p-group, cyclic, elementary abelian, simple, monomial, rational
Aliases: C2, also denoted Z2, SmallGroup(2,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
| C1 — C2 | 
| C1 — C2 | 
| C1 — C2 | 
| C1 — C2 | 
Generators and relations for C2
 G = < a | a2=1 >
Character table of C2
| class | 1 | 2 | |
| size | 1 | 1 | |
| ρ1 | 1 | 1 | trivial | 
| ρ2 | 1 | -1 | linear of order 2 faithful | 
(1 2)
G:=sub<Sym(2)| (1,2)>;
G:=Group( (1,2) );
G=PermutationGroup([[(1,2)]])
G:=TransitiveGroup(2,1);
C2 is a maximal subgroup of
 C4
 Dp: S3  D5  D7  D11  D13  D17  D19  D23 ...
C2 is a maximal quotient of 
 C4  S5  PGL2(𝔽7)
 Dp: S3  D5  D7  D11  D13  D17  D19  D23 ...
| action | f(x) | Disc(f) | 
|---|---|---|
| 2T1 | x2+1 | -22 | 
Matrix representation of C2 ►in GL1(ℤ) generated by
| -1 | 
G:=sub<GL(1,Integers())| [-1] >;
C2 in GAP, Magma, Sage, TeX
C_2
% in TeX
G:=Group("C2"); // GroupNames label
G:=SmallGroup(2,1);
// by ID
G=gap.SmallGroup(2,1);
# by ID
G:=PCGroup([1,-2]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^2=1>;
// generators/relations
Export