Newform Eisenstein congruences of local origin

Jenny Roberts (joint work with Dan Fretwell)

University of Bristol

24 May 2023

Recall: the discriminant function $\Delta \in S_{12}(SL_2(\mathbb{Z}))$ has q-expansion

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24}$$

æ

Recall: the discriminant function $\Delta \in S_{12}(SL_2(\mathbb{Z}))$ has q-expansion

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24} = \sum_{n \ge 1} \tau(n)q^n$$
$$= q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 + \cdots$$

æ

Recall: the discriminant function $\Delta \in S_{12}(SL_2(\mathbb{Z}))$ has q-expansion

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24} = \sum_{n \ge 1} \tau(n)q^n$$
$$= q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 + \cdots$$

and the Eisenstein series $E_{12} \in M_{12}(SL_2(\mathbb{Z}))$ has q-expansion

$$E_{12}(z) = -\frac{B_{12}}{24} + \sum_{n \ge 1} \sigma_{11}(n)q^n \in M_{12}(SL_2(\mathbb{Z}))$$
$$= \frac{691}{65520} + q + 2049q^2 + 177148q^3 + 4196353q^4$$
$$+ 48828126q^5 + 362976252q^6 + \cdots$$

æ

If we were to compare the Fourier coefficients of these two series...

n	1	2	3	4	5	6
$\tau(n)$	1	-24	252	-1472	4830	-6048
$\sigma_{11}(n)$	1	2049	177148	4196353	48828126	362976252

æ

メロト メポト メヨト メヨト

If we were to compare the Fourier coefficients of these two series...

	n		1	2	3	4	5	6
au(n)	mod	691	1	667	252	601	684	171
$\sigma_{11}(n)$	mod	691	1	667	252	601	684	171

æ

If we were to compare the Fourier coefficients of these two series...

	n		1	2	3	4	5	6
$\tau(n)$	mod	691	1	667	252	601	684	171
$\sigma_{11}(n)$	mod	691	1	667	252	601	684	171

Ramanujan's congruence

 $\tau(n) \equiv \sigma_{11}(n) \mod 691$

Why does this congruence hold?

2

Why does this congruence hold?

Proof (Sketch)

We have

$$E_{12}(z) = -\frac{B_{12}}{24} + \sum_{n \ge 1} \sigma_{11}(n)q^n \in M_{12}(SL_2(\mathbb{Z}))$$

and

$$\Delta(z) = \sum_{n \ge 1} \tau(n) q^n \in S_{12}(SL_2(\mathbb{Z})).$$

• Since $\operatorname{ord}_{691}(B_{12}) > 0$ we see that E_{12} reduces to an eigenform $\overline{E}_{12} \in S_{12}(SL_2(\mathbb{Z}), \overline{\mathbb{F}}_{691}).$

Why does this congruence hold?

Proof (Sketch)

We have

$$E_{12}(z) = -\frac{B_{12}}{24} + \sum_{n \ge 1} \sigma_{11}(n)q^n \in M_{12}(SL_2(\mathbb{Z}))$$

and

$$\Delta(z) = \sum_{n \ge 1} \tau(n) q^n \in S_{12}(SL_2(\mathbb{Z})).$$

- Since $\operatorname{ord}_{691}(B_{12}) > 0$ we see that E_{12} reduces to an eigenform $\overline{E}_{12} \in S_{12}(SL_2(\mathbb{Z}), \overline{\mathbb{F}}_{691}).$
- This space is spanned by the reductions of eigenforms in $S_{12}(SL_2(\mathbb{Z}), \mathbb{Z}_{691})$, which is 1-dimensional spanned by Δ .

• • • • • • • • • • •

Why does this congruence hold?

Proof (Sketch)

We have

$$E_{12}(z) = -\frac{B_{12}}{24} + \sum_{n \ge 1} \sigma_{11}(n)q^n \in M_{12}(SL_2(\mathbb{Z}))$$

and

$$\Delta(z) = \sum_{n \ge 1} \tau(n) q^n \in S_{12}(SL_2(\mathbb{Z})).$$

- Since $\operatorname{ord}_{691}(B_{12}) > 0$ we see that E_{12} reduces to an eigenform $\overline{E}_{12} \in S_{12}(SL_2(\mathbb{Z}), \overline{\mathbb{F}}_{691}).$
- This space is spanned by the reductions of eigenforms in $S_{12}(SL_2(\mathbb{Z}), \mathbb{Z}_{691})$, which is 1-dimensional spanned by Δ .
- Then $\overline{E}_{12} = \overline{\Delta}$, implying the congruence.

• • • • • • • • • • •

It turns out, this congruence has deep consequences...

æ

< □ > < □ > < □ > < □ > < □ >

It turns out, this congruence has deep consequences...

