Newform Eisenstein congruences of local origin

Jenny Roberts
(joint work with Dan Fretwell)

University of Bristol

24 May 2023

Ramanujan's congruence

Recall: the discriminant function $\Delta \in S_{12}\left(S L_{2}(\mathbb{Z})\right.$ has q-expansion

$$
\Delta(z)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}
$$

Ramanujan's congruence

Recall: the discriminant function $\Delta \in S_{12}\left(S L_{2}(\mathbb{Z})\right.$ has q-expansion

$$
\begin{aligned}
\Delta(z) & =q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}=\sum_{n \geq 1} \tau(n) q^{n} \\
& =q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5}-6048 q^{6}+\cdots
\end{aligned}
$$

Ramanujan's congruence

Recall: the discriminant function $\Delta \in S_{12}\left(S L_{2}(\mathbb{Z})\right.$ has q-expansion

$$
\begin{aligned}
\Delta(z) & =q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}=\sum_{n \geq 1} \tau(n) q^{n} \\
& =q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5}-6048 q^{6}+\cdots
\end{aligned}
$$

and the Eisenstein series $E_{12} \in M_{12}\left(S L_{2}(\mathbb{Z})\right)$ has q-expansion

$$
\begin{aligned}
E_{12}(z) & =-\frac{B_{12}}{24}+\sum_{n \geq 1} \sigma_{11}(n) q^{n} \in M_{12}\left(S L_{2}(\mathbb{Z})\right) \\
& =\frac{691}{65520}+q+2049 q^{2}+177148 q^{3}+4196353 q^{4} \\
& +48828126 q^{5}+362976252 q^{6}+\cdots
\end{aligned}
$$

Ramanujan's congruence

If we were to compare the Fourier coefficients of these two series...

$$
\begin{array}{c|cccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 \\
\tau(n) & 1 & -24 & 252 & -1472 & 4830 & -6048 \\
\sigma_{11}(n) & 1 & 2049 & 177148 & 4196353 & 48828126 & 362976252
\end{array}
$$

Ramanujan's congruence

If we were to compare the Fourier coefficients of these two series...

n								1
n	2	3	4	5	6			
$\tau(n)$	$\bmod 691$	1	667	252	601	684	171	
$\sigma_{11}(n)$	$\bmod 691$	1	667	252	601	684	171	

Ramanujan's congruence

If we were to compare the Fourier coefficients of these two series...

n		1	2	3	4	5	6	
$\tau(n)$	\bmod	691	1	667	252	601	684	171
$\sigma_{11}(n)$	$\bmod 691$	1	667	252	601	684	171	

Ramanujan's congruence

$\tau(n) \equiv \sigma_{11}(n) \bmod 691$

Ramanujan's congruence

Why does this congruence hold?

Ramanujan's congruence

Why does this congruence hold?

Proof (Sketch)

We have

$$
E_{12}(z)=-\frac{B_{12}}{24}+\sum_{n \geq 1} \sigma_{11}(n) q^{n} \in M_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

and

$$
\Delta(z)=\sum_{n \geq 1} \tau(n) q^{n} \in S_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

- Since $\operatorname{ord}_{691}\left(B_{12}\right)>0$ we see that E_{12} reduces to an eigenform $\bar{E}_{12} \in S_{12}\left(S L_{2}(\mathbb{Z}), \overline{\mathbb{F}}_{691}\right)$.

Ramanujan's congruence

Why does this congruence hold?

Proof (Sketch)

We have

$$
E_{12}(z)=-\frac{B_{12}}{24}+\sum_{n \geq 1} \sigma_{11}(n) q^{n} \in M_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

and

$$
\Delta(z)=\sum_{n \geq 1} \tau(n) q^{n} \in S_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

- Since $\operatorname{ord}_{691}\left(B_{12}\right)>0$ we see that E_{12} reduces to an eigenform $\bar{E}_{12} \in S_{12}\left(S L_{2}(\mathbb{Z}), \overline{\mathbb{F}}_{691}\right)$.
- This space is spanned by the reductions of eigenforms in $S_{12}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}_{691}\right)$, which is 1 -dimensional spanned by Δ.

Ramanujan's congruence

Why does this congruence hold?

