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Ramanujan’s congruence

Recall: the discriminant function A € S12(SL2(Z) has g-expansion

Az)=q [ -qg*

n>1
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Ramanujan’s congruence

Recall: the discriminant function A € S12(SL2(Z) has g-expansion

A =q]J - =) r(n)g"

n>1 n>1

= q— 24¢% + 252¢° — 1472¢* + 4830¢° — 6048¢° + - - -

and the Eisenstein series E19 € M72(SL2(Z)) has g-expansion

Eia(2) = Y + Z o11(n)q" € Mi2(SLa(Z))

691
= 2049¢> + 177148¢> + 4196353¢*
65520 T 4T AT T ¢t a4

4 48828126¢° + 362976252¢° + - - -
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Ramanujan’s congruence

If we were to compare the Fourier coefficients of these two series...

n 12 3 4 5 6
rn) |1 —24 252 —1472 4830 —6048
on(n) | 1 2049 177148 4196353 48828126 362976252
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Ramanujan’s congruence

If we were to compare the Fourier coefficients of these two series...

n 1 2 3 4 5 6
7(n) mod 691 | 1 667 252 601 684 171
o11(n) mod 691 | 1 667 252 601 684 171
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Ramanujan’s congruence

If we were to compare the Fourier coefficients of these two series...

n 1 2 3 4 5 6
7(n) mod 691 | 1 667 252 601 684 171
o11(n) mod 691 | 1 667 252 601 684 171

Ramanujan’s congruence
7(n) = o11(n) mod 691
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Ramanujan’s congruence

Why does this congruence hold?
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Ramanujan’s congruence

Why does this congruence hold?

Proof (Sketch)
We have

and

A(z) = Zf(n)qn € S12(SL2(7)).

e Z o11(n)q" € Mi2(SLa(Z))

n>1

@ Since ordgg1 (B12) > 0 we see that 1o reduces to an eigenform

E12 € S12 (SLy(Z), F691)-
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Ramanujan’s congruence

Why does this congruence hold?

Proof (Sketch)
We have

Eip(2) = ——=+ > _o11(n)g" € Mi2(SL(Z))

and

A(z) = Zf(n)qn € S12(SL2(7)).

n>1

° gnce ordeo1 (B12) > 0 we see that L1 reduces to an eigenform
Eis € S12(SLa(Z),Feo1).

@ This space is spanned by the reductions of eigenforms in S15(SLy(Z), Zeo1),
which is 1-dimensional spanned by A.
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Ramanujan’s congruence

Why does this congruence hold?

Proof (Sketch)
We have

Eip(2) = ——=+ > _o11(n)g" € Mi2(SL(Z))

and

A(z) = Zf(n)qn € S12(SL2(7)).

n>1

° gnce ordeo1 (B12) > 0 we see that L1 reduces to an eigenform
Eis € S12(SLa(Z),Feo1).

@ This space is spanned by the reductions of eigenforms in S15(SLy(Z), Zeo1),
which is 1-dimensional spanned by A.

e Then E15 = A, implying the congruence.
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Why do we care?

It turns out, this congruence has deep consequences...
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Why do we care?

It turns out, this congruence has deep consequences...

There exists a non trivial [a] € CI(Q((g01))[691] satisfying:
o - [a] = xe01(0) [a] for all o € Gal(Q/Q),

where xgo1 : Gal(Q/Q) — F; is the mod 691 cyclotomic character.
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Why do we care?

It turns out, this congruence has deep consequences...

There exists a non trivial [a] € CI(Q((g01))[691] satisfying:

o - [a] = xe01(c) "M [a] for all o € Gal(Q/Q),

where xgo1 : Gal(Q/Q) — F; is the mod 691 cyclotomic character.

