Extensions 1→N→G→Q→1 with N=M4(2)⋊C4 and Q=C2

Direct product G=N×Q with N=M4(2)⋊C4 and Q=C2
dρLabelID
C2×M4(2)⋊C464C2xM4(2):C4128,1642

Semidirect products G=N:Q with N=M4(2)⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
M4(2)⋊C41C2 = C24.21D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:1C2128,588
M4(2)⋊C42C2 = C4≀C2⋊C4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:2C2128,591
M4(2)⋊C43C2 = C429(C2×C4)φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:3C2128,592
M4(2)⋊C44C2 = C4.D43C4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:4C2128,663
M4(2)⋊C45C2 = M4(2)⋊6D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:5C2128,769
M4(2)⋊C46C2 = M4(2).7D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:6C2128,770
M4(2)⋊C47C2 = M4(2).12D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:7C2128,795
M4(2)⋊C48C2 = C4○D4.7Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:8C2128,1644
M4(2)⋊C49C2 = C4○D4.8Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:9C2128,1645
M4(2)⋊C410C2 = C42.275C23φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:10C2128,1678
M4(2)⋊C411C2 = C42.276C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:11C2128,1679
M4(2)⋊C412C2 = M4(2)⋊14D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:12C2128,1787
M4(2)⋊C413C2 = M4(2)⋊15D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:13C2128,1788
M4(2)⋊C414C2 = M4(2)⋊16D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:14C2128,1794
M4(2)⋊C415C2 = M4(2)⋊17D4φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:15C2128,1795
M4(2)⋊C416C2 = C42.219D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:16C2128,1809
M4(2)⋊C417C2 = C42.448D4φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:17C2128,1811
M4(2)⋊C418C2 = C42.449D4φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:18C2128,1812
M4(2)⋊C419C2 = C42.20C23φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:19C2128,1813
M4(2)⋊C420C2 = C42.22C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:20C2128,1815
M4(2)⋊C421C2 = C42.23C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:21C2128,1816
M4(2)⋊C422C2 = C24.183D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:22C2128,1824
M4(2)⋊C423C2 = C24.116D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:23C2128,1825
M4(2)⋊C424C2 = C24.117D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:24C2128,1826
M4(2)⋊C425C2 = C24.118D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:25C2128,1827
M4(2)⋊C426C2 = (C2×D4).301D4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4:26C2128,1828
M4(2)⋊C427C2 = (C2×D4).302D4φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:27C2128,1829
M4(2)⋊C428C2 = (C2×D4).303D4φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:28C2128,1830
M4(2)⋊C429C2 = (C2×D4).304D4φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:29C2128,1831
M4(2)⋊C430C2 = C42.57C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:30C2128,2075
M4(2)⋊C431C2 = C42.58C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:31C2128,2076
M4(2)⋊C432C2 = C42.59C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:32C2128,2077
M4(2)⋊C433C2 = C42.60C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:33C2128,2078
M4(2)⋊C434C2 = C42.61C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:34C2128,2079
M4(2)⋊C435C2 = C42.62C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:35C2128,2080
M4(2)⋊C436C2 = C42.63C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:36C2128,2081
M4(2)⋊C437C2 = C42.64C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:37C2128,2082
M4(2)⋊C438C2 = C42.492C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:38C2128,2083
M4(2)⋊C439C2 = C42.493C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:39C2128,2084
M4(2)⋊C440C2 = C42.494C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:40C2128,2085
M4(2)⋊C441C2 = C42.495C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:41C2128,2086
M4(2)⋊C442C2 = C42.496C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:42C2128,2087
M4(2)⋊C443C2 = C42.497C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:43C2128,2088
M4(2)⋊C444C2 = C42.498C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4:44C2128,2089
M4(2)⋊C445C2 = C24.100D4φ: trivial image32M4(2):C4:45C2128,1643
M4(2)⋊C446C2 = C4×C8⋊C22φ: trivial image32M4(2):C4:46C2128,1676
M4(2)⋊C447C2 = C4×C8.C22φ: trivial image64M4(2):C4:47C2128,1677

Non-split extensions G=N.Q with N=M4(2)⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
M4(2)⋊C4.1C2 = C4.10D42C4φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4.1C2128,589
M4(2)⋊C4.2C2 = C4.10D43C4φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.2C2128,662
M4(2)⋊C4.3C2 = M4(2).5Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.3C2128,683
M4(2)⋊C4.4C2 = M4(2).6Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.4C2128,684
M4(2)⋊C4.5C2 = M4(2)⋊Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4.5C2128,792
M4(2)⋊C4.6C2 = C423Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C432M4(2):C4.6C2128,793
M4(2)⋊C4.7C2 = M4(2).13D4φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.7C2128,796
M4(2)⋊C4.8C2 = M4(2).Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.8C2128,821
M4(2)⋊C4.9C2 = M4(2).2Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.9C2128,822
M4(2)⋊C4.10C2 = C42.220D4φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.10C2128,1810
M4(2)⋊C4.11C2 = C42.21C23φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.11C2128,1814
M4(2)⋊C4.12C2 = M4(2)⋊3Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.12C2128,1895
M4(2)⋊C4.13C2 = M4(2)⋊4Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.13C2128,1896
M4(2)⋊C4.14C2 = M4(2)⋊5Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.14C2128,1897
M4(2)⋊C4.15C2 = M4(2)⋊6Q8φ: C2/C1C2 ⊆ Out M4(2)⋊C464M4(2):C4.15C2128,1898

׿
×
𝔽