Why I care about modular forms

Underrepresented genders in mathematics, 8th November 2023

Jenny Roberts

• Consider the product:

$$
q\prod_{n=1}^{\infty}(1-q^n)^{24}=\sum_{n=1}^{\infty}\tau(n)q^n
$$

• Now take the following function:

$$
\sigma_{11}(n) = \sum_{d|n} d^{11}
$$

• Let's compare the first few values…

How about mod 691?

RAMANUJAN'S CONGRUENCE

Ramanujan's observation

 $\sigma_{11}(n) \equiv \tau(n) \bmod{691}$

This seems surprising, but it can be explained using the theory of modular forms..

Definition

We say $f: \mathcal{H} \to \mathbb{C}$ is a modular form if:

- f is holomorphic on the upper half plane H
- f is holomorphic at ∞

•
$$
f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)
$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$

Let's dissect what these conditions mean…

 $\binom{2}{2}$

Definition

We say $f: \mathcal{H} \to \mathbb{C}$ is a modular form if:

- f is holomorphic on the complex upper half plane H
- $H = \{x + iy \in \mathbb{C} : y > 0\}$
- f is holomorphic at ∞

•
$$
f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)
$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$

 $\begin{matrix} 1 \\ 1 \\ 2 \end{matrix}$

Definition

We say $f: \mathcal{H} \to \mathbb{C}$ is a modular form if:

• f is holomorphic on the complex upper half plane H $\mathcal{H} = \{x + iy \in \mathbb{C} : y > 0\}$

• f is holomorphic at ∞

Holomorphic at the point $i\infty$

•
$$
f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)
$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$

Definition

We say $f: \mathcal{H} \to \mathbb{C}$ is a modular form if:

• f is holomorphic on the complex upper half plane H $\mathcal{H} = \{x + iy \in \mathbb{C} : y > 0\}$

- f is holomorphic at ∞
- Holomorphic at the point $i\infty$

•
$$
f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)
$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$
\n $SL_2(\mathbb{Z}) = \text{Span}\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right\}$, this gives:
\n• $f(z+1) = f(z)$
\n• $f\left(\frac{-1}{z}\right) = z^k f(z)$, we call $k \ge 2$ the **weight** (k even)

• Since $f(z + 1) = f(z)$ we can write f as a Fourier series expansion:

$$
f(z) = \sum_{n=-\infty}^{\infty} a_n q^n
$$

where $q = e^{2\pi i z}$.

o This works since $e^{2\pi i z} = e^{2\pi i (z+1)}$.

 \circ We call the a_n Fourier coefficients.

• Also, since f is holomorphic, we have no negative coefficients:

$$
f(z) = \sum_{n=0}^{\infty} a_n q^n
$$

• If f and g are modular forms of weights k and l , then using the transformation formula, fg is a modular form of weight $k + l$.

EXAMPLES OF MODULAR FORMS

$$
\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n
$$
 is a weight 12 modular form.

$$
E_k(z) = 1 + \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n, \ \sigma_k(n) = \sum_{d|n} d^{k-1}
$$
 is a weight *k* modular form.

In particular, consider…

$$
E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n)q^n = 1 + 240q + \cdots
$$
 Weight 4

$$
E_6(z) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n)q^n = 1 - 504q + \cdots
$$
 Weight 6

$$
\tilde{E}_{12}(z) = \frac{691}{65520} + \sum_{n=1}^{\infty} \sigma_{11}(n)q^n = \frac{691}{65520} + q + \cdots
$$
 Weight 12

EXAMPLES OF MODULAR FORMS

$$
\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n
$$
 is a weight 12 modular form.

 $E_k(z) = 1 +$ $2k$ B_k $\sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$, $\sigma_k(n) = \sum_{d|n} d^{k-1}$ is a weight k modular form.

In particular, consider…

$$
E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n = 1 + 240q + \cdots
$$
\n
$$
E_6(z) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n = 1 - 504q + \cdots
$$
\n
$$
\tilde{E}_{12}(z) = \frac{691}{65520} + \sum_{n=1}^{\infty} \sigma_{11}(n) q^n = \frac{691}{65520} + q + \cdots
$$
\n
$$
Weight 12
$$

We wanted to show $\sigma_{11}(n) \equiv \tau(n) \mod 691$, so we now need to show that $\tilde{E}_{12} \equiv \Delta \pmod{691}$.

Fact

The space of modular forms of weight k is spanned by $E_4^i E_6^j$, for $4i+6j=k.$

 \triangleright In other words, we can write any modular form of weight k as a linear combination of products of E_4 and E_6 .

Let's look at weight 12: There are only two *i*, *j* pairs such that $4i + 6j = 12$: $i = 3, j = 0$ and $i = 0, j = 2$. So modular forms of weight 12 can all be written in the form: $aE_4^3 + bE_6^2 = (a + b) + (3 * 240a - 2 * 504b)q + \cdots$ Or taking two forms of weight 12, say Δ and \tilde{E}_{12} , we can write: $\Delta = \alpha E_6^2 + \beta \tilde{E}_{12} = \alpha +$ 691 $\frac{65520}{65520}\beta$ + $(-1008\alpha + \beta)q + \cdots$ Comparing constant and $1st$ coefficients, we get:

$$
\begin{cases}\n\alpha + \frac{691}{65520}\beta = 0 \\
-1008\alpha + \beta = 1\n\end{cases} \Rightarrow \alpha = -\frac{691}{762048}, \beta = \frac{65}{756}
$$

• From the previous slide, we have

$$
\Delta = -\frac{691}{762048}E_6^2 + \frac{65}{756}\tilde{E}_{12}
$$

• Clearing denominators, we get:

$$
762048\Delta = -691 E_6^2 + 65520 \tilde{E}_{12}
$$

$$
(1008 * 691 + 65520)\Delta = -691 E_6^2 + 65520 \tilde{E}_{12}
$$

• Now, working mod 691:

 $65520\Delta \equiv 65520 \, \tilde{E}_{12} \, (\text{mod } 691)$

 $\Rightarrow \Delta \equiv \tilde{E}_{12} \pmod{691}$

 \Rightarrow $\tau(n) = \sigma_{11}(n)$ (mod 691) for all n.

We've solved it!