Proof (Sketch)

We have

$$
E_{12}(z)=-\frac{B_{12}}{24}+\sum_{n \geq 1} \sigma_{11}(n) q^{n} \in M_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

and

$$
\Delta(z)=\sum_{n \geq 1} \tau(n) q^{n} \in S_{12}\left(S L_{2}(\mathbb{Z})\right)
$$

- Since $\operatorname{ord}_{691}\left(B_{12}\right)>0$ we see that E_{12} reduces to an eigenform $\bar{E}_{12} \in S_{12}\left(S L_{2}(\mathbb{Z}), \overline{\mathbb{F}}_{691}\right)$.
- This space is spanned by the reductions of eigenforms in $S_{12}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}_{691}\right)$, which is 1 -dimensional spanned by Δ.
- Then $\bar{E}_{12}=\bar{\Delta}$, implying the congruence.

Why do we care?

It turns out, this congruence has deep consequences...

Why do we care?

It turns out, this congruence has deep consequences...
There exists a non trivial $[\mathfrak{a}] \in \mathrm{Cl}\left(\mathbb{Q}\left(\zeta_{691}\right)\right)[691]$ satisfying:

$$
\sigma \cdot[\mathfrak{a}]=\chi_{691}(\sigma)^{-11}[\mathfrak{a}] \text { for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}),
$$

where $\chi_{691}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{F}_{691}^{*}$ is the $\bmod 691$ cyclotomic character.

Why do we care?

It turns out, this congruence has deep consequences...
There exists a non trivial $[\mathfrak{a}] \in \mathrm{Cl}\left(\mathbb{Q}\left(\zeta_{691}\right)\right)[691]$ satisfying:

$$
\sigma \cdot[\mathfrak{a}]=\chi_{691}(\sigma)^{-11}[\mathfrak{a}] \text { for all } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}),
$$

where $\chi_{691}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{F}_{691}^{*}$ is the $\bmod 691$ cyclotomic character.
More generally, Eisenstein congruences were used to prove:

Herbrand-Ribet Theorem

For $2 \leq k \leq p-3$ even:

$$
\operatorname{ord}_{p}\left(B_{k}\right)>0 \Longleftrightarrow \exists \text { element in the } \chi_{p}^{1-k} \text { eigenspace of } \mathrm{CI}\left(\mathbb{Q}\left(\zeta_{p}\right)\right)[p] .
$$

Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial character?

Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial character?

- Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
- Non-trivial character: Minimal level - Dummigan (2007), lift by prime level Spencer (2018)

Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial character?

- Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
- Non-trivial character: Minimal level - Dummigan (2007), lift by prime level Spencer (2018)
Q2: What can we say about how "new" the modular forms that satisfy the congruence are?

Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial character?

- Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
- Non-trivial character: Minimal level - Dummigan (2007), lift by prime level Spencer (2018)
Q2: What can we say about how "new" the modular forms that satisfy the congruence are?
- Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)

Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial character?

- Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
- Non-trivial character: Minimal level - Dummigan (2007), lift by prime level Spencer (2018)
Q2: What can we say about how "new" the modular forms that satisfy the congruence are?
- Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)

Q3: How do we find them, e.g. modulo what primes?

- Generalise Ribet's converse to Herbrand's theorem

Next steps

Q1: Can we find other congruences like this, but for higher levels and non-trivial character?

- Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
- Non-trivial character: Minimal level - Dummigan (2007), lift by prime level Spencer (2018)
Q2: What can we say about how "new" the modular forms that satisfy the congruence are?
- Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)

Q3: How do we find them, e.g. modulo what primes?

- Generalise Ribet's converse to Herbrand's theorem

Goal: Generalise to newform congruences with non-trivial character and lift by squarefree level.

Definitions - Congruence subgroups

Define the congruence subgroups of $S L_{2}(\mathbb{Z})$:

$$
\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)(\bmod N)\right\}
$$

and

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)(\bmod N)\right\}
$$

Definitions - Modular forms of level N

Let $M_{k}\left(\Gamma_{0}(N), \chi\right)$ be the space of modular forms of weight $k \geq 2$, level N and Dirichlet character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$with modulus N.

Definitions - Modular forms of level N

Let $M_{k}\left(\Gamma_{0}(N), \chi\right)$ be the space of modular forms of weight $k \geq 2$, level N and Dirichlet character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$with modulus N.

Definition (Modular form)

$f \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ if:

- f is holomorphic on the complex upper half plane
- f satisfies:

$$
f[\gamma]_{k}:=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)=\chi(d) f(z)
$$

$$
\text { for all } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(N) .
$$

- $f[\alpha]_{k}$ must be holomorphic at ∞ for all $\alpha \in S L_{2}(\mathbb{Z})$, i.e. at all cusps.