More generally, Eisenstein congruences were used to prove:

Herbrand-Ribet Theorem

For2 <k <p-—3even:

ord,(Bi) >0 <= I element in the le,_k eigenspace of CI(Q({p))[p]-
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Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial
character?
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Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial
character?
o Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
o Non-trivial character: Minimal level - Dummigan (2007), lift by prime level -
Spencer (2018)
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Q1: Can we find other congruences like this, but for higher levels and non-trivial
character?
o Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
o Non-trivial character: Minimal level - Dummigan (2007), lift by prime level -
Spencer (2018)
Q2: What can we say about how “new” the modular forms that satisfy the
congruence are?
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Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial
character?

o Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
o Non-trivial character: Minimal level - Dummigan (2007), lift by prime level -
Spencer (2018)

Q2: What can we say about how “new” the modular forms that satisfy the
congruence are?
o Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)
Q3: How do we find them, e.g. modulo what primes?

o Generalise Ribet's converse to Herbrand's theorem
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Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial
character?

o Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
o Non-trivial character: Minimal level - Dummigan (2007), lift by prime level -
Spencer (2018)

Q2: What can we say about how “new” the modular forms that satisfy the
congruence are?

o Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)
Q3: How do we find them, e.g. modulo what primes?

o Generalise Ribet's converse to Herbrand's theorem

Goal: Generalise to newform congruences with non-trivial character and lift by
squarefree level.
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Definitions - Congruence subgroups

Define the congruence subgroups of SLy(Z):
a b a b 1 =
I'1(N)= {(c d) € SLy(Z) : (c d> = (O 1) (mod N)}

and

24 May 2023
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Definitions - Modular forms of level N

Let M (T'o(N), x) be the space of modular forms of weight k£ > 2, level N and
Dirichlet character x : (Z/NZ)* — C* with modulus N.
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Definitions - Modular forms of level N

Let M (T'o(N), x) be the space of modular forms of weight k£ > 2, level N and
Dirichlet character x : (Z/NZ)* — C* with modulus N.

Definition (Modular form)
f € Mi(To(N),x) if:
@ f is holomorphic on the complex upper half plane

o f satisfies:
az+b

cz+d

File = (cz + d) %5 ( ) — (@)f(2)

for all v = (CCL Z) € Iy(N).

o f[a]r must be holomorphic at oo for all o € SLy(7Z), i.e. at all cusps.
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Definitions - Generalised Eisenstein series

We can decompose My (T'o(N), x) as
M (Lo(N), x) = Se(T'o(N), x) & Ex(Lo(N), x)

If & > 2, the Eisenstein subspace Ej(To(N), x) is spanned by the normalised
Eisenstein series E,'f’¢(tz) for all ordered pairs of Dirichlet characters ¢, 1 of
conductors u, v satisfying ¥¢ = x and tuv | N. E;f’qb has Fourier expansion:

Y () = Z0W)LA ~ kv70) + 3 ol )",
n=1

0(¢) = 1 if ¢ is the trivial mod 1 character, 0 otherwise and

o)=Y w(n/d)p(d)d"

d|n,d>0

is the generalised power divisor series.
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Definitions - Newforms

The cuspidal subspace has an orthogonal decomposition with respect to the
Petersson inner product:

Sk(To(N), x) = SRUTo(N), x) ® S (To(N), x)

with S24(T'o(N), x) as usual being spanned by lifts of modular forms in
Sk(To(N/d), x) with d - cond(x) | N.

@ A modular form is new at level N if it lies in the new subspace.
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Definitions - Newforms

The cuspidal subspace has an orthogonal decomposition with respect to the
Petersson inner product:

Sk(To(N), x) = SRUTo(N), x) ® S (To(N), x)

with S24(T'o(N), x) as usual being spanned by lifts of modular forms in
Sk(To(N/d), x) with d - cond(x) | N.
@ A modular form is new at level N if it lies in the new subspace.

@ An eigenform is an eigenvector for all the Hecke operators, T, with p { N.
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Definitions - Newforms

The cuspidal subspace has an orthogonal decomposition with respect to the
Petersson inner product:

Sk(To(N), x) = SRUTo(N), x) ® S (To(N), x)
with S24(T'o(N), x) as usual being spanned by lifts of modular forms in
Sk(To(N/d), x) with d - cond(x) | N.
@ A modular form is new at level N if it lies in the new subspace.

