p-group, cyclic, elementary abelian, simple, monomial
Aliases: C43, also denoted Z43, SmallGroup(43,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C43 |
C1 — C43 |
C1 — C43 |
C1 — C43 |
Generators and relations for C43
G = < a | a43=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43)
G:=sub<Sym(43)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43)]])
C43 is a maximal subgroup of
D43 C43⋊C3 C43⋊C7
43 conjugacy classes
class | 1 | 43A | ··· | 43AP |
order | 1 | 43 | ··· | 43 |
size | 1 | 1 | ··· | 1 |
43 irreducible representations
dim | 1 | 1 |
type | + | |
image | C1 | C43 |
kernel | C43 | C1 |
# reps | 1 | 42 |
Matrix representation of C43 ►in GL1(𝔽173) generated by
124 |
G:=sub<GL(1,GF(173))| [124] >;
C43 in GAP, Magma, Sage, TeX
C_{43}
% in TeX
G:=Group("C43");
// GroupNames label
G:=SmallGroup(43,1);
// by ID
G=gap.SmallGroup(43,1);
# by ID
G:=PCGroup([1,-43]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^43=1>;
// generators/relations
Export