Definitions - Generalised Eisenstein series

We can decompose $M_{k}\left(\Gamma_{0}(N), \chi\right)$ as

$$
M_{k}\left(\Gamma_{0}(N), \chi\right)=S_{k}\left(\Gamma_{0}(N), \chi\right) \oplus E_{k}\left(\Gamma_{0}(N), \chi\right)
$$

If $k>2$, the Eisenstein subspace $E_{k}\left(\Gamma_{0}(N), \chi\right)$ is spanned by the normalised Eisenstein series $E_{k}^{\psi, \phi}(t z)$ for all ordered pairs of Dirichlet characters ϕ, ψ of conductors u, v satisfying $\psi \phi=\chi$ and $t u v \mid N . E_{k}^{\psi, \phi}$ has Fourier expansion:

$$
E_{k}^{\psi, \phi}(z)=\frac{1}{2} \delta(\psi) L\left(1-k, \psi^{-1} \phi\right)+\sum_{n=1}^{\infty} \sigma_{k-1}^{\psi, \phi}(n) q^{n}
$$

$\delta(\psi)=1$ if ψ is the trivial mod 1 character, 0 otherwise and

$$
\sigma_{k-1}^{\psi, \phi}(n)=\sum_{d \mid n, d>0} \psi(n / d) \phi(d) d^{k-1}
$$

is the generalised power divisor series.

Definitions - Newforms

The cuspidal subspace has an orthogonal decomposition with respect to the Petersson inner product:

$$
S_{k}\left(\Gamma_{0}(N), \chi\right)=S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right) \oplus S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)
$$

with $S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right)$ as usual being spanned by lifts of modular forms in $S_{k}\left(\Gamma_{0}(N / d), \chi\right)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

- A modular form is new at level N if it lies in the new subspace.

Definitions - Newforms

The cuspidal subspace has an orthogonal decomposition with respect to the Petersson inner product:

$$
S_{k}\left(\Gamma_{0}(N), \chi\right)=S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right) \oplus S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)
$$

with $S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right)$ as usual being spanned by lifts of modular forms in $S_{k}\left(\Gamma_{0}(N / d), \chi\right)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

- A modular form is new at level N if it lies in the new subspace.

Definitions - Newforms

The cuspidal subspace has an orthogonal decomposition with respect to the Petersson inner product:

$$
S_{k}\left(\Gamma_{0}(N), \chi\right)=S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right) \oplus S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)
$$

with $S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right)$ as usual being spanned by lifts of modular forms in $S_{k}\left(\Gamma_{0}(N / d), \chi\right)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

- A modular form is new at level N if it lies in the new subspace.
- An eigenform is an eigenvector for all the Hecke operators, T_{p}, with $p \nmid N$.

Definitions - Newforms

The cuspidal subspace has an orthogonal decomposition with respect to the Petersson inner product:

$$
S_{k}\left(\Gamma_{0}(N), \chi\right)=S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right) \oplus S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)
$$

with $S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right)$ as usual being spanned by lifts of modular forms in $S_{k}\left(\Gamma_{0}(N / d), \chi\right)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

- A modular form is new at level N if it lies in the new subspace.
- An eigenform is an eigenvector for all the Hecke operators, T_{p}, with $p \nmid N$.
- $f=\sum_{n \geq 0} a_{n}(f) q^{n} \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ is normalised if $a_{1}(f)=1$.

Definitions - Newforms

The cuspidal subspace has an orthogonal decomposition with respect to the Petersson inner product:

$$
S_{k}\left(\Gamma_{0}(N), \chi\right)=S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right) \oplus S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)
$$

with $S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right)$ as usual being spanned by lifts of modular forms in $S_{k}\left(\Gamma_{0}(N / d), \chi\right)$ with $d \cdot \operatorname{cond}(\chi) \mid N$.

- A modular form is new at level N if it lies in the new subspace.
- An eigenform is an eigenvector for all the Hecke operators, T_{p}, with $p \nmid N$.
- $f=\sum_{n \geq 0} a_{n}(f) q^{n} \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ is normalised if $a_{1}(f)=1$.
- We say $f \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ is a newform if f is a normalised eigenform which is new at level N .

A general conjecture

Assume we have

- N, M - coprime, squarefree integers, $k>2$ - integer.
- $E_{k}^{\psi, \phi}$ - new at level $N(\operatorname{cond}(\psi) \cdot \operatorname{cond}(\phi)=N)$ with $\psi \phi=\chi, \tilde{\chi}$ is a lift of χ to modulus $N M$.
- $l>k+1, l \nmid N M$ - prime of $\mathbb{Z}[\psi, \phi]$.
- λ - prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi, \phi)$ generated by the Fourier coefficients of f.