There exists a non trivial $[\mathfrak{a}] \in \mathsf{Cl}(\mathbb{Q}(\zeta_{691}))[691]$ satisfying:

$$\sigma \cdot [\mathfrak{a}] = \chi_{691}(\sigma)^{-11}[\mathfrak{a}] \text{ for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}),$$

where $\chi_{691} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{F}_{691}^*$ is the mod 691 cyclotomic character.

イロト イボト イヨト イヨ

It turns out, this congruence has deep consequences...

There exists a non trivial $[\mathfrak{a}] \in Cl(\mathbb{Q}(\zeta_{691}))[691]$ satisfying:

$$\sigma \cdot [\mathfrak{a}] = \chi_{691}(\sigma)^{-11}[\mathfrak{a}] \text{ for all } \sigma \in \mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}),$$

where $\chi_{691} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{F}_{691}^*$ is the mod 691 cyclotomic character.

More generally, Eisenstein congruences were used to prove:

Herbrand-Ribet Theorem

For $2 \le k \le p-3$ even:

$$\operatorname{ord}_p(B_k) > 0 \iff \exists \text{ element in the } \chi_p^{1-k} \text{ eigenspace of } \operatorname{Cl}(\mathbb{Q}(\zeta_p))[p].$$

Q1: Can we find other congruences like this, but for higher levels and non-trivial character?

æ

< □ > < □ > < □ > < □ > < □ >

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
 - Non-trivial character: Minimal level Dummigan (2007), lift by prime level Spencer (2018)

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
 - Non-trivial character: Minimal level Dummigan (2007), lift by prime level Spencer (2018)
- **Q2:** What can we say about how "new" the modular forms that satisfy the congruence are?

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
 - Non-trivial character: Minimal level Dummigan (2007), lift by prime level Spencer (2018)
- **Q2:** What can we say about how "new" the modular forms that satisfy the congruence are?
 - Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
 - Non-trivial character: Minimal level Dummigan (2007), lift by prime level Spencer (2018)
- **Q2:** What can we say about how "new" the modular forms that satisfy the congruence are?
 - Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)
- Q3: How do we find them, e.g. modulo what primes?
 - Generalise Ribet's converse to Herbrand's theorem

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
 - Non-trivial character: Minimal level Dummigan (2007), lift by prime level Spencer (2018)
- **Q2:** What can we say about how "new" the modular forms that satisfy the congruence are?
 - Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)
- Q3: How do we find them, e.g. modulo what primes?
 - Generalise Ribet's converse to Herbrand's theorem

Goal: Generalise to newform congruences with non-trivial character and lift by squarefree level.

Define the congruence subgroups of $SL_2(\mathbb{Z})$:

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

and

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N} \right\}.$$

2

Let $M_k(\Gamma_0(N), \chi)$ be the space of modular forms of weight $k \ge 2$, level N and Dirichlet character $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ with modulus N.

< □ > < 同 > < 回 > < Ξ > < Ξ

Let $M_k(\Gamma_0(N), \chi)$ be the space of modular forms of weight $k \ge 2$, level N and Dirichlet character $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ with modulus N.

Definition (Modular form)

 $f \in M_k(\Gamma_0(N), \chi)$ if:

- $\bullet\ f$ is holomorphic on the complex upper half plane
- f satisfies:

$$f[\gamma]_k := (cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right) = \chi(d)f(z)$$

for all
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$
.
 $f[\alpha]_k$ must be holomorphic at ∞ for all $\alpha \in SL_2(\mathbb{Z})$, i.e. at all cusps

イロト イボト イヨト イヨ

We can decompose $M_k(\Gamma_0(N),\chi)$ as

$$M_k(\Gamma_0(N),\chi) = S_k(\Gamma_0(N),\chi) \oplus E_k(\Gamma_0(N),\chi)$$

If k > 2, the Eisenstein subspace $E_k(\Gamma_0(N), \chi)$ is spanned by the normalised Eisenstein series $E_k^{\psi,\phi}(tz)$ for all ordered pairs of Dirichlet characters ϕ, ψ of conductors u, v satisfying $\psi \phi = \chi$ and $tuv \mid N$. $E_k^{\psi,\phi}$ has Fourier expansion:

$$E_k^{\psi,\phi}(z) = \frac{1}{2}\delta(\psi)L(1-k,\psi^{-1}\phi) + \sum_{n=1}^{\infty} \sigma_{k-1}^{\psi,\phi}(n)q^n,$$

 $\delta(\psi) = 1$ if ψ is the trivial mod 1 character, 0 otherwise and

$$\sigma_{k-1}^{\psi,\phi}(n) = \sum_{d|n,d>0} \psi(n/d)\phi(d)d^{k-1}$$

is the generalised power divisor series.