@ An eigenform is an eigenvector for all the Hecke operators, T, with p { N.
o f=>s0an(f)q" € Mk(Lo(N),x) is normalised if a:(f) = 1.
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Definitions - Newforms

The cuspidal subspace has an orthogonal decomposition with respect to the
Petersson inner product:

Sk(To(N), x) = SRUTo(N), x) ® S (To(N), x)

with S24(T'o(N), x) as usual being spanned by lifts of modular forms in
Sk(To(N/d), x) with d - cond(x) | N.
@ A modular form is new at level N if it lies in the new subspace.
@ An eigenform is an eigenvector for all the Hecke operators, T, with p { N.
o f=> oan(f)g" € Mp(I'o(N),x) is normalised if a;(f) = 1.
o We say j’TG My (To(N), x) is a newform if f is a normalised eigenform
which is new at level N.
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A general conjecture

Assume we have
@ N, M - coprime, squarefree integers, k > 2 - integer.
° E}f’d’ - new at level N (cond(%))-cond(¢) = N) with ¢ = x, x is a lift of
X to modulus NM.

e l>k+1,1tNM - prime of Z[1), §].

@ ) - prime above [ in the ring of integers of the extension of Q(v, ¢)
generated by the Fourier coefficients of f.
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A general conjecture

Assume we have
@ N, M - coprime, squarefree integers, k > 2 - integer.
° E}f’d’ - new at level N (cond(¢))-cond(¢) = N) with ¢ = x, X is a lift of
x to modulus NM.
e l>k+1,1tNM - prime of Z[), §].
@ ) - prime above [ in the ring of integers of the extension of Q(v, ¢)
generated by the Fourier coefficients of f.

Conjecture (Fretwell, R.)
There exists a newform f € S,(T'1(NM), x) such that
aq(f) = aq(E;f’“b) (mod \)

for all primes g NMI, if and only if both of the following hold:
© ordi(L(1 — k, %~ '¢) [ ep,, (¥ (p) — &(p)p*)) > 0.
Q 1| (v(p) — o)") (W (p) — $(p)p*~?) YV p € Pus.
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A general conjecture

Assume we have
@ N, M - coprime, squarefree integers, k > 2 - integer.
° E;;M) - new at level N (cond(v)-cond(¢) = N) with )¢ = x, x is a lift of x
to modulus NM.
e l>k+1,1tNM - prime of Z[), §].
@ ) - prime above [ in the ring of integers of the extension of Q(v, ¢)
generated by the Fourier coefficients of f.

Conjecture (Fretwell, R.)
There exists a newform f € Si(I'1(NM), x) such that

aq(f) = aq(E,’f@) (mod \)

for all primes g NMI, if and only if both of the following hold:
Q ordi(L(1 =k, ¥~ '0) [[ep,, (¥(p) — ¢(p)P*)) > 0.
© I | (¥(p) — ¢()IP") (W (p) — d(p)P*~?) ¥ p € Par.

@ Tells us that we will get a congruence modulo prime [ with some eigenform f
@ Gives us information about how “new” f is

v
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A general conjecture (simplifi

How does the generalisation compare to Ramanujan’s result?
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A general conjecture (simplifi

How does the generalisation compare to Ramanujan’s result?
o We had a congruence between a cuspform A and Eisenstein series 5.
e We can find a congruence between a cuspform f =3 -, an,q™ (new at level
NM) and an Eisenstein series E;f’(b, (new at level N). -
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A general conjecture (simplified)

How does the generalisation compare to Ramanujan’s result?
o We had a congruence between a cuspform A and Eisenstein series 5.
e We can find a congruence between a cuspform f =3 -, an,q™ (new at level
NM) and an Eisenstein series E;f’(b, (new at level N). -

o The congruence held modulo 691, this worked because 691 divided Bjs (the
constant coefficient of F1s).
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A general conjecture (simplified)

How does the generalisation compare to Ramanujan’s result?

(o}

We had a congruence between a cuspform A and Eisenstein series F1s.
We can find a congruence between a cuspform f =3 -, anq¢™ (new at level
NM) and an Eisenstein series E;f"b, (new at level N).

The congruence held modulo 691, this worked because 691 divided Bjs (the
constant coefficient of F1s).

The congruence holds modulo prime [, where [ divides either the constant
term of the Eisenstein series or an Euler product (with Euler factors at primes
dividing M).

To ensure f is new, [ also has to divide another quantity at each prime
dividing M.
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Direct implication

Assume a,(f) = ¥(q) + ¢(q)g" ! (mod A) for some newform
f € ST (NM),x), A a prime above .
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Direct implication

Assume a,(f) = ¥(q) + ¢(q)g" ! (mod A) for some newform
f € ST (NM),x), A a prime above .

