000

Ribet's proof 00000000 Generalisations 000 Comments on proof and consequences 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Newform Eisenstein congruences of local origin

Jenny Roberts (joint work with Dan Fretwell)

University of Bristol

4 June 2023

000

Ribet's proof 00000000 eneralisations 00 Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A motivating example

Take the discriminant function

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24}$$

Definitions 000 Ribet's proof 00000000 eneralisations 00 Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A motivating example

Take the discriminant function

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24}$$

= $\sum_{n \ge 1} \tau(n) q^n$
= $q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 + \cdots$

000

Ribet's proof 00000000 eneralisations 00 Comments on proof and consequences 00000

A motivating example

Take the discriminant function

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24}$$

= $\sum_{n \ge 1} \tau(n) q^n$
= $q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 + \cdots$

So, we have

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A motivating example	Definitions	Ribet's proof	Generalisations	Comments on proof and consequences
000000	000	00000000	000	

Now, let's take the $11^{\rm th}$ power divisor sum

$$\sigma_{11}(n) = \sum_{d|n} d^{11}$$

◆□ > ◆圖 > ◆臣 > ◆臣 >

A motivating example	Definitions	Ribet's proof	Generalisations	Comments on proof and consequences
000000	000	00000000	000	

Now, let's take the $11^{\rm th}$ power divisor sum

$$\sigma_{11}(n) = \sum_{d|n} d^{11}$$

Here, we have

n	1	2	3	4	5	6
$\sigma_{11}(n)$	1	2049	177148	4196353	48828126	362976252

イロト イロト イヨト イヨト 三日

A motivating example	Definitions	Ribet's proof	Generalisations	Comments on proof and consequences
0000000	000	00000000	000	

If we were to compare these two series...

n	1	2	3	4	5	6
$\tau(n)$	1	-24	252	-1472	4830	-6048
$\sigma_{11}(n)$	1	2049	177148	4196353	48828126	362976252

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

A motivating example	Definitions 000	Ribet's proof 00000000	Generalisations 000	Comments on proof and consequences

If we were to compare these two series...

	n		1	2	3	4	5	6
$\tau(n)$	mod	691	1	667	252	601	684	171
$\sigma_{11}(n)$	mod	691	1	667	252	601	684	171

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A motivating example	Definitions	Ribet's proof	Generalisations	Comments on proof and consequences
○○●○○○○	000	00000000	000	

If we were to compare these two series...

n	1	2	3	4	5	6
au(n) mod 691	1	667	252	601	684	171
$\sigma_{11}(n)$ mod 691	1	667	252	601	684	171

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ramanujan's discovery

 $\tau(n)\equiv\sigma_{11}(n) \bmod 691$

000

Ribet's proof 00000000 Generalisations 000 Comments on proof and consequences 00000

This looks surprising, but can be explained using modular forms...

A motivating	example
0000000	

Definitions 000 Ribet's proof

Generalisations 000 Comments on proof and consequences 00000

This looks surprising, but can be explained using modular forms...

Proof (Sketch)

Consider the normalised, weight 12 Eisenstein series,

$$E_{12}(z) = \frac{B_{12}}{24} + \sum_{n \ge 1} \sigma_{11}(n)q^n \in M_{12}(SL_2(\mathbb{Z}))$$

and note that the discriminant function is a weight 12 cusp form,

$$\Delta(z) = \sum_{n \ge 1} \tau(n) q^n \in S_{12}(SL_2(\mathbb{Z})) \subset M_{12}(SL_2(\mathbb{Z})).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition 000 Ribet's proof 00000000 Generalisations 000 Comments on proof and consequences 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof (Sketch)

Where does 691 appear?

- 691 divides B_{12} , so the constant coefficient of E_{12} vanishes modulo 691. E_{12} and Δ are both modular forms of weight 12 whose constant terms vanish modulo 691 "cusp forms mod 691".
- The dimension formula tells us there is only one cusp form of weight 12, so we conclude that E_{12} and Δ must be the same cusp form mod 691.

000

Ribet's proof

eneralisations 00 Comments on proof and consequences 00000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Why do we care?

It turns out, this congruence has deep consequences...

Definition: 000 Ribet's proof

eneralisations

Comments on proof and consequences 00000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Why do we care?

It turns out, this congruence has deep consequences...