9 / 21

イロト 不得 トイヨト イヨト

$$S_k(\Gamma_0(N),\chi) = S_k^{\mathsf{old}}(\Gamma_0(N),\chi) \oplus S_k^{\mathsf{new}}(\Gamma_0(N),\chi)$$

with $S_k^{\text{old}}(\Gamma_0(N), \chi)$ as usual being spanned by lifts of modular forms in $S_k(\Gamma_0(N/d), \chi)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

• A modular form is **new** at level N if it lies in the new subspace.

$$S_k(\Gamma_0(N),\chi) = S_k^{\mathsf{old}}(\Gamma_0(N),\chi) \oplus S_k^{\mathsf{new}}(\Gamma_0(N),\chi)$$

with $S_k^{\text{old}}(\Gamma_0(N), \chi)$ as usual being spanned by lifts of modular forms in $S_k(\Gamma_0(N/d), \chi)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

• A modular form is **new** at level N if it lies in the new subspace.

$$S_k(\Gamma_0(N),\chi) = S_k^{\mathsf{old}}(\Gamma_0(N),\chi) \oplus S_k^{\mathsf{new}}(\Gamma_0(N),\chi)$$

with $S_k^{\text{old}}(\Gamma_0(N), \chi)$ as usual being spanned by lifts of modular forms in $S_k(\Gamma_0(N/d), \chi)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

- A modular form is **new** at level N if it lies in the new subspace.
- An eigenform is an eigenvector for all the Hecke operators, T_p , with $p \nmid N$.

< ロ > < 同 > < 三 > < 三 > 、

$$S_k(\Gamma_0(N),\chi) = S_k^{\mathsf{old}}(\Gamma_0(N),\chi) \oplus S_k^{\mathsf{new}}(\Gamma_0(N),\chi)$$

with $S_k^{\text{old}}(\Gamma_0(N), \chi)$ as usual being spanned by lifts of modular forms in $S_k(\Gamma_0(N/d), \chi)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

- A modular form is **new** at level N if it lies in the new subspace.
- An eigenform is an eigenvector for all the Hecke operators, T_p , with $p \nmid N$.
- $f = \sum_{n>0} a_n(f)q^n \in M_k(\Gamma_0(N), \chi)$ is normalised if $a_1(f) = 1$.

3

$$S_k(\Gamma_0(N),\chi) = S_k^{\mathsf{old}}(\Gamma_0(N),\chi) \oplus S_k^{\mathsf{new}}(\Gamma_0(N),\chi)$$

with $S_k^{\text{old}}(\Gamma_0(N), \chi)$ as usual being spanned by lifts of modular forms in $S_k(\Gamma_0(N/d), \chi)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

- \bullet A modular form is ${\bf new}$ at level N if it lies in the new subspace.
- An eigenform is an eigenvector for all the Hecke operators, T_p , with $p \nmid N$.
- $f = \sum_{n>0} a_n(f)q^n \in M_k(\Gamma_0(N), \chi)$ is normalised if $a_1(f) = 1$.
- We say $f \in M_k(\Gamma_0(N), \chi)$ is a **newform** if f is a normalised eigenform which is new at level N.

3

10 / 21

A general conjecture

Assume we have

- N, M coprime, squarefree integers, k > 2 integer.
- $E_k^{\psi,\phi}$ new at level N (cond(ψ)·cond(ϕ) = N) with $\psi\phi = \chi$, $\tilde{\chi}$ is a lift of χ to modulus NM.
- l > k + 1, $l \nmid NM$ prime of $\mathbb{Z}[\psi, \phi]$.
- λ prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi,\phi)$ generated by the Fourier coefficients of f.

イロト 不得 トイヨト イヨト

A general conjecture

Assume we have

- N, M coprime, squarefree integers, k > 2 integer.
- $E_k^{\psi,\phi}$ new at level N (cond(ψ)·cond(ϕ) = N) with $\psi\phi = \chi$, $\tilde{\chi}$ is a lift of χ to modulus NM.
- l > k+1, $l \nmid NM$ prime of $\mathbb{Z}[\psi, \phi]$.
- λ prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi,\phi)$ generated by the Fourier coefficients of f.

Conjecture (Fretwell, R.)

There exists a newform $f \in S_k(\Gamma_1(NM), \tilde{\chi})$ such that

$$a_q(f) \equiv a_q(E_k^{\psi,\phi}) \pmod{\lambda}$$

for all primes $q \nmid NMl$, if and only if both of the following hold:

• ord_l
$$(L(1-k,\psi^{-1}\phi)\prod_{p\in\mathcal{P}_M}(\psi(p)-\phi(p)p^k)) > 0.$$

 $l \mid (\psi(p) - \phi(p)p^k)(\psi(p) - \phi(p)p^{k-2}) \forall p \in \mathcal{P}_M.$

11/21

(日)

A general conjecture

Assume we have

- N, M coprime, squarefree integers, k > 2 integer.
- $E_k^{\psi,\phi}$ new at level N (cond(ψ)·cond(ϕ) = N) with $\psi\phi = \chi$, $\tilde{\chi}$ is a lift of χ to modulus NM.
- l > k+1, $l \nmid NM$ prime of $\mathbb{Z}[\psi, \phi]$.
- λ prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi,\phi)$ generated by the Fourier coefficients of f.

