
Q3: What can we say about how "new" the modular forms that satisfy the congruence are?

Brief definitions

A modular form is a holomorphic function on the upper half plane which satifies a transformation formula under the action of $S L_{2}(\mathbb{Z})$.

Brief definitions

A modular form is a holomorphic function on the upper half plane which satifies a transformation formula under the action of $S L_{2}(\mathbb{Z})$.
A modular form of level N only has to satisfy the transformation formula for a subgroup $\Gamma_{1}(N) \subset S L_{2}(\mathbb{Z})$ which depends on N.

Brief definitions

A modular form is a holomorphic function on the upper half plane which satifies a transformation formula under the action of $S L_{2}(\mathbb{Z})$.
A modular form of level N only has to satisfy the transformation formula for a subgroup $\Gamma_{1}(N) \subset S L_{2}(\mathbb{Z})$ which depends on N.
A modular form is new at level N if it is not a lift of a modular form from some lower level, i.e. it first appears at level N.

A general conjecture

Conjecture (Fretwell, R.)

Assume we have

- N, M - coprime, squarefree integers, $k>2$ - integer.
- $E_{k}^{\psi, \phi}$ - new at level N with $\psi \phi=\chi$.
- $l>k+1, l \nmid 6 N M$ - prime of $\mathbb{Z}[\psi, \phi]$.
- λ - prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi, \phi)$ generated by the Fourier coefficients of f.
Then for all primes $p \nmid N M l$, there exists a newform $f \in S_{k}\left(\Gamma_{1}(N M), \tilde{\chi}\right)$ such that

$$
a_{p}(f) \equiv a_{p}\left(E_{k}^{\psi, \phi}\right)(\bmod \lambda)
$$

if and only if both of the following hold:
(1) $\operatorname{ord}_{l}\left(L\left(1-k, \psi^{-1} \phi\right) \prod_{p \in \mathcal{P}_{M}}\left(\psi(p)-\phi(p) p^{k}\right)\right)>0$.
(2) $l \mid\left(\psi(p)-\phi(p) p^{k}\right)\left(\psi(p)-\phi(p) p^{k-2}\right) \forall p \in \mathcal{P}_{M}$.

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

- We had a congruence between a cuspform Δ and Eisenstein series E_{12}.

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

- We had a congruence between a cuspform Δ and Eisenstein series E_{12}.
- We can find a congruence between a "new" cuspform $f=\sum_{n \geq 1} a_{n} q^{n}$ and an Eisenstein series $E_{k}^{\psi, \phi}$.

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

- We had a congruence between a cuspform Δ and Eisenstein series E_{12}.
- We can find a congruence between a "new" cuspform $f=\sum_{n \geq 1} a_{n} q^{n}$ and an Eisenstein series $E_{k}^{\psi, \phi}$.
- The congruence held modulo 691, this worked because 691 divided B_{12} (the constant coefficient of E_{12}).

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

- We had a congruence between a cuspform Δ and Eisenstein series E_{12}.
- We can find a congruence between a "new" cuspform $f=\sum_{n \geq 1} a_{n} q^{n}$ and an Eisenstein series $E_{k}^{\psi, \phi}$.
- The congruence held modulo 691, this worked because 691 divided B_{12} (the constant coefficient of E_{12}).
- The congruence holds modulo prime l, where l divides either the constant term of the Eisenstein series or an Euler product (some other information depending on the "level" of f).
- To ensure f is "new", l also has to divide other information depending on the "level" of f.

Consequences/ future work

- Our conjecture should provide evidence for a case of the Bloch-Kato conjecture - a deep conjecture in algebraic number theory relating L-values and arithmetic of Galois modules.

Consequences/ future work

- Our conjecture should provide evidence for a case of the Bloch-Kato conjecture - a deep conjecture in algebraic number theory relating L-values and arithmetic of Galois modules.
- In particular, it should tell us that a certain Bloch-Kato Selmer group (a wide generalisation of class groups) is non-trivial.

Consequences/ future work

- Our conjecture should provide evidence for a case of the Bloch-Kato conjecture - a deep conjecture in algebraic number theory relating L-values and arithmetic of Galois modules.
- In particular, it should tell us that a certain Bloch-Kato Selmer group (a wide generalisation of class groups) is non-trivial.
- We are also working on generalising our results to Hilbert modular forms.

Thank you!