A general conjecture

Assume we have

- N, M - coprime, squarefree integers, $k>2$ - integer.
- $E_{k}^{\psi, \phi}$ - new at level $N \quad(\operatorname{cond}(\psi) \cdot \operatorname{cond}(\phi)=N)$ with $\psi \phi=\chi, \tilde{\chi}$ is a lift of χ to modulus $N M$.
- $l>k+1, l \nmid N M$ - prime of $\mathbb{Z}[\psi, \phi]$.
- λ - prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi, \phi)$ generated by the Fourier coefficients of f.

Conjecture (Fretwell, R.)

There exists a newform $f \in S_{k}\left(\Gamma_{1}(N M), \tilde{\chi}\right)$ such that

$$
a_{q}(f) \equiv a_{q}\left(E_{k}^{\psi, \phi}\right)(\bmod \lambda)
$$

for all primes $q \nmid N M l$, if and only if both of the following hold:
(1) $\operatorname{ord}_{l}\left(L\left(1-k, \psi^{-1} \phi\right) \prod_{p \in \mathcal{P}_{M}}\left(\psi(p)-\phi(p) p^{k}\right)\right)>0$.
(2) $l \mid\left(\psi(p)-\phi(p) p^{k}\right)\left(\psi(p)-\phi(p) p^{k-2}\right) \forall p \in \mathcal{P}_{M}$.

A general conjecture

Assume we have

- N, M - coprime, squarefree integers, $k>2$ - integer.
- $E_{k}^{\psi, \phi}$ - new at level $N(\operatorname{cond}(\psi) \cdot \operatorname{cond}(\phi)=N)$ with $\psi \phi=\chi, \tilde{\chi}$ is a lift of χ to modulus $N M$.
- $l>k+1, l \nmid N M$ - prime of $\mathbb{Z}[\psi, \phi]$.
- λ - prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi, \phi)$ generated by the Fourier coefficients of f.

Conjecture (Fretwell, R.)

There exists a newform $f \in S_{k}\left(\Gamma_{1}(N M), \tilde{\chi}\right)$ such that

$$
a_{q}(f) \equiv a_{q}\left(E_{k}^{\psi, \phi}\right)(\bmod \lambda)
$$

for all primes $q \nmid N M l$, if and only if both of the following hold:
(1) $\operatorname{ord}_{l}\left(L\left(1-k, \psi^{-1} \phi\right) \prod_{p \in \mathcal{P}_{M}}\left(\psi(p)-\phi(p) p^{k}\right)\right)>0$.
(2) $l \mid\left(\psi(p)-\phi(p) p^{k}\right)\left(\psi(p)-\phi(p) p^{k-2}\right) \forall p \in \mathcal{P}_{M}$.
(1) Tells us that we will get a congruence modulo prime l with some eigenform f
(2) Gives us information about how "new" f is

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

- We had a congruence between a cuspform Δ and Eisenstein series E_{12}.

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

- We had a congruence between a cuspform Δ and Eisenstein series E_{12}.
- We can find a congruence between a cuspform $f=\sum_{n \geq 1} a_{n} q^{n}$ (new at level $N M)$ and an Eisenstein series $E_{k}^{\psi, \phi}$, (new at level N).

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

- We had a congruence between a cuspform Δ and Eisenstein series E_{12}.
- We can find a congruence between a cuspform $f=\sum_{n \geq 1} a_{n} q^{n}$ (new at level $N M)$ and an Eisenstein series $E_{k}^{\psi, \phi}$, (new at level N).
- The congruence held modulo 691, this worked because 691 divided B_{12} (the constant coefficient of E_{12}).

A general conjecture (simplified)

How does the generalisation compare to Ramanujan's result?

- We had a congruence between a cuspform Δ and Eisenstein series E_{12}.
- We can find a congruence between a cuspform $f=\sum_{n \geq 1} a_{n} q^{n}$ (new at level $N M)$ and an Eisenstein series $E_{k}^{\psi, \phi}$, (new at level N).
- The congruence held modulo 691, this worked because 691 divided B_{12} (the constant coefficient of E_{12}).
- The congruence holds modulo prime l, where l divides either the constant term of the Eisenstein series or an Euler product (with Euler factors at primes dividing M).
- To ensure f is new, l also has to divide another quantity at each prime dividing M.