Conjecture (Fretwell, R.)

There exists a newform $f \in S_k(\Gamma_1(NM), \tilde{\chi})$ such that

 $a_q(f) \equiv a_q(E_k^{\psi,\phi}) \pmod{\lambda}$

for all primes $q \nmid NMl$, if and only if both of the following hold:

$$\label{eq:constraint} \bullet \mbox{ ord}_l(L(1-k,\psi^{-1}\phi)\prod_{p\in \mathcal{P}_M}(\psi(p)-\phi(p)p^k))>0.$$

 $l \mid (\psi(p) - \phi(p)p^k)(\psi(p) - \phi(p)p^{k-2}) \ \forall \ p \in \mathcal{P}_M.$

Tells us that we will get a congruence modulo prime *l* with some eigenform *f* Gives us information about how "new" *f* is
 Jenny Roberts (University of Bristol)

æ

o We had a congruence between a cuspform Δ and Eisenstein series E_{12} .

- o We had a congruence between a cuspform Δ and Eisenstein series E_{12} .
- We can find a congruence between a cuspform $f = \sum_{n \ge 1} a_n q^n$ (new at level NM) and an Eisenstein series $E_k^{\psi,\phi}$, (new at level N).

Image: A math a math

- o We had a congruence between a cuspform Δ and Eisenstein series $E_{12}.$
- We can find a congruence between a cuspform $f = \sum_{n \ge 1} a_n q^n$ (new at level NM) and an Eisenstein series $E_k^{\psi,\phi}$, (new at level N).
- o The congruence held modulo 691, this worked because 691 divided B_{12} (the constant coefficient of E_{12}).

• • • • • • • • • • •

- o We had a congruence between a cuspform Δ and Eisenstein series $E_{12}.$
- We can find a congruence between a cuspform $f = \sum_{n \ge 1} a_n q^n$ (new at level NM) and an Eisenstein series $E_k^{\psi,\phi}$, (new at level N).
- o The congruence held modulo 691, this worked because 691 divided B_{12} (the constant coefficient of E_{12}).
- The congruence holds modulo prime *l*, where *l* divides either the constant term of the Eisenstein series or an Euler product (with Euler factors at primes dividing *M*).
- To ensure f is new, l also has to divide another quantity at each prime dividing M.

Assume $a_q(f) \equiv \psi(q) + \phi(q)q^{k-1} \pmod{\lambda}$ for some newform $f \in S_k(\Gamma_1(NM), \tilde{\chi})$, λ a prime above l.

There is an l-adic Galois representation attached to f:

 $\rho_{f,l}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{Z}_l})$

with mod *l* reduction given by:

$$\overline{\rho}_{f,l}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathsf{GL}_2(\overline{\mathbb{F}_l}).$$

By the congruence condition, we then have:

$$\mathrm{Tr}(\overline{\rho}_{f,l}) = \overline{\psi} + \overline{\phi} \chi_l^{k-1},$$

i.e. $\overline{\rho}_{f,l}$ has composition factors $\{\overline{\psi},\overline{\phi}\chi_l^{k-1}\}$, where χ_l is the mod l cyclotomic character.

Assume $a_q(f) \equiv \psi(q) + \phi(q)q^{k-1} \pmod{\lambda}$ for some newform $f \in S_k(\Gamma_1(NM), \tilde{\chi})$, λ a prime above l.

There is an l-adic Galois representation attached to f:

$$\rho_{f,l}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{Z}_l})$$

with mod *l* reduction given by:

$$\overline{\rho}_{f,l}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{F}_l}).$$

By the congruence condition, we then have:

$$\mathsf{Tr}(\overline{\rho}_{f,l}) = \overline{\psi} + \overline{\phi}\chi_l^{k-1},$$

i.e. $\overline{\rho}_{f,l}$ has composition factors $\{\overline{\psi},\overline{\phi}\chi_l^{k-1}\}$, where χ_l is the mod l cyclotomic character.

イロト 不得 トイヨト イヨト

Assume $a_q(f) \equiv \psi(q) + \phi(q)q^{k-1} \pmod{\lambda}$ for some newform $f \in S_k(\Gamma_1(NM), \tilde{\chi})$, λ a prime above l.