There exists $[a] \in Cl(\mathbb{Q}(\mu_{691}))[691]$ satisfying:

 $\sigma \cdot [a] = \chi_{691}(\sigma)^{-11}[a]$ for all $\sigma \in \mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}),$

where $\chi_{691} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{F}_{691}^*$ is the mod 691 cyclotomic character.

Definition: 000 Ribet's proof

eneralisations

Comments on proof and consequences 00000

Why do we care?

It turns out, this congruence has deep consequences...

There exists $[a] \in Cl(\mathbb{Q}(\mu_{691}))[691]$ satisfying:

 $\sigma \cdot [a] = \chi_{691}(\sigma)^{-11}[a]$ for all $\sigma \in \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}),$

where $\chi_{691} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{F}_{691}^*$ is the mod 691 cyclotomic character.

More generally, Eisenstein congruences were used to prove the Herbrand-Ribet theorem:

For $2 \le k \le p-3$ even:

 $\operatorname{ord}_p(B_k) > 0 \iff \exists$ element in the χ_p^{1-k} eigenspace of $\operatorname{Cl}(\mathbb{Q}(\mu_p))[p]$.

うしん 同一人用 人用 人口 マ

In particular, Ribet proved the following:

Ribet's converse to Herbrand's theorem

For $2\leq k\leq p-3$ even: If ${\rm ord}_p(B_k)>0$ then there exists an element $[a]\in{\rm Cl}(\mathbb{Q}(\mu_p))[p]$ satisfying

$$\sigma \cdot [a] = \chi_p(\sigma)^{1-k}[a]$$
 for all $\sigma \in \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In particular, Ribet proved the following:

Ribet's converse to Herbrand's theorem

For $2 \le k \le p-3$ even: If $\operatorname{ord}_p(B_k) > 0$ then there exists an element $[a] \in \operatorname{Cl}(\mathbb{Q}(\mu_p))[p]$ satisfying

$$\sigma \cdot [a] = \chi_p(\sigma)^{1-k}[a]$$
 for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$

We're going to break down his proof into steps, but first let's define a modular form...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definitions

Ribet's proof

eneralisations

Comments on proof and consequences 00000

Modular forms of level N

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

Let $M_k(\Gamma_1(N), \chi)$ be the space of modular forms of weight k

Let $M_k(\Gamma_1(N), \chi)$ be the space of modular forms of weight $k \ge 2$, level N and Dirichlet character $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ with conductor N.

Definitions •00 Ribet's proof

eneralisations

Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Modular forms of level N

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

Let $M_k(\Gamma_1(N), \chi)$ be the space of modular forms of weight $k \geq 2$, level N and Dirichlet character $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ with conductor N.

- $f \in M_k(\Gamma_1(N), \chi)$ if:
 - f is holomorphic on the complex upper half plane
 - f satisfies:

$$f[\gamma]_k := (cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right) = \chi(d)f(z)$$

for all
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N).$$

• $f[\alpha]_k$ must be holomorphic at ∞ for all $\alpha \in SL_2(\mathbb{Z})$, i.e. at all cusps.

Definitions

Ribet's proof

ieneralisations

Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Generalised Eisenstein series

Take Dirichlet characters ψ, ϕ satisfying $\psi \phi = \chi$. Then we have that the Eisenstein series, $E_k^{\psi,\phi} \in M_k(\Gamma_0(N), \chi)$, where:

$$E_k^{\psi,\phi}(z) = \frac{1}{2}\delta(\psi)L(1-k,\psi^{-1}\phi) + \sum_{n=1}^{\infty} \sigma_{k-1}^{\psi,\phi}(n)q^n,$$

 $\delta(\psi) = 1$ if ψ is the trivial mod 1 character, 0 otherwise and

$$\sigma_{k-1}^{\psi,\phi}(n) = \sum_{d|n,d>0} \psi(n/d)\phi(d)d^{k-1}$$

is the generalised power divisor series.

• If we were to take two modular forms, f and g of level N/d, we could raise them to a modular form of level N with the map:

 $f + g[\alpha_d]_k$ where $\alpha_d = \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Generalisations

Comments on proof and consequences 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Newforms

• If we were to take two modular forms, f and g of level N/d, we could raise them to a modular form of level N with the map:

$$f + g[\alpha_d]_k$$
 where $\alpha_d = \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}$.