Direct implication

$$
\begin{aligned}
& \text { Assume } a_{q}(f) \equiv \psi(q)+\phi(q) q^{k-1}(\bmod \lambda) \text { for some newform } \\
& f \in S_{k}\left(\Gamma_{1}(N M), \tilde{\chi}\right), \lambda \text { a prime above } l . \\
& \text { There is an l-adic Galois representation attached to } f: \\
& \qquad \rho_{f, l}: G a l(\bar{Q} / Q) \rightarrow G L_{2}\left(\overline{\mathbb{Z}_{l}}\right)
\end{aligned}
$$

with mod l reduction given by:

$$
\bar{\rho}_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}_{l}}\right) .
$$

By the congruence condition, we then have:

$$
\operatorname{Tr}\left(\bar{\rho}_{f, l}\right)=\bar{\psi}+\bar{\phi} x_{l}^{k-1}
$$

i.e. $\bar{\rho}_{f, l}$ has composition factors $\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}$, where χ_{l} is the $\bmod l$ cyclotomic

 character.
Direct implication

Assume $a_{q}(f) \equiv \psi(q)+\phi(q) q^{k-1}(\bmod \lambda)$ for some newform $f \in S_{k}\left(\Gamma_{1}(N M), \tilde{\chi}\right), \lambda$ a prime above l.

There is an l-adic Galois representation attached to f :

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Z}_{l}}\right)
$$

with $\bmod l$ reduction given by:

$$
\bar{\rho}_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}_{l}}\right) .
$$

By the congruence condition, we then have:

i.e. $\bar{\rho}_{f, l}$ has composition factors $\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}$, where χ_{l} is the $\bmod l$ cyclotomic

 character.
Direct implication

Assume $a_{q}(f) \equiv \psi(q)+\phi(q) q^{k-1}(\bmod \lambda)$ for some newform $f \in S_{k}\left(\Gamma_{1}(N M), \tilde{\chi}\right), \lambda$ a prime above l.

There is an l-adic Galois representation attached to f :

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Z}_{l}}\right)
$$

with $\bmod l$ reduction given by:

$$
\bar{\rho}_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}_{l}}\right) .
$$

By the congruence condition, we then have:

i.e. $\bar{\rho}_{f, l}$ has composition factors $\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}$, where χ_{l} is the $\bmod l$ cyclotomic

 character.
Direct implication

Assume $a_{q}(f) \equiv \psi(q)+\phi(q) q^{k-1}(\bmod \lambda)$ for some newform $f \in S_{k}\left(\Gamma_{1}(N M), \tilde{\chi}\right), \lambda$ a prime above l.

There is an l-adic Galois representation attached to f :

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Z}_{l}}\right)
$$

with $\bmod l$ reduction given by:

$$
\bar{\rho}_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}_{l}}\right) .
$$

By the congruence condition, we then have:

$$
\operatorname{Tr}\left(\bar{\rho}_{f, l}\right)=\bar{\psi}+\bar{\phi} \chi_{l}^{k-1}
$$

i.e. $\bar{\rho}_{f, l}$ has composition factors $\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}$, where χ_{l} is the $\bmod l$ cyclotomic character.

Let p be a prime dividing M. Then the composition factors of $\bar{\rho}_{f, l}$ "locally at p " are:

$$
\left\{\mu \chi_{l}^{k / 2}, \mu \chi_{l}^{k / 2-1}\right\}
$$

where μ is the unramified character mapping the Frobenius at p to $a_{p}(f) / p^{k / 2-1}(\bmod \lambda)$.

Equating the two sets of composition factors locally at p :

$$
\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}=\left\{\mu \chi_{l}^{k / 2}, \mu \chi_{l}^{k / 2-1}\right\},
$$

which leaves us with two cases:

Let p be a prime dividing M. Then the composition factors of $\bar{\rho}_{f, l}$ "locally at p " are:

$$
\left\{\mu \chi_{l}^{k / 2}, \mu \chi_{l}^{k / 2-1}\right\}
$$

where μ is the unramified character mapping the Frobenius at p to $a_{p}(f) / p^{k / 2-1}(\bmod \lambda)$.

Equating the two sets of composition factors locally at p :

$$
\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}=\left\{\mu \chi_{l}^{k / 2}, \mu \chi_{l}^{k / 2-1}\right\},
$$

which leaves us with two cases:

Let p be a prime dividing M. Then the composition factors of $\bar{\rho}_{f, l}$ "locally at p " are:

$$
\left\{\mu \chi_{l}^{k / 2}, \mu \chi_{l}^{k / 2-1}\right\}
$$

where μ is the unramified character mapping the Frobenius at p to $a_{p}(f) / p^{k / 2-1}(\bmod \lambda)$.

