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A motivating example

Take the discriminant function

∆(z) = q
∏
n≥1

(1− qn)24

=
∑
n≥1

τ(n)qn

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 + · · ·

So, we have

n 1 2 3 4 5 6
τ(n) 1 −24 252 −1472 4830 −6048
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Now, let’s take the 11th power divisor sum

σ11(n) =
∑
d|n

d11

Here, we have

n 1 2 3 4 5 6
σ11(n) 1 2049 177148 4196353 48828126 362976252
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If we were to compare these two series...

n 1 2 3 4 5 6
τ(n) 1 −24 252 −1472 4830 −6048
σ11(n) 1 2049 177148 4196353 48828126 362976252

Ramanujan’s discovery

τ(n) ≡ σ11(n) mod 691
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n 1 2 3 4 5 6
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τ(n) ≡ σ11(n) mod 691
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This looks surprising, but can be explained using modular forms...

Proof (Sketch)

Consider the normalised, weight 12 Eisenstein series,

E12(z) =
B12

24
+

∑
n≥1

σ11(n)q
n ∈M12(SL2(Z))

and note that the discriminant function is a weight 12 cusp form,

∆(z) =
∑
n≥1

τ(n)qn ∈ S12(SL2(Z)) ⊂M12(SL2(Z)).
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Proof (Sketch)

Where does 691 appear?

• 691 divides B12, so the constant coefficient of E12 vanishes modulo
691. E12 and ∆ are both modular forms of weight 12 whose
constant terms vanish modulo 691 - “cusp forms mod 691”.

• The dimension formula tells us there is only one cusp form of weight
12, so we conclude that E12 and ∆ must be the same cusp form
mod 691.
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Why do we care?

It turns out, this congruence has deep consequences...

There exists [a] ∈ Cl(Q(µ691))[691] satisfying:

σ · [a] = χ691(σ)
−11[a] for all σ ∈ Gal(Q̄/Q),

where χ691 : Gal(Q̄/Q) → F∗
691 is the mod 691 cyclotomic character.

More generally, Eisenstein congruences were used to prove the
Herbrand-Ribet theorem:
For 2 ≤ k ≤ p− 3 even:

ordp(Bk) > 0 ⇐⇒ ∃ element in the χ1−k
p eigenspace of Cl(Q(µp))[p].
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In particular, Ribet proved the following:

Ribet’s converse to Herbrand‘s theorem

For 2 ≤ k ≤ p− 3 even:
If ordp(Bk) > 0 then there exists an element [a] ∈ Cl(Q(µp))[p] satisfying

σ · [a] = χp(σ)
1−k[a] for all σ ∈ Gal(Q̄/Q).

We’re going to break down his proof into steps, but first let’s define a
modular form...
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Modular forms of level N

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
Let Mk(Γ1(N), χ) be the space of modular forms of weight k ≥ 2,
level N and Dirichlet character χ : (Z/NZ)× → C× with conductor
N .

f ∈Mk(Γ1(N), χ) if:
• f is holomorphic on the complex upper half plane
• f satisfies:

f [γ]k := (cz + d)−kf

(
az + b

cz + d

)
= χ(d)f(z)

for all γ =

(
a b
c d

)
∈ Γ0(N).

• f [α]k must be holomorphic at ∞ for all α ∈ SL2(Z), i.e. at all
cusps.
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Generalised Eisenstein series

Take Dirichlet characters ψ, ϕ satisfying ψϕ = χ. Then we have that the
Eisenstein series, Eψ,ϕk ∈Mk(Γ0(N), χ), where:

Eψ,ϕk (z) =
1

2
δ(ψ)L(1− k, ψ−1ϕ) +

∞∑
n=1

σψ,ϕk−1(n)q
n,

δ(ψ) = 1 if ψ is the trivial mod 1 character, 0 otherwise and

σψ,ϕk−1(n) =
∑

d|n,d>0

ψ(n/d)ϕ(d)dk−1

is the generalised power divisor series.
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Newforms

• If we were to take two modular forms, f and g of level N/d, we
could raise them to a modular form of level N with the map:

f + g[αd]k where αd = ( d 0
0 1 ) .

The old subspace is spanned by elements of this type.

• The new subspace is the orthogonal complement to this space w.r.t.
the Petersson innner product. A modular form is new at level N if it
lies in the new subspace.

• An eigenform is an eigenvector for all the Hecke operators, Tp, with
p ∤ N .

• f =
∑
n≥0 an(f)q

n ∈Mk(Γ0(N), χ) is normalised if a1(f) = 1.

• We say f ∈Mk(Γ0(N), χ) is a newform if f is a normalised
eigenform which is new at level N.
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Steps of the proof

Ribet’s converse to Herbrand‘s theorem

For 2 ≤ k ≤ p− 3 even:
If ordp(Bk) > 0 then there exists an element [a] ∈ Cl(Q(µp))[p] satisfying

σ · [a] = χp(σ)
1−k[a] for all σ ∈ Gal(Q̄/Q).