The old subspace is spanned by elements of this type.

• The new subspace is the orthogonal complement to this space w.r.t. the Petersson innner product. A modular form is **new** at level N if it lies in the new subspace.

Ribet's

Generalisations

Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Newforms

• If we were to take two modular forms, f and g of level N/d, we could raise them to a modular form of level N with the map:

$$f + g[\alpha_d]_k$$
 where $\alpha_d = \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}$.

- The new subspace is the orthogonal complement to this space w.r.t. the Petersson innner product. A modular form is **new** at level N if it lies in the new subspace.
- An eigenform is an eigenvector for all the Hecke operators, T_p , with $p \nmid N$.

Definitions

Ribet's p

Generalisations

Comments on proof and consequences 00000

Newforms

• If we were to take two modular forms, f and g of level N/d, we could raise them to a modular form of level N with the map:

$$f + g[\alpha_d]_k$$
 where $\alpha_d = \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}$.

- The new subspace is the orthogonal complement to this space w.r.t. the Petersson innner product. A modular form is **new** at level N if it lies in the new subspace.
- An **eigenform** is an eigenvector for all the Hecke operators, T_p , with $p \nmid N$.
- $f = \sum_{n \ge 0} a_n(f)q^n \in M_k(\Gamma_0(N), \chi)$ is normalised if $a_1(f) = 1$.

Definitions

000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Newforms

• If we were to take two modular forms, f and g of level N/d, we could raise them to a modular form of level N with the map:

$$f + g[\alpha_d]_k$$
 where $\alpha_d = \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}$.

- The new subspace is the orthogonal complement to this space w.r.t. the Petersson innner product. A modular form is **new** at level N if it lies in the new subspace.
- An eigenform is an eigenvector for all the Hecke operators, T_p , with $p \nmid N.$
- $f = \sum_{n>0} a_n(f)q^n \in M_k(\Gamma_0(N), \chi)$ is normalised if $a_1(f) = 1$.
- We say $f \in M_k(\Gamma_0(N), \chi)$ is a **newform** if f is a normalised eigenform which is new at level N.

Definitions 000 Ribet's proof

eneralisations

Comments on proof and consequences 00000

Steps of the proof

Ribet's converse to Herbrand's theorem

For $2 \le k \le p-3$ even: If $\operatorname{ord}_p(B_k) > 0$ then there exists an element $[a] \in \operatorname{Cl}(\mathbb{Q}(\mu_p))[p]$ satisfying

$$\sigma \cdot [a] = \chi_p(\sigma)^{1-k}[a]$$
 for all $\sigma \in \mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$.

1. Bernoulli number, B_k

- 2. Eisenstein series, $E_k = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n \in M_k(SL_2(\mathbb{Z}))$
- 3. Cusp form, $f = \sum_{n=1}^{\infty} a_f(n) q^n \in S_2(\Gamma_1(p))$
- 4. Galois reps
- 5. Ideal class groups

Definitions 000 Ribet's proof

eneralisations

Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Steps of the proof

Ribet's converse to Herbrand's theorem

For $2\leq k\leq p-3$ even: If $\mathrm{ord}_p(B_k)>0$ then there exists an element $[a]\in \mathsf{Cl}(\mathbb{Q}(\mu_p))[p]$ satisfying

$$\sigma \cdot [a] = \chi_p(\sigma)^{1-k}[a]$$
 for all $\sigma \in \mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$.

1. Bernoulli number, B_k

 $\downarrow \ \operatorname{ord}_p(B_k) > 0 \implies E_k \text{ is "cuspidal mod } p"$

2. Eisenstein series, $E_k = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n \in M_k(SL_2(\mathbb{Z}))$

- 3. Cusp form, $f = \sum_{n=1}^{\infty} a_f(n) q^n \in S_2(\Gamma_1(p))$
- 4. Galois reps
- 5. Ideal class groups

Definitions 000 Ribet's proof

eneralisations

Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Steps of the proof

Ribet's converse to Herbrand's theorem

For $2 \le k \le p-3$ even: If $\operatorname{ord}_p(B_k) > 0$ then there exists an element $[a] \in \operatorname{Cl}(\mathbb{Q}(\mu_p))[p]$ satisfying

$$\sigma \cdot [a] = \chi_p(\sigma)^{1-k}[a]$$
 for all $\sigma \in \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$

