Extensions 1→N→G→Q→1 with N=C3 and Q=C3×S3

Direct product G=N×Q with N=C3 and Q=C3×S3
dρLabelID
S3×C3218S3xC3^254,12

Semidirect products G=N:Q with N=C3 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×S3) = C3×C3⋊S3φ: C3×S3/C32C2 ⊆ Aut C318C3:(C3xS3)54,13

Non-split extensions G=N.Q with N=C3 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C3.1(C3×S3) = C3×D9φ: C3×S3/C32C2 ⊆ Aut C3182C3.1(C3xS3)54,3
C3.2(C3×S3) = C32⋊C6φ: C3×S3/C32C2 ⊆ Aut C396+C3.2(C3xS3)54,5
C3.3(C3×S3) = C9⋊C6φ: C3×S3/C32C2 ⊆ Aut C396+C3.3(C3xS3)54,6
C3.4(C3×S3) = S3×C9central extension (φ=1)182C3.4(C3xS3)54,4

׿
×
𝔽