There is an [-adic Galois representation attached to f:

pri: Gal(Q/Q) — GLa(Zy)
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Direct implication

Assume a,(f) = ¥(q) + ¢(q)g" ! (mod A) for some newform
f € ST (NM),x), A a prime above .

There is an [-adic Galois representation attached to f:

pri: Gal(Q/Q) — GLa(Zy)

with mod [ reduction given by:

Pr.: Gal(@/Q) — GLy(FY).
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Direct implication

Assume a,(f) = ¥(q) + ¢(q)g" ! (mod A) for some newform
f € ST (NM),x), A a prime above .

There is an [-adic Galois representation attached to f:
pri: Gal(@Q/Q) — GLa(Zy)

with mod [ reduction given by:
Py1: Gal(Q/Q) — GLy(Fy).
By the congruence condition, we then have:
Tr(ps,) = P+ MH,

i.e. Py, has composition factors {1, &X'}, where x; is the mod [ cyclotomic
character.
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Let p be a prime dividing M. Then the composition factors of p;, “locally at p”
are:

k/2 k/2—1
(s, i1y

where i is the unramified character mapping the Frobenius at p to
ap(f)/p*?71 (mod A).
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Let p be a prime dividing M. Then the composition factors of p;, “locally at p”
are:

k/2 k/2—1
(s, i1y

where i is the unramified character mapping the Frobenius at p to
ap(f)/p*?71 (mod A).
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Let p be a prime dividing M. Then the composition factors of p;; “locally at p'

are. L /2 L
2—1
(s, i1y

where i is the unramified character mapping the Frobenius at p to
ap(f)/p*/*7" (mod N).
Equating the two sets of composition factors locally at p:

(0, 1Y = {71,

24 May 2023
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Let p be a prime dividing M. Then the composition factors of p;; “locally at p'

are. L /2 L
2—1
(s, i1y

where i is the unramified character mapping the Frobenius at p to
ap(f)/p*?71 (mod A).

Equating the two sets of composition factors locally at p:

(0, 1Y = {71,

which leaves us with two cases:

— k - — k/2—
(A) % = ux[?, oxFt = P
- k/2—1 —T — k/2
(B) % = ux[/®7H oxt = ux 2
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Direct implication

Evaluating at p | M in both cases:
b (p) = ulp)p™’? (mod 1)

— ¢(p)p* =0 (mod 1).
¢(p)p :u(p)pk/Qfl (mOd l)} = w(p) ¢(p)p ( (¢} )
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Direct implication

Evaluating at p | M in both cases:
b (p) = ulp)p™’? (mod 1)
(A)

- F =0 (mod 1).
o(p)p* " = pu(p)p*/*~" (mod 1)} = ¥(p) — op)p (mod 1)

¥(p) = u(p)p*/*~" (mod l)}
’ — ¢(p)p*~? =0 (mod 1).
®) d(p)p* ™t = pulp)p*/? (mod 1) = ¢(p) — ¢(p)p (mod 1)

Also, since 11(p) = a,(f)/p*/?>~ (mod ), we have a,(f) = v(p) (mod A) in this

case.
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Direct implication

Evaluating at p | M in both cases:

&(p) = u(p)p™’* (mod l)}
! - F =0 (mod 1).
. S = pp)p> 1 (mod 1)f ¥(p) — o(p)p (mod 1)
¥(p) = u(p)p*/*~" (mod Z)}
’ — ¢(p)p*~? =0 (mod 1).
®) d(p)p* ™t = pulp)p*/? (mod 1) = ¢(p) — ¢(p)p (mod 1)

Also, since 11(p) = a,(f)/p*/?>~ (mod ), we have a,(f) = v(p) (mod A) in this

case.

To summarise, we have that for all p dividing M, we require one of the following:
(A) ¥(p) — d(p)p* =0 (mod 1).
(B) ¥(p) — ¢(p)p*~2 =0 (mod 1) and a,(f) = 9 (p) (mod A).

L] (v(p) — ¢(p)p*)(¢(p) — d(p)p*2) V p € Pus.