1. Bernoulli number, B_k

2. Eisenstein series, $E_k = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n \in M_k(SL_2(\mathbb{Z}))$

 \downarrow There is a congruence between E_k and f modulo p

- 3. Cusp form, $f = \sum_{n=1}^{\infty} a_f(n) q^n \in S_2(\Gamma_1(p))$
- 4. Galois reps
- 5. Ideal class groups

Show: $E_k \equiv f \mod \mathfrak{p}, \mathfrak{p} \mid p$ in field K_f generated by the coefficients of f

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Show: $E_k \equiv f \mod \mathfrak{p}, \mathfrak{p} \mid p$ in field K_f generated by the coefficients of f

• Take
$$E_{2,\varepsilon} = \frac{L(-1,\varepsilon)}{2} + \sum_{n=1}^{\infty} \left(\sum_{0 < d \mid n} \varepsilon(d) d \right) q^n \in M_2(\Gamma_1(p),\varepsilon).$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Eisenstein series of weight 2, level p and character ε

Show: $E_k \equiv f \mod \mathfrak{p}, \mathfrak{p} \mid p$ in field K_f generated by the coefficients of f

• Take
$$E_{2,\varepsilon} = \frac{L(-1,\varepsilon)}{2} + \sum_{n=1}^{\infty} \left(\sum_{0 < d \mid n} \varepsilon(d) d \right) q^n \in M_2(\Gamma_1(p),\varepsilon).$$

Eisenstein series of weight 2, level p and character ε

• Fix a prime ideal $\mathfrak{p} \mid p$ in $\mathbb{Q}(\mu_{p-1})$ and let $\omega : (\mathbb{Z}/p\mathbb{Z})^* \xrightarrow{\sim} \mu_{p-1}$ be the unique Dirichlet character which satisfies

$$\omega(d) \equiv d \pmod{\mathfrak{p}} \, \forall \, d \in \mathbb{Z}.$$

• Then $E_{2,\omega^{k-2}}$ has a p-integral q-expansion in $\mathbb{Q}(\mu_{p-1})$ and

$$E_{2,\omega^{k-2}} \equiv E_k \pmod{\mathfrak{p}}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Show: $E_k \equiv f \mod \mathfrak{p}, \mathfrak{p} \mid p$ in field K_f generated by the coefficients of f

- Ribet showed: ∃ g ∈ M₂(Γ₁(p), ω^{k-2}) whose q-expansion coefficients are p-integers in Q(µ_{p-1}) and whose constant term is 1.
- Take $f' = E_{2,\omega^{k-2}} c \cdot g$ where c is the constant term of $E_{k,\omega^{k-2}}$

• Then if
$$\operatorname{ord}_p(B_k) > 0$$
, $f' \equiv E_k \equiv E_{2,\omega^{k-2}} \pmod{\mathfrak{p}}$

f is a mod p-eigenform since it is congruent to $E_k \mod \mathfrak{p}$.

Show: $E_k \equiv f \mod \mathfrak{p}, \mathfrak{p} \mid p$ in field K_f generated by the coefficients of f

- Ribet showed: ∃ g ∈ M₂(Γ₁(p), ω^{k-2}) whose q-expansion coefficients are p-integers in Q(µ_{p-1}) and whose constant term is 1.
- Take $f' = E_{2,\omega^{k-2}} c \cdot g$ where c is the constant term of $E_{k,\omega^{k-2}}$

• Use Deligne-Serre to get $f \equiv f' \pmod{\tilde{p}}$ for some $\tilde{p} \mid p$ in $K_f(\mu_{p-1})$ for f an eigenform

• Can check f is cuspidal, so f is the required cuspform

Definition 000 Ribet's proof

eneralisations

Comments on proof and consequences 00000

Steps of the proof

Ribet's converse to Herbrand's theorem

For $2\leq k\leq p-3$ even: If $\mathrm{ord}_p(B_k)>0$ then there exists an element $[a]\in \mathrm{Cl}(\mathbb{Q}(\mu_p))[p]$ satisfying

$$\sigma \cdot [a] = \chi_p(\sigma)^{1-k}[a]$$
 for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

- 1. Bernoulli number, B_k
- 2. Eisenstein series, $E_k = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n \in M_k(SL_2(\mathbb{Z}))$
- 3. Cusp form, $f = \sum_{n=1}^{\infty} a_f(n) q^n \in S_2(\Gamma_1(p))$