Equating the two sets of composition factors locally at p :

$$
\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}=\left\{\mu \chi_{l}^{k / 2}, \mu \chi_{l}^{k / 2-1}\right\}
$$

which leaves us with two cases:

Let p be a prime dividing M. Then the composition factors of $\bar{\rho}_{f, l}$ "locally at p " are:

$$
\left\{\mu \chi_{l}^{k / 2}, \mu \chi_{l}^{k / 2-1}\right\}
$$

where μ is the unramified character mapping the Frobenius at p to $a_{p}(f) / p^{k / 2-1}(\bmod \lambda)$.

Equating the two sets of composition factors locally at p :

$$
\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}=\left\{\mu \chi_{l}^{k / 2}, \mu \chi_{l}^{k / 2-1}\right\}
$$

which leaves us with two cases:
(A) $\bar{\psi}=\mu \chi_{l}^{k / 2}, \bar{\phi} \chi_{l}^{k-1}=\mu \chi_{l}^{k / 2-1}$.
(B) $\bar{\psi}=\mu \chi_{l}^{k / 2-1}, \bar{\phi} \chi_{l}^{k-1}=\mu \chi_{l}^{k / 2}$.

Direct implication

Evaluating at $p \mid M$ in both cases:
(A) $\left.\begin{array}{r}\psi(p) \equiv \mu(p) p^{k / 2}(\bmod l) \\ \phi(p) p^{k-1} \equiv \mu(p) p^{k / 2-1}(\bmod l)\end{array}\right\} \Longrightarrow \psi(p)-\phi(p) p^{k} \equiv 0(\bmod l)$.

Also, since $\mu(p) \equiv a_{p}(f) / p^{k / 2-1}(\bmod \lambda)$, we have $a_{p}(f) \equiv \psi(p)(\bmod \lambda)$ in this case.

To summarise, we have that for all p dividing M, we require one of the following: (A) $\psi(p)-\phi(p) p^{k} \equiv 0(\bmod l)$.
(B) $\psi(p)-\phi(p) p^{k-2} \equiv 0(\bmod l)$ and $a_{p}(f) \equiv \psi(p)(\bmod \lambda)$.

Condition 2

Direct implication

Evaluating at $p \mid M$ in both cases:
(A) $\left.\begin{array}{r}\psi(p) \equiv \mu(p) p^{k / 2}(\bmod l) \\ \phi(p) p^{k-1} \equiv \mu(p) p^{k / 2-1}(\bmod l)\end{array}\right\} \Longrightarrow \psi(p)-\phi(p) p^{k} \equiv 0(\bmod l)$.
(B) $\left.\begin{array}{r}\psi(p) \equiv \mu(p) p^{k / 2-1}(\bmod l) \\ \phi(p) p^{k-1} \equiv \mu(p) p^{k / 2}(\bmod l)\end{array}\right\} \Longrightarrow \psi(p)-\phi(p) p^{k-2} \equiv 0(\bmod l)$.

Also, since $\mu(p) \equiv a_{p}(f) / p^{k / 2-1}(\bmod \lambda)$, we have $a_{p}(f) \equiv \psi(p)(\bmod \lambda)$ in this case.

To summarise, we have that for all p dividing M, we require one of the following: (A) $\psi(p)-\phi(p) p^{k} \equiv 0(\bmod l)$.
(B) $\psi(p)-\phi(p) p^{k-2} \equiv 0(\bmod l)$ and $a_{p}(f) \equiv \psi(p)(\bmod \lambda)$.

Condition 2

Direct implication

Evaluating at $p \mid M$ in both cases:
(A) $\left.\begin{array}{r}\psi(p) \equiv \mu(p) p^{k / 2}(\bmod l) \\ \phi(p) p^{k-1} \equiv \mu(p) p^{k / 2-1}(\bmod l)\end{array}\right\} \Longrightarrow \psi(p)-\phi(p) p^{k} \equiv 0(\bmod l)$.
(B) $\left.\begin{array}{r}\psi(p) \equiv \mu(p) p^{k / 2-1}(\bmod l) \\ \phi(p) p^{k-1} \equiv \mu(p) p^{k / 2}(\bmod l)\end{array}\right\} \Longrightarrow \psi(p)-\phi(p) p^{k-2} \equiv 0(\bmod l)$.

Also, since $\mu(p) \equiv a_{p}(f) / p^{k / 2-1}(\bmod \lambda)$, we have $a_{p}(f) \equiv \psi(p)(\bmod \lambda)$ in this case.

To summarise, we have that for all p dividing M, we require one of the following:
(A) $\psi(p)-\phi(p) p^{k} \equiv 0(\bmod l)$.
(B) $\psi(p)-\phi(p) p^{k-2} \equiv 0(\bmod l)$ and $a_{p}(f) \equiv \psi(p)(\bmod \lambda)$.

