Why I care about modular forms

Underrepresented genders in mathematics, 8th November 2023

Jenny Roberts

• Consider the product:

$$q \prod_{n=1}^{\infty} (1-q^n)^{24} = \sum_{n=1}^{\infty} \tau(n)q^n$$

Now take the following function:

$$\sigma_{11}(n) = \sum_{d|n} d^{11}$$

• Let's compare the first few values...

How about mod 691?

n	1	2	3	4	5	6
$\sigma_{11}(n) \mod 691$	1	667	252	601	684	171
au(n) mod 691	1	667	252	601	684	171

RAMANUJAN'S CONGRUENCE

Ramanujan's observation

 $\sigma_{11}(n) \equiv \tau(n) \mod 691$

This seems surprising, but it can be explained using the theory of modular forms..

Definition

We say $f: \mathcal{H} \rightarrow \mathbb{C}$ is a modular form if:

- f is holomorphic on the upper half plane ${\mathcal H}$
- f is holomorphic at ∞

•
$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$

Let's dissect what these conditions mean...

(

Definition

We say $f: \mathcal{H} \rightarrow \mathbb{C}$ is a modular form if:

- f is holomorphic on the complex upper half plane ${\mathcal H}$
- $\mathcal{H} = \{x + iy \in \mathbb{C} : y > 0\}$
- f is holomorphic at ∞

•
$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$

Definition

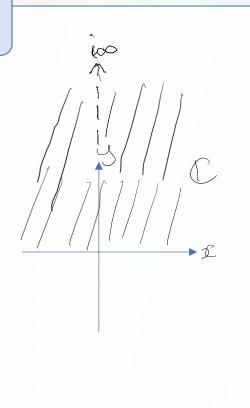
We say $f: \mathcal{H} \to \mathbb{C}$ is a modular form if:

• f is holomorphic on the complex upper half plane \mathcal{H} $\mathcal{H} = \{x + iy \in \mathbb{C} : y > 0\}$

• f is holomorphic at ∞

Holomorphic at the point $i\infty$

•
$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$



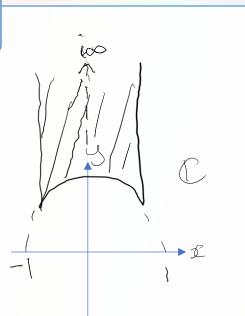
Definition

We say $f: \mathcal{H} \to \mathbb{C}$ is a modular form if:

• f is holomorphic on the complex upper half plane \mathcal{H} $\mathcal{H} = \{x + iy \in \mathbb{C} : y > 0\}$

- f is holomorphic at ∞
- Holomorphic at the point $i\infty$

•
$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$
 $SL_2(\mathbb{Z}) = \text{Span}\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right\}$, this gives:
• $f(z+1) = f(z)$
• $f\left(\frac{-1}{z}\right) = z^k f(z)$, we call $k \ge 2$ the weight (k even)



CONSEQUENCES OF MODULAR FORM DEFINITION

• Since f(z + 1) = f(z) we can write f as a Fourier series expansion:

$$f(z) = \sum_{n = -\infty}^{\infty} a_n q^n$$

where $q = e^{2\pi i z}$.

• This works since $e^{2\pi i z} = e^{2\pi i (z+1)}$.

 \circ We call the a_n Fourier coefficients.

• Also, since f is holomorphic, we have no negative coefficients:

$$f(z) = \sum_{n=0}^{\infty} a_n q^n$$

• If f and g are modular forms of weights k and l, then using the transformation formula, fg is a modular form of weight k + l.

EXAMPLES OF MODULAR FORMS

$$\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$$
 is a weight 12 modular form.

$$E_k(z) = 1 + \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n, \ \sigma_k(n) = \sum_{d|n} d^{k-1} \text{ is a weight } k \text{ modular form.}$$

In particular, consider...

$$E_4(z) = 1 + 240 \sum_{\substack{n=1 \\ \infty}}^{\infty} \sigma_3(n)q^n = 1 + 240q + \cdots \qquad \text{Weight 4}$$

$$E_6(z) = 1 - 504 \sum_{\substack{n=1 \\ \infty}}^{\infty} \sigma_5(n)q^n = 1 - 504q + \cdots \qquad \text{Weight 6}$$

$$\tilde{E}_{12}(z) = \frac{691}{65520} + \sum_{\substack{n=1 \\ n=1}}^{\infty} \sigma_{11}(n)q^n = \frac{691}{65520} + q + \cdots \qquad \text{Weight 12}$$

EXAMPLES OF MODULAR FORMS

$$\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$$
 is a weight 12 modular form.

 $E_k(z) = 1 + \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n, \ \sigma_k(n) = \sum_{d|n} d^{k-1} \text{ is a weight } k \text{ modular form.}$

In particular, consider...

$$E_{4}(z) = 1 + 240 \sum_{\substack{n=1 \\ \infty}}^{\infty} \sigma_{3}(n)q^{n} = 1 + 240q + \cdots \qquad \text{Weight 4}$$

$$E_{6}(z) = 1 - 504 \sum_{\substack{n=1 \\ \infty}}^{\infty} \sigma_{5}(n)q^{n} = 1 - 504q + \cdots \qquad \text{Weight 6}$$

$$\tilde{E}_{12}(z) = \underbrace{\frac{691}{65520}}_{65520} + \underbrace{\sum_{n=1}^{\infty} \sigma_{11}(n)q^{n}}_{n} = \frac{691}{65520} + q + \cdots \qquad \text{Weight 12}$$

We wanted to show $\sigma_{11}(n) \equiv \tau(n) \mod 691$, so we now need to show that $\tilde{E}_{12} \equiv \Delta \pmod{691}$.

Fact

The space of modular forms of weight k is spanned by $E_4^i E_6^j$, for 4i + 6j = k.

> In other words, we can write any modular form of weight k as a linear combination of products of E_4 and E_6 .

Let's look at weight 12: There are only two *i*, *j* pairs such that 4i + 6j = 12: i = 3, j = 0 and i = 0, j = 2. So modular forms of weight 12 can all be written in the form: $aE_4^3 + bE_6^2 = (a + b) + (3 * 240a - 2 * 504b)q + \cdots$ Or taking two forms of weight 12, say Δ and \tilde{E}_{12} , we can write: $\Delta = \alpha E_6^2 + \beta \tilde{E}_{12} = \left(\alpha + \frac{691}{65520}\beta\right) + (-1008\alpha + \beta)q + \cdots$ Comparing constant and 1st coefficients, we get:

$$\begin{cases} \alpha + \frac{691}{65520}\beta = 0 \\ -1008\alpha + \beta = 1 \end{cases} \Rightarrow \alpha = -\frac{691}{762048}, \beta = \frac{65}{756} \end{cases}$$

• From the previous slide, we have

$$\Delta = -\frac{691}{762048}E_6^2 + \frac{65}{756}\tilde{E}_{12}$$

• Clearing denominators, we get:

$$762048\Delta = -691 E_6^2 + 65520 \tilde{E}_{12}$$
$$(1008 * 691 + 65520)\Delta = -691 E_6^2 + 65520 \tilde{E}_{12}$$

• Now, working mod 691:

 $65520\Delta \equiv 65520 \tilde{E}_{12} \pmod{691}$ $\Rightarrow \Delta \equiv \tilde{E}_{12} \pmod{691}$ $\Rightarrow \tau(n) = \sigma_{11}(n) \pmod{691} \text{ for all } n.$

We've solved it!