 $\downarrow\,$ There is a residually reducible mod p Galois rep attached to f

- 4. Galois reps
- 5. Ideal class groups

 $3 \rightarrow 4$: There is a residually reducible mod p Galois rep attached to f

• By a theorem of Deligne, for prime p, there is a continuous, irreducible Galois rep. attached to a cusp form $f \in S_2(\Gamma_1(p), \omega^{k-2})$

$$\rho_{f,p}: G_{\mathbb{Q}} \to GL_2(\mathbb{Q}_p)$$

which is unramified for $q \neq p$ and satisfies

 $\mathsf{Tr}(\rho_{f,p}(\mathsf{Frob}_q)) = a_q(f), \quad \det(\rho_{f,p}(\mathsf{Frob}_q)) = \omega^{k-2}(q)q$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $3 \rightarrow 4$: There is a residually reducible mod p Galois rep attached to f

• By a theorem of Deligne, for prime p, there is a continuous, irreducible Galois rep. attached to a cusp form $f \in S_2(\Gamma_1(p), \omega^{k-2})$

$$\rho_{f,p}: G_{\mathbb{Q}} \to GL_2(\mathbb{Q}_p)$$

which is unramified for $q \neq p$ and satisfies

$$\mathsf{Tr}(\rho_{f,p}(\mathsf{Frob}_q)) = a_q(f), \quad \ \mathsf{det}(\rho_{f,p}(\mathsf{Frob}_q)) = \omega^{k-2}(q)q$$

• We can reduce this representation modulo p to get

$$\bar{\rho}_{f,p}: G_{\mathbb{Q}} \to GL_2(\mathbb{F}_p)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 A motivating example
 Definitions
 Ribet's proof
 Generalisations
 Comments on proof and consequ

 0000000
 000
 000
 000
 000
 00000

3
ightarrow 4: There is a residually reducible mod p Galois rep attached to f

• Congruence condition on f tells us that the semisimplification of this must be

$$\bar{\rho}_{f,p}^{ss} \sim 1 \oplus \chi_p^{k-1}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

since $\mathrm{Tr}(\bar{\rho}^{ss}_{f,p}(\mathrm{Frob}_q))=\bar{a}_q(f)=\sigma_{k-1}(q)=1+q^{k-1}$

3
ightarrow 4: There is a residually reducible mod p Galois rep attached to f

• Congruence condition on f tells us that the semisimplification of this must be

$$\bar{\rho}_{f,p}^{ss} \sim 1 \oplus \chi_p^{k-1}$$

since $\operatorname{Tr}(\bar{\rho}_{f,p}^{ss}(\operatorname{Frob}_q)) = \bar{a}_q(f) = \sigma_{k-1}(q) = 1 + q^{k-1}$

• Ribet shows we can always choose a basis for $\rho_{f,p}$ such that

$$\bar{\rho}_{f,p} \sim \left(\begin{smallmatrix} 1 & * \\ 0 & \chi_p^{k-1} \end{smallmatrix}\right)$$

i.e. evaluated at $\sigma \in G_{\mathbb{Q}}$,

$$\bar{\rho}_{f,p}(\sigma) = \begin{pmatrix} 1 & \bar{b}(\sigma) \\ 0 & \chi_p^{k-1}(\sigma) \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

and $\rho_{f,p}$ is everywhere unramified.

Definition 000 Ribet's proof

eneralisations

Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Steps of the proof

Ribet's converse to Herbrand's theorem

For $2\leq k\leq p-3$ even: If $\mathrm{ord}_p(B_k)>0$ then there exists an element $[a]\in \mathrm{Cl}(\mathbb{Q}(\mu_p))[p]$ satisfying

$$\sigma \cdot [a] = \chi_p(\sigma)^{1-k}[a]$$
 for all $\sigma \in \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$

- 1. Bernoulli number, B_k
- 2. Eisenstein series, $E_k = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n \in M_k(SL_2(\mathbb{Z}))$
- 3. Cusp form, $f = \sum_{n=1}^{\infty} a_f(n) q^n \in S_2(\Gamma_1(p))$
- 4. Galois reps
 - $\downarrow~$ There is a non-trivial element in $\mathsf{Cl}(\mathbb{Q}(\mu_p))[p]$
- 5. Ideal class groups