There is an l-adic Galois representation attached to f:

$$\rho_{f,l}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathsf{GL}_2(\overline{\mathbb{Z}_l})$$

with mod l reduction given by:

$$\overline{\rho}_{f,l}:\mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\to\mathsf{GL}_2(\overline{\mathbb{F}_l}).$$

By the congruence condition, we then have:

$$\mathrm{Tr}(\overline{\rho}_{f,l}) = \overline{\psi} + \overline{\phi}\chi_l^{k-1},$$

i.e. $\overline{\rho}_{f,l}$ has composition factors $\{\overline{\psi},\overline{\phi}\chi_l^{k-1}\}$, where χ_l is the mod l cyclotomic character.

イロト 不得 トイヨト イヨト

Assume $a_q(f) \equiv \psi(q) + \phi(q)q^{k-1} \pmod{\lambda}$ for some newform $f \in S_k(\Gamma_1(NM), \tilde{\chi})$, λ a prime above l.

There is an l-adic Galois representation attached to f:

$$\rho_{f,l}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathsf{GL}_2(\overline{\mathbb{Z}_l})$$

with mod l reduction given by:

$$\overline{\rho}_{f,l}:\mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\to\mathsf{GL}_2(\overline{\mathbb{F}_l}).$$

By the congruence condition, we then have:

$${\rm Tr}(\overline{\rho}_{f,l})=\overline{\psi}+\overline{\phi}\chi_l^{k-1},$$

i.e. $\overline{\rho}_{f,l}$ has composition factors $\{\overline{\psi}, \overline{\phi}\chi_l^{k-1}\}$, where χ_l is the mod l cyclotomic character.

(日)

$$[\mu\chi_l^{k/2},\mu\chi_l^{k/2-1}]$$

where μ is the unramified character mapping the Frobenius at p to $a_p(f)/p^{k/2-1} \pmod{\lambda}.$

Equating the two sets of composition factors locally at p:

$$\{\overline{\psi}, \overline{\phi}\chi_l^{k-1}\} = \{\mu\chi_l^{k/2}, \mu\chi_l^{k/2-1}\},\$$

which leaves us with two cases:

(A) $\overline{\psi} = \mu \chi_l^{k/2}$, $\overline{\phi} \chi_l^{k-1} = \mu \chi_l^{k/2-1}$. (B) $\overline{\psi} = \mu \chi_l^{k/2-1}$, $\overline{\phi} \chi_l^{k-1} = \mu \chi_l^{k/2}$.

$$[\mu\chi_l^{k/2},\mu\chi_l^{k/2-1}]$$

where μ is the unramified character mapping the Frobenius at p to $a_p(f)/p^{k/2-1} \pmod{\lambda}.$

Equating the two sets of composition factors locally at p:

$$\{\overline{\psi}, \overline{\phi}\chi_l^{k-1}\} = \{\mu\chi_l^{k/2}, \mu\chi_l^{k/2-1}\},\$$

which leaves us with two cases:

(A) $\overline{\psi} = \mu \chi_l^{k/2}$, $\overline{\phi} \chi_l^{k-1} = \mu \chi_l^{k/2-1}$. (B) $\overline{\psi} = \mu \chi_l^{k/2-1}$, $\overline{\phi} \chi_l^{k-1} = \mu \chi_l^{k/2}$.

$$\{\mu\chi_l^{k/2},\mu\chi_l^{k/2-1}\}$$

where μ is the unramified character mapping the Frobenius at p to $a_p(f)/p^{k/2-1} \pmod{\lambda}.$

Equating the two sets of composition factors locally at p:

$$\{\overline{\psi}, \overline{\phi}\chi_l^{k-1}\} = \{\mu\chi_l^{k/2}, \mu\chi_l^{k/2-1}\},\$$

which leaves us with two cases:

(A) $\overline{\psi} = \mu \chi_l^{k/2}$, $\overline{\phi} \chi_l^{k-1} = \mu \chi_l^{k/2-1}$. (B) $\overline{\psi} = \mu \chi_l^{k/2-1}$, $\overline{\phi} \chi_l^{k-1} = \mu \chi_l^{k/2}$.

$$\{\mu\chi_l^{k/2},\mu\chi_l^{k/2-1}\}$$

where μ is the unramified character mapping the Frobenius at p to $a_p(f)/p^{k/2-1} \pmod{\lambda}.$

Equating the two sets of composition factors locally at p:

$$\{\overline{\psi}, \overline{\phi}\chi_l^{k-1}\} = \{\mu\chi_l^{k/2}, \mu\chi_l^{k/2-1}\},\$$

which leaves us with two cases:

(A)
$$\overline{\psi} = \mu \chi_l^{k/2}$$
, $\overline{\phi} \chi_l^{k-1} = \mu \chi_l^{k/2-1}$.
(B) $\overline{\psi} = \mu \chi_l^{k/2-1}$, $\overline{\phi} \chi_l^{k-1} = \mu \chi_l^{k/2}$.