Condition 2

$l \mid\left(\psi(p)-\phi(p) p^{k}\right)\left(\psi(p)-\phi(p) p^{k-2}\right) \forall p \in \mathcal{P}_{M}$.
This proves the necessity of Condition (2) in the statement of the theorem.

Direct implication

We can do something similar for primes p dividing N, which in this case gives us an equivalence of characters:

$$
\left\{\mu_{1} \chi_{l}^{(k-1) / 2}, \mu_{2} \chi_{l}^{(k-1) / 2}\right\}=\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}
$$

We also have $a_{p}(f) \equiv p^{(k-1) / 2}\left(\mu_{1}(p)+\mu_{2}(p)\right)(\bmod \lambda)$, hence $a_{p}(f) \equiv \psi(p)+\phi(p) p^{k-1}(\bmod \lambda)$.

Note that if any prime $p \mid M$ satisfies case (A), then Condition (1) follows immediately and we are done. So, assume that for all $p \mid M$, we are in case (B): $\psi(p)-\phi(p) p^{k-2} \equiv 0(\bmod l)$

Need to show:

Condition 1

Direct implication

We can do something similar for primes p dividing N, which in this case gives us an equivalence of characters:

$$
\left\{\mu_{1} \chi_{l}^{(k-1) / 2}, \mu_{2} \chi_{l}^{(k-1) / 2}\right\}=\left\{\bar{\psi}, \bar{\phi} \chi_{l}^{k-1}\right\}
$$

We also have $a_{p}(f) \equiv p^{(k-1) / 2}\left(\mu_{1}(p)+\mu_{2}(p)\right)(\bmod \lambda)$, hence $a_{p}(f) \equiv \psi(p)+\phi(p) p^{k-1}(\bmod \lambda)$.

Note that if any prime $p \mid M$ satisfies case (A), then Condition (1) follows immediately and we are done. So, assume that for all $p \mid M$, we are in case (B):

$$
\begin{aligned}
& \psi(p)-\phi(p) p^{k-2} \equiv 0(\bmod l) \\
& a_{p}(f) \equiv \psi(p)(\bmod \lambda)
\end{aligned}
$$

Need to show:

Condition 1

$\operatorname{ord}_{l}\left(L\left(1-k, \psi^{-1} \phi\right) \prod_{p \in \mathcal{P}_{M}}\left(\psi(p)-\phi(p) p^{k}\right)\right)>0$.

Direct implication

Let

$$
E=\left[\prod_{p \in \mathcal{P}_{M}}\left(T_{p}-\phi(p) p^{k-1}\right)\right] \alpha_{M} E_{k}^{\psi, \phi},
$$

where $\alpha_{M} f(z):=f(M z)$ and T_{p} is the $p^{\text {th }}$ Hecke operator.

Fact 1

E is a normalised eigenform with Fourier coefficient at prime p given by:

With a bit more work, this gives
$a_{n}(E) \equiv a_{n}(f)(\bmod \lambda) \forall n$
In particular, since f is a cusp form, this tells us that E must vanish at all cusps.

Direct implication

Let

$$
E=\left[\prod_{p \in \mathcal{P}_{M}}\left(T_{p}-\phi(p) p^{k-1}\right)\right] \alpha_{M} E_{k}^{\psi, \phi},
$$

where $\alpha_{M} f(z):=f(M z)$ and T_{p} is the $p^{\text {th }}$ Hecke operator.

Fact 1

E is a normalised eigenform with Fourier coefficient at prime p given by:

$$
a_{p}(E)= \begin{cases}\psi(p) & \text { if } p \mid M \\ \psi(p)+\phi(p) p^{k-1} & \text { otherwise }\end{cases}
$$

With a bit more work, this gives
$a_{n}(E) \equiv a_{n}(f)(\bmod \lambda) \forall n$
In particular, since f is a cusp form, this tells us that E must vanish at all cusps.

Direct implication

Let

$$
E=\left[\prod_{p \in \mathcal{P}_{M}}\left(T_{p}-\phi(p) p^{k-1}\right)\right] \alpha_{M} E_{k}^{\psi, \phi},
$$

where $\alpha_{M} f(z):=f(M z)$ and T_{p} is the $p^{\text {th }}$ Hecke operator.

Fact 1

E is a normalised eigenform with Fourier coefficient at prime p given by:

$$
a_{p}(E)= \begin{cases}\psi(p) & \text { if } p \mid M \\ \psi(p)+\phi(p) p^{k-1} & \text { otherwise }\end{cases}
$$

With a bit more work, this gives

$$
a_{n}(E) \equiv a_{n}(f)(\bmod \lambda) \forall n
$$

In particular, since f is a cusp form, this tells us that E must vanish at all cusps.