000

Ribet's proof 0000000 Generalisations

Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $4 \rightarrow 5$: There is a non-trivial element in $\operatorname{Cl}(\mathbb{Q}(\mu_p))[p]$

•
$$\kappa(\sigma) = \bar{b}(\sigma) \cdot \chi_p^{k-1}(\sigma)$$
 is a non-trivial unramified class in $H^1(G_{\mathbb{Q}}, \mathbb{F}_p(\chi_p^{k-1}))$

000

Ribet's proof

Generalisations

Comments on proof and consequences

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4
ightarrow 5: There is a non-trivial element in $\operatorname{Cl}(\mathbb{Q}(\mu_p))[p]$

- $\kappa(\sigma) = \bar{b}(\sigma) \cdot \chi_p^{k-1}(\sigma)$ is a non-trivial unramified class in $H^1(G_{\mathbb{Q}}, \mathbb{F}_p(\chi_p^{k-1}))$
- This is equivalent to the existence of a field extension E/\mathbb{Q} with (writing $F = \mathbb{Q}(\mu_p)$):
 - $E \supset F$ and $Gal(E/F) \cong \mathbb{F}_p$
 - E everywhere unramified
 - the action of $\operatorname{Gal}(F/\mathbb{Q})$ on $\operatorname{Gal}(E/F)$ via conjugation is given by

$$\sigma\tau\sigma^{-1} = \chi_p^{1-k}(\sigma)\tau$$

for $\sigma \in \operatorname{Gal}(E/\mathbb{Q})$, $\tau \in \operatorname{Gal}(E/F)$

notivating example 00000

000

Ribet's proof

eneralisations

Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4
ightarrow 5: There is a non-trivial element in $\operatorname{Cl}(\mathbb{Q}(\mu_p))[p]$

- $\kappa(\sigma) = \bar{b}(\sigma) \cdot \chi_p^{k-1}(\sigma)$ is a non-trivial unramified class in $H^1(G_{\mathbb{Q}}, \mathbb{F}_p(\chi_p^{k-1}))$
- This is equivalent to the existence of a field extension E/\mathbb{Q} with (writing $F=\mathbb{Q}(\mu_p))$:
 - $E \supset F$ and $\operatorname{Gal}(E/F) \cong \mathbb{F}_p$
 - E everywhere unramified
 - the action of $\operatorname{Gal}(F/\mathbb{Q})$ on $\operatorname{Gal}(E/F)$ via conjugation is given by

$$\sigma\tau\sigma^{-1} = \chi_p^{1-k}(\sigma)\tau$$

for $\sigma \in \operatorname{Gal}(E/\mathbb{Q})$, $\tau \in \operatorname{Gal}(E/F)$

• Class Field Theory then gives us existence of a non-trivial element in the $\chi_p^{k-1}\text{-}{\rm eigenspace}$ of ${\rm Cl}(\mathbb{Q}(\mu_p))[p]$

Q1: Can we find other congruences like this, but for higher levels and non-trivial character?

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Non-trivial character: Minimal level - Dummigan (2007), lift by prime level - Spencer (2018)

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Non-trivial character: Minimal level Dummigan (2007), lift by prime level Spencer (2018)
- **Q2:** What can we say about how "new" the modular forms that satisfy the congruence are?

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
 - Non-trivial character: Minimal level Dummigan (2007), lift by prime level Spencer (2018)
- **Q2:** What can we say about how "new" the modular forms that satisfy the congruence are?
 - Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
 - Non-trivial character: Minimal level Dummigan (2007), lift by prime level Spencer (2018)
- **Q2:** What can we say about how "new" the modular forms that satisfy the congruence are?
 - Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Q3: How do we find them, e.g. modulo what primes?
 - Generalise Ribet's converse to Herbrand's theorem

- **Q1:** Can we find other congruences like this, but for higher levels and non-trivial character?
 - Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
 - Non-trivial character: Minimal level Dummigan (2007), lift by prime level Spencer (2018)
- **Q2:** What can we say about how "new" the modular forms that satisfy the congruence are?
 - Trivial character: Dummigan-Fretwell (2014), Billerey-Menares (2016)
- Q3: How do we find them, e.g. modulo what primes?
 - Generalise Ribet's converse to Herbrand's theorem

Goal: Generalise to newform congruences with non-trivial character and lift by prime level.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A	motivatin	g ex	amp	le
	00000	С		

Generalisations OOO Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assume we have

- N squarefree, p prime, (N, p) = 1, k > 2 integer.
- $E_k^{\psi,\phi}$ new at level N (cond(ψ)·cond(ϕ) = N) with $\psi\phi = \chi$, $\tilde{\chi}$ is a lift of χ to modulus Np.
- l > k + 1, $l \nmid \varphi(N)Np$, l prime.
- λ prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi,\phi)$ generated by the Fourier coefficients of f.