Evaluating at $p \mid M$ in both cases:

(A)
$$\begin{array}{c} \psi(p) \equiv \mu(p)p^{k/2} \pmod{l} \\ \phi(p)p^{k-1} \equiv \mu(p)p^{k/2-1} \pmod{l} \end{array} \end{array} \Longrightarrow \ \psi(p) - \phi(p)p^k \equiv 0 \pmod{l}.$$

(B) $\begin{cases} \psi(p) \equiv \mu(p)p^{k/2-1} \pmod{l} \\ \phi(p)p^{k-1} \equiv \mu(p)p^{k/2} \pmod{l} \end{cases} \implies \psi(p) - \phi(p)p^{k-2} \equiv 0 \pmod{l}. \end{cases}$

Also, since $\mu(p)\equiv a_p(f)/p^{k/2-1} \pmod{\lambda}$, we have $a_p(f)\equiv \psi(p) \pmod{\lambda}$ in this case.

To summarise, we have that for all p dividing M, we require one of the following: (A) $\psi(p) - \phi(p)p^k \equiv 0 \pmod{l}$. (B) $\psi(p) = \psi(p) + \frac{1}{2} \sum_{k=0}^{\infty} 0 \pmod{k}$ and $\psi(p) = \psi(p) \pmod{k}$.

(B) $\psi(p) - \phi(p)p^{k-2} \equiv 0 \pmod{l}$ and $a_p(f) \equiv \psi(p) \pmod{\lambda}$.

Condition 2

 $l \mid (\psi(p) - \phi(p)p^k)(\psi(p) - \phi(p)p^{k-2}) \ \forall \ p \in \mathcal{P}_M.$

This proves the necessity of Condition (2) in the statement of the theorem. $\frac{1}{2}$

Evaluating at $p \mid M$ in both cases:

(A)
$$\begin{array}{c} \psi(p) \equiv \mu(p)p^{k/2} \pmod{l} \\ \phi(p)p^{k-1} \equiv \mu(p)p^{k/2-1} \pmod{l} \end{array} \end{array} \Longrightarrow \ \psi(p) - \phi(p)p^k \equiv 0 \pmod{l}.$$

(B)
$$\begin{cases} \psi(p) \equiv \mu(p)p^{k/2-1} \pmod{l} \\ \phi(p)p^{k-1} \equiv \mu(p)p^{k/2} \pmod{l} \end{cases} \implies \psi(p) - \phi(p)p^{k-2} \equiv 0 \pmod{l}. \end{cases}$$

Also, since $\mu(p) \equiv a_p(f)/p^{k/2-1} \pmod{\lambda}$, we have $a_p(f) \equiv \psi(p) \pmod{\lambda}$ in this case.

To summarise, we have that for all p dividing M, we require one of the following: (A) $\psi(p) - \phi(p)p^k \equiv 0 \pmod{l}$.

(B) $\psi(p) - \phi(p)p^{k-2} \equiv 0 \pmod{l}$ and $a_p(f) \equiv \psi(p) \pmod{\lambda}$.

Condition 2

 $l \mid (\psi(p) - \phi(p)p^k)(\psi(p) - \phi(p)p^{k-2}) \ \forall \ p \in \mathcal{P}_M.$

This proves the necessity of Condition (2) in the statement of the theorem. $\frac{1}{2}$

Evaluating at $p \mid M$ in both cases:

(A)
$$\begin{array}{c} \psi(p) \equiv \mu(p)p^{k/2} \pmod{l} \\ \phi(p)p^{k-1} \equiv \mu(p)p^{k/2-1} \pmod{l} \end{array} \end{array} \Longrightarrow \ \psi(p) - \phi(p)p^k \equiv 0 \pmod{l}.$$

(B)
$$\begin{cases} \psi(p) \equiv \mu(p)p^{k/2-1} \pmod{l} \\ \phi(p)p^{k-1} \equiv \mu(p)p^{k/2} \pmod{l} \end{cases} \implies \psi(p) - \phi(p)p^{k-2} \equiv 0 \pmod{l}.$$

Also, since $\mu(p) \equiv a_p(f)/p^{k/2-1} \pmod{\lambda}$, we have $a_p(f) \equiv \psi(p) \pmod{\lambda}$ in this case.

To summarise, we have that for all p dividing M, we require one of the following: (A) $\psi(p) - \phi(p)p^k \equiv 0 \pmod{l}$. (B) $\psi(p) - \phi(p)p^{k-2} \equiv 0 \pmod{l}$ and $a_p(f) \equiv \psi(p) \pmod{\lambda}$.