Direct implication

Fact 2

We can choose a $\gamma=\left(\begin{array}{cc}a & \beta \\ b & \delta\end{array}\right) \in S L_{2}(\mathbb{Z})$ such that $E[\gamma]_{k}$ has constant term:

$$
-\frac{g\left(\psi \phi^{-1}\right)}{g(\phi)} \frac{\phi^{-1}(a) \psi\left(\frac{-b}{v}\right) \psi^{-1}(M)}{u^{k}} L\left(1-k, \psi^{-1} \phi\right)\left(\prod_{p \in \mathcal{P}_{M}}\left(\psi(p)-\phi(p) p^{k-1}\right)\right)
$$

However, $\frac{g\left(\psi \phi^{-1}\right)}{g(\phi)}, \phi^{-1}(a), \psi\left(\frac{-b}{v}\right)$ and $\psi^{-1}(M)$ are units in $\mathbb{Z}[\psi, \phi]$.
Furthermore, $l \nmid u$ since $u \mid N$ and by assumption $l \nmid N$. Hence, l must divide

Condition (1) follows easily from this, so we are done.

Direct implication

Fact 2

We can choose a $\gamma=\left(\begin{array}{cc}a & \beta \\ b & \delta\end{array}\right) \in S L_{2}(\mathbb{Z})$ such that $E[\gamma]_{k}$ has constant term:

$$
-\frac{g\left(\psi \phi^{-1}\right)}{g(\phi)} \frac{\phi^{-1}(a) \psi\left(\frac{-b}{v}\right) \psi^{-1}(M)}{u^{k}} L\left(1-k, \psi^{-1} \phi\right)\left(\prod_{p \in \mathcal{P}_{M}}\left(\psi(p)-\phi(p) p^{k-1}\right)\right)
$$

However, $\frac{g\left(\psi \phi^{-1}\right)}{g(\phi)}, \phi^{-1}(a), \psi\left(\frac{-b}{v}\right)$ and $\psi^{-1}(M)$ are units in $\mathbb{Z}[\psi, \phi]$.
Furthermore, $l \nmid u$ since $u \mid N$ and by assumption $l \nmid N$. Hence, l must divide

$$
L\left(1-k, \psi^{-1} \phi\right)\left(\prod_{p \in \mathcal{P}_{M}}\left(\psi(p)-\phi(p) p^{k-1}\right)\right) .
$$

Condition (1) follows easily from this, so we are done.

Reverse implication

- For the reverse implication, we can prove the case where $M=p$ prime.
- A result of Spencer (2018) gives us an eigenform f which satisfies the congruence.
- If this is a newform then we're done, so assume f arises from a modular form $f_{0} \in S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)$.

Reverse implication

- For the reverse implication, we can prove the case where $M=p$ prime.
- A result of Spencer (2018) gives us an eigenform f which satisfies the congruence.
- If this is a newform then we're done, so assume f arises from a modular form $f_{0} \in S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)$.
To obtain a level $N p$ newform, we use the following:

Theorem (Diamond 1991)

For $p \nmid N$, the following are equivalent:
1 We have $f_{0} \in S_{k}\left(\Gamma_{0}(N), \chi\right)$ satisfying

$$
a_{p}\left(f_{0}\right)^{2} \equiv \chi(p) p^{k-2}\left(1+p^{2}\right)(\bmod \lambda) .
$$

2 There is a p-newform $f_{1} \in S_{k}\left(\Gamma_{0}(N p), \chi\right)$ satisfying

$$
a_{q}\left(f_{1}\right) \equiv a_{q}\left(f_{0}\right) \equiv \psi(q)+\phi(q) q^{k-1}\left(\bmod \lambda^{\prime}\right) \forall \text { primes } q \nmid N p l
$$

Consequences/ future work

- Our results provide evidence for a case of the Bloch-Kato conjecture - a conjecture in algebraic number theory relating L-values and arithmetic of Galois modules.

Consequences/ future work

- Our results provide evidence for a case of the Bloch-Kato conjecture - a conjecture in algebraic number theory relating L-values and arithmetic of Galois modules.
- In particular, our results are expected to produce 'new' elements in a Bloch-Kato Selmer group.

Consequences/ future work

- Our results provide evidence for a case of the Bloch-Kato conjecture - a conjecture in algebraic number theory relating L-values and arithmetic of Galois modules.
- In particular, our results are expected to produce 'new' elements in a Bloch-Kato Selmer group.
- We are also working on generalising our results to Hilbert modular forms.

Thank you!