А	motivating	example
0	000000	

Generalisations 000 Comments on proof and consequences 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assume we have

- N squarefree, p prime, (N, p) = 1, k > 2 integer.
- $E_k^{\psi,\phi}$ new at level N (cond(ψ)·cond(ϕ) = N) with $\psi\phi = \chi$, $\tilde{\chi}$ is a lift of χ to modulus Np.
- l > k+1, $l \nmid \varphi(N)Np$, l prime.
- λ prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi, \phi)$ generated by the Fourier coefficients of f.

Theorem (Fretwell, R., 2024)

There exists a newform $f \in S_k(\Gamma_1(Np), \tilde{\chi})$ such that

$$a_q(f) \equiv a_q(E_k^{\psi,\phi}) \pmod{\lambda}$$

for all primes $q \nmid Npl$, if and only if both of the following hold for some $\lambda' \mid l$ in $\mathbb{Z}[\psi,\phi]$:

- $1. \ \operatorname{ord}_{\lambda'}(L(1-k,\psi^{-1}\phi)(\psi(p)-\phi(p)p^k))>0.$
- 2. $\operatorname{ord}_{\lambda'}((\psi(p) \phi(p)p^k)(\psi(p) \phi(p)p^{k-2})) > 0.$

A	mo	tiva	ting	exai	mpl	е
	00	00	00			

Generalisations 000 Comments on proof and consequences 00000

Assume we have

- N squarefree, p prime, (N, p) = 1, k > 2 integer.
- $E_k^{\psi,\phi}$ new at level N (cond(ψ)·cond(ϕ) = N) with $\psi\phi = \chi$, $\tilde{\chi}$ is a lift of χ to modulus Np.
- l > k + 1, $l \nmid \varphi(N)Np$, l prime.
- λ prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi, \phi)$ generated by the Fourier coefficients of f.

Theorem (Fretwell, R., 2024)

There exists a newform $f \in S_k(\Gamma_1(Np), \tilde{\chi})$ such that

 $a_q(f) \equiv a_q(E_k^{\psi,\phi}) \pmod{\lambda}$

for all primes $q \nmid Npl$, if and only if both of the following hold for some $\lambda' \mid l$ in $\mathbb{Z}[\psi,\phi]$:

- 1. $\operatorname{ord}_{\lambda'}(L(1-k,\psi^{-1}\phi)(\psi(p)-\phi(p)p^k)) > 0.$
- 2. $\operatorname{ord}_{\lambda'}((\psi(p) \phi(p)p^k)(\psi(p) \phi(p)p^{k-2})) > 0.$
- 1. Tells us that we will get a congruence modulo prime l with some eigenform f

A motivating example	Definitions	Ribet's proof	Generalisations	Comments on proof and co
0000000	000	00000000	00•	00000

o We had a congruence between a cuspform Δ and Eisenstein series $E_{12}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- o We had a congruence between a cuspform Δ and Eisenstein series $E_{12}.$
- We can find a congruence between a cuspform f = ∑_{n≥1} a_nqⁿ (new at level Np) and an Eisenstein series E^{ψ,φ}_k, (new at level N).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- o We had a congruence between a cuspform Δ and Eisenstein series $E_{12}.$
- We can find a congruence between a cuspform f = ∑_{n≥1} a_nqⁿ (new at level Np) and an Eisenstein series E^{ψ,φ}_k, (new at level N).
- o The congruence held modulo 691, this worked because 691 divided B_{12} (the constant coefficient of E_{12}).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- o We had a congruence between a cuspform Δ and Eisenstein series $E_{12}.$
- We can find a congruence between a cuspform f = ∑_{n≥1} a_nqⁿ (new at level Np) and an Eisenstein series E^{ψ,φ}_k, (new at level N).
- o The congruence held modulo 691, this worked because 691 divided B_{12} (the constant coefficient of E_{12}).
- The congruence holds modulo prime *l*, where *l* divides either the constant term of the Eisenstein series or an Euler factor at prime *p*).
- To ensure f is new, l also has to divide another quantity depending on p.