1. Bernoulli number, Bk

2. Eisenstein series, Ek = −Bk

2k +
∑∞
n=1 σk−1(n)q

n ∈Mk(SL2(Z))
3. Cusp form, f =

∑∞
n=1 af (n)q

n ∈ S2(Γ1(p))

4. Galois reps

5. Ideal class groups
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2 → 3: There is a congruence between Eisenstein series Ek and cuspform f modulo p

Show: Ek ≡ f mod p, p | p in field Kf generated by the coefficients of f

• Take E2,ε =
L(−1,ε)

2 +
∑∞
n=1

(∑
0<d|n ε(d)d

)
qn ∈M2(Γ1(p), ε).

Eisenstein series of weight 2, level p and character ε

• Fix a prime ideal p | p in Q(µp−1) and let ω : (Z/pZ)∗ ∼−→ µp−1 be
the unique Dirichlet character which satisfies

ω(d) ≡ d (mod p) ∀ d ∈ Z.

• Then E2,ωk−2 has a p-integral q-expansion in Q(µp−1) and

E2,ωk−2 ≡ Ek (mod p)
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2 → 3: There is a congruence between Eisenstein series Ek and cuspform f modulo p

Show: Ek ≡ f mod p, p | p in field Kf generated by the coefficients of f

• Ribet showed: ∃ g ∈M2(Γ1(p), ω
k−2) whose q-expansion

coefficients are p-integers in Q(µp−1) and whose constant term is 1.

• Take f ′ = E2,ωk−2 − c · g where c is the constant term of Ek,ωk−2

• Then if ordp(Bk) > 0, f ′ ≡ Ek ≡ E2,ωk−2 (mod p)

f is a mod p-eigenform since it is congruent to Ek mod p.

• Use Deligne-Serre to get f ≡ f ′ (mod p̃) for some p̃ | p in Kf (µp−1)
for f an eigenform

• Can check f is cuspidal, so f is the required cuspform
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Steps of the proof

Ribet’s converse to Herbrand‘s theorem

For 2 ≤ k ≤ p− 3 even:
If ordp(Bk) > 0 then there exists an element [a] ∈ Cl(Q(µp))[p] satisfying

σ · [a] = χp(σ)
1−k[a] for all σ ∈ Gal(Q̄/Q).

1. Bernoulli number, Bk

2. Eisenstein series, Ek = −Bk

2k +
∑∞
n=1 σk−1(n)q

n ∈Mk(SL2(Z))
3. Cusp form, f =

∑∞
n=1 af (n)q

n ∈ S2(Γ1(p))

↓ There is a residually reducible mod p Galois rep attached to f
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5. Ideal class groups
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3 → 4: There is a residually reducible mod p Galois rep attached to f

• By a theorem of Deligne, for prime p, there is a continuous,
irreducible Galois rep. attached to a cusp form f ∈ S2(Γ1(p), ω

k−2)

ρf,p : GQ → GL2(Qp)

which is unramified for q ̸= p and satisfies

Tr(ρf,p(Frobq)) = aq(f), det(ρf,p(Frobq)) = ωk−2(q)q

• We can reduce this representation modulo p to get

ρ̄f,p : GQ → GL2(Fp)
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3 → 4: There is a residually reducible mod p Galois rep attached to f

• Congruence condition on f tells us that the semisimplification of this
must be

ρ̄ssf,p ∼ 1⊕ χk−1
p

since Tr(ρ̄ssf,p(Frobq)) = āq(f) = σk−1(q) = 1 + qk−1

• Ribet shows we can always choose a basis for ρf,p such that

ρ̄f,p ∼
(

1 ∗
0 χk−1

p

)
i.e. evaluated at σ ∈ GQ,

ρ̄f,p(σ) =
(

1 b̄(σ)

0 χk−1
p (σ)

)
and ρf,p is everywhere unramified.



A motivating example Definitions Ribet’s proof Generalisations Comments on proof and consequences

3 → 4: There is a residually reducible mod p Galois rep attached to f

• Congruence condition on f tells us that the semisimplification of this
must be

ρ̄ssf,p ∼ 1⊕ χk−1
p

since Tr(ρ̄ssf,p(Frobq)) = āq(f) = σk−1(q) = 1 + qk−1
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4 → 5: There is a non-trivial element in Cl(Q(µp))[p]

• κ(σ) = b̄(σ) · χk−1
p (σ) is a non-trivial unramified class in

H1(GQ,Fp(χk−1
p ))

• This is equivalent to the existence of a field extension E/Q with
(writing F = Q(µp)):

• E ⊃ F and Gal(E/F ) ∼= Fp

• E everywhere unramified
• the action of Gal(F/Q) on Gal(E/F ) via conjugation is given by

στσ−1 = χ1−k
p (σ)τ

for σ ∈ Gal(E/Q), τ ∈ Gal(E/F )

• Class Field Theory then gives us existence of a non-trivial element in
the χk−1

p -eigenspace of Cl(Q(µp))[p]
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• the action of Gal(F/Q) on Gal(E/F ) via conjugation is given by

στσ−1 = χ1−k
p (σ)τ

for σ ∈ Gal(E/Q), τ ∈ Gal(E/F )

• Class Field Theory then gives us existence of a non-trivial element in
the χk−1

p -eigenspace of Cl(Q(µp))[p]
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Next steps

Q1: Can we find other congruences like this, but for higher levels and
non-trivial character?

