Extensions 1→N→G→Q→1 with N=C2 and Q=M4(2)⋊C4

Direct product G=N×Q with N=C2 and Q=M4(2)⋊C4
dρLabelID
C2×M4(2)⋊C464C2xM4(2):C4128,1642


Non-split extensions G=N.Q with N=C2 and Q=M4(2)⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(M4(2)⋊C4) = M4(2)⋊1C8central extension (φ=1)64C2.1(M4(2):C4)128,297
C2.2(M4(2)⋊C4) = C24.152D4central extension (φ=1)64C2.2(M4(2):C4)128,468
C2.3(M4(2)⋊C4) = C8⋊C42central extension (φ=1)128C2.3(M4(2):C4)128,508
C2.4(M4(2)⋊C4) = C81M4(2)central stem extension (φ=1)64C2.4(M4(2):C4)128,301
C2.5(M4(2)⋊C4) = C42.92D4central stem extension (φ=1)64C2.5(M4(2):C4)128,305
C2.6(M4(2)⋊C4) = C42.21Q8central stem extension (φ=1)64C2.6(M4(2):C4)128,306
C2.7(M4(2)⋊C4) = C24.67D4central stem extension (φ=1)64C2.7(M4(2):C4)128,541
C2.8(M4(2)⋊C4) = C42.24Q8central stem extension (φ=1)128C2.8(M4(2):C4)128,568
C2.9(M4(2)⋊C4) = C42.26Q8central stem extension (φ=1)128C2.9(M4(2):C4)128,579
C2.10(M4(2)⋊C4) = C23.37D8central stem extension (φ=1)64C2.10(M4(2):C4)128,584
C2.11(M4(2)⋊C4) = C24.159D4central stem extension (φ=1)64C2.11(M4(2):C4)128,585
C2.12(M4(2)⋊C4) = C24.71D4central stem extension (φ=1)64C2.12(M4(2):C4)128,586
C2.13(M4(2)⋊C4) = C42.29Q8central stem extension (φ=1)128C2.13(M4(2):C4)128,679
C2.14(M4(2)⋊C4) = C42.30Q8central stem extension (φ=1)128C2.14(M4(2):C4)128,680
C2.15(M4(2)⋊C4) = C42.31Q8central stem extension (φ=1)128C2.15(M4(2):C4)128,681

׿
×
𝔽