Ribet's proof

eneralisations

Comments on proof and consequences •0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$(1)+(2) \implies$ newform congruence

Assumption

Assume we have conditions (1) and (2) from the theorem:

- $1. \ \, {\rm ord}_{\lambda'}(L(1-k,\psi^{-1}\phi)(\psi(p)-\phi(p)p^k))>0.$
- 2. $\operatorname{ord}_{\lambda'}((\psi(p) \phi(p)p^k)(\psi(p) \phi(p)p^{k-2})) > 0.$
- Construct modular form $E^{(\psi)}(z) = E_k^{\psi,\phi}(z) \psi(p)E_k^{\psi,\phi}(pz)$. This has constant term at the cusps given by either:

$$a_0(E^{(\psi)}[\gamma]_k) = c_{\gamma}L(1-k,\psi^{-1}\phi)(\psi(p) - \phi(p)p^k)$$

or $a_0(E^{(\psi)}[\gamma]_k) = 0.$

• Since it is also an eigenform, this is a "mod λ' cusp form"

• Deligne-Serre gives existence of eigenform f such that

$$f\equiv E^{(\psi)}\equiv E_k^{\psi,\phi} \ (\mathrm{mod} \ \lambda)$$

OOO

Ribet's proof 00000000 eneralisations

Comments on proof and consequences OOOO

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$(1)+(2) \implies$ newform congruence

Assumption

Assume we have conditions (1) and (2) from the theorem:

1. $\operatorname{ord}_{\lambda'}(L(1-k,\psi^{-1}\phi)(\psi(p)-\phi(p)p^k)) > 0.$

2.
$$\operatorname{ord}_{\lambda'}((\psi(p) - \phi(p)p^k)(\psi(p) - \phi(p)p^{k-2})) > 0.$$

- To show f is a newform, first note we have minimum possible level $f \in S_k(\Gamma_1(N), \chi)$ since χ has conductor N.
- Assuming f is old at level Np, condition (2) is exactly what we need to use Diamond's level lifting lemma, which ensures there exists a newform $f_1 \in S_k(\Gamma_1(Np), \chi)$ satsfying the congruence condition.

• The congruence gives us a $\lambda\text{-adic}$ Galois rep $\rho_{f,\lambda}$ which when taken mod λ has semisimplification

$$\bar{\rho}_{f,\lambda}^{ss} \sim \bar{\psi} \oplus \bar{\phi} \chi_l^{k-1}$$

 We can choose the basis for ρ_{f,λ} in such a way that ρ
_{f,λ} is realised on an 𝔽_λ-vector space V such that

$$0 \to \mathbb{F}_{\lambda}(1-k)(\phi) \xrightarrow{\iota} V \xrightarrow{\pi} \mathbb{F}_{\lambda}(\psi) \to 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is a non-split extension of $\mathbb{F}_{\lambda}[G_{\mathbb{Q}}]$ -modules.

 Twist by ψ⁻¹ gives a non-split extension V(ψ⁻¹) which defines a non-trivial class c ∈ H¹(Q, F_λ(1 − k)(ψ⁻¹φ)).

Consequences

• Taking $C_{k,l}^{\psi,\phi} = (\mathbb{Q}_l/\mathbb{Z}_l)(1-k)(\psi^{-1}\phi)$, the congruence implies $\exists c' \in H^1_{\mathcal{P}_{N_p}}(\mathbb{Q}, C_{k,l}^{\psi,\phi}).$

Classes of $H^1(\mathbb{Q}, C_{k,l}^{\psi,\phi})$ for which local restrictions for primes $q \nmid Np$ lie in Bloch-Kato Selmer group $H^1_f(\mathbb{Q}_q, C_{k,l}^{\psi,\phi})$

• Using this, we can recover evidence of a case of the Bloch-Kato conjecture which was proven by Huber and Kings.

000

Ribet's proof

Generalisations

Comments on proof and consequences $\texttt{OOOO} \bullet$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you!