This proves the necessity of Condition (2) in the statement of the theorem.
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Direct implication

We can do something similar for primes p dividing N, which in this case gives us
an equivalence of characters:

{xF 02, pax B IPY = [, g1y

We also have a,(f) = p*~1/2(uy(p) + pa(p)) (mod A), hence
ap(f) =(p) + ¢(p)p* =" (mod A).
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Direct implication

We can do something similar for primes p dividing N, which in this case gives us
an equivalence of characters:

{xF 02, pax B IPY = [, g1y

We also have a,(f) = p(k U721y (p) + p2(p)) (mod ), hence
ap(f) = ¢(p) + ¢(p)p" ! (mod A).

Note that if any prime p | M satisfies case (A), then Condition (1) follows
immediately and we are done. So, assume that for all p | M, we are in case (B):

Y(p) — d(p)p*~2 =0 (mod 1),
ap(f) = 1(p) (mod \).

Need to show:

ordy(L(1 = k, %~ ¢) [1,ep,, (@ () — ¢(p)p*)) > 0.
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Direct implication

Let

E=| ][I @-oémp*)| anE?,
PEPM

where aps f(2) := f(Mz) and T}, is the p" Hecke operator.
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Direct implication

Let

E=| ][I @-oémp*)| anE?,
PEPM

where aps f(2) := f(Mz) and T}, is the p" Hecke operator.

E is a normalised eigenform with Fourier coefficient at prime p given by:

o (E) = {wp) it p | M

Y(p) + ¢(p)p*~!  otherwise
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Direct implication

Let

E=| ][I @-oémp*)| anE?,
PEPM

where aps f(2) := f(Mz) and T}, is the p" Hecke operator.

E is a normalised eigenform with Fourier coefficient at prime p given by:

w(B) = 1@ ifp| M
o(E) = {d)(p) + ¢(p)pF~t  otherwise
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Direct implication

We can choose a v = (§ 7) € SLy(Z) such that E[y]) has constant term:

s D@ VT s g1y ( T o - ¢<p>p“))

9(9) u®

PEPMm
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Direct implication

We can choose a v = (§ 7) € SLy(Z) such that E[y]) has constant term:

-1y =10 (=b) 1
—g(;p(i) Je e (Jk)w W L1 -kpig) ( 11 (¢(p)—¢(p)pk1))

PEPMm

However, 9(5&;1), ¢~ (a), ¥ (5L) and ¢~ (M) are units in Z[t), ¢).
Furthermore, I { u since u | N and by assumption [t N. Hence, I must divide

L(1—k,¢"¢) ( I @ - ¢(p)p’“‘1)) :

PEPM

Condition (1) follows easily from this, so we are done.
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Reverse implication

@ For the reverse implication, we can prove the case where M = p prime.

@ A result of Spencer (2018) gives us an eigenform f which satisfies the
congruence.
@ If this is a newform then we're done, so assume f arises from a modular form

fo € S (To(IN), x)-

24 May 2023
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Reverse implication

@ For the reverse implication, we can prove the case where M = p prime.

@ A result of Spencer (2018) gives us an eigenform f which satisfies the
congruence.

@ If this is a newform then we're done, so assume f arises from a modular form
fo € SF¥(To(N), x)-
To obtain a level Np newform, we use the following:

Theorem (Diamond 1991)

For pt N, the following are equivalent:
1 We have fo € Si(To(N), x) satisfying

ap(f0)® = x(p)p**(1 +p®) (mod A).

2 There is a p-newform f; € S,(To(Np), x) satisfying

aq(f1) = aq(fo) = ¥(q) + ¢(¢)¢" " (mod X') V¥ primes ¢ { Npl
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Consequences/ future work

@ Our results provide evidence for a case of the Bloch-Kato conjecture - a
conjecture in algebraic number theory relating L-values and arithmetic of
Galois modules.

Jenny Roberts (University of Bristol) Newform congruences 24 May 2023



Consequences/ future work

@ Our results provide evidence for a case of the Bloch-Kato conjecture - a
conjecture in algebraic number theory relating L-values and arithmetic of
Galois modules.

@ In particular, our results are expected to produce ‘new’ elements in a
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Consequences/ future work

@ Our results provide evidence for a case of the Bloch-Kato conjecture - a
conjecture in algebraic number theory relating L-values and arithmetic of
Galois modules.

@ In particular, our results are expected to produce ‘new’ elements in a
Bloch-Kato Selmer group.

@ We are also working on generalising our results to Hilbert modular forms.
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Thank you!
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