• Higher levels: Dummigan-Fretwell (2014), Billerey-Menares (2016)
• Non-trivial character: Minimal level - Dummigan (2007), lift by

prime level - Spencer (2018)

Q2: What can we say about how “new” the modular forms that satisfy
the congruence are?

• Trivial character: Dummigan-Fretwell (2014), Billerey-Menares
(2016)

Q3: How do we find them, e.g. modulo what primes?
• Generalise Ribet’s converse to Herbrand’s theorem

Goal: Generalise to newform congruences with non-trivial character and
lift by prime level.
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Assume we have

• N - squarefree, p prime, (N, p) = 1, k > 2 - integer.

• Eψ,ϕk - new at level N (cond(ψ)·cond(ϕ) = N) with ψϕ = χ, χ̃ is
a lift of χ to modulus Np.

• l > k + 1, l ∤ φ(N)Np, l prime.
• λ - prime above l in the ring of integers of the extension of Q(ψ, ϕ)
generated by the Fourier coefficients of f .

Theorem (Fretwell, R., 2024)

There exists a such that

for all primes q ∤ Npl, if and only if both of the following hold for some
λ′ | l in Z[ψ, ϕ]:
1.

2.

1. Tells us that we will get a congruence modulo prime l with some
eigenform f

2. Gives us information about how “new” f is
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How does the generalisation compare to Ramanujan’s result?

o We had a congruence between a cuspform ∆ and Eisenstein series
E12.

• We can find a congruence between a cuspform f =
∑
n≥1 anq

n

(new at level Np) and an Eisenstein series Eψ,ϕk , (new at level N).

o The congruence held modulo 691, this worked because 691 divided
B12 (the constant coefficient of E12).

• The congruence holds modulo prime l, where l divides either the
constant term of the Eisenstein series or an Euler factor at prime p).

• To ensure f is new, l also has to divide another quantity depending
on p.
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(1)+(2) =⇒ newform congruence

Assumption

Assume we have conditions (1) and (2) from the theorem:

1. ordλ′(L(1− k, ψ−1ϕ)(ψ(p)− ϕ(p)pk)) > 0.

2. ordλ′((ψ(p)− ϕ(p)pk)(ψ(p)− ϕ(p)pk−2)) > 0.

• Construct modular form E(ψ)(z) = Eψ,ϕk (z)− ψ(p)Eψ,ϕk (pz).
This has constant term at the cusps given by either:

a0(E
(ψ)[γ]k) = cγL(1− k, ψ−1ϕ)(ψ(p)− ϕ(p)pk)

or a0(E
(ψ)[γ]k) = 0.

• Since it is also an eigenform, this is a “mod λ′ cusp form”

• Deligne-Serre gives existence of eigenform f such that

f ≡ E(ψ) ≡ Eψ,ϕk (mod λ)
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(1)+(2) =⇒ newform congruence

Assumption

Assume we have conditions (1) and (2) from the theorem:

1. ordλ′(L(1− k, ψ−1ϕ)(ψ(p)− ϕ(p)pk)) > 0.

2. ordλ′((ψ(p)− ϕ(p)pk)(ψ(p)− ϕ(p)pk−2)) > 0.

• To show f is a newform, first note we have minimum possible level
f ∈ Sk(Γ1(N), χ) since χ has conductor N .

• Assuming f is old at level Np, condition (2) is exactly what we need
to use Diamond’s level lifting lemma, which ensures there exists a
newform f1 ∈ Sk(Γ1(Np), χ) satsfying the congruence condition.
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Consequences

• The congruence gives us a λ-adic Galois rep ρf,λ which when taken
mod λ has semisimplification

ρ̄ssf,λ ∼ ψ̄ ⊕ ϕ̄χk−1
l

• We can choose the basis for ρf,λ in such a way that ρ̄f,λ is realised
on an Fλ-vector space V such that

0 → Fλ(1− k)(ϕ)
ι−→ V

π−→ Fλ(ψ) → 0

is a non-split extension of Fλ[GQ]-modules.

• Twist by ψ−1 gives a non-split extension V (ψ−1) which defines a
non-trivial class c ∈ H1(Q,Fλ(1− k)(ψ−1ϕ)).
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Consequences

• Taking Cψ,ϕk,l = (Ql/Zl)(1− k)(ψ−1ϕ), the congruence implies

∃ c′ ∈ H1
PNp

(Q, Cψ,ϕk,l ).

Classes of H1(Q, Cψ,ϕk,l ) for which local restrictions for primes q ∤ Np
lie in Bloch-Kato Selmer group H1

f (Qq, C
ψ,ϕ
k,l )

• Using this, we can recover evidence of a case of the Bloch-Kato
conjecture which was proven by Huber and Kings.
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Thank you!
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