Condition 2

$$l \mid (\psi(p) - \phi(p)p^k)(\psi(p) - \phi(p)p^{k-2}) \forall p \in \mathcal{P}_M.$$

This proves the necessity of Condition (2) in the statement of the theorem.

We can do something similar for primes p dividing N, which in this case gives us an equivalence of characters:

$$\{\mu_1 \chi_l^{(k-1)/2}, \mu_2 \chi_l^{(k-1)/2}\} = \{\overline{\psi}, \overline{\phi} \chi_l^{k-1}\}.$$

We also have $a_p(f) \equiv p^{(k-1)/2}(\mu_1(p) + \mu_2(p)) \pmod{\lambda}$, hence $a_p(f) \equiv \psi(p) + \phi(p)p^{k-1} \pmod{\lambda}$.

Note that if any prime $p \mid M$ satisfies case (A), then Condition (1) follows immediately and we are done. So, assume that for all $p \mid M$, we are in case (B):

$$\psi(p) - \phi(p)p^{k-2} \equiv 0 \pmod{l}$$
$$a_p(f) \equiv \psi(p) \pmod{\lambda}.$$

Need to show:

Condition 1

 $\operatorname{ord}_{l}(L(1-k,\psi^{-1}\phi)\prod_{p\in\mathcal{P}_{M}}(\psi(p)-\phi(p)p^{k}))>0.$

We can do something similar for primes p dividing N, which in this case gives us an equivalence of characters:

$$\{\mu_1 \chi_l^{(k-1)/2}, \mu_2 \chi_l^{(k-1)/2}\} = \{\overline{\psi}, \overline{\phi} \chi_l^{k-1}\}.$$

We also have $a_p(f) \equiv p^{(k-1)/2}(\mu_1(p) + \mu_2(p)) \pmod{\lambda}$, hence $a_p(f) \equiv \psi(p) + \phi(p)p^{k-1} \pmod{\lambda}$.

Note that if any prime $p \mid M$ satisfies case (A), then Condition (1) follows immediately and we are done. So, assume that for all $p \mid M$, we are in case (B):

$$\begin{split} \psi(p) - \phi(p) p^{k-2} &\equiv 0 \pmod{l}, \\ a_p(f) &\equiv \psi(p) \pmod{\lambda}. \end{split}$$

Need to show:

Condition 1

$$\operatorname{ord}_l(L(1-k,\psi^{-1}\phi)\prod_{p\in\mathcal{P}_M}(\psi(p)-\phi(p)p^k))>0.$$

Let

$$E = \left[\prod_{p \in \mathcal{P}_M} (T_p - \phi(p)p^{k-1})\right] \alpha_M E_k^{\psi,\phi},$$

where $\alpha_M f(z) := f(Mz)$ and T_p is the p^{th} Hecke operator.

Fact 1

E is a normalised eigenform with Fourier coefficient at prime p given by:

$$a_p(E) = \begin{cases} \psi(p) & \text{if } p \mid M\\ \psi(p) + \phi(p)p^{k-1} & \text{otherwise} \end{cases}$$

With a bit more work, this gives

$$a_n(E) \equiv a_n(f) \pmod{\lambda} \ \forall \ n$$

In particular, since f is a cusp form, this tells us that E must vanish at all cusps.

• • • • • • • • • • •

Let

$$E = \left[\prod_{p \in \mathcal{P}_M} (T_p - \phi(p)p^{k-1})\right] \alpha_M E_k^{\psi,\phi},$$

where $\alpha_M f(z) := f(Mz)$ and T_p is the p^{th} Hecke operator.

Fact 1

 ${\it E}$ is a normalised eigenform with Fourier coefficient at prime p given by:

$$a_p(E) = \begin{cases} \psi(p) & \text{if } p \mid M \\ \psi(p) + \phi(p)p^{k-1} & \text{otherwise} \end{cases}$$

With a bit more work, this gives

$$a_n(E) \equiv a_n(f) \pmod{\lambda} \ \forall \ n$$

In particular, since f is a cusp form, this tells us that E must vanish at all cusps.

æ

イロト イヨト イヨト

Let

$$E = \left[\prod_{p \in \mathcal{P}_M} (T_p - \phi(p)p^{k-1})\right] \alpha_M E_k^{\psi,\phi},$$

where $\alpha_M f(z) := f(Mz)$ and T_p is the p^{th} Hecke operator.

Fact 1

 ${\it E}$ is a normalised eigenform with Fourier coefficient at prime p given by:

$$a_p(E) = \begin{cases} \psi(p) & \text{if } p \mid M \\ \psi(p) + \phi(p)p^{k-1} & \text{otherwise} \end{cases}$$

With a bit more work, this gives

$$a_n(E) \equiv a_n(f) \pmod{\lambda} \ \forall \ n$$

In particular, since f is a cusp form, this tells us that E must vanish at all cusps.

(日) (四) (日) (日) (日)

Fact 2

We can choose a $\gamma = \begin{pmatrix} a & \beta \\ b & \delta \end{pmatrix} \in SL_2(\mathbb{Z})$ such that $E[\gamma]_k$ has constant term:

$$-\frac{g(\psi\phi^{-1})}{g(\phi)}\frac{\phi^{-1}(a)\psi\left(\frac{-b}{v}\right)\psi^{-1}(M)}{u^{k}}L(1-k,\psi^{-1}\phi)\left(\prod_{p\in\mathcal{P}_{M}}(\psi(p)-\phi(p)p^{k-1})\right)$$

However, $\frac{g(\psi\phi^{-1})}{g(\phi)}$, $\phi^{-1}(a)$, $\psi\left(\frac{-b}{v}\right)$ and $\psi^{-1}(M)$ are units in $\mathbb{Z}[\psi, \phi]$. Furthermore, $l \nmid u$ since $u \mid N$ and by assumption $l \nmid N$. Hence, l must divide

$$L(1-k,\psi^{-1}\phi)\left(\prod_{p\in\mathcal{P}_M}(\psi(p)-\phi(p)p^{k-1})\right)$$

Condition (1) follows easily from this, so we are done.

(日) (四) (日) (日) (日)

Fact 2

We can choose a $\gamma = \begin{pmatrix} a & \beta \\ b & \delta \end{pmatrix} \in SL_2(\mathbb{Z})$ such that $E[\gamma]_k$ has constant term:

$$-\frac{g(\psi\phi^{-1})}{g(\phi)}\frac{\phi^{-1}(a)\psi\left(\frac{-b}{v}\right)\psi^{-1}(M)}{u^{k}}L(1-k,\psi^{-1}\phi)\left(\prod_{p\in\mathcal{P}_{M}}(\psi(p)-\phi(p)p^{k-1})\right)$$

However, $\frac{g(\psi\phi^{-1})}{g(\phi)}$, $\phi^{-1}(a)$, $\psi\left(\frac{-b}{v}\right)$ and $\psi^{-1}(M)$ are units in $\mathbb{Z}[\psi, \phi]$. Furthermore, $l \nmid u$ since $u \mid N$ and by assumption $l \nmid N$. Hence, l must divide

$$L(1-k,\psi^{-1}\phi)\left(\prod_{p\in\mathcal{P}_M}(\psi(p)-\phi(p)p^{k-1})\right)$$

Condition (1) follows easily from this, so we are done.

18 / 21

イロト イポト イヨト イヨト 二日

Reverse implication

- For the reverse implication, we can prove the case where M = p prime.
- A result of Spencer (2018) gives us an eigenform f which satisfies the congruence.
- If this is a newform then we're done, so assume f arises from a modular form $f_0 \in S_k^{new}(\Gamma_0(N),\chi).$

< □ > < 同 > < 回 > < Ξ > < Ξ

Reverse implication

- For the reverse implication, we can prove the case where M = p prime.
- A result of Spencer (2018) gives us an eigenform f which satisfies the congruence.
- If this is a newform then we're done, so assume f arises from a modular form $f_0\in S_k^{new}(\Gamma_0(N),\chi).$

To obtain a level ${\cal N}p$ newform, we use the following:

Theorem (Diamond 1991)

For $p \nmid N$, the following are equivalent:

1~ We have $f_0\in S_k(\Gamma_0(N),\chi)$ satisfying

$$a_p(f_0)^2\equiv \chi(p)p^{k-2}(1+p^2) \ ({\rm mod}\ \lambda).$$

2 There is a $p\text{-newform }f_1\in S_k(\Gamma_0(Np),\chi)$ satisfying

$$a_q(f_1) \equiv a_q(f_0) \equiv \psi(q) + \phi(q)q^{k-1} \pmod{\lambda'} \ \forall \ \text{primes} \ q \nmid Npl$$

イロト イヨト イヨト イ

• Our results provide evidence for a case of the Bloch-Kato conjecture - a conjecture in algebraic number theory relating L-values and arithmetic of Galois modules.

(日) (四) (日) (日) (日)

- Our results provide evidence for a case of the Bloch-Kato conjecture a conjecture in algebraic number theory relating L-values and arithmetic of Galois modules.
- In particular, our results are expected to produce 'new' elements in a Bloch-Kato Selmer group.

• • • • • • • • • • •

- Our results provide evidence for a case of the Bloch-Kato conjecture a conjecture in algebraic number theory relating L-values and arithmetic of Galois modules.
- In particular, our results are expected to produce 'new' elements in a Bloch-Kato Selmer group.
- We are also working on generalising our results to Hilbert modular forms.

• • • • • • • • • • •

Thank you!

2

メロト メロト